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INTEGRAL IWASAWA THEORY OF GALOIS
REPRESENTATIONS FOR NON-ORDINARY PRIMES

KAZIM BUYUKBODUK AND ANTONIO LEI

ABSTRACT. In this paper, we study the Iwasawa theory of a motive whose
Hodge-Tate weights are 0 or 1 (thence in practice, of a motive associated to
an abelian variety) at a non-ordinary prime, over the cyclotomic tower of a
number field that is either totally real or CM. In particular, under certain
technical assumptions, we construct Sprung-type Coleman maps on the local
Iwasawa cohomology groups and use them to define (one unconditional and
other conjectural) integral p-adic L-functions and cotorsion Selmer groups.
This allows us to reformulate Perrin-Riou’s main conjecture in terms of these
objects, in the same fashion as Kobayashi’s -Iwasawa theory for supersingular
elliptic curves. By the aid of the theory of Coleman-adapted Kolyvagin systems
we develop here, we deduce parts of Perrin-Riou’s main conjecture from an
explicit reciprocity conjecture.

1. INTRODUCTION

Fix forever an odd rational prime p. Let F' be either a totally real or a CM
number field which is unramified at all primes above p. Let M, be a motive
defined over F' which has coefficients in Q and whose Hodge-Tate weights are 0 or
1. The goal of this article is to study the cyclotomic Iwasawa theory of M for primes
p such that the p-adic realization of M is crystalline but non-ordinary, much in the
spirit of the integral theory initiated by Pollack [Pol03] and Kobayashi [Kob03].

The archetypical example of a motive that fits in our treatment is the motive
associated to an abelian variety A defined over F' which has supersingular reduction
at all primes above p. In the case when F' = QQ and the variety A is one-dimensional
(i.e., an elliptic curve) the plus/minus theory of Kobayashi and Pollack provides us
with a satisfactory set of results. Our initial objective writing this article and its
companion [BLIH| was to extend their work to the general study of supersingular
abelian varieties.

We first follow the ideas due to Sprung to construct signed Coleman
maps (in 23] below) for a class of p-adic Galois representations that verify cer-
tain conditions. We incorporate this construction with Perrin-Riou’s (conjectural)
treatment of p-adic L-functions so as to

e provide a definition of the signed (integral) p-adic L-functions attached
to motives at non-ordinary primes (see particularly Definition BI7 and
Theorem [3.21]), conditional on the Explicit Reciprocity Conjecture BI1 for
the Kolyvagin determinants (as defined in Appendix [C),
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e formulate a signed main conjecture in this setting (Conjecture B30) that is
equivalent to Perrin-Riou’s main conjecture [PRI5, §4];

e utilizing the theory of Coleman-adapted Kolyvagin systems that we develop
in Appendix [C] and assuming the Explicit Reciprocity Conjecture 3111
verify one containment of the signed main conjecture (see Theorem B.32)
and deduce a similar result on Perrin-Riou’s main conjecture.

Note that although we work and state our results in the realm of motives, one of
our hypothesis (denoted by (H.F.-L.) below) would essentially force us to restrict
our attention to abelian varieties.

We shall explain our results in detail below. Let us first introduce some notation.

1.1. Setup and notation. For any field k, let k denote a fixed separable closure
of k and G}, := Gal(k/k) denote its absolute Galois group. Fix forever a G p-stable
Zy-lattice T contained inside M, the p-adic realization of M. Let M*(1) denote
the dual motive and write 71 = Hom(7,Z,(1)) for the Cartier dual of T

Let g := dimg, (IndF/Q./\/lp) and let g, := dimg, (IndF/Q ./\/lp)Jr, the dimen-
sion of the +1-eigenspace under the action of a fixed complex conjugation on
Indp/g Mp. Set g- = g — g4. Similarly for any prime p of F' above p, define

gp = dim@p (IndFF/QpMZD) so that 9= ZNP 9p-

For any unramified extension K of Q, that contains F', we write D (T) for its
Dieudonné module over K, namely (Acyis ® T)GK , where A, is one of Fontaine’s
ring. We shall fix a Z,-basis B = {v;} of this module.

1.1.1. Iwasawa algebras. Let T’ be the Galois group Gal(Qp(pp=)/Qp). Given any
unramified extension K of Q,, we shall abuse notation and write I for the Galois

group Gal(K (up~)/K) as well. We may decompose I' as A x (), where A is
cyclic of order p — 1 and w is isomorphic to the additive group Z,. We write A
for the Iwasawa algebra Z,[[[']]. We may identify it with the set of power series
Y ns0.0ea Ano 0 (v = 1)" where an o € Z,. We shall identify v — 1 with the

indeterminate X.

For n > 0, we write Qp,, = Qp(ppn) and G, = Gal(Q, ,/Q,). Denote Z,[G,,]
by A,. We have in particular A = l'glAn. For any field k, define H{ (k,T) to be
@Hl(k(,upn), T), where the limit is taken with respect to the corestriction maps.

We define H to be the set of elements ) -  ca Gn,o-0-(y—1)" where a, , € Q,
are such that the power series > ., an, X" converges on the open unit disc for all
oeA. -

Let | o |, denote the normalised p-adic norm with |p|, = 1/p. For a real number
h >0 and an element I’ = ZnZO,UEA Un,o 0 (y—1)" € H, if sup, >, ‘a’;—;"p < 00
for all o € A, we say that F is O(log").

1.1.2. Isotypic components and characteristic ideals. Let M be a A-module, n a
Dirichlet character modulo p. We write e, = p+1 Y pean(o)to € Zy[A]. The
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n-isotypic component of M is defined to be e, - M and denoted by M". Note that
we may regard M7 as a Z,[[X]]-module.

Following [PR95], we write e and e_ for the idempotents (1+c¢)/1 and (1—c)/2
respectively, where ¢ is the complex conjugation of A. For any A-module M, we
write My =eL M.

Given an element F'= ) ) A ano-0-(y—1)" of H, we shall identify e, - '

with the element
> (Z an,a—n(U)) X" e Qp[[X]).

n>0 \oc€A

Given a finitely generated torsion Z,[[X]]-module N, we write charg [x)N for
its characteristic ideal.

1.2. Statements of the results.

Theorem 1.1 (Corollary 214l and ([I4)) below). Let p be a prime of F' above p. Fix
a Zy-basis {vi} of D, (T'). Assume that the Hodge-Tate weights of T'|F, are inside
{0,1} and that the Frobenius on D, (T') have slope inside (—1,0] and 1 is not an
eigenvalue. There exists a A-module homomorphism

Colgip, : Hiy(Fy, T) —» A%
and a matric Mpp, € Mg, g, (H) such that we have the following decomposition
of Perrin-Riou’s regulator map ﬁIT?*’ (defined as in §2.1) below):
F,
‘CTP = (1}1 ’ng) 'MT\Fp 'COIT|Fp ’

Here, (vl e vgp) and Colp g, are regarded as a row vector and a column vector
respectively.

See §2.5] and Corollary for a very detailed discussion on the kernels and
images of the Coleman maps Colp p,. In particular, we are able to prove (see
propositions [Z21] and B3] below) that the Coleman maps are pseudo-surjective if
we choose the basis {v;} suitably.

In addition to the assumptions on 71" above, assume that the following hypotheses

hold true:
(H.Leop) T satisfies the weak Leopoldt conjecture, as stated in [PRO5| §1.3].
(H.nA) For every prime p of F above p. we have
HO(FPaT/pT) = HQ(FPaT/pT) =0.

Let D,(T') be the direct sum @, ,DF, (7). We assume until the end that the
following (weak) form of the Panchishkin condition holds true:
(H.P.) dim (FiI’D,(T) ©Q,) = g_.

Remark 1.2. Note that the hypotheses (HnA) and (H.P.) hold true for the p-
adic Tate-module of an abelian variety defined over F. The hypothesis (H.Leop) is
expected to hold for any T.
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Remark 1.3. Suppose M is irreducible and (pure) of weight w. Let r; denote the
total multiplicity of the Hodge-Tate weight i of the representation M, for i =0,1.
Then

(1) 2r1:22iri:wg.

Furthermore, if we further assumed the truth of Tate’s conjecture for M, it would
follow that rog = r1. This combined with (1) shows that w = 1 and rog = 14 =
g/2; and Faltings’ theorem comparing Hodge and Hodge-Tate weights shows that
g— = g+ = g/2. In particular, the condition (H.P.) is automatically verified in our
setting if we assume the truth of Tate’s conjecture.

Let I C {1,---,g} be any subset of size g_. Using the Coleman maps Colr|r,,
we may define (see Definiton BIT) the multi-signed (integral) p-adic L-function

Li(M*(1)) € A.

We do not provide its precise definition here in the introduction but contend our-
selves to the remark that its definition relies on the truth of the explicit reciprocity
conjecture for the Kolyvagin determinants (Conjecture B.IT]), which we implicitly
assume henceforth in this introduction. We may also use the Coleman maps to
define the multi-signed Selmer groups Sel;(TT/F(py)) as in Definition 326

Suppose until the end of this Introduction that the basis of D, (7") we have fixed as
in the statement of Theorem [[T]is strongly admissible in the sense of Definition B2
We prove in Appendix [B] that a strongly admissible basis always exists.

Theorem 1.4 (Theorem B3T] below). For every even Dirichlet character n of A
and every I as above, the following assertion is equivalent to n-part of Perrin-Riou’s
Main Conjecture [3.9:

(2) charz, (x) (Selr(TH/F (e ))7) = LM ()" - Z,[[X]).

The assertion () in the statement of Theorem [[4] will be referred to as the
stgned main conjecture.

In Appendix [C], we develop the theory of Coleman-adapted Kolyvagin systems
and prove the existence of what we call an L-restricted Kolyvagin system (see Theo-
rem[CA]). Using these objects we define a canonical submodule £(T) C H{, (F,,T),
the module of Kolyvagin determinantdl. Assuming the Reciprocity Conjecture B.11]
on Kolyvagin determinants, we are able to prove the following portion of the signed
main conjecture and Perrin-Riou’s main conjecture:

Theorem 1.5 (See Theorem [3.32 and its proof below). Under the hypotheses of
Theorem[I] and the hypotheses (H1)-(H4) of [MR04], §3.5] on T, the containment

Ly(M*(1))" - Zy[[X]] C charg, [x)) (Selr(T"/F (up=))""")
in @) and the containment
3) e Lp(M*(1)) - A C ey - Larien(M)
in the statement of Perrin-Riou’s Main Conjecture hold true for every even

Dirichlet character n of A.

e expect that this module should be closely related to the higher rank Kolyvagin systems
as studied in [MRI3].
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Remark 1.6. See [BL1D] for an example where we obtain an explicit version of
Theorem [LA In loc.cit., we study more closely the motive attached to the Hecke
character associated to a CM abelian variety that has supersingular reduction at all
primes above p. In this particular case, the hypotheses (H1)-(H4) of [MR04], §3.5],
(H.F.-L.), (H.S.), (H.P.) and (H.nA) hold true. The (conjectural) special elements

in that setting are expected to be a form of (conjectural) Rubin-Stark elements.

Remark 1.7. In order to deduce the containment [B)) for odd characters n of A,
one needs to replace g_ with g4 everywhere. Note also that upon studying the motive
M@ w (where w is the Teichmiiller character) in place of M, one may reduce the
consideration for odd characters to the case of even characters.

To deduce the assertion Bl for every character n of A (and therefore, by the
semi-simplicity of Z,[A], to conclude with the containment A-L,(AY) C Loitn(A) in
Congecture[Td), we would need in our proof that g— = g4, as a result of our running
hypothesis (H.P.). Note that this condition holds true for motives associated to
abelian varieties.
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2. CONSTRUCTION OF COLEMAN MAPS

In this section, we generalize the construction of signed Coleman maps in [Kob03)
to higher dimensional p-adic representations that satisfy certain hypotheses.
These maps decompose the regulator map of Perrin-Riou, which we recall below.

2.1. Perrin-Riou’s regulator map. Let T" be a free Z,-module of rank d that
is equipped with a crystalline continuous action by the absolute Galois group of a
finite unramified extension K of Q, whose Hodge-Tate weights are all non-negative.

Let r = [K : Q). Recall that we write Dg(T) for its Dieudonné module and
Hllw(KvT) = @HI(K(MP"%T)'
Let
(v~ s HY (K (), T) < HY((K (e ), T (1)) = 2y
be the local Tate pairing for n > 0. This gives a pairing
<Na N> : Hllw(Ka T) X Hllw(Kv T*(l)) — A

(@n)ns (Yn)n) = < Z (Tns Yy )n - U) )

oeG, n

which can be extended H-linearly to a pairing
(~y~) i H @A HiE (K, T) x H @y HE (K, T*(1)) — H.

Let
LY H{ (K, T) — H ®z, Dk (T)
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be Perrin-Riou’s p-adic regulator given as in Definition 3.4]. In the case
where the eigenvalues of ¢ on Dg(T') are not powers of p, we may describe this
map concretely as follows. Fix a Zy-basis v1,...,v,q of Di(T) and let v{,...,v.,
be the dual basis of Dg (T*(1)). For i € {1,...,rd}, we write L, : H{ (T) = H
for the map obtained by composing £X and the projection of H @D (T') to the v;-
component. The Colmez-Perrin-Riou reciprocity law (stated in [PR94] and proved

in [Col98]) implies that
(4) L3 :(2) = {2, Qr-1) (v))),
where {07+ (1) is the Perrin-Riou exponential map
Qp1) : H @z, D(T*(1)) = H @z, Hi, (T*(1))

defined in [PR94]. Note that our assumption on the eigenvalues of ¢ means that
we may state the properties of Perrin-Riou’s exponential map in a slightly simpler
way than [PR94]. Recall that if 6 is a Dirichlet character of conductor p™,
Lemma 3.5] implies that

expy(2), (1 —p~to™H(1 — )~ 10! if n=0,
(5) e(ﬁilg,i(z)) = {[ 1 0 [Z 0-1( - ln / therwi
=GR —cy o)expi(z7), ¢ (vl)] otherwise
where [~, ~] is the natural pairing
Dk (T) x Dg(T*(1)) = Zp,

which is extended linearly to

Qp,n ®z, D (T) X Qpn @z, D (T*(1)) = Qp -

In order to define the signed Coleman maps, we assume further that 7" verifies
the following conditions.

H.F.-L.) The Hodge-Tate weights of T" are 0 and 1.
g g
(H.S.) The slopes of ¢ on Dg(T') lie in the interval (—1,0] and 1 is not an eigen-
value.

Remark 2.1. These hypotheses ensure that the eigenvalues of ¢ are not integral
powers of p.

Remark 2.2. Note that both of these hypotheses are satisfied by the p-adic Tate
module of an abelian variety which has supersingular reduction at all primes above
p. In fact, note that the hypothesis (H.F.-L.) would essentially restrict the extent
of our treatment to abelian varieties.

Remark 2.3. The hypothesis (H.F.-L.) implies that T is Fontaine-Laffaille. Hence,
1 .
(6) ¢(Dk(T)) C ];DK(T) and  p(Fil’ Dk (T)) C D (T)

Moreover,

(7) Dx(T) = pp(Dx(T)) + @(Fil’ D (7))
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2.2. Logarithmic matrix. We fix a Z,-basis v1,v2,...,v,q of Dg(T) such that

V1, ..., VUrd, is & basis of Fil° Dk (T). Let C, be the matrix of ¢ with respect to this
basis. By (@) and (), C,, is of the form

© o(Hdr—)

0 | 3 1r(a-do)

for some C' € GLya(Z,). We note in particular that C;* is defined over Z,.
For n > 1, we write ®,n (1 + X)) for the cyclotomic polynomial

p—1

S xp
=0

and w,(X) = (1+X)?" — 1.

Definition 2.4. Forn > 1, we define

o I’rdo | 0 1 - nal
O"_( 0 | ®pn (1 + X)Tr(ado) )O and - M, = (Cp)"" Cp -+ Cr.

Proposition 2.5. The sequence of matrices {My}n>1 converges entry-wise with
respect to the sup-norm topology on H. If My denotes the limit of the sequence,
each entry of My are o(log). Moreover, det(My) is, up to a constant in Z.*, equal

p b
T‘(d—do)
log(1+X)

Proof. For all m > n, we have
O,m(1+X)=p mod wy,
which implies that
Cp = (Cg,)*l mod wy,.
Therefore, we deduce that
M,, = M, mod w,.

Note that all entries of C - - - C,, are in Z,,[[X]]. By (H.S.), there exists a constant
h < 1 such that v,(a) > —h for all eigenvalues of a of C,. Therefore, all entries
of (C%,)"Jrl are in %Zp for some constant R. The coefficients of the entries of M,
are O(p~"™"), so the result follows from §1.2.1]. O
Remark 2.6. The matriz Mt is uniquely determined by the matriz C'.
Lemma 2.7. Ifn is a character on A, then n(Mr) = C,,.

Proof. Since n(®,=) = p for all n > 1, we have n(C,) = (Cy,)~'. This implies
n(M,) = C,, hence the result. O
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2.3. Decomposing Perrin-Riou’s regulator map. We shall use the matrix My
to decompose Perrin-Riou’s regulator map in the following sense. For all z €
HL (K,T), we shall find Col% (z) € A®"¢ such that

LF(z)= (01 -+ wpa) - My - Colg (2).
Throughout this section, we shall fix an element z € H}\ (K,T). Its image under

Perrin-Riou’s regulator has the following interpolation properties.

Lemma 2.8. If 0 is a Dirichlet character of conductor p™, then

rd * / —1,,-1\=1¢,,. o —
e(ﬁg(z)):{EF[ex%(z),vi](l—m(l—p o)) ifn=0,

= CR] Yot [EUEGn 071 (o) exp} (27),v}] ¢™(vi)  otherwise.

Proof. Note that the adjoints of (1 —p~1p=1)(1 — p)~! and ¢! under [~,~] are
(1—¢)(1—p~tp=1)~1 and py respectively. Hence, the result follows from (&). O

Proposition 2.9. For n > 1, there exists a unique ng) (2) € Ay @z, D (T') such
that
e " (LE(2) = Egpn) (z) mod wy,.

Proof. Recall from [LLZI1L §3.1] that the map L£X is given by

Mt @1)o 1 —p)o(hy) ",
where 901 is the Mellin transform that sends each element of H to some conver-
gent power series in 7 and h¥. is the isomorphism of Berger [Ber03, §A] between
H} (K,T) and N(T)¥=!, with N(T') being the Wach module of 7. Under Mellin
transform, integrality is preserved and the ideal generated by w, corresponds to

the one generated by " () (c.f. [LLZ10, Theorem 5.4]). Hence, the proposition
follows from Lemma [A.11]in the appendix. O

We write Egpni (2),.. .,E(T?Zd(z) for the elements in A, that are given by the

projections of ﬁ(Tn)(z) mod wy, to the v;-component as ¢ runs from 1 to rd. From
Proposition 2.9] we have the congruence

L)\ [ £RG)
(9) (Cp) ™t : = : mod wy,.
‘C'llg,rd(z) ngid(z)

For n > 1, we identify A2 with the column vectors of dimension rd with
entries in A,. Define h, to be the A,-endomorphism on A®"¢ given by the left
multiplication by the product of matrices C), --- Cy. Let m, denote the projection

map AT — AZ™,

Proposition 2.10. Forn > 1, there ezists a unique element Col(Tn)(z) € A9/ Xkerh,,
such that

£71(2)

: =Cp---C1-Coly” mod ker h,.

L0a(2)
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Proof. By Proposition 4.8], if 6 is a Dirichlet character of conductor p™*1,

then 0 (o™ ""! (LK (2))) € Qp,n ®z, Fil” Dg(T). In other words, ="~ (LK (2)) is

of the form Z:il F,v; for some F; € H where ®,»(1+ X)|F; for i = rdo+1,...,rd.

But

Lzlg,l (2)

e L () = (v e vra) - (Cp) T j
Eﬂig,rd(z)

Therefore, on combining this with (@), we deduce that E%Zdoﬂ (2),... ,Lgffld(z)

are all divisible by ®,» (1 + X). Hence, there exists a unique element Col(Tn’l)(z) €
A®rd/ker C,, such that

£71(2)
: =C,- Colgpn’l)(z) mod ker C,,.
‘ng,?d(z)

But €, = (C’%,)f1 (which is defined over Z,) modulo w,_1, so
ﬁ:ll“(,l(z)
ColV(z)=(Cp) " | mod (wn_1, ker Cy).

ﬁ’?,rd(’z)

Once again, by [LLZ11], Proposition 4.8], we may find Colgpn’m (2) € AP/ ker C,,Cy 1
such that
COlgz)l)(Z) =Ch1- COI(TR’Q) mod ker C,C,_1.

On repeating this for n times, we obtain the result. O

We shall show that the sequence {Colgl ) (z)} . gives us an element in A9

To do this, we need the following lemmas.

Lemma 2.11. The projection map m, induces a map on the quotients

AP/ ker by — AT/ ker by,

Proof. Let x € ker hy,+1. Recall that
Cni1 = (C’c/,)f1 mod w,,

so we have

Ird | 0 ) —1
T (Cpg1---C1-x) = s CCp - Cr(mp(x)).
(Cngr---C1- ) < 0 [Pl 1(mn ()
Since A,, has no p-torsion, we deduce that 7, (x) € ker h,, as required. O

Lemma 2.12. The inverse limit ]'&nwl (AS7/ ker hy,) is equal to A®".
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Proof. The map =/, is surjective since 7, is so. Hence, we have an isomorphism
lim A7/ ker by, 2 A®7/ Timker hy,.

Indeed, if x is an element of A®7¢ that lies inside 1<i£1ker hy, we have My -2 =0 as
elements in H®"¢. But My has non-zero determinant, so z = 0. O

Theorem 2.13. There exists a unique Col¥ (z) € A®™ such that

5:11“{1(2)
: = My - Col¥ (2).
ﬁ’?,rd(’z)
Proof. By Propositions and 210, we have
E:/K,l(z)
=M, - Col(Tn)(z) mod (wy, ker hy,).
‘C'llg,rd(z)

Recall from [PR94, §1.2] that if F} and Fy are two elements of H that are both
o(log) and that Fy = F» mod w, for all n, then F; = F,. Therefore, on letting

n — 00, the theorem follows from Proposition and Lemma O
Corollary 2.14. We have LX (z) = (v1 -+ vpa) - My - Col% (2).

Note that since quf is a A-homomorphism, the map
HE (K, T) — A®™?
2+ Col% (2)

is also a A-homomorphism.

2.4. Dependence of the choice of basis. Our construction of the Coleman map
Col% depends on the choice of a basis of Dg (T). In this section, we investigate this
dependence. More precisely, let vy, ..., v.q and w1, ..., wyq be two bases of D (T)
that admit the construction of logarithmic matrices M, and My ,, respectively, as

given in §2.21 Consequently, this results in two Coleman maps ColITi » and Col? w-
We will study the relation between these two maps.

Let B € GL,4(Z,) be the change of basis matrix satisfying
(10) (1}1 e Urd) = (wl e wrd) B.
Lemma 2.15. The logarithmic matrices for the two bases are related by

BMr7,,B™' = Mr,,.

Proof. Let C, , and Cyp 4 be the matrices of ¢ with respect to the bases vi,...,v.q
and w1, ..., w,q respectively. We decompose the two matrices

B Ira, | 0 _ Ivd, | 0 )
Cow= Cv( 0 | pIr(a—ao) ) . Con = Cw( 0 | plrta-an )
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Since the action of ¢ on D (T') is semi-linear, ([0) implies that BC,, , B~ = Cy 4.
Therefore, we have

Ird | O > —1p—1 ( I’r‘do | O > —1
B 0 C B = C .
( 0 | pL(a—do) Y 0 | pL(a—do) w

Let n > 1, it is known that ®,n(¢) = p for ( € ppm \ ppn, where m > n. Hence,

Ird | 0 ) —1p-1 ( Ird | 0 ) -1
B s C "B "= = C
( 0 | (I)pn (1 + X)Ir(d—do) v 0 | (I)pn (1 + X)Ir(d—do) w

as the two sides agree on infinitely many values of X. The lemma now follows
from the construction of the logarithmic matrices. 0

Corollary 2.16. The Coleman maps for the two bases are related by

B Colf,, = Colf .

Proof. We have by 2.14]

ﬁ,llf = (1}1 s 'Urd) . MT,U : COL?U = (’LU1 T wrd) : MT,w : COl’llf,w'

On combining this with (I0) and Lemma 215 we have

(w1 e wrd) My B - Col;,ff)v = (w1 . wrd) My - Colgw.
Our result now follows from the linear independence of wy,...,w,q and the fact
that det(Mrp,,) # 0. O

We now define Coleman maps for any Z,-basis {v1,...,vq} of Dg(T). Let
{wi,...,wrq} be another basis that admits the construction of the logarithmic
matrix Mrp.,. Let B € GL,4(Z,) be the change of basis matrix satisfying the same
equation as (I0). We define

(11) My, =B 'Mr,B and Colf, :=B"" Colf,.

Then Lemma 2.15] and Corollary .16l ensure that these objects are well-defined
(i.e. independent of the choice of wy, ..., w,q. Furthermore, it is immediate from
Corollary 14| that we have the decomposition

(12) ﬁ?(z) = (vl e ’Urd) My, - ColIT‘iv(z).
Furthermore, if 7 is a character modulo p, then Lemma 2.7 implies that
(13) n(MT,U) = Cga,'ua

where Cy ,, is the matrix of ¢ with respect to v1,...,vpq.

2.5. Images of the Coleman maps. In this section, we will describe the images
of the Coleman maps Col¥ (for a fixed basis of Dg (T')) at each isotypic component.



12 KAZIM BUYUKBODUK AND ANTONIO LEI

2.5.1. Determinants of A-modules. We first recall the definition of the determinant
of a Zp[[X]]-module as given in [PR94] §3.1.5]. If M is a finitely generated projective
Z,[[X])-module, det(M) is the maximal exterior power of M. More generally, if M
is a finitely generated Z,[[X]]-module that is not necessarily projective, let

0—-M —---—M —-My—M—=0

be a projective resolution, then det(M) is defined to be &/_, det(M;)~ D', This
definition is independent of the choice of the projective resolut1on

If 0 - My — My — M3 — 0 is a short exact sequence of A-modules, then

det(Mz) = det(M;) @ det(My).

For example, if M = Z,[[X]]/fZ,[[X]] where f € Z,[[X]], then by considering
the exact sequence

0 = fZp[[X]] = Z,[[X]] = Zp[[X]] = 0,

we see that det(M) = f~'Z,[[X]]. More generally, if M is a torsion Z, [[X]]-module,
we see that

charzp[[x]]M = det(M)fl

Let M = (f1,..., fr) be aZ,[[X]]-submodule of Z,[[X]]®" such that Z,[[X]]®" /M
is Z,[[X]]-torsion. Write f; = (fi j)j=1,...» where f; ; € Z,[[X]], then det(M) is the
Zp[[X])-module generated by the determinant of the r x r matrix whose entries are
given by fi ;.

More generally, if M is a finitely generated A-module, we define dety (M) to be

Z ey - det(M")
n

where the sum runs over all characters of A.

2.5.2. Description of the images. Let n be a character modulo p. We shall describe
the n-isotypic component of the image of the Coleman map COIIT( .

Lemma 2.17. Let z € H} (K, T), then

B [expg (2),(1— Ypp — 1)) } if m is trivial,

Col¥ ,(2)) =
77( OTJ(Z)) {r(npl‘) [ZO’EGl 9 1( ) expi (2 ),Uz/‘] otherwise.
fori=1,... rd.

Proof. By Lemma 27 n(Mr) = C,. So, Corollary T4l implies that

n(LE(2) = (e(v1) - @(vra)) - Colg (2).
When 7 is trivial, Lemma 2.8 implies that

rd

(01 va) 0 (Col () = 3 fexpi(), ol (1 = )(1 = p ™) o (wa),

=1
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-1

Since o and p~lp~! are the adjoints of each other under [~, ~], the right-hand side

can be rewritten as
rd

S [expi(2). (1= @)~ (po — 1)) v

i=1

When 7 is non-trivial, Lemma 2.8 implies that

rd
(vl e vrd) N (Colqif(z)) = Z [ Z 07" (o) expi(27), v | vi.

oceGy
Hence the result. (]
Lemma 2.18. Let ai,...,arq € Zy. We have Z:il aienCdgi(z) equal to 0 when
evaluated at X = 0 if either n is the trivial character and
rd
D a1 =) (1 = pp)v; € Fil’ Dy (T(1)),
i=1
or n 1s non-trivial and
rd
> aiv) € Fil’ D (T(1)),
i=1

Proof. We remark that n(F) = e, - F/|x=o for any element F' € H and

[exp®(2),w] =0
for all w € Fil’ Dy (T*(1)) and z € H'(F,,T) where n > 0. Therefore, our result
follows from Lemma [ZT7 O

We define two Q,-linear maps A, B : Q€74 — Dy (T*(1))/ Fil’ D (T*(1)) ® Q,
by setting

(a1y...,Grd |—>Zal (1—¢) Y1 = pp)v, mod Fil®Dg (T%(1)),

(a1, ... ,arq) — Z a;v; mod Fil® D (T*(1)).

We have the dual maps A*, B* : Fil' D (T) @ Q, — (@;‘?Td given by

v (1 — ) <1—%>1v

v =
on identifying @?Td with D (T) ® Q, via the basis v1, ..., Vpq.
Corollary 2.19. If n is trivial, then Im (Colqlf)n is contained in
{F € Z,[[X]]®": F(0) € Im(A")} .
If n is mon-trivial, then Im (Col;,lf)?7 s contained in

{F € Z,[[X]))®: F(0) € Im(B*)} .
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U
Proof. Lemma 218 tells us that if F' € Im (COIIT() , then F(0) € ker(A)* (respec-
tively F(0) € ker(B)1), where L denotes the orthogonal complement under the
pairing

@©rd @rd
ZI™ X LI — Ly
rd
(a1, ara), (b, ... bra)) = Y aibi.
i=1

Hence the result by duality. 0

Proposition 2.20. The containments in Corollary [2Z.19 have finite index.

Proof. By the Colmez-Perrin-Riou reciprocity law, with respect to a A-basis of
H} (Qp,Ty(A)) and a Z,-basis of D (T), the determinant of Lr is, up to a unit
in A, (log(1+ X)/p) 4=, By Proposition ZH] the determinant of Mz is, up to a
constant in Z,, (log(1 + X)/pX)r(d=do) Therefore,

det o (Im (0015 )) = X7(d=do)p

by Corollary 214l Note that A and B are surjective and that Fil” D(7*(1)) has
rank r(d — dp) over Z,. Thus Im(A*) and Im(B*) have rank rdy and the mod-
ules described in Corollary have determinant X"(¢=9)  the quotients of the
containments have trivial determinant. O

Proposition 2.21. Let I C {1,...,rd} be a subset of cardinality k. Let n be a
Dirichlet character modulo p. Define pr; be the projection Z;il a;v; =y
and define

ier @iVi

-1 0 . . .
Un = pry ((1 — @) (1 - %) Fil DK(T)> ., if n is trival,
pr; (Fil’Dg (7)) , otherwise.

n
Then, Im (@ieICOIQIE,O is contained inside
{F € @ic1Zy[[X]] : F(0) € US},

if we identify Dy (T) with Z;?Td via our choice of basis. Furthermore, the contain-

ment is of finite indez.

Proof. We assume that n is the trivial character in this proof. The other case can
be proved similarly. Let pr; : fo’”d — @4e1lyp be the natural projection. Then by

Corollary Z19 Tm (@ieIColgi)n is contained in
{F € @ierZp[[X]] : F(0) € pry (Im(A7))} .

with finite index. Hence the result by the description of A*. O

7
Corollary 2.22. If I and n as above, then Im (@ieICdgl) is contained in a free
Zy[[X]]-module, with finite index.
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Proof. Note that U} is a saturated Z,-module inside @;c;Zy, so there exists a Z,-
basis w1, ..., ur of ®;crZy, such that uy,...,u,, generates U? for some integer m.
Consider u1 X, ..., um X, U1, . .., uj as elements of @;e1Z,[[X]]. By Nakayama’s
lemma, these elements form a Z,[[X]]-basis of {F € ®,c1Z,[[X]] : F(0) e U/}. O

Corollary 2.23. Let I C {1,...,rd} be a subset of cardinality k.

(a) Letn be the trivial character. The index of Im (@iglcolgi)n inside Z,[[ X]]®*
is finite if and only if
span((1 — )" H(pp — 1)v) 1 i € I) NFil’ D (T*(1)) = 0;
(b) Letn be a Dirichlet character of conductor p. The index of Tm (@ieICOLﬁi)n
inside Z,[[X)®* is finite if and only if
span(v; : i € I) NFil D (T*(1)) = 0.

Proof. We prove (a) only. The set U] in the statement of Proposition221lis ®;cZ,,
if and only if

-1
(1-¢) (1 - %) Fil’ Dy (T) + span(v; : i ¢ I) = D (T).

Therefore, on taking orthogonal complements, this is equivalent to
span((1 — )" Hpp — 1ol :i € I) NFil’ D (T*(1)) = 0
as we have the elementary formula (U + V)+ = U+ + V. O

3. CONJECTURES

Let F' be a number field of degree r where the prime p is unramified. We assume
that F' is either a totally real field or a CM field. We fix a rank d continuous
Zy-representation T of Gp such that T verifies the hypotheses (H.F.-L.), (H.S.),
(H.Leop) and (H.nA) introduced above.

Furthermore, in order to simplify notation, we set g = [F' : Q] x d and define

g+ = dim (Indp/@ T® QP)JF as above. Set g = g — g4+ and suppose throughout
that g > 0. Let D,(T") be the direct sum @, ,DF, (T"). We assume until the end
that the following form of the Panchishkin condition holds true:

(H.P.) dim (Fil"D,(T) ® Q,) = g-.

Let S be the set of primes of F' where T is ramified and those that divide p.
If L is an extension of F, we write G g for the Galois group of the maximal
extension of L unramified outside S. Fix until the end an even Dirichlet character

n of A = Gal(Q(pp)/Q).
For i = 1,2, we define
Hiy s(F.T) = lm H (G p(u,n),s5: T)-

By [PR95, Proposition 1.3.2], our assumptions on T' imply that at each isotypic
component, Hf, ¢(F,T) is Zy[[X]]-torsion and Hj, ¢(F,T)+ is of rank gz over
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Ai. Let f2 € A be the characteristic ideal of Hf, ¢(F,T). We write loc for the
localization map
loc : HIIW,S(F5 T) — HIIW(FPaT) = @HIIW(FWT))
plp

and also for the map induced on the n-isotypic submodule.

3.1. Semi-local decomposition. Consider the map

LY = Dpply’  HE(Fy, T) — H @2, Dy(T).

We fix a basis vy, ..., v, for D,(T') consisting of a sub-basis {v, ;} of Dp, (T') for
each p|p. Let My be the g x g block diagonal matrix where the entries are given
by Mz o for p|p, where Mg Fy 1 the logarithmic matrix as constructed in ().
We write (Colp,;)?_; for the column vector given by (Colg") . Then, ([I2) gives

plp
us the decomposition of A-homomorphism

COITJ

(14) Lh = - wg) Mp-|
COIT)g

for some block diagonal matrix My € Mgy 4(H), whose entries are all o(log).

Let loc, be the localization from Hllwys(F, T) to H} (F,,T). We write Ly, for
the composition £E oloc.

Definition 3.1. We write 3, for the set of tuples I = (Iy)y|, where each I, is a
subset of of {1, ..., [Fy : Qpld} such that > #I, = g—. This can be equally regarded
as the set of subsets of {1,...,g} of size g—. We shall construct a Selmer group for
each I € 3y, which we conjecture to be A-cotorsion.

3.2. Perrin-Riou’s main conjecture.

Definition 3.2. Let B = {v1, -+ ,vy} be a Zy,-basis of Dp(T'). LetB" = {v},--- v} C
D,(T*(1)) be its dual basis. The basis B is called admissible if for any I € J,, we
have

(15) span (v) : i € I) NFil®D,(T*(1)) = 0
and strongly admissible if in addition to (1) we have
span ((1 — o) Hpp — 1)v} 1 i € I) NFil’D,(T*(1)) = 0.

Proposition 3.3. A strongly admissible basis exists.

The proof Proposition B3] will be given in Appendix

Remark 3.4. We note that the strong admissibility condition would allow us to
apply Proposition [2.21] and conclude as in Corollary [2.23 that the signed Coleman
maps we shall be using are pseudo-surjective onto a free Zy[[X]]-module.
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For I € J,, let N; be the Z,-submodule generated by the sub-basis {v} : i €
I}. Perrin-Riou in [PR92|] associates N a height pairing (,)n,. Since we have
N NFil’D,(T*(1)) = 0 for I € J,, the submodule Ny is regular in the sense of
[PR95, §3.1.2] if and only if the height pairing (, ), is non-degenerate (see also

[Benld, §2.1]).

Definition 3.5. For the dual motive M*(1) to M, we let Qq-(1),(L) denote
Perrin-Riou’s p-adic period (given as in [PR95]) associated to the determinant of
(,)n;- When Np is not a regular subspace, this period shall be set to be zero.

Conjecture 3.6. There exists an analytic p-adic L-function
Ly(M*(1)) € My @ A9-D,(T)
such that for all even Dirichlet characters 0 of conductor p™ > 1, we have
0 (Lp(M* (1)) =

Vs

9- Q « (1)
p * —1 M(6)*(1),p\+ n
S (=) LM ),07 1) o (A )
<T(9_1)> {p}( ( ) ) QM(G)*(l)(I) ( le)

IeT,

When 6 is the trivial character,

(16)

QM*(l) P(D —1 _—1y-1

0 (L,(M*(1))) = LM (1), 1) ——==(1—p)(1—p 'p Nie1v;) -
(Lp(M*(1)) g%{ﬂ( Yy o Lt )7t (Miervi)

Here, Ly, denotes the L-function with the Euler factors at p removed.

Lipy(M*(1),671,1) is
- _ Qaaeoy* (1) (L)
an algebraic number. Fixing an embedding Q — @Q,, we regard this as an element

Above Qaq(g)-(1)(L) is Deligne’s period so that the quotient

of @p. We also implicitly assert as part of the conjecture above that there is a
choice of a normalization of Deligne’s period amenable to p-adic interpolation.

Remark 3.7. Our interpolation formulae are not quite the ones stated in [PR95]
§4.2] that predict a relation between the leading term of the p-adic L-function and
complex L-values. Rather, we opt for a formulation that is closer to the existing
one for elliptic curves and the one stated in [CPRS9).

The main conjecture of Perrin-Riou relates this conjectural p-adic L-function to
the following module.

Definition 3.8. Perrin-Riou’s module of p-adic L-function is defined to be
Lrien (T) = det o (Im(Li0c)) @ det o (HE, s(F,T)) .
Conjecture 3.9 (Perrin Riou’s Main Conjecture). As Ai-modules, we have
Ly(M()A+ = Lo (T) 1
We now study the conjectural p-adic L-function L,(M*(1)) further and relate

it to the regulator map of Perrin-Riou via the Kolyvagin systems we construct in
the appendix.
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Definition 3.10. Let ==& AN € NI~ Hllw)S(F, T)+ be any element and let
6 be an even Dirichlet character of conductor p™. For I = (Ip),), € Jp, we define

> 1<i<g , jel,

Let R(T) denote the A-module of Kolyvagin determinants, given as in Defini-
tion [CI3Y(ii).
Conjecture 3.11. There exists a (unique) non-zero element ¢ = ¢ A--- AN¢g €
K(T) such that

ME(Z) = ([ 3" 6(0) exp}; (locy(€:)7) , v} 5

oeGp

1\ Qo)) p(D)
det (ML(c)) = Ly (M*(1),071, 1) MO D)
( ol )> (M) ) Qo)1) (L)
for all I and 6 as in Definition [3.10

We will refer to this conjecture as the reciprocity conjecture for Kolyvagin-
determinants.

Proposition 3.12. For ¢ € &(T) verifying Conjecture [Z11l, Lioc(¢) satisfies the
interpolation properties given in Conjecture [3.0.

Proof. This follows from Lemmas and [3.20) O

Remark 3.13. Note that we have only considered the interpolation problem for the
twists of the motive M*(1) by even characters 0 of I'. One can also formulate a
conjecture for odd characters, for which one needs to replace everywhere g_ by g4+
(and vice-versa). Note also that upon studying the motive M ® w (where w is the
Teichmiiller character) in place of M, one may reduce the consideration for odd
characters to the case of even characters.

If M is a A-module such that M7 is Z,[[X]]-torsion for all even characters of 7,
we define the characteristic ideal

chary, My := Z ey - charg (x) M"
n
where the sum runs over all even characters of A.

Proposition 3.14. If Conjecture [311] holds, then Conjecture [3.9 is equivalent to
the assertion that

(17) chary, (Hfy g(F.T)4+) = chara, (Hiy, s(F,T)+/(c1,....¢4.)).

Proof. For any non-zero element ¢ = ¢; A--- Acg € A9~ 1‘.[11W7S(F7 T)4, we write f.
for a generator of chara, Hf,, ¢(F,T)/(c1,...,¢_). Therefore, we have

et Lanien(A) = Fof o+ Lioe(¢) - Ay
for any non-trivial ¢. If furthermore
Eloc(c) = L;D(M*(l))ﬂ

the result follows immediately. O
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3.3. Bounded p-adic L-functions. Throughout, we assume that Conjecture B.1T]
holds. Let ¢ =¢; A--- A¢y_ be the element verifying the conjecture.
Definition 3.15. For I € J,,, we define
Colk. : HY,(F,,T) — A®9-
2+ PierColr ;i (2)
and Hil(Fp, T) is defined to be the kernel of Col%.

Lemma 3.16. For I € J, and a character n modulo p, there exists an integer
n(I,n) > 0 such that

det (Im (0015)") = x Iz, [1x]).

If the basis of D, (T') that determines CollT’" as in () is strongly admissible in the
sense of Definition[T 2, then we may take n(L,n) = 0.

Proof. This follows from Proposition [Z21] and Corollary 223 O

To simplify notation we sometimes will write Col%p(ci) in place of Col%p(loc(ci))
for1<i<g_.

Definition 3.17. For each I € J,,, we define the p-adic L-function Li(M*(1)) to
be det (co1§(ci)).
Lemma 3.18. We have
s LSRN E i N * n/yn(Ln)) .
det (Im (COIT)/spanA {COIT(Q)} 1) = (LL(M mn/x ) Z,[[X]]

1=

for some integer n(I,n) > 0. If the basis of D,(T') that determines Col%p’77 is strongly
admissible then we may take n(I,n) = 0.

Proof. This follows at once from Lemma [3.16] using the fact that taking det is
compatible with exact sequences. 0

The following results explain how these functions are related to complex L-values
and Perrin-Riou’s p-adic L-functions.

Proposition 3.19. Let C be the matriz of (1 — )~ (pp — 1) with respect to the

basis vy,...,vy. Letn be a character on A and I € 3y, then
* Qi (1),p () . L
(L (M*(l))) Lipy(M*(1),1) Ziejp CLJ% if m s trivial,
T ) (=) o) et 1) oo @) .
(T(frl)) L{p}(M (1),n 171)% otherwise,

where Cr y is the determinant of the g_ x g_ submatrixz of C whose entries correspond
to the elements of I and J.

Proof. When 7 is trivial, we have from Lemma 217 the formula
1 (L1(M*(1))) = det ([expg (&), (1 — @)™ (py — Dy ]) -

So, we may expand (1 — @)~ (pp — 1) by the matrix C and obtain the first part of
the proposition using Definition [3.10
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When 7 is non-trivial, this follows immediately from Lemma 217 and Defini-
tion [3.10] 1

Lemma 3.20. Let R be a commutative ring. Let M and M’ be two R-modules,
with a homomorphism F : M — M’ of A-modules. Let m < n be integers. Fiz
ai,...,0m € M and by, ..., b, € M’ with

Fla;) = rib;
j=1

fori=1,...,m. Then
F(al/\.../\am): Z det(le _____ jm)bjl/\"'/\bjm

J1<<m
where 15, .., is the m x m matriz whose (k,1)-entry is given by 1 j, .
Proof. This is standard multi-linear algebra. O

Theorem 3.21. Forl,J € 3J,, let M:%l be the g_ x g_ the submatriz of My whose
entries correspond to the elements of I and J. Then there is a decomposition

Ly(M*(1) = Y Aervidet(Mz#) Ly (M (1)).

1,J€T,

Proof. Let the (j, k)-entry of My be m; ;. Recall that (I4) says that
Eloc(ci) = Z Ujmj71€COlT7k(Ci)
1<j,k<g
for 1 <7 < g_. Hence by Lemma [3.20] we have

g
/\f;lﬁloc(ci) = Z Nic1V; det (Z mjkaolTﬁk(ci)>
k=1

I€3, jeL1<i<g

=Y Nervi y, det(my)jernes - det(Colrp(ei)resi<izy-
IeT, JET,

as required. 1

3.4. Modified Selmer groups. We now define modified Selmer groups using the
Coleman maps Col%p.

Lemma 3.22. For any subset {i1,...,ix} of the set {1,...,9}, the A-module
ﬂ;?:l ker Col;; is torsion-free of rank g — k.

Proof. Recall that the A-torsion submodule of H{, (F,,T) is isomorphic to the
module HY(F (pipe)p, T), which is trivial since we assumed (H.nA). It follows that
the A-module H{, (F),,T) is torsion-free.

By Proposition Z20, Im (&%_,Col;; ) has rank k over A. But Hf (F),,T) is of
rank g over A thus ker (@?ZlColij) = ﬂ?zl ker Col;; has rank g — k over A. O

Corollary 3.23. (a) For each I € T, the torsion-free A-module H}(F,,T)
has rank g .
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g
(b) [ ker Col; = 0.
i=1
Lemma 3.24. Let W be (a torsion-free) A-submodule of Hi, (F,,T) generated by
at most g_ elements. Then there is an I € 3, such that

WNH(F,T)=0.

Proof. Assume contrary that
W NH}(F,,T)#0

for any I € J,. We prove by induction on 0 < k < g4 that for every subset J of
{1,---, g} of size g_ + k, there is an non-zero element

0#£wy€WN (ﬂ kerColZ—) :
ieJ
When k& = 0, this is the hypothesis of the lemma. Assume its truth for k£ =
n < g4 and consider J = {i1, -,y 4nt1} C {1,---,g}. Set Js = J\{is} for
s=1,---,9-+n+1 and choose using the induction hypothesis a non-zero element
zs € WN (ﬂier ker Coli). As the A-module W is generated by at most g_ elements,

it follows that {z,}7=7"*" verifies a non-trivial relation
biz1 +bozo + -+ by_1nt12g_4nt1 =0,

where b, € A. Let sp € {1,---,9— +n + 1} be the smallest index such that
bs, # 0. Then observe that by, 25, is non-zero since W is torsion free and by, 25, €
span{z; }ixs, C ker Col;, , where the latter containment is due to our choice of the
elements z;’s. On the other hand, bs,zs, € ﬂ#s() ker Col;, by the choice of z,,
hence

0 # bs, 25, € ker Colg, N ﬂ ker Col;, | = ﬂ ker Col; ,
s#so i€J
as desired. Now this shows (for k = ¢ ) that

g
wn (ﬂ kerColi> #0,

i=1
contradicting Corollary B23|(b). O
Proposition 3.25. There is an I € J,, such that
loc (HIIW,S(Fv T)-i-) N HLI(vaT)'l‘ = {0}

Proof. This is immediate from Lemma[3.24] by setting W = loc (Hllw (F, T)+), since
we assumed the weak Leopoldt conjecture. 0

Let TT = T* ® py~ denote the Cartier dual of 7. The standard Selmer group
Sel(TT/F(j1p)) is defined to be

V(e ), T
Sel(T/F (ppe)) = ker (Hl(F(,upm)’TT) s Z}EF% )o, T )) .

F(MPOO)’UvTT)

We shall modify the conditions at primes above p using our Coleman maps.
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Fix I € J,. By local Tate duality, there is a pairing
(18) Hyy (Fy, T) x H' (F (<), TT) = Qp/Z,

where H'(F(ppe)p, TT) denotes D, HY(F(ppe)p, TT).

Define Hf (F(pp<)p, TT) to be the orthogonal complement of H{(F,,T) under
the pairing (IS).
Definition 3.26. We define the I-Selmer group Sel;(TT/F(uy=)) to be

)o. T1)

F(ppoe
(Mp*”" )us TT)

Hl
ker Hl(F(pr)vTT) . @HIEF
olp

Remark 3.27. Let A/Q be an abelian variety of dimension g and AV denote its
dual abelian variety. Throughout this remark we set T = T,(A), the p-adic Tate
module of A. In this case, we have for the local conditions that determine the
standard Selmer group that
H}'(Qp(ﬂp“’)vTT) =AY (Qp(ﬂp“’)) .

When A has good ordinary reduction at p, the A-module AV (Qp(pp)) has corank
g by the main result of [Sch87] and Sel(AY /Q(up=)) is predicted to be A-cotorsion.
In the supersingular case, however, the module AY (Qp(ppe=)) has A-corank 2g,
thus Sel(AY /Q(up=)) has corank at least g. In the definition above we replace the
local conditions AY (Qp(pp=)) that appear in the definition of the standard Selmer

group by a corank-g submodule and conjecture that the resulting Selmer groups are
A-cotorsion.

Proposition 3.28. For I € J, verifying the conclusion of Proposition the
At -module Selr(TT/F(upe<))+ is cotorsion.

Proof. 1t follows from our choice of I and Poitou-Tate global duality that we have

an exact sequence
(19)
HL, (B, 1)
0— Hllw S(FvT)Jr - R L
' H Ll (F D> T)-i—
The A -module Hf, ¢(F,T); is torsion whereas the A, -module Hy,, 4(F,T) has
Ay-rank g_ by the weak Leopoldt conjecture that we assume. Proposition follows
by counting A, -ranks in the sequence (I9). O

— Sely (T /F ()Y — Hiy s(F,T)1 — 0

Remark 3.29. We expect that the Ay -module Sel;(TT/F(up=))+ is cotorsion for
every I € J,. However, we are able to verify this guess (assuming weak Leopoldt
conjecture for T') for only one I. This is fortunately sufficient for our purposes.

The following statement will be referred as the I-main conjecture. We shall verify
that its truth for a single I € J,, is equivalent to the n-isotypic part of Perrin-Riou’s
main Conjecture

Conjecture 3.30. Let [ € J, and n an even Dirichlet character of conductor p.

Then
<L1(M*(1))"

chars, ) Sels (T Flp= )" = (242050 ) 2, 1)
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where n(L,m) is the integer as given by Lemma [0,

Theorem 3.31. Assume the truth of the Explicit Reciprocity Conjecture [T11] for
the module of Kolyvagin-determinants. For every even Dirichlet character n of
A, the n-part of Conjecture is equivalent to Conjecture for every I € T,
verifying the conclusion of Proposition [3.23]

Proof. Recall the Poitou-Tate exact sequence ([I3):
Hllw (va T)n

0— Hi, (F,T)" —
s Hy(F,, T)

= Selp(T"/F(pp))"" — Hi, o(F,T)" = 0.

Note that the left-most injection follows from the choice of I. The second term
n
in ([I9) is isomorphic to Im (Colé) , which is described by Proposition 2271

Let ¢ = ¢1A- - -Acy_ be the element given by Conjecture[311l The exact sequence
(@3 then yields the following exact sequence:

0— Hllw)S(F, )"/ (spaunA{ci}i-tl)77 — Im (Col%p)n/(span/\ {Coll(ci)}f;l)n
— Sely (T /F(pp=))""" — Hfy g(F,T)" — 0.
We therefore conclude
det (Hp, g(F,T)"/ (spany{c:}{=;)") @ det (Sel(T"/F(pup=))""") =

det (Im (Col%)n/(spanl\ {Coll(ci)}f;l)n> ® det (HE, g(F,T)"),
which can be rewritten as
ey - ot det (SelL(TT/F(upoo))v) = e, - det (Im (Col%p)/spanA {Coll(ci)}f;l) it
By Proposition B.14] it follows that Conjecture 3.9 is equivalent to

det (SelL(TT/F(upm))V)”) = det (Im (ColiT)n/ (spany {Coli(ci)}f;l)n) .
Hence we are done by Lemma B.18 O

Theorem 3.32. Suppose that the representation T verifies the hypotheses (H1)-
(H4) of [MRO4, §3.5] and assume the truth of Conjecture [311l. Then following
containment

Lp(M*(1))A+ C Tarien(T)+
in the statement of Perrin-Riou’s Main Conjecture [3.9 holds true.

Proof. Choose I € 7, verifying the conclusion of Proposition3.25 Let 7 be an even
character of A. In what follows we will freely borrow notation and concepts from
Appendix [ Let & € KS(T ® ', Fi, Px) be any generator of the module A®)-
adic Kolyvagin systems and x; € H}L (F, T ®n~') denote its initial term. Recall

that A®?) = Z,[[[']] and T is the Galois group of the cyclotomic Z,-tower, so that
A®) 2= 7,[[X]]. Poitou-Tate global duality yields an exact sequence
g H}-"L(vaT@nil)

Hi(Fp, T)" 4 A®) -loc(k1)

— Sely (T"/F(pp=))""" — Hz. (F, TH @)Y — 0

0— Hyp (F,T®n ")/A K
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We then have

HL (F,,T@n™!)
har (Sel; (T /F (11, ))Y"") = ch FL P
char (Sel; (T /F (up=))"") = ¢ ar(Hil(Fp,T)ﬁ—i—A(P)-loc(lﬂ)

_ Colz" (loc(1)) ()

X n(Zn)
det (Col%p’"(ci))
o QI NPy \ ()
XnZn)
_ (LMY )
o Xn(Ln))

where

e the first equality follows from Theorem [C4Y(iii),

e the second using the fact that Col%r’77 is injective (by very definitions) on the
quotient Hx (F,, T®@n~"')/H](F,, T)", has pseudo-null cokernel by Prop-
sition 2.21] and by fixing a generator of L,

e the third using the fact that ¢ € £(7") and the commutativity of the dia-

gram (27]),
e and finally the last by Lemma [3.18 and the fact that we have chosen of our
Coleman maps relative to a strongly admissible basis.

This verifies the containment

(20) (L(M*(1))7) Zy[[X]] C charg,(x)Selr(TT/F (e )) """
in the statement of Conjecture B30 We conclude the proof of the theorem on using
0) together with the proof of Theorem B311 O

Remark 3.33. See [BL1D] for an ezample where we deduce an explicit version of
Theorem [3:32, In loc.cit., we study more closely the motive attached to the Hecke
character associated to a CM abelian variety that has supersingular reduction at all
primes above p. In this particular case, the hypotheses (H1)-(H4) of [MR04], §3.5],
(H.F.-L.), (H.S.), (H.P.) and (H.nA) hold true.

APPENDIX A. AN ALTERNATIVE APPROACH USING WACH MODULES

In [LLZ10] and [LLZII], we showed that the theory of Wach modules can be
used to study the Iwasawa theory of p-adic representations. The key is to find an
explicit basis for the Wach module. In this appendix, we show that the construction
of the logarithmic matrix My in §22 can be modified to construct an explicit basis
for the Wach module N(T') of T. Here T is as defined in §2.2] satisfying (H.F.-L.)
and (H.S.).

Let A} = Ok|[r]], which is equipped with the usual semi-linear actions by T
and ¢ (see for example [Ber04]). We write ¢ = o(m) /7.

Definition A.1. A Wach module with weights in [a;b] is a finitely generated free
A} -module M such that

(1) It is equipped with a semi-linear action by T that is trivial modulo 7;
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(2) There is a semi-linear map ¢ : M[x~t] — M|p(7) ] such that p(w° M) C
7 M and ¢*~%(m* M) C 7°M;
(3) The actions of T and ¢ commute.

A Wach module N is equipped with a filtration
Fil' N = {z € N : o(z) € ¢'N}.

Let v1,...,vq be Og-basis of D (T') such that vy,...,v4, generate Fil° D (T).
Let C,, be the matrix of ¢ with respect to this basis. As in §2.2

L, o
C«J:C< 0 | =L—p, )

p
for some C' € GLq(Ok).
Definition A.2. Forn > 1, we define

ITO | 0 / n p—1 —1

@ o

Proposition A.3. The sequence of matrices {M] },>1 converges entry-wise with
respect to the sup-norm topology on Bxg)K. If M. denotes the limit of the sequence,
each entry of M}. are o(log). Moreover, det(MrF) is, up to a constant in O, equal

to (M)g.

Proof. The proof is the same as that for Proposition 2.5 O

Definition A.4. For each v € I', define a matriz G = (M{F)fl -y (MF).

We shall show that G, is a matrix defined over A}. Let us first prove the
following lemma.
Lemma A.5. Let MTXT(A;Q) be the set of r X r matrices that are defined over A;r(.

(a) P1 e (Pl_l) S I+ WMTXT(A-’};);
(b) If M € T+ 7M,yr(A}), then Py - (M) - y(P7Y) € T+ 7Mywr(AJ).

I, 0

yq
R

Proof. For (a), we have P,-y(P; ') = C ( ) C~'and Tie 1+7AY,

hence the result.

Let M =1+ 7N, then
Pr-o(M)-y(PY) = Poy (PTY) 7 (aPr-o(N) -y (PT))

since ¢(m) = mg. Both ¢P; and P; ' are defined over A}, so (b) follows from
(a). O

Proposition A.6. For all vy, the matriz G-, is an element of I + ™M, (AL).
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Proof. Since G, = limy o0 (M/)~" -4 (M), it is enough to show that (M/)~" -
v (M) is in I + 7M,x,(A};) for all n. Let us show this by induction.

We have for all n
(21) (ML)~ v (M) = Pree- Pary(Py ) o5 (PY).
Hence, the claim for n = 1 is Lemma [A5(a).
By definition, P,, = ¢"~1(P;), so we have for n > 2
(M)~ (M) = P () 7y () (P,
Hence, the inductive step is simply Lemma [A5|(b). O

Lemma A.7. For all v, we have the matriz identity

Py-p(Gy) =Gy -y (1)
Proof. By (1) and the fact that P,, = ¢"1(P;), we have

P ()74 (M) = P Paan (Pl - )
and
()™ ey (M) -4 (P) = P Pay(By e B,
In other words,
1 ’ ’ -1 ’
Proo (M) () = (M) ™y (Mi) ) - (P
Hence the result follows on taking n — oo. O

Definition A.8. We define a free A;r( -module N¢,, of rank r, with basis ni,...,n;.
With respect to this basis, we equip Nc, with a semi-linear action by I', which is
gwen by the matriz G-, (well-defined by Proposition [A.6) and a semi-linear map
¢ : Ne,[m ] — Ne,lo(m) 1], which is given by the matriz Py.

Proposition A.9. The module Nc, is a Wach module with weights in [0;1].

Proof. By Proposition [AG] the action of ' on N¢, is trivial modulo 7.
Since P, € 1/qMTXT(A};), we have
©» (TFNC‘F) e€nlNg, and qp (Ncq;) C wach.
Finally, by Lemma [A7] the actions of I" and ¢ commute, so we are done.  [J
Theorem A.10. As Wach modules, Nc, is isomorphic to N(T'). Furthermore,
(o1 - w)Mp=(n1 -+ n).
Proof. In order to show that N¢, = N(T), it is enough to show that

(22) ]D)K (T) = NCX,, mod 7
as filtered p-module by Théorme II1.4.4].
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By definition P; = C, mod m, so the actions of ¢ agree on the two sides of ([22)).
For the filtration, we have
Ne, i<-1
Fil' Ne, = § (@r<jer Ak "ﬂ') N (EBTOHSJST Ak 'W”a‘) =0
Dicjcr Bic ™15 ) & (D145, Bic 'W”lnj) i>1
Since Fil”D(T},(A)) is generated by vi,...,v,,, we see that the filtrations on the
two sides of ([22)) as well.

By [Ber(04} §11.3],
(23) (vl vr)M:(nl nT).
for some matrix M € I + WMTXT(IB%;’;g)K). For any v € T,

(’Ul UT)*y(M):(nl nr)G,Y.

Therefore, G, = M -y(M 1) = M} -y (M})~". But M}, e I+7TMTXT(IB3:§g7K) also.

Hence,
r

M - (Mr})il S (I+7TMT><T‘(B:’;g)K))
This implies that M = M. as required. O

We now use the theory of Wach modules to prove an integrality result that is used
in the main part of the article. Recall from [LLZ10, §3.1] and [LLZIT] §3.1] that for
any x € N(T)¥=% we have (1—p)z € (¢*N(T))¥=° C BIg7K®DK(T). Furthermore,
we have a Ok ® A-basis for (¢*N(T))¥=0 of the form (1+7)p(n1), ..., (1+7)p(n,)

Lemma A.11. Let x € N(T)¥=!, then (1® ¢ " 1) o (1 — ¢)x is congruent to an
element of (A)"=° @ Dk (T) modulo cp"“(w)IB%;;gK @ Dg(T).

Proof. By [LLZ10, Lemma 3.3], there exists z1,...,zq4 € (A})¥=° such that
r 1
I-@z=> zl+m)pm)= (1 ... v) Cp-(1+m)pM)-
i=1 T
Note that we have abused notation to write v; - (%) for () ® v; € B;ng ®@ Dg(T).
Thus, on applying (1 ® ¢~""1), we have
T
12" Ho(l-pr= (o1 ... o) O™ (M) -
T4
Therefore, it is enough to show that C;™ - (M) is congruent to some element in
A% modulo o™ (m)B, [
If we apply ¢ to the equation (23], we have the relation
M=Cy,-p(M)- Pt
Since M =1 mod 7, we have M = Cl, - P~! modulo 7. On iterating, we have

M=Cj- " (P --- P71 mod " (),
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which implies that
(M) =CL-@"(P7)---(P™!) mod ¢"*(m).

Recall that P~! is defined over A}, hence we are done. 1

APPENDIX B. LINEAR ALGEBRA: PROOF OF PROPOSITION

The goal of this appendix is to provide a proof of Proposition [3.3

Lemma B.1. Let W be a free Z,-module of rank d and let W' be a free, rank d —1
direct summand of W. Then the collection {W'+Z, -v:v € W} of submodules of
W is totally ordered (with respect to inclusion,).

Proof. This follows from the fact that the quotient W/W"' is a free Z,-module of
rank one. O

Lemma B.2. Let W be as in the previous lemma. Let ® be a finite collection of
rank 0 — 1 direct summands of W and let Wy = Ug W' be their union. For any
k € ZT we have,

PPW U W, #£ W.

Proof. Choose any element w = wy € W — W, (such an element clearly exists).
If wy € pFW, we are done, otherwise write wy = p*w;. Observe that w; & Wy
(as otherwise, wy would be an element of Wy as well). Now if wy ¢ p* W, we are
done again. Otherwise we may continue with this process, which eventually has to
terminate. O

a
c

Lemma B.3. For < cotdy

2 > € GLa(Zp), the set {’”"‘by tx,y € Z;} has infinite

cardinality.

Proof. Since ( ZL > € GLy(Z,), either ¢ # 0 or d # 0; say the first holds true.
b (ad — b
Note that ﬂ =4 aic)/c’ and ad — be # 0 and that cx + dy takes on
r+dy ¢ cx + dy
infinitely many values as z,y € Z, vary. O

Lemma B.4. Let W, ® and Wy be as in LemmalB.2. Let W1, Wo € © and suppose
v1,v2 € W — Wy verify

Wl@Zp"Ul:W:WQEBZp-’UQ.

There one can choose o, B € Zy, so that

(a) v=av; + Pvs € W — Wy,
(b) Wi ®Zp - v=Wa®Z, v=W.

Proof. Fix a basis 281 of Wi and 985 of W5. Let x1 be the va-coordinate of v; with
respect to the basis By U {va} and x5 be the vi-coordinate of vo with respect to
the basis B1 U {v1}. We may assume without loss of generality that v,(z;) > 0 for
i = 1,2, as otherwise, say in case vp(z1) = 0, it would follow that span (Ba,v1) =
span (Ba, z1 - v2) = W and thus the choice & = 1 and 8 = 0 (thus v = v;) would
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1 [ a b
work. Let X = ( 1 ) and let ¥ = ( e d ) € GL2(Z,) be such that

Y X =1 (such Y exists since det(X) € Z,5 thanks to our running hypothesis).

Consider Wy N span (vy,v2). Since vq &€ Wy, it follows that this intersection is
a finite union of Z,-lines, say spanned by {a;v1 + Bive}&; (with «;, 3 € Z,). Let
X = {a;/Bi + B; # 0}, note that it is a finite subset of Q,. Use Lemma to
choose z,y € Z, such that ngidbz ¢ X. Set @ = ax + by and B = cx + dy. Note
that we have by definitions

x @
Y = ,
[ Y ] [ B ]
or equivalently that

» ()5 ]=x5 =0 )

Observe that v := awy + v & Wy (as o/ ¢ X), so v satisfies (a). Furthermore,

v=av; + P = (axy + ) -va =x-vy mod Wa

and
v=(a+Paz) vy =y-v; mod W
We therefore conclude (using the fact z,y € Z,)') that

span (W1, v) = span (W1, y - v1) = span (Wy,vy) = W,

and

span (Wa, v) = span (Wa, x - v2) = span (Wq,v) = W,
which proves that v verifies (b) as well. O
Lemma B.5. Let W be as in the previous lemma and let {wy, ..., wy} be a given ba-
sis of W. For any non-negative integer k, one can find elements {wyy1, ..., wotr}t C

W so that for any I C {1,...,0+k} of size d, the set {w;};er spans W.

Proof. We prove the lemma by induction on k. When k = 0, the assertion is clear
and suppose that k > 1 we have found a set {wy41,...,wo4k—1}. Let & denote the
collection of subsets of 1,...,0+ k — 1 of size o — 1 and let © = {span ({w; }ies) :
S € G} be a set of free, rank 0 — 1 direct summands of W. Set Wy = Ug W/,
observe that W, is a proper subset of W. For any w € W — W, and S € &, the
submodule span ({w} U {w;}ics) of W is of finite index. Fix S € & and define
Wg :=span (w; : i € 5).

We first prove that there is an element vg € W — W, such that
(25) Ws + Zy -vs = W.

Indeed, pick any w € W — Wy. If Wg + Z,, - w = W, we are done. Otherwise we
may use Lemma [B.2 to choose w; € W — (Wg + Z,, - v U W), for which we have

Ws+Zp-wy 2 Ws +7Z),-w.

This process has to terminate and when it does, we have found the desired vg
satisfying (25]).
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Using Lemma [B4] iteratively, one obtains an element v € W — Wy such that
Ws+Zy v=W

for every S € 6. We set wpy := v. O

Proof of Proposition[Z3. Let B = {v1, -+ ,vg , Wy 41,...,W,} be any Z,-basis of
D,(T) such that {vi,---,v, } forms a basis of Fil’D,(T). Form the dual basis

B = {v],-- v, wl g, wl} CDR(T(1)).

Consider the free Z,-module W := D,(T*(1))/ Fil®D,(T*(1)) of rank g_ and for
an element v € D,(T*(1)), let v denote its image in W. It is easy to see that
{v1,---,v;_} forms a basis of W. Use Lemma [B.3 (with @ = g_ and k = g4) to
obtain a set {v7,---, v} such that for any I € 7,

span (v :1 € 1) =W.

One can lift the set {v],---,v;} to a basis B}, = {v], -+, v} of D,(T*(1)) and
the basis Baq dual to B/, gives us an admissible basis of D, (1) completes the first
part of the proof.

The proof of that a strongly admissible basis exists is similar and we only provide
a sketch of its proof after inverting p. The technical details to conclude integral
version of this result are identical to the arguments above we have assembled in the
course of deducing the first part regarding admissibility. To ease notation, let V =
D,(T*(1)) ®Q, and W = Fil® D, (T*(1)) ® Q,. Set also T = (1 — )" (pp — 1) and
W =T (W) ®Q,; note that T is invertible thanks to our running assumptions.
Set r = dimW = W' and r + s = dim V. We choose a basis {v;} inductively as
follows:

e Choose any v1 ¢ WUW'.
e For k < s— 1, if we have chosen v}, - , v}, choose v}, € V as any vector
so that

v;CJrl§§(span(vg:1§i§k)—|—W)U(span(v§:1§i§k)+W/).

Note that we can do this as on the we have a union of two hyperplanes of
dimension k +1r < r + s.
e For any 0 < k < s, suppose we have chosen By = {v}, -+ ,v,,,} in a way
that
span (vl’»j 1 € I) NWUW) =0
for every subset I C {1,---,s+ k} of size s. (The first two steps will get
us to this step with £ = 0.)
Let I¢=1) denote all subsets of I C {1,---, s+ k} of size s — 1 and let

=1 — U span (vi]. 115 € J) .
JelIlts—1)

This is a finite union of hyperplanes of dimension s — 1. Now choose
Vi ps1 € V to be any element verifying

Vs ¢ (W + V<S—1>) U (W' + V(S‘l)) .
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Note that the right side is a union of finitely many hyperplanes of di-
mension r + s — 1 so an element U;+k+1 does indeed exist. Set Bpi1 =

{Uiv"' 7Ug+k+1}'

It is now easy to verify that the set B, is a strongly admissible basis. 0

APPENDIX C. COLEMAN-ADAPTED KOLYVAGIN SYSTEMS

Throughout this Appendix, let F' be a totally real or a CM field as above. Let O
be the ring of integers of a finite extension ® of Q,, with maximal ideal m, residue
field k and uniformizer . Let T be a G p-stable O-lattice inside M, (n~'), the
twist of the the p-adic realization of a motive M (of the sort considered in the
main body of this article) by an even Dirichlet character n of A. Then T is a free
9-module of finite rank which is equipped with a continuous G p-action unramified
outside a finite set of places X of F. Set T = T/mT. We assume that all places
of F' at infinity and above p are contained in 3. We assume that T verifies the
hypotheses (H1)-(H4) of [MR04, Section 3.5] as well as the following;:

(H.Tam) For every finite place A € 3, the module H(I,T ® ®/9) is divisible.
Here I, stands for the inertia group at the prime .

(H.nE) For every prime p | p of F, we have
HO(vaT) - HZ(FPaT) =0.

In this appendix we let F, denote the cyclotomic Z, extension of F' and I' =
Gal(Fw/F). Note that this is the pro-p part of the group considered in the main
text. Let AP = O[[T]]. Let T = T ® A® and fix I € J, as in the conclusion
of Proposition To ease notation, we will set R = A® and d = g_. We fix
throughout an I € J, verifying the conclusion of Proposition and associated
to this choice, fix a signed Coleman map

(26) ¢ := Coly{ : H'(F,,T)—R".

Here Colf\/lp here corresponds to the the Coleman map denoted by Col%r(n) in the

main text and Colf\/l’"p is its restriction to 7-isotypic component. Let Z C R? denote
a R-submodule of the target of the Coleman map € such that

e Z is free of rank d.
e The R-module Z/im(€) is pseudo-null.

The existence of such Z is guaranteed by Corollary 2.22]
We now fix an arbitrary rank-one direct summand L. C Z.

Definition C.1. Let Fi, denote the Selmer structure on T given with the following
data:

° HJlfL(Fx\aT) = HY(F\,T) for primes A\ p,
o HE (F,,T) = ker (H'(F,,T) = Z/L) .
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Let P be the set of places of F' that does not contain the archimedean places, primes
at which T is ramified and primes above p. Finally let KS(T, F, P) be the R-module
of generalized Kolyvagin systems defined as in Section 3.2.2]. An element
of this module will be called an L-restricted Kolyvagin system.

We also let Ff denote the dual Selmer structure on the Cartier dual Tt, in the
sense of Definition 1.3.1 and §2.3].

As in the main body of thus text, we assume the truth of the weak Leopoldt
conjecture for T'. Our goal in this appendix is to give a proof of Theorem

Lemma C.2. Suppose R is any commutative ring and M, N,Q are finitely gener-
ated R-modules such that we have an exract sequence

0— M- N-—Q

and the quotient N/iu(M) is R-torsion-free. For anyideal I of R, let X; = X®@grR/I
for X = M,N,R. Then the following sequence of Rr-modules is exact:

0— M; 5 Ny — Q; .

Proof. Suppose m € M is such that ¢«(m) € I - N, say «(m) = r - ng for some r € T
and ng € N. As the quotient N/o(M) is R-torsion-free, it follows that ng € (M),
say ng = t(mg). Thus ¢(m) = «(r - mp) and since ¢ is injective, m € I - M. We just
proved that I - M = ker (M — N;) which is equivalent to the assertion of the

Lemma. O

Lemma C.3. The R-module Hy, (F,,T) is free of rank g, +1.

Proof. Let L denote the image of L. (resp., Z the image of Z) under the augmen-
tation map 2 : R — O. Observe the commutative diagram

O___e'[{%K}%vT)___Q'EG;(F%JF)_flé'Z/L

E i@mg i@mD
1

0 — ker(Cy) —— HY(F,, T) —2=7/L

where €y := €®g O is the induced map on Hy, (Fp,T) @9 O — H'(F,,T). As the
cokernel of € is finite so is the cokernel of €y and it follows that ker(€q) is a free
O-module of rank g4 +1 and by Nakayama’s lemma that the R-module Hx. (F},,T)
is generated by at most g4+ + 1 elements. On the other hand, the first row of the
diagram above shows that the generic fiber of H}_—L (F,,T) has rank g+ + 1 hence,
together with our the discussion above, we conclude that the R-module H }L (Fp,T)
is generated by exactly g4 + 1 elements. It is not hard to see (using the fact that R
is a UFD) that these generators cannot satisfy a non-trivial R-linear relation. [

Theorem C.4. Let Py 1 C P be as in Definition [C.d below.

(i) The R-module KS(T, Fi,, P) is free of rank one, generated by any Kolyvagin
system k whose image K € KS(T, Fi, P1.1) is non-zero.

(i) For an arbitrary generator {k,} = K, the leading term ry € H, (F,T) is
non-vanishing.
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(iii) Suppose {kn} =k € KS(T, F, Px) is a generator. Then,

char (H:, (F,T)/A - k1) = char (H}r]f (F, TT)V) :

It is the statement of Theorem [C4(iii) that is key to all our results towards
Perrin-Riou’s main conjectures.

Proof of the parts (i) and (iii) of Theorem[C.4lis identical to the proof of
Theorem A.12]7 once we verify that the analogous statement to Definition/Theorem
A.9 in loc.cit. holds true in our setting and that the core Selmer rank (7', F1) (in
the sense of Definition 4.1.11]) of the Selmer structure /i, on T is 1. The
first of these is achieved in Theorem below and the second in Proposition [C.10l
The main difficulty is that the images of the Coleman maps are not necessarily free.

We first provide a proof of (ii) here.

Proof of Theorem[CJJ(ii). Thanks to our choice of I € J, and Proposition 328,
note that the modified Selmer group Sel; (T"/F (e ))” is R-cotorsion. Thus the
R-module H}f (F,TT) € Sely(TT/F(up=))? is cotorsion as well. We may now
conclude the proof using Theorem 5.10]. O

Before settling Theorem in full, we introduce the necessary terminology
mostly borrowed from [MRO04]. Fix a topological generator v of the group I'. We
then have a (non-canonical) isomorphism R 2 O[[y — 1]].

Definition C.5. For k,o € Z*, set
Ryo = R/(@", (v = 1)%),
Tho =T ®g Rio = T/(=", (v — 1)?)
and define the collection
Quot(T) := {Tko : k,a € ZT}.

The propagation of the Selmer structure F, (in the sense of [MR04, Example 1.1.2])
to the quotients T}, o will still be denoted by the symbol Fi, as well as its propagation
toT.

Definition C.6. For k,a € Z* define

(i) Hypo =ker (Gp — Aut(Tr,) & Aut(pye)),
(i) Lya=F ",
(iii) Pr,o = {Primes X\ € Px : A splits completely in Ly o/F'}.

The collection Py o is called the collection of Kolyvagin primes for Ty o. Define

Ni.o to be the set of square free products of primes in Py q .

Definition C.7.
(i) Given X € Py o fix once and for all an abelian extension F'/Fy which is totally

°In fact, both proofs rely on the arguments of |[Biiyl3al] where a similar statement was proved
in much more general context.



34 KAZIM BUYUKBODUK AND ANTONIO LEI

and tamely ramified, and moreover is a mazimal such extension. As in [MRO4

Definition 1.1.6(iv)], the transverse local condition at A is defined to be
H} (F\,Ty.0) =ker{ H' (F\,Tio) — H' (F',Ta)}.
(i1) For n € Ny o, define the Selmer structure Fi(n) on Ty o by setting
Hy, (Fx,Tra), if M,

H]l-‘L(n)(FMTk,a) =
Htlr(Fvak,Ot)a ZfA | n.

The following list of properties is key in proving Theorem

Theorem C.8. For any n € Ny o the Selmer structure Fi(n) is cartesian on the
collection Quot(T) in the following sense. Let A be any prime of F.

(C1) (Functoriality) For o < 8 and k < k', H}L(n)(FA, Tk.a) is the exact image of
H}_-L(n) (Fx, T 5) under the canonical map H'(F\, Ty 5) — H'(Fx, Tko)-
(C2) (Cartesian property along the cyclotomic tower)

HY(F\,Th.o
SN . ( Ay Lk, -‘rl) '
H]:L(n) (FM Tk,mtl)

HE, (n)(Fx, Tha) = ker <H1(F,\, Tra)

Here the arrow is induced from the injection Ty, o h—_1>] Tk.ai1 and [y — 1]
is the multiplication by v — 1 map.
(C3) (Cartesian property as powers of p vary)

@ H'(Fx,Tii1,a)
H}L(n)(Fx\vTW) = ker (Hl(F,\,Tk,a) — H}_-( )(FA Trt1.a)
L(n ’ “

where the arrow is induced from the injection T} o ﬂ Tit1,a-

Proof. For the primes A { np, the asserted properties may be verified as in
§2.3.1]. The key points are the fact that the inertia group I, C Gp acts trivially
on AP and that we assumed (H.Tam). For the primes A | n, they may proved
as in §4.1.4] (which itself, in this particular case of interest, is a slight

generalization of [Biiy1l1, Proposition 2.21]).

It therefore remains to verify the claimed properties at primes above p. The
property (C1) is evident by definitions. Using Lemma one has a natural
identification for every k,a € ZT:

HJlTL(n) (Fp7 Tk,a) = HJlTL (Fpa T) ®r Ri,a
(that is to say in more precise terms, Hz. .\ (Fp, Tk,a) is the image of H} (F),T)
under the obvious map). Note that Lemma applies with M = HJ (F,,T)
and N = H'(F,,T) as the quotient H'(F},,T)/HF (Fp,T) is R-torsion free by

construction. The properties (C2) and (C3) follow now at once using the fact
that the R-module H, (F),T) is free (of rank gy + 1) by Lemma [C3 O

Let Fhun denote the Selmer structure on T given with the following data:

° H}:null (£, T) = H! (F\, T) for primes A1 p,
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o H} (FT) = HE(F,,T) i=ker (H(F,,T) < 7).

The assertion concerning the Selmer structure i, in the following Corollary follows
immediately by Theorem We need the statement on JFp,; in our companion
article [BLI5| and it follows easily by modifying Lemma appropriately.

Corollary C.9. Propagations of both Selmer structures Fr, and Funan on T verify
the hypothesis H6 of [MRO4].

Proposition C.10. The core Selmer rank x(T,FL) equals 1 whereas x(T', Fnun)
equals 0.

Proof. The proof of this proposition is similar to the proof of Proposition 9.2 in
[BL15]. Let Fean denote the canonical Selmer structure on T given with the data
Hy (Fx,T) = H'(F),T) for every prime A € X. Using the global duality argu-
ment in [Wil95, Proposition 1.6] and Corollary [0 we conclude that

X(T, Fean) — X(T, F) = rankp Hi (F,,T) — rankr Hx(F},,T)

for F = Fi, or Foun. However rankg HY, (F,,T) = g and X(T, Fean) = g- (c.f.,
[MR04, Theorem 5.2.15]) hence

X(T, F) = rankg Hx(F,,T) — g+ .
The first part of the proposition follows by Lemma [C.3] and the second part using

its appropriate generalization to apply with F1. O

C.1. The module of Kolyvagin determinants. Let us choose a basis B =
{¢1,-++ ,pa—1} of the free R-module Hompg (Z/L, R). We then have an isomor-
phism @7 ¢; : RY/L 5 R4, Let ¢; € Homp (Z, R) denote the pullback of ¢;
with respect to the obvious projection. Note that the map ¢ := @?:_11 (;NSl VAR
R is surjective with kernel L. Define

=gy A Ay € AHomp (Z, R),
where the exterior product is taken in the category of R-modules. Let
¥ € AN*Homp (H'(F,,T), R)
be the pullback of ® with respect to the Coleman map €.
Proposition C.11. (i) The map ® maps N*Z isomorphically onto L.
(ii) For every c € A"H'(F,,T) we have ¥(c) € Hy (F,,T).
(iii) Furthermore, the map ¥ induces a map (which we still denote by V)

v Hl(vaT)/HLl(FPaT) — H}L(FPaT)/HLl(vaT)

Proof. Linear Algebra. O
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Proposition [C.11] may be summarized via the following commutative diagram:

Nz—2 oL
¢®d ¢
e s e
1\Ups 1\Ups
loc®? loc,,

O \I/ A\
AN HY(F, T)—— H} (F,T)

The facts that ¥ in the third row and loc]?d are both surjective follow from the
following proposition.

Proposition C.12. Under our running assumptions both R-modules NYH*'(F,T)
and Hy, (F,T) are free of rank one.

Proof. Tt follows from the weak Leopoldt conjecture for T' (which we assume) that
the R-module H }- (F,T*)V is torsion, where the canonical Selmer structure Feap
of Mazur and Rubin is given in the proof of Proposition By control the-
orem (which holds true for this Selmer structure), we may find a specialization
7 : R — O (whose kernel is necessarily principal, say generated by @w € R) such
that H;-Zan (F,TF), where Ty := T ®, O. By [MR04, Theorem 5.2.15], it follows
that Hx (F,T) is an O-module of rank g, which is also torsion-free (hence free)
by our running assumptions.

Consider the natural injection H'(F,T)/wH"(F,T) < H} (F,T;). Using
Nakayama’s lemma, we see that H'(F, T) may be generated by the lifts of a basis
of H}CH (F,Ty). Relying on the fact that R is a UFD, one may further verify that

n

these generators may not satisfy a non-trivial R-linear relation. This completes the
proof of the assertion that AYH'(F,T) is free of rank 1. The rest is proved in an
identical manner.

O

Definition C.13. (i) Define the A-module of Kolyvagin leading terms £(T")
by setting

ST =4 3 K ey € Hi (R T): {m} =¥ € KS(T(x), Fi, P)
xeA+
Here AT denotes the set of even characters of A and ey € Zp[A] the idem-
potent corresponding to x. It is not hard to see using Theorem [C4) (for

each twist T'(x)) that the A-module £(T) is free of rank 1.
(ii) The A-module of Kolyvagin determinants &(T") is defined as

R(T) ={E e N"H}, o(F,T) : ¥(Z) € &(T)}.
Remark C.14. The diagram (27) above and the fact that € has pseudo-null cok-

ernel show that R(T) # 0. One may also prove that this module does not depend
on any of the choices made above and depends only on T'. A suitable extension of
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the theory of higher rank Kolyvagin systems (as studied in [MR13]) over coefficient
rings of dimension larger than 1 would yield a more natural definition of K(T). We
plan to get back to this point in the future.

APPENDIX D. COMPARISON WITH WORKS OF KOBAYASHI AND POLLACK

We shall compare the signed Selmer groups that we denoted by Sel; in the main
body of the article to the +-Selmer groups of Kobayashi [Kob03|; and the I-signed
p-adic L-functions to +-p-adic L-functions of Pollack [Pol03]. In particular, we
shall justify that our theory offers a natural generalization of their work.

Throughout this appendix, we assume that the motive M = h!(E)(1) is associ-
ated to an elliptic curve E/Q that has good supersingular reduction at p and that
ap(E) = 0, so that the p-adic realization T of M will be the p-adic Tate module
of E and the Pontryagin dual T is the p-divisible group E[p>]. Note that in this
case g— = 1 and we no longer fix an admissible basis. As it shall be clear from
the discussion below, Lemma BTl follows already from the work of Kobayashi and
the second named author even if the basis of the Dieudonné module is no longer
strongly admissible.

D.1. Kobayashi’s +-Selmer groups. Kobayashiin [Kob03] defined the +-Selmer
groups Selff(E /Q(up=)) by properly modifying the Bloch-Kato conditions at p.
This is exactly what we do in Definition [3.26] except that we used as our local con-
ditions at p the submodules H}(Q,(pp=), TT) in place of Kobayashi’s submodules
E%(Qp(pp=)) € E(Qp(p1p=)) given by some “jumping” trace conditions. Further-
more, as proved in [Leilll §4], Kobayashi’s submodules may be realized as the or-
thogonal complements of the kernel of some £-Coleman maps Col® : H]. (Q,,T) —
A, in the same way that the local conditions H}(Q,(upe),TT) in Definition
are defined as the orthogonal complement of ker(_Col 7). Therefore, in order to com-
pare our Sel; with Kobayashi’s Selzz,t, it is enough to compare our Coleman maps
Col; with the +-Coleman maps defined in [Kob03]. Note that these were already
rewritten in the language of Dieudonné modules in [Leill].

Let Deris(T) = Do, (T'). We fix a basis v; € Fil° Deis(T) and we extend it to a
basis v1,v2 = p(v1) of Deyis(T). The matrix of ¢ with respect to this basis is given

by

o (0 =Py _ (0 -1\(1 0

=1 o )7\ o)\o 1p)
Therefore, under the notation of Proposition 25 we find that the logarithmic
matrix My with respect to the same basis is given by

(0  —logt
My = <10g 0 ) ’
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where 1ogi are Pollack’s £-logarithms defined by the formulae

1 g ®pon(1+ X)
logt = = e
11==

n>1

_ 1 ) 2n—1(1 +X)

log~ = - Bl Ll S
[[-—

n>1

Let Coly, Coly be the two Coleman maps corresponding to this matrix as in Theo-
rem 213 We have the relation

Lri=— log™ Coly, and L2 =log™ Coly.

On combining this with (), we may compare our Coleman maps with the +-
Coleman maps defined in [Leilll §3.4] and see that they differ simply by a minus
sign, namely

(28) Col™ = —Coly and Col™ = Col;.
In particular they have the same kernels.

Remark D.1. Note that this choice of basis of Deyis(T) is not admissible in the
sense of Definition [34. As noted in Remark [34) this means that the images of
our Coleman maps would not be pseudo-isomorphic to Zy[[X]]. Indeed, as shown
in [Kob03, Propositions 8.23 and 8.24], Col™ is surjective, while the isotypic com-
ponent of Im(Col™) at a non-trivial character is XZ,[[X]]. This is consistent with
our Propositions and [22]].

D.2. Pollack’s +-p-adic L-functions. In §3.4] as well as [Kob03, Theo-
rem 6.3], it has been showed that the Pollack’s =-p-adic L functions in is the
image of the Beilinson-Kato elements along the cyclotomic tower (as constructed
in [Kat04]) under the +-Coleman maps, up to a sign. Note in particular that the
tower of Beilinson-Kato elements does satisfy Conjecture 3111 Furthermore, the
I-signed p-adic L-functions given as in Definition B.I7 are simply the image of the
Beilinson-Kato elements under Col; and Coly. Therefore, thanks to (28]), they agree
with Pollack’s +-p-adic L functions, up to a sign.
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