
ar
X

iv
:1

51
1.

05
99

3v
1 

 [
m

at
h.

A
T

] 
 1

8 
N

ov
 2

01
5

AN ALGEBRAIC MODEL FOR RATIONAL G–SPECTRA OVER AN

EXCEPTIONAL SUBGROUP

MAGDALENA KȨDZIOREK

Abstract. We give a simple algebraic model for rational G–spectra over an excep-

tional subgroup, for any compact Lie group G. Moreover, all our Quillen equivalences
are symmetric monoidal, so as a corollary we obtain a monoidal algebraic model for
rational G–spectra when G is finite. We also present a study of the relationship

between induction – restriction – coinduction adjunctions and left Bousfield localiza-
tions at idempotents of the rational Burnside ring.
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1. Introduction

Modelling the category of rational G – spectra. G–spectra are representing objects
for cohomology theories designed to take symmetries of spaces into account. Rational-
ising this category removes topological complexity, but leaves interesting equivariant
behaviour. In order to understand this behaviour, we try to find a purely algebraic de-
scription of the category, i.e. an algebraic category Quillen equivalent to the category of
rational G–spectra. As a result the homotopy category of an algebraic model is equiv-
alent to the rational stable G homotopy category, thus all the homotopy information in
both is the same.

Let G be a compact Lie group. We start with the category of rational G–spectra,
by which we mean the category of G–spectra, but with the model structure that is a
left Bousfield localization of the stable model structure at the rational sphere spectrum.
Thus the weak equivalences are maps which become isomorphisms after applying the
rational homotopy group functors, i.e. πH

∗ (−)⊗Q for all closed subgroups H in G.
Therefore we want to find an algebraic category in which calculations should be easier,

equipped with a model structure Quillen equivalent to the category of rationalG–spectra.
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Note that the level of accuracy we would like to get is “up to homotopy”, therefore we
don’t need equivalences of categories (which is usually difficult to get), but (possibly a
chain of) Quillen equivalences. If we find such a chain of Quillen equivalences between
the category of rational G–spectra and some algebraic category we say that we found an
“algebraic model” for rational G–spectra. We can then work and perform constructions
and calculations in this new setting to get results for the homotopy category of rational
G–spectra.

Main result. We call a subgroup H ≤ G exceptional if NGH/H is finite and H can be
completely separated from other subgroups of G in a sense that there is an idempotent
e(H)G in the rational Burnside ring A(G)Q corresponding to the conjugacy class of H in
G and H does not contain a subgroup K such that H/K is a (non-trivial) torus (see
Definition 2.1).

A category of rational G–spectra over an exceptional subgroup H is modelled by the
left Bousfield localization at the idempotent e(H)G . This models the homotopy category
of rational G–spectra with geometric isotropy H and it is a particularly nicely behaved
part of rational G–spectra, which in its structure resembles (or generalizes) rational Γ–
spectra for finite Γ.

Theorem 1.1. Suppose G is any compact Lie group and H an exceptional subgroup of
G. Then there is a zig-zag of symmetric monoidal Quillen equivalences from rational
G–spectra over H to

Ch(Q[NGH/H ]−mod)

with the projective model structure.

If G is finite then every subgroup of G is exceptional and there is finitely many
conjugacy classes of subgroups of G, so by the splitting result of [2] the category of
rational G–spectra splits into a finite product (over conjugacy classes (H) of subgroups
of G) of rational G–spectra over H . Thus our approach gives a monoidal algebraic model
for rational G–spectra for finite G (see also Section 5.3).

Corollary 1.2. Suppose G is a finite group. Then there is a zig-zag of symmetric
monoidal Quillen equivalences from rational G–spectra to

∏

(H),H≤G

Ch(Q[NGH/H ]−mod)

with the (objectwise) projective model structure.

Results above were obtained using an analysis of the interplay between left Bousfield
localizations at idempotents of the rational Burnside ring and the induction – restriction
– coinduction adjunctions in Section 4. This analysis is similar in flavour to the one
presented in [10] for the inflation–fixed point adjunction. The point is to recognise when
these adjunctions become Quillen equivalences in situations that are of intrest to us.
Similar analysis is used to obtain an algebraic model for rational SO(3)–spectra in [14]
and also for the toral part of rational G–spectra, for any compact Lie group G in [3].

Existing work. It is expected that for any compact Lie groupG there exists an algebraic
category A(G) which is Quillen equivalent to that of rational G–spectra.

There are many partial results and examples for specific Lie groups G for which an
algebraic model has been given. An algebraic model for rational G equivariant spectra
for finite G is described in [19, Example 5.1.2]. It was shown in [20, Theorem 1.1] that
rational spectra are monoidally Quillen equivalent to chain complexes of Q modules. An
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algebraic model for rational torus equivariant spectra was presented in [8], whereas a
new approach in [4] gives a symmetric monoidal algebraic model for SO(2). Also, an
algebraic model for free rational G–spectra was given in [9] for any compact Lie group
G.

However, there is no algebraic model known for the whole category of rational G–
spectra for an arbitrary compact Lie group G. The present paper establishes the first
part of a general result, providing a model for rational G–spectra over an exceptional
subgroup (see Definition 2.1), for any compact Lie group G.

The approach to the algebraic model for rational G–spectra, where G is finite, in [1]
requires the use of localizations of commutative ring G–spectra. Interpreting it correctly
would rely on work of Blumberg and Hill [5]. The method of this paper avoids such
subtleties and thus presents a more immediate and easier proof of a zig-zag of symmetric
monoidal Quillen equivalences in the case where G is a finite group.

Outline of the paper. This paper is structured as follows. In Section 2 we describe
subgroups of a compact Lie group G and discuss some related idempotents in the rational
Burnside ring of G. Section 3 recalls basic properties of G orthogonal spectra that we
will use later on. In Section 4 we link the different behaviour of subgroups of G with the
left Bousfield localization and the induction – restriction – conduction adjunctions. This
is the heart of the paper and it allows us to provide a zig-zag of symmetric monoidal
Quillen equivalences in Section 5 that instead of using the Morita equivalences presented
in [19] uses the inflation–fixed point adjunction which is strong symmetric monoidal.

Notation. We will stick to the convention of drawing the left adjoint above the right
one in any adjoint pair.

Acknowledgments. This is a part of my PhD thesis (under the supervision of John
Greenlees) and I would like to thank John Greenlees and Dave Barnes for many useful
discussions and comments.

2. Subgroups of a Lie group G

Recall that for H ≤ G, NGH = {g ∈ G | gH = Hg} is the normaliser of H in G. We
use the notation W = WGH = NGH/H for the Weyl group of H in G.

Suppose F(G) is a space of closed subgroups of G with finite index in their normalizer
(i.e. H ≤ G such that NGH/H is finite) considered with topology given by the Hausdorff
metric. By the result of tom Dieck ([21, 5.6.4, 5.9.13] A(G)⊗Q = C(F(G)/G,Q), where
C(F(G)/G,Q) denotes the ring of continuous functions on the orbit space F(G)/G with
values in discrete space Q. From now on we will use notation A(G)Q for A(G)⊗Q. It is
clear that idempotents of the rational Burnside ring of G correspond to the characteristic
functions on open and closed subspaces of the orbit space F(G)/G (or equivalently, to
open and closed subspaces of F(G)/G). Thus it makes sense to refer to an idempotent
eV , i.e. the one corresponding to the subspace V in F(G)/G, provided that V is open
and closed in F(G)/G.

Every inclusion i : H −→ G gives a ring homomorphism i∗ : A(H)Q −→ A(G)Q. To
see what is an image of an idempotent under i∗ it is better to relate idempotents to the
subspaces of the space of all closed subgroups of G as follows. Suppose Subf(G) is the
topological space of all closed subgroups of G with the f -topology (see [6, Section 8] for
details). One can relate an idempotent in a rational Burnside ring A(G)Q to an open
and closed, G–invariant subspace of Subf(G) which is a union of ∼–equivalence classes
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(here ∼ denotes the equivalence relation generated by H ∼ G, where H ∼ G iff H ≤ G
and G/H is a torus).

With this in mind, we give the following

Definition 2.1. Suppose G is a compact Lie group. We say that a closed subgroup
H ≤ G is exceptional in G if WGH is finite, there exist an idempotent e(H)G in the
rational Burnside ring of G corresponding to the conjugacy class of H in G and H does
not contain any subgroup cotoral in H , where a subgroup K ≤ H is cotoral in H if H/K
is a (non-trivial) torus.

Note that any subgroup of a finite group G is exceptional. In O(2) only finite dihedral
subgroups are exceptional; in particular none of the finite cyclic subgroups is exceptional.
In SO(3) all finite dihedral subgroups are exceptional (except for D2), but we have more:
there are four more conjugacy classes of exceptional subgroups: A4,Σ4, A5 and SO(3),
where A4 denotes rotations of a tetrahedron, Σ4 denotes rotations of a cube and A5

denotes rotations of a dodecahedron.
We introduced the notion of an exceptional subgroup H because we will use the

corresponding idempotent in the rational Burnside ring to split the category of rational
G–spectra into the part over an exceptional subgroup H and its complement. In this
paper we present the model for rational G–spectra over an exceptional subgroup H .

On the way towards the algebraic model different subgroups of G will behave slightly
differently. This behaviour is closely related to the following

Definition 2.2. Suppose H,K are closed subgroups of G such that K is exceptional in
G. Suppose further that i : H −→ G is an inclusion. We say that K is H–good in G if
i∗(e(K)G) = e(K)H and H–bad in G if it is not H–good, i.e. i∗(e(K)G) 6= e(K)H .

There is a definition of good and bad subgroups in [7, Definition 6.3], however it was
designed to capture different properties than our definition and thus they are not the
same. As an example, if a trivial subgroup is exceptional in G it is always H–good in G
for any H ≤ G according to our definition and H–bad according to Greenlees’ definition
(unless H is normal in G).

It is easy to see that any exceptional subgroup H in a compact Lie group G is H–good
in G.

We present some examples.

Lemma 2.3. For exceptional subgroups in G = SO(3) we have the following relation
between H and its normaliser NGH:

(1) A5 is A5–good in SO(3).
(2) Σ4 is Σ4–good in SO(3).
(3) A4 is Σ4–good in SO(3).
(4) D4 is Σ4–bad in SO(3).

Proof. We only need to prove Part 3 and 4. Part 3 follows from the fact that there is
one conjugacy class of A4 in Σ4, as there is just one subgroup of index 2 in Σ4. Part 4
follows from the observation that there are two subgroups of order 4 in D8 (so also in
Σ4) and they are conjugate by an element g ∈ D16, which is the generating rotation by
45 degrees (thus g /∈ D8 and thus g /∈ Σ4). �

3. G orthogonal spectra, left Bousfield localization and splitting

There are many constructions of categories of spectra (G–spectra) equipped with
model structures, such that the homotopy category is equivalent to the usual stable
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homotopy category of spectra (G–spectra, respectively). However, since we are interested
in modelling the smash product as well, we choose to work with a model with a strictly
associative monoidal product compatible with model structure so that its homotopy
category is equivalent to the usual stable homotopy category with the smash product
known in algebraic topology.

When we work with non equivariant spectra, there are several categories having this
property, and we choose to work with the category of symmetric spectra defined in [13]
and discussed in details in [17]. We will use it briefly towards the end of Section 5.2.
Whenever we are interested in modelling the category of G–equivariant cohomology the-
ories we choose to work with the category of G–orthogonal spectra defined and described
in [15], for which we use the notation G− SpO.

The construction of both categories is similar and we refer the reader to the papers
above for details. The idea is to first construct a diagram of spaces (or simplicial sets)
indexed by some fixed category. Then to define a tensor product on the category of
diagrams and choose a monoid S (sphere spectrum). Spectra are defined to be S-modules.
Depending on the indexing category we get symmetric spectra or G orthogonal spectra.

In this section we recall briefly some properties of the category of orthogonalG–spectra
after Chapter II of [15]. We stress that unless otherwise stated we use the term of G
orthogonal spectra to implicitly mean the ones indexed on a complete G universe. By
[15, Theorem 4.2.] there is a model structure on orthogonal G–spectra, called the stable
model structure where a map of orthogonal spectra f : X −→ Y is a weak equivalence if
it is a π∗–isomorphism (i.e. it is a πH

∗ –isomorphism for all H 6 G). This model structure
is cofibrantly generated, stable, monoidal, proper and cellular (see [15, Theorem III 4.2]).

What is more, we have a good way of checking that a map in G − SpO is a weak
equivalence. For any closed subgroup H in G, any orthogonal spectrum X and integers
p ≥ 0 and q > 0

(3.1) [ΣpS0 ∧G/H+, X ]G ∼= πH
p (X) [FqS

0 ∧G/H+, X ]G ∼= πH
−q(X)

where the left hand sides denote morphisms in the homotopy category of G − SpO and
Fq− is the left adjoint to the evaluation functor at Rq, EvRq (X) = X(Rq).

There is one more property which makes the stable model structure on G−SpO easy to
work with, namely it has a set of homotopically compact generators. By [12, Definition
7.1.1] a homotopy category of a stable model category is triangulated. In this setting we
can make the following definitions after [19, Definition 2.1.2].

Definition 3.1. Let C be a triangulated category with infinite coproducts. A full trian-
gulated subcategory of C (with shift and triangles induced from C) is called localizing if
it is closed under coproducts in C. A set P of objects of C is called a set of generators if
the only localizing subcategory of C containing objects of P is the whole of C. An object
X in C is homotopically compact1 if for any family of objects {Ai}i∈I the canonical map

⊕

i∈I

[X,Ai]
C −→ [X,

∐

i∈I

Ai]
C

is an isomorphism. An object of a stable model category is called a homotopically
compact generator if it is so when considered as an object of the homotopy category.

The set of suspensions and desuspensions of G/H+, where H varies through all closed
subgroups of G, is a set of homotopically compact generators in the stable model category
G−SpO. Those objects are homotopically compact since homotopy groups commute with

1We chose to emphasize the word ”homotopically”, since there are several different meanings of
compactness in the literature.
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coproducts and it is clear from [19, Lemma 2.2.1] and (3.1) that this is a set of generators

for G− SpO.
There is an easy-to-check condition for a Quillen adjunction between stable model

categories with sets of homotopically compact generators to be a Quillen equivalence:

Lemma 3.2. Suppose F : C ⇄ D : U is a Quillen pair between stable model categories
with sets of homotopically compact generators, such that the right derived functor RU
preserves coproducts (or equivalently, such that the left derived functor sends homotopi-
cally small generators to homotopically small objects). Then to know F,U is a Quillen
equivalence it is enough to check that a derived unit and counit are weak equivalences for
generators.

Proof. This follows from the fact that the homotopy category of a stable model category
is a triangulated category. As the derived unit and counit conditions are satisfied for a
set of objects K then they are also satisfied for every object in the localizing subcategory
for K. Since K consisted of generators the localizing subcategory for K is the whole
category. �

Our basic category to work with is the category G − SpO of G–orthogonal spectra.
However, in this paper we are interested only in the homotopy category of rational G–
spectra over an exceptional subgroup. Localization is our main tool to make the model
category of G–spectra easier, so that it models exactly the part that we want. We obtain
it by firstly rationalising the stable model category of G–spectra using the localization at
an object SQ, which is a rational sphere spectrum. Then, we localize it further to extract
the behaviour of an exceptional subgroup.

For details on left Bousfield localization at an object we refer the reader to [15]. We
recall the following result, which is [15, Chapter IV, Theorem 6.3]

Theorem 3.3. Suppose E is a cofibrant object in G − SpO or a cofibrant based G–
space. Then there exists a new model structure on the category G − SpO, where a map
f : X −→ Y is

- a weak equivalence if it is an E–equivalence, i.e. IdE ∧ f : E ∧X −→ E ∧ Y is
a weak equivalence

- cofibration if it is a cofibration with respect to the stable model structure
- fibration if it has the right lifting property with respect to all trivial cofibrations.

The E–fibrant objects Z are the E–local objects, i.e. [f, Z]G : [Y, Z]G −→ [X,Z]G is an
isomorphism for all E–equivalences f . E–fibrant approximation gives Bousfield localiza-
tion λ : X −→ LEX of X at E.

We use the notation LE(G − SpO) for the model category described above and will
refer to it as a left Bousfield localization of the category of G–spectra at E. Notice that
if E and F are cofibrant objects in G− SpO then the localization first at E and then at
F is the same (model category) as the localization at E ∧ F .

Recall that, an E–equivalence between E–local objects is a weak equivalence (see [11,
Theorems 3.2.13 and 3.2.14]). All our localizations are smashing (see [16] for definition)
thus they preserve homotopically compact generators (since the fibrant replacement pre-
serves infinite coproducts).

As mentioned above, the first simplification of a category of G–spectra is rational-
ization, i.e. localization at an object SQ, which is a rational sphere spectrum (the
Eilenberg–Moore spectrum for Q, see for example [2, Definition 5.1]). This spectrum
has the property that π∗(X ∧ SQ) = π∗(W ) ⊗ Q. We refer to this model category as
rational G–spectra.
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The next step on the way towards the algebraic model is to split the category of
rational G–spectra using idempotents of the rational Burnside ring A(G)Q. We know
that idempotents of the (rational) Burnside ring split the homotopy category of (rational)
G–spectra. Barnes’ result [2] allows us to perform a compatible splitting at the level of
model categories. We want to use the idempotent e(H)G corresponding to the exceptional
subgroupH inG (see Definition 2.1) and the idempotent corresponding to its complement
1− e(H)G . By [2, Theorem 4.4] this gives a monoidal Quillen Equivalence.

Proposition 3.4. There is a strong symmetric monoidal Quillen equivalence:

△ : LSQ
(G− SpO)

//
Le(H)G

SQ
(G− SpO)× L(1−e(H)G

)SQ
(G− SpO) : Πoo

where the left adjoint is a diagonal functor, the right one is a product and the product
category on the right is considered with the objectwise model structure (a map (f1, f2) is
a weak equivalence, a fibration or a cofibration if both factors fi are).

From now on we will work only with the category Le(H)G
SQ
(G − SpO) as this is our

model for rational G–spectra over an exceptional subgroup H .
We use the name H–equivalence for a weak equivalences in the category Le(H)G

SQ
(G−

SpO) and H–fibrant replacement for the fibrant replacement there. These names are
motivated by the following

Lemma 3.5. A map f between e(H)GSQ - local objects is a weak equivalence in Le(H)G
SQ
(G−

SpO) if πH
∗ (f) is an isomorphism.

4. Change–of–group functors and localizations using idempotents

Since later we will be interested in taking H–fixed points of G–spectra when H is not
necessary normal in G, we need to pass to N = NGH–spectra first. Suppose we have an
inclusion i : N →֒ G of a subgroup N in a group G. This gives a pair of adjoint functors
at the level of orthogonal spectra (see for example [15, Section V.2 ]), namely induction,
restriction and coinduction as below (the left adjoint is above the corresponding right
adjoint)

G− SpO i∗ // N − SpO

FN (G+,−)

kk

G+∧N−

ss

These two pairs of adjoint functors are Quillen pairs and restriction as a right adjoint
is used for example when we want to take H–fixed points of G–spectra, where H is not a
normal subgroup of G. The first step then is to restrict to NGH–spectra and then take
H–fixed points. This is usually done in one go, since the restriction and H–fixed points
are both right Quillen functors.

It is natural to ask when the pair of adjunctions above passes to the localized cate-
gories, in our case localized at e(H)GSQ and e(H)NSQ respectively. The answer is related
to H being an N–good or bad subgroup in G. It turns out that the induction – restric-
tion adjunction does not always induce a Quillen adjunction on the localized categories,
unless H is N–good in G. However, the restriction – coinduction adjunction induces a
Quillen adjunction on the localized categories, for all exceptional subgroups H . Before
we discuss this particular adjunction we state a general result.
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Lemma 4.1. Suppose that F : C ⇄ D : R is a Quillen adjunction of model categories
where the left adjoint is strong monoidal. Suppose further that E is a cofibrant object in
C and that both LEC and lF (E)D exist. Then

F : LEC
//
LF (E)D : Roo

is a strong monoidal Quillen adjunction. Moreover if the original adjunction was a
Quillen equivalence then the one induced on the level of localized categories is as well.

Proof. Since the localization didn’t change the cofibrations, the left adjoint F still pre-
serves them. To show that it also preserves acyclic cofibrations, take an acyclic cofibration
f : X −→ Y in LEC. By definition f ∧ IdE is an acyclic cofibration in C. Since F was
a left Quillen functor before localization F (f ∧ IdE) is an acyclic cofibration in D. As
F was strong monoidal we have F (f ∧ IdE) ∼= F (f) ∧ IdF (E), so F (f) is an acyclic
cofibration in LF (E)D which finishes the proof of the first part.

To prove the second part of the statement we use Part 2 from [12, Corollary 1.3.16].
Since F is strong monoidal and the original adjunction was a Quillen equivalence F re-
flects F (E)–equivalences between cofibrant objects. It remains to check that the derived
counit is an F (E)–equivalence. F (E)–fibrant objects are fibrant in D and the cofibrant
replacement functor remains unchanged by localization. Thus this follows from the fact
that F,R was a Quillen equivalence. �

We will use this result in several cases for the following two adjoint pairs of G orthog-
onal spectra. Notice that since both left adjoints are strong monoidal, the results below
follow from Lemma 4.1.

Corollary 4.2. Let i : N −→ G denote the inclusion of a subgroup and let E be a
cofibrant object in G− SpO. Then

i∗ : LE(G− SpO)
//
Li∗(E)(N − SpO) : FN (G+,−)oo

is a strong monoidal Quillen pair.

Corollary 4.3. Let ǫ : N −→ W denote the projection of groups, where H is normal in
N and W = N/H. Let E be a cofibrant object in W − SpO. Then

ǫ∗ : LE(W − SpO)
//
Lǫ∗(E)(N − SpO) : (−)Hoo

is a strong monoidal Quillen pair.

The following two results describe the behaviour of the restriction–induction adjunc-
tion at the level of localized categories.

Proposition 4.4. Suppose H is an exceptional subgroup of G which is N = NGH-good
in G. Then

i∗ : Le(H)G
SQ
(G− SpO) // Le(H)N

SQ
(N − SpO) : G+ ∧N −oo

is a Quillen adjunction.

Proof. This was a Quillen adjunction before localization by [15, Chapter V, Proposition
2.3] so the left adjoint preserves cofibrations. It preserves acyclic cofibrations as G+ ∧N

− preserved acyclic cofibrations before localization and we have a natural (in an N–
spectrum X) isomorphism (see [15, Chapter V, Proposition 2.3]):

(G+ ∧N X) ∧ e(H)GSQ
∼= G+ ∧N (X ∧ i∗(e(H)GSQ))
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Note that, since H is N -good in G, i∗(e(H)G)
∼= e(H)N , where the latter is the idempotent

corresponding to (H)N in A(N)Q.
�

Proposition 4.5. Suppose H is an exceptional subgroup of G which is N = NGH–bad
in G. Then

i∗ : Le(H)G
SQ
(G− SpO) // Le(H)N

SQ
(N − SpO) : G+ ∧N −oo

is not a Quillen adjunction.

Proof. It is enough to show that G+∧N − does not preserve acyclic cofibrations. Firstly,
since H is N–bad in G there exists H ′ such that (H)G = (H ′)G and (H)N 6= (H ′)N .

Take a map f to be the inclusion into the coproductN/H+ −→ N/H+∨N/H ′
+. This is

a weak equivalence in Le(H)N
SQ
(N −SpO) since ΦH(N/H+) = ΦH(N/H+∨N/H ′

+). It is

also a cofibration as a pushout of a cofibration ∗ −→ N/H+ along the map ∗ −→ N/H ′
+.

Applying the left adjoint gives the inclusion G+ ∧N f : G/H+ −→ G/H+ ∨G/H ′
+. Now

ΦH(G/H+ ∨ G/H ′
+) = N/H+ ∨N/H ′

+ 6= N/H+ since H is N–bad by assumption and
(H)G = (H ′)G. �

It turns out that the restriction and function spectrum adjunction gives a Quillen
adjunction under general conditions.

Lemma 4.6. Suppose G is any compact Lie group, i : N −→ G is an inclusion of a
subgroup and V is an open and closed G-invariant set V in Subf(G) which is a union of
∼-equivalence classes (see Section 2). Then the adjunction

i∗ : LeV SQ
(G− SpO)

//
Lei∗V SQ

(N − SpO) : FN (G+,−)oo

is a Quillen pair.

Proof. Before localizations this was a Quillen pair by [15, Chapter V, Proposition 2.4]. It
is a Quillen pair after localization by Lemma 4.1, and the fact that i∗ is strong symmetric
monoidal. We use the notation i∗V for the preimage of V under the inclusion on spaces
of subgroups induced by i, i.e. Subf(N) −→ Subf(G), see Section 2. �

We will repeatedly use the lemma above, mainly in situations where after further
localization of the right hand side we will get a Quillen equivalence.

Corollary 4.7. Suppose G is a compact Lie group and H is an exceptional subgroup of
G. Then

i∗ : Le(H)G
SQ
(G− SpO)

//
Le(H)N

SQ
(N − SpO) : FN (G+,−)oo

is a Quillen adjunction.

Proof. For H which is N = NGH–good the result follows from the fact that the idempo-
tent on the right hand side e(H)N = i∗(e(H)G) = ei∗((H)G). ForH which isN = NGH–bad

it is true since the left hand side is a further localization of Lei∗((H)G)SQ
(N − SpO) at the

idempotent e(H)N :

Le(H)G
SQ
(G− SpO)

i∗ //
Li∗(e(H)G

)SQ
(N − SpO)

FN (G+,−)
oo

Id //
Le(H)N

SQ
(N − SpO)

Id
oo

Note that since H is N–bad, e(H)N 6= i∗(e(H)G ) and e(H)N i∗(e(H)G) = e(H)N .
�
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In the next two theorems we show that the Quillen adjunction above is in fact a
Quillen equivalence.

Theorem 4.8. Suppose N = NGH and H is an exceptional subgroup of G that is N–
good. Then the adjunction

i∗ : Le(H)G
SQ
(G− SpO)

//
Le(H)N

SQ
(N − SpO) : FN (G+,−)oo

is a strong symmetric monoidal Quillen equivalence.

Proof. Firstly, if H is an N–good exceptional subgroup of G with an idempotent e(H)G

then e(H)N = i∗(e(H)G) in A(N)Q.
This is a Quillen adjunction by Corollary 4.7 and we claim that i∗ preserves all H–

equivalences. Suppose f : X −→ Y is an H–equivalence in Le(H)G
SQ
(G − SpO), i.e.

Ide(H)G
SQ

∧ f : e(H)GSQ ∧ X −→ e(H)GSQ ∧ Y is a π∗–isomorphism. As i∗ is strong
monoidal

i∗(Ide(H)G
SQ

∧ f) ∼= Idi∗(e(H)G
SQ) ∧ i∗(f) ∼= Ide(H)N

SQ
∧ i∗(f)

and i∗ preserves π∗–isomorphisms we can conclude.
To show this is a Quillen equivalence we will use Part 2 from [12, Corollary 1.3.16].

It is easy to see that i∗ reflects H–equivalences using the fact it is strong monoidal and
the isomorphism [N/H+, i

∗(X)]N ∼= [G/H+, X ]G.
As i∗ preserves all H–equivalences it is enough to check that for every fibrant Y ∈

Le(H)N
SQ
(N − SpO) the counit map εY : i∗FN (G+, Y ) −→ Y is an H–equivalence (in

N–spectra), i.e it is a πH
∗ –isomorphism of N–spectra.

First we check that domain and codomain have isomorphic stable H homotopy groups:

(4.1) πH
∗ (i∗FN (G+, Y )) ∼= πH

∗ (FN (G+, Y )) ∼= [G/H+, FN(G+, Y )]G∗
∼= [i∗(G/H+), Y ]N∗

∼= [N/H+, Y ]N∗
∼= πH

∗ (Y )

The next-to-last isomorphism follows from the fact that the map N/H+ −→ G/H+

(induced by inclusion N −→ G) is an H–equivalence in N–spectra, i.e an equivalence in

Le(H)N
SQ
(N − SpO).

By Lemma 3.2 it is enough to check the counit condition for a generator. We will

check it for the spectrum i∗(f̂G/H+), which is a compact generator for localized N–
spectra (it is H–equivalent to N/H+). The stable H–homotopy groups of this generator
are Q[WGH ] in degree 0 (where WGH is the Weyl group for H in G, so in particular
Q[WGH ] is a finite dimensional vector space by assumption that H is exceptional in G)
and 0 in other degrees.

Now it is enough to show that [N/H+, εi∗(f̂G/H+)]
N is surjective. One of the triangle

identities on i∗(f̂G/H+) for the adjunction requires that the following diagram commutes

i∗(f̂G/H+)

Id

**❯❯❯
❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

i∗(ηf̂G/H+
)

��
i∗FN (G+, i

∗(f̂G/H+)) εi∗(f̂G/H+)

// i∗(f̂G/H+)

Thus postcomposition with εi∗(f̂G/H+) is surjective on the homotopy level. It follows

that the counit map is an H–equivalence of N–spectra for every fibrant Y , which finishes
the proof. �
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The argument above will not work in the context where i∗ does not preserve fibrant
replacements. However we found the proof above amusing, so we decided to present it,
even though the proof below can be applied also in the case where H is an exceptional
NGH–good subgroup of G.

Theorem 4.9. Suppose H is an exceptional subgroup of G. Then the composite of
adjunctions

Le(H)G
SQ
(G− SpO)

i∗N //
Li∗(e(H)G

SQ)(N − SpO)
FN (G+,−)
oo

Id //
Le(H)N

SQ
(N − SpO)

Id
oo

is a strong symmetric monoidal Quillen equivalence, where e(H)N denotes the idempotent
of the rational Burnside ring A(N)Q corresponding to the characteristic function of (H)N .
Notice that if H is N–good then the right adjunction is trivial.

Proof. Firstly, if H is N–bad then i∗N (e(H)GSQ) 6≃ e(H)NSQ as localized N–spectra. The
reason for that is that (H)G restricts to more than one conjugacy class of subgroups of
N . That is why we need a further localization - we only want to consider (H)N .

The composite above forms a Quillen adjunction by Corollary 4.7. We use Part 3 from
[12, Corollary 1.3.16] to show that it is a Quillen equivalence. Observe that FN (G+,−)
preserves and reflects weak equivalences between fibrant objects. Let X be a fibrant
object in Le(H)N

SQ
(N − SpO). Then FN (G+, X) is also fibrant and

(4.2) [G/H+, e(H)GFN (G+, X)]G ∼= [G/H+, FN (G+, X)]G

∼= [i∗N (G/H+), X ]N ∼= [e(H)N i∗N (G/H+), e(H)NX ]N ∼= [N/H+, e(H)NX ]N

Now we need to show that the derived unit is a weak equivalence on the cofibrant gen-
erator for Le(H)G

SQ
(G− SpO), which is e(H)GG/H+. This is

e(H)GG/H+ −→ FN (G+, e(H)N i∗N (e(H)GG/H+))

To check that this is a weak equivalence in Le(H)G
SQ
(G− SpO) it is enough to check that

on the homotopy level the induced map

[G/H+, e(H)GG/H+]
G −→ [G/H+, FN (G+, e(H)N i∗N (e(H)GG/H+))]

G

is an isomorphism. This map fits into a commuting diagram below

[G/H+, e(H)GG/H+]
G

Li∗N

,,❳❳❳❳❳
❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

��
[G/H+, FN (G+, e(H)N i∗N (e(H)GG/H+))]

G
∼= // [i∗NG/H+, e(H)N i∗N(e(H)GG/H+)]

N

Since the horizontal map is an isomorphism it is enough to show that Li∗N is an
isomorphism. This follows from the commutative diagram:
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[S0, i∗H(e(H)N i∗N(e(H)GG/H+))]
H

[G/H+, e(H)GG/H+]
G

∼= //

��
Li∗N

""

[S0, i∗H(e(H)GG/H+)]
H

∼=

OO

[i∗NG/H+, i
∗
N(e(H)GG/H+)]

N j∗ //

��

[N/H+, i
∗
N (e(H)GG/H+)]

N

∼=

OO

��
[i∗NG/H+, e(H)N i∗N (e(H)GG/H+)]

N

j∗

∼= // [N/H+, e(H)N i∗N(e(H)GG/H+)]
N

∼=

]]

where j : N/H+ −→ i∗NG/H+ is a weak equivalence in Le(H)N
SQ
N −SpO and i∗H denotes

the restriction functor from G–spectra to H–spectra.
�

5. A monoidal algebraic model for rational G–spectra over an

exceptional subgroup

The category of rational G–spectra over an exceptional subgroupH is modelled by the
left Bousfield localization at an idempotent e(H)G corresponding to the conjugacy class
of H in G. Thus from now on we will use the notation H for an exceptional subgroup of
G, and we will work with the category Le(H)G

SQ
(G− SpO).

The main difference between this approach and what appears in the literature is
in replacing Morita equivalence by the inflation–fixed point adjunction. This became
possible after analysing an interplay of induction–restriction–coinduction adjunctions
with left Bousfield localizations in Section 4.

The plan for the zig-zag of symmetric monoidal Quillen equivalences is as follows. First
we move from the category Le(H)G

SQ
(G− SpO) to the category Le(H)N

SQ
(N −SpO) using

the restriction–coinduction adjunction. Recall that N denotes the normalizer NGH .
The second step is to use the inflation–fixed point adjunction between Le(H)N

SQ
(N −

SpO) and Le1SQ
(W − SpO), where W denotes the Weyl group N/H . Recall that W is

finite, as H is an exceptional subgroup of G and e1 denotes the idempotent in A(W )Q
corresponding to the trivial subgroup.

Next we use the restriction of universe to pass from Le1SQ
(W − SpO) to the category

SpOQ [W ] of rational orthogonal spectra withW–action. Note that we could have combined
the two steps above into one, since both left adjoints point the same way, however for
the clarity of the arguments we decided to treat them separately.

Now we pass to symmetric spectra with W–action using the forgetful functor from
orthogonal spectra. Next we move to HQ-modules with W–action in symmetric spectra.
From here we use the result of [20, Theorem 1.1] to get to Ch(Q)[W ], the category of
rational chain complexes with W–action, which is equivalent as monoidal model category
to Ch(Q[W ]), the category of chain complexes of Q[W ]-modules with a projective model
structure. That gives an algebraic model which is compatible with the monoidal prod-
uct, i.e. the zig-zag of our Quillen equivalences induces a strong symmetric monoidal
equivalence on the level of homotopy categories.

To illustrate the whole path we present a diagram which shows every step of this
comparison. The reader may wish to refer to this diagram now, but the notation will
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be introduced as we proceed. Left Quillen functors are placed on the left. Recall that
N = NGH and W = WGH = NGH/H .

Le(H)G
SQ
(G− SpO)

i∗

��
Le(H)N

SQ
(N − SpO)

FN (G+,−)

OO

(−)H

��
Le1SQ

(W − SpO)

ǫ∗
OO

res
��

SpO

Q [W ]

L

OO

Sing◦U
��

SpΣQ[W ]

P◦|−|

OO

HQ∧−
��

(HQ−mod)[W ]

U

OO

zig−zag of
��

Ch(Q[W ])

Quillen equivalences

OO

5.1. The category Ch(Q[W ]−mod). Before we start describing the zig zag of Quillen
equivalences towards the algebraic model for rational G–spectra over an exceptional
subgroup, we briefly describe the algebraic model. Suppose W is a finite group. In this
section we discuss the category of chain complexes of left Q[W ] modules.

Firstly, this category may be equipped with the projective model structure, where
weak equivalences are homology isomorphisms and fibrations are levelwise surjections.
Cofibrations are levelwise split monomorphisms with cofibrant cokernel. This model
structure is cofibrantly generated by [12, Section 2.3].

Note that Q[W ] is not generally a commutative ring, however it is a Hopf algebra with
cocommutative coproduct given by

∆ : Q[W ] −→ Q[W ]⊗Q[W ] , g 7→ g ⊗ g.

This allows us to define an associative and commutative tensor product on Ch(Q[W ] −
mod), namely tensor over Q, where the action on the X ⊗Q Y is diagonal. The unit is
a chain complex with Q at the level 0 with trivial W–action and zeros everywhere else
and it is cofibrant in the projective model structure. The monoidal product defined this
way is closed, where the internal hom is given by an internal hom over Q with W–action
given by conjugation.

This category is equivalent (as a monoidal model category) to the category of W–
objects in a category of Ch(Q−mod), with the projective model structure, i.e. this is a
model structure which is a transfer of the projective model structure on Ch(Q−mod) to
the category of W objects there, using the forgetful functor as a right adjoint.

It is shown in [1, Proposition 4.3] that this is a monoidal model category satisfying
the monoid axiom. Now we are ready to establish the zig-zag of Quillen equivalences.

5.2. Monoidal comparison. At the beginning of this approach we would like to use
the inflation–fixed point adjunction. However, as H is not necessary normal in G first we
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need to move to the category of N–orthogonal spectra, where N = NGH . Notice that
for our purpose this passage needs to be monoidal.

The inclusion of a subgroup i : N −→ G induces two adjoint pairs between corre-
sponding categories of orthogonal spectra that we discussed earlier. The first choice
would be to work with the induction and restriction adjunction. However, in case of our
localizations, this is not always a Quillen adjunction as we discussed in detail in Section
4. The restriction functor i∗ is strong monoidal, so we choose to work with it as a left
adjoint, where the right adjoint is the coinduction functor. We showed in Section 4 that
this is always a strong monoidal Quillen adjunction for localizations at idempotents cor-
responding to conjugacy classes of exceptional subgroups. By Theorem 4.9 it is a Quillen
equivalence, so we get the first step of the zig-zag:

Theorem 5.1. Suppose H is an exceptional subgroup of G. Then the composite of
adjunctions

Le(H)G
SQ
(G− SpO)

i∗ //
Li∗(e(H)G

SQ)(N − SpO)
FN (G+,−)
oo

Id //
Le(H)N

SQ
(N − SpO)

Id
oo

is a strong symmetric monoidal Quillen equivalence. Notice that if H is N–good then
i∗(e(H)G) = e(H)N and the right adjunction is trivial.

Now we use the inflation–fixed point adjunction. Recall that W below denotes the
Weyl group NGH/H and by the assumption on H it is finite. Moreover there is a
projection map ǫ : N −→ W which induces the left adjoint below.

Theorem 5.2. The adjunction

ǫ∗ : Le1SQ
(W − SpO)

//
Le(H)N

SQ
(N − SpO) : (−)Hoo

is a strong monoidal Quillen equivalence. Here e1 is the idempotent of the rational
Burnside ring A(W )Q corresponding to the characteristic function for the trivial subgroup.

Proof. To prove this is a Quillen pair we refer to [10, Proposition 3.2] which states that
(in notation adapted to our case):

ǫ∗ : (W − SpO)
//
LẼ[ 6⊇H](N − SpO) : (−)Hoo

is a Quillen equivalence. Recall that Ẽ[ 6⊇ H ] is a cofibre of a map E[ 6⊇ H ] −→ S0 where
[ 6⊇ H ] denotes the family of subgroups of N not containing H . Now we localize this
result further at e1SQ on the side of W–spectra and e(H)NSQ on the side of N–spectra.
It follows from Lemma 4.1 and the fact that ǫ∗ is strong monoidal that the resulting
adjunction is a Quillen equivalence. The right hand side after this localization is just
Le(H)N

SQ
(N − SpO). �

Next we move from Le1SQ
(W − SpO) to SpOQ [W ] (where SpOQ = LSQ

SpO) using the
restriction and extension of W–universe from the complete to the trivial one. From now
on we will work with W–objects in a category C, where W is a finite group. We denote
this category by C[W ]. We can think of C[W ] as a category of functors from W , which is
a one object category with Hom(∗, ∗) = W to C, also known as CW . The inclusion j of
a terminal category 1 into W gives two adjoint pairs (Lanj , j

∗) and (j∗,Ranj). We will
use notation U for j∗. It turns out that if C is a cofibrantly generated model category,
then C[W ] can be equipped with a model structure by applying transfer [11, Theorem
11.3.2] to the adjunction below:

Lanj : C
//
C[W ] : Uoo
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Here Lanj is the left Kan extension along j. Notice, that in this case it is sending X to
a coproduct of X indexed by elements of W , with W acting by permuting the factors. It
is a straightforward observation that U preserves cofibrations, as generating cofibrations
in C[W ] are just images of the generating cofibrations in C under Lanj .

If C is a closed symmetric monoidal model category then C[W ] is as well, by analogous
observations to those in Section 5.1. Notice that the monoidal product on W–objects
in C is the one from C with the diagonal W–action and UC is strong monoidal. It is
enough to check the pushout–product axiom in C[W ] for generating cofibrations and
acyclic cofibrations, and since they are the images of the generating cofibrations and
acyclic cofibrations (respectively) under Lanj the pushout–product axiom follows from
the one in C. The unit axiom follows from the unit axiom in C and the fact that U
preserves cofibrations.

Lemma 5.3. The adjunction

Ict : SpOQ [W ]
//
Le1SQ

(W − SpO) : Itc = resoo

is a strong monoidal Quillen equivalence. We use Itc to denote the restriction (denoted
also res above) from the complete W–universe to the trivial one. Ict denotes the extension
from the trivial W–universe to the complete one.

Proof. This is a strong monoidal adjunction by [15, Chapter V, Theorem 1.5]. Now
we note that the left adjoint preserves generating cofibrations and generating acyclic
cofibrations, since IctFV

∼= FV by [15, Chapter V, 1.4].
The right adjoint res preserves and reflects all weak equivalences since in both model

structures they are defined as those maps which after forgetting to non equivariant spectra
are rational π∗–isomorphisms. The derived unit for the cofibrant generator W+ (in this
case categorical unit is also the derived unit) is an isomorphism which follows from [15,
Chapter V, Theorem 1.5], and thus for any cofibrant object it is a weak equivalence. By
Part 3 of [12, Corollary 1.3.16] this is a Quillen equivalence. �

We removed all difficulties coming from the equivariance with respect to a topological
group. What is left now is a finite group action on the rational orthogonal spectra.

For the remaining Quillen equivalences we will need the following, well–known fact.

Proposition 5.4. Suppose

F : C
//
D : Goo

is a Quillen equivalence and W is a finite group. Then this adjunction induces a Quillen
equivalence at the level of W–objects in C and D (with model structures transferred from
that on C and D respectively). Moreover if (F,G) is a weak monoidal Quillen equivalence
between monoidal model categories then it is so when induced to the level of W–objects
in C and D.

Proof. We have the following diagram

C[W ]

UC

��

FW //
D[W ]

UD

��

GW

oo

C

F //
D

G
oo
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where the functors UC and UD commute with both left and right adjoints. Moreover UC

and UD create weak equivalences and fibrations and they preserve cofibrant objects (they
preserve cofibrations and initial objects) and fibrant objects. A check of the condition
from the definition of Quillen equivalence for the adjunction (FW , GW ) is just a diagram
chase.

For the monoidal consideration, recall that the monoidal product on W–objects in C

is the one from C with the diagonal W–action and UC is strong monoidal. If (F,G) is a
weak monoidal Quillen pair then it is again a diagram chase to show that (FW , GW ) is
also a weak monoidal Quillen pair. �

To apply the result of [20, Theorem 1.1] and pass to the category of chain complexes
we need to work with rational symmetric spectra in the form of HQ-modules (where HQ

is the Eilenberg–MacLane spectrum for Q). We pass to this category using the next two
lemmas. Both follow from Proposition 5.4 and corresponding known results for spectra
(See for example Section 7 in [18] and recall that HQ is weakly equivalent to SQ). First
we pass to symmetric spectra with a W–action using the composition of forgetful functor
and the functor induced by singular complex:

Lemma 5.5. The adjunction

P ◦ | − | : SpΣQ[W ]
//
SpOQ [W ] : Sing ◦ Uoo

is a strong symmetric monoidal Quillen equivalence.

Next we move to HQ-modules in symmetric spectra with W–action.

Lemma 5.6. The adjunction

HQ ∧ − : SpΣQ[W ]
//
(HQ−mod)[W ] : Uoo

is a strong symmetric monoidal Quillen equivalence. Here U denotes forgetful functor
and the model structure on HQ−mod is the one created from SpΣ by the right adjoint
U .

From here we use the result of [20, Theorem 1.1] for R = Q and Proposition 5.4 to
get to Ch(Q)[W ] with the projective model structure, which is equivalent as a monoidal
model category to Ch(Q[W ]) with the projective model structure (see Section 5.1).

Lemma 5.7. There is a zig-zag of monoidal Quillen equivalences between the category
(HQ−mod)[W ] and the category Ch(Q[W ]) with the projective model structure.

We can summarise the results of this section in the Theorem below.

Theorem 5.8. There is a zig-zag of symmetric monoidal Quillen equivalences from
Le(H)G

SQ
(G − SpO) to Ch(Q[W ]−mod) with the projective model structure, where W =

NGH/H.

An example of the application of the result above is to the rational SO(3)–spectra
over an exceptional subgroup in [14].

5.3. Finite G. If G is finite then every subgroup of G is exceptional and there are finitely
many conjugacy classes of subgroups of G, thus by splitting result of [2, Theorem 4.4] and
Proposition 3.4 the category of rational G–spectra splits as a finite product of categories,
each localized at an idempotent corresponding to the conjugacy class of a subgroup of
G.
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Proposition 5.9. Suppose G is a finite group. Then there is a strong symmetric
monoidal Quillen equivalence:

△ : LSQ
(G− SpO)

// ∏
(H)G,H≤G Le(H)G

SQ
(G− SpO) : Πoo

where the left adjoint is a diagonal functor, the right one is a product and the product
category on the right is considered with objectwise model structure.

This observation allows us to deduce the following

Corollary 5.10. Suppose G is a finite group. Then there is a zig-zag of symmetric
monoidal Quillen equivalences from LSQ

(G− SpO) to
∏

(H)G,H≤G

Ch(Q[WGH ]−mod).

Proof. This follows from Proposition 5.9 and Theorem 5.8. �

We remark that this is not a new result, as for a finite group G an algebraic model
was given in [19] and monoidal consideration was presented in [1]. However, the use of
localizations of commutative ring G–spectra in the proof of [1] requires adaptations from
[5]. Our proof avoids these issues.
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