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ODD STRUCTURES ARE ODD

MARTIN MARKL

Abstract. By an odd structure we mean an algebraic structure in the category of graded
vector spaces whose structure operations have odd degrees. Particularly important are odd
modular operads which appear as Feynman transforms of modular operads and, as such,
describe some structures of string field theory.

We will explain how odd structures are affected by the choice of the monoidal structure
of the underlying category. We will then present two ‘natural’ and ‘canonical’ constructions
of an odd modular endomorphism operad leading to different results, only one being correct.
This contradicts the generally accepted belief that the systematic use of the Koszul sign rule
leads to correct signs.
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Introduction

As noticed in the seminal paper [2], the category of modular operads is not Koszul self-
dual. Consequently, the bar construction of a modular operad (called in this context the
Feynman transform) is not an ordinary modular operad, but an odd modular operad.† It was
shown in [4] and in the forthcoming work [1, 6, 7] that some algebraic structures relevant
for string field theory are algebras over the Feynman transform of a modular operad. This
explains the interest in explicit understanding odd modular operads and their algebras.

Odd modular operads live in the category Vect of graded vector spaces and their linear
homogeneous maps of arbitrary degrees. This category is enriched over the category Vect

of graded vector spaces and linear maps of degree 0 and admits two different yet ‘natural’
and ‘canonical’ symmetric closed monoidal structures.

Structural operations of odd modular operads have degrees +1, so they are examples of an
‘odd’ structure having operations of odd degrees. We use odd associative algebras as a simple
example which shows that concrete ‘models’ of such structures might depend on the choice

2010 Mathematics Subject Classification. 18D50 (Primary), 18D20, 18D10 (Secondary).
Key words and phrases. Graded vector space, monoidal structure, odd endomorphism operad.
The author was supported by the Eduard Čech Institute P201/12/G028 and RVO: 67985840.
†Terminology suggested by Ralph Kaufmann; a definition is recalled in Section 3.
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2 MARTIN MARKL

of a monoidal structure of Vect. The same is very crucially true also for odd modular
operads, the main subject of this note. The ‘oddness’ of operad- and PROP-like structures
was discussed in great detail in [3]; we refer to it for other examples of odd structures.

The concept of algebras over odd modular operads requires odd endomorphism operads;
and algebra over an odd modular operad ä is a morphism ä → EndV from ä to the odd
endomorphism operad EndV . The structure of the odd endomorphism operad is extremely
sign-sensitive. We will present two ‘natural’ and ‘canonical’ constructions of this operad,
leading quite unexpectedly to different results. This phenomenon is explained by the pres-
ence of two different monoidal structures of Vect. Proposition 6 of the last section specifies
which one gives the correct result.

The moral is that even the systematic and careful use of the Koszul sign rule might lead
to wrong results if one is unlucky. We hope that this note would warn the reader that this
may indeed happen if ‘odd’ structures are present.

Conventions. All algebraic objects will be considered over a fixed field k of characteristic
zero. The symbol ⊗ will be reserved for the tensor product over k. We will denote by 1X or
simply by 1 when X is understood, the identity endomorphism of an object X (set, vector
space, &c.).

By a grading we mean a Z-grading, though everything in this note can easily be modified
to the Z2-graded case. The degree of a graded object will be denoted by |w|. We will use
the Koszul sign rule meaning that whenever we commute two “things” of degrees p and q,
respectively, we multiply the sign by (−1)pq.

We assume basic knowledge of operads with the emphasis on modular ones as it can be
gained for example from [5, Chapter 5] complemented by the original source [2].

Notation. For n ≥ 1 we denote by Σn the symmetric group of n elements realized as the
group of automorphism of the set {1, . . . , n}. For graded indeterminates x1, . . . , xn and a
permutation σ ∈ Σn we define the Koszul sign ǫ(σ) = ǫ(σ; x1, . . . , xn) by

(1) x1 · · ·xn = ǫ(σ; x1, . . . , xn) · xσ(1) · · ·xσ(n),

which has to be satisfied in the free graded commutative associative algebra S(x1, . . . , xn)
generated by x1, . . . , xn.

For graded vector spaces V and W we denote by Vect
k(V,W ) the vector space of degree

k morphisms V → W and by Vect(V,W ) the graded vector space

Vect(V,W ) :=
⊕

k∈Z

Vect
k(V,W ).

If W is the ground field k, we obtain the graded dual V ∗ := Vect(V,k) of V . Notice that
the degree k component of V ∗ equals the standard linear dual (V −k)∗ of the degree −k

component of V . A degree k morphism f : V → W defines a map f ∗ : W ∗ → V ∗ of the same
degree by the formula

(2) f ∗(x) := (−1)k|x| x ◦ f, x ∈ V ∗.

For V =
⊕

p Vp , let ↑ V be the suspension of V , i.e. the graded vector space defined by

(↑ V )p = Vp−1. One has the obvious linear isomorphisms ↑ : V → ↑ V and ↓ : ↑ V → V of
degrees +1 and −1, respectively. Given graded vector spaces V1 and V2, we denote by τ the
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ODD STRUCTURES ARE ODD 3

symmetry

(3) τ : V1 ⊗ V2 → V1 ⊗ V2, τ(v1 ⊗ v2) := (−1)|v1||v2|(v2 ⊗ v1).

Acknowledgment. Main ideas of this note were born during conversations with Michael
Batanin and Martin Doubek. Martin pointed to me the potential sign problems in the
construction of the odd endomorphism operad, and Michael substantially contributed to my
understanding of the categories of graded vector spaces. I owe my thanks to Bruno Vallette
for explaining to me the difference between the Koszul sign convention and the Koszul sign
rule, and to Ralph Kaufmann for turning my attention to [3]. I enjoyed the wonderful
atmosphere of the Max-Planck Institut für Matematik in Bonn in the period when this
paper was completed. I am also indebted to an anonymous referee for many useful remarks
and corrections.

Plan of the paper. In Section 1 we show that the 2-category Cat(Vect) of categories
enriched over the category Vect of graded vector spaces and their linear degree 0-maps ad-
mits two monoidal structures, ⊙S and ⊙M, thus one has two types of pseudomonoids in
Cat(Vect). We notice that the category Vect of graded vector spaces and their linear maps
of arbitrary degrees with its standard Vect-enriched monoidal (tensor) structure is a pseu-
domonoid for⊙S, while it has yet another monoidal structure which makes it a pseudomonoid
for ⊙M. Section 1 is complemented with a toy example of an odd structure in Vect.

In Section 2 we recall odd modular operads and show how their concrete models depend on
the choice of a monoidal structure of Vect. The last section is devoted to two constructions
of the odd endomorphism operad. We investigate the sensitivity of these constructions to
the monoidal structure of Vect.

1. The category of graded vector spaces

Let Vect denote the category of graded vector spaces and their linear degree 0-maps,
and Cat(Vect) the 2-category of Vect-enriched categories. The 2-category Cat(Vect) bears
the ‘standard’ monoidal structure, denoted ⊙S, defined as follows. For enriched categories
A, B ∈ Cat(Vect), the objects of the category A⊙SB are couples (a, b), where a is an object
of A and b an object of B. The enriched hom-spaces are

(A⊙SB)
(

(a1, b1), (a2, b2)
)

:= A(a1, a2)⊗ B(b1, b2),

and the enriched composition ◦S is given by the diagram

(A⊙SB)
(

(a1, b1), (a2, b2)
)

⊗(A⊙SB)
(

(a2, b2), (a3, b3)
) ◦S

// (A⊙SB)
(

(a1, b1), (a3, b3)
)

A(a1, a3)⊗B(b1, b3)

A(a1, a2)⊗B(b1, b2)⊗A(a2, a3)⊗B(b2, b3)
(1⊗τ⊗1)

// A(a1, a2)⊗A(a2, a3)⊗B(b1, b2)⊗B(b2, b3).

◦⊗ ◦

OO

In the above displays, a1, a2, a3 are objects of A, b1, b2, b3 objects of B, τ the symmetry (3)
and ◦ the compositions in A resp. B. The ◦S-composition can also be defined directly by
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4 MARTIN MARKL

the formula
(f1 ⊗ g1) ◦S (f2 ⊗ g2) := (−1)|g1||f2|(f1 ◦ f2 ⊗ g1 ◦ g2),

where f1, f2 are composable morphisms of A and g1, g2 composable morphisms of B.

The 2-category Cat(Vect) has however another monoidal structure which we denote by
⊙M and call it, from the reasons explained later, the McGill monoidal structure. The objects
of A⊙MB are the same as the objects of A⊙SB, and also the enriched hom-spaces agree, i.e.

(A⊙MB)
(

(a1, b1), (a2, b2)
)

:= A(a1, a2)⊗ B(b1, b2),

but the composition ◦M is now given by

(f1 ⊗ g1) ◦M (f2 ⊗ g2) := (−1)|f1||g2|(f1 ◦ f2 ⊗ g1 ◦ g2).

The monoidal 2-categories
(

Cat(Vect),⊙S

)

and
(

Cat(Vect),⊙M

)

are isomorphic as mo-
noidal categories, via the isomorphism π given by the identity on Cat(Vect) and the natural
family of functors

{

̟A,B : A⊙SB
∼=

−→ A⊙MB, A, B ∈ Cat(Vect)
}

.

The functor ̟A,B is the identity on objects, while on a morphism

f ⊗ g ∈ A(a1, a2)⊗ B(b1, b2) = (A⊙SB)
(

(a1, b1), (a2, b2)
)

it acts as

̟A,B(f ⊗ g) := (−1)|f ||g|(f ⊗ g) ∈ A(a1, a2)⊗ B(b1, b2) = (A⊙MB)
(

(a1, b1), (a2, b2)
)

.

The category Vect of graded vector spaces and their homogeneous linear maps of arbitrary
degrees is naturally enriched over Vect. It turns out that also Vect admits two Vect-
enriched symmetric monoidal structures, the standard one and the McGill monoidal structure
defined below.

The monoidal product of objects is for both structures the usual tensor product of graded
vector spaces, but the products differ by their actions on morphisms. The standard conven-
tion is that, for homogeneous maps f : V ′ → W ′, g : V ′′ → W ′′ and homogeneous vectors
u ∈ V ′, v ∈ W ′ one defines

(4a) (f ⊗ g)(u⊗ v) = (−1)|g||u|f(u)⊗ g(v),

while some categorists at McGill University in Montreal would prefer

(4b) (f ⊗ g)(u⊗ v) = (−1)|f ||v|f(u)⊗ g(v).

The second convention would follow from the Koszul sign rule if we are applying the mor-
phisms from the right. Equation (4b) would then read as

(u⊗ v)(f ⊗ g) = (−1)|f ||v|f(u)⊗ g(v),

the unexpected sign coming from commuting f over v. We denote, only for the purposes
of this section, the first monoidal structure by ⊗S and second by ⊗M (‘S’ abbreviating
standard and ‘M’ McGill). The corresponding monoidal categories will be denoted by VectS

and VectM, respectively. Notice that both monoidal structures coincide on the subcategory
Vect of graded vector spaces and their linear degree 0 maps.

It can be easily verified that VectS is a symmetric pseudomonoid in
(

Cat(Vect),⊙S

)

while

VectM a symmetric pseudomonoid in
(

Cat(Vect),⊙M

)

. The isomorphism

π :
(

Cat(Vect),⊙S

)

∼=
(

Cat(Vect),⊙M

)

[August 10, 2016] [odd.tex]
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induces an isomorphism

PsMon(π) : PsMon
(

Cat(Vect),⊙S

)

∼= PsMon
(

Cat(Vect),⊙M

)

of the corresponding categories of pseudomonoids, and

PsMon(π)(VectS) = VectM.

We finish this section by a kindergarten example of an odd structure in Vect. An odd
associative algebra is a couple A = (A, •) consisting of a graded vector space A and a degree
+1 operation • : A⊗A → A which is anti-associative, i.e.

(5) • (1⊗ •) + •(• ⊗ 1) = 0.

Since the structure operation has an odd degree, the form of axiom (5) evaluated at concrete
elements may depend on the chosen monoidal structure of Vect. Let us calculate

•(1⊗ •)(x⊗ y ⊗ z) + •(• ⊗ 1)(x⊗ y ⊗ z).

for all x, y, z ∈ A. While in VectS we get

(−1)|x|x • (y • z) + (x • y) • z,

in VectM we obtain

x • (y • z) + (−1)|z|(x • y) • z.

The categories of odd associative algebras in VectS and in VectM are however isomorphic.
Indeed, the modification

x • y 7−→ (−1)|x|+|y|x • y

turns an odd associative algebra in VectS into one in VectM and vice versa. In fact, there
exists an one-to-one correspondence between odd associative algebra structures on A and
usual associative algebra structures on the suspension ↑A. The corresponding associative
product ◦ is given by the commutative diagram

•

↑↓⊗ ↓

◦

❄❄

✲

✲

A.A⊗A

↑A↑A ⊗↑A

If not stated otherwise, we will use in the rest of this note the standard monoidal structure
and drop the subscript S.

2. Odd modular operads

Odd modular operads are particular cases of twisted modular operads which were intro-
duced in the classical 1998 paper [2, (4.2)].‡ They were originally defined as algebras for
a certain monad of decorated graphs. For practical calculations it is however convenient to
have a biased definition which appeared much later in [1]. For the convenience of the reader
we repeat it below. The first definition in which Vect denotes the category of graded vector
space and their degree-0 linear maps is however standard.

‡More precisely, they are K-twisted operads, where K is the dualizing cocycle [2, (4.8)].

[odd.tex] [August 10, 2016]



6 MARTIN MARKL

Definition 1. A modular module (in Vect) is a covariant functor

E : fSet× N → Vect

from the cartesian product of the category fSet of finite sets and their isomorphisms with
the discrete category of natural numbers to Vect.

Explicitly, a modular module E is a collection E(S; g), S ∈ fSet, g ∈ N , of graded vector
spaces together with functorial degree 0 morphisms

E(σ) : E(S; g) → E(T ; g)

specified for any isomorphism§ σ : S
∼=

−→ T and g ∈ N .

Roughly speaking, an odd modular operad is a modular operad whose structure operations
have ‘wrong’ degrees and some axioms acquire ‘wrong’ signs. Let us give a precise:

Definition 2. An odd modular operad is a modular module

ä =
{

ä(S; g) ∈ Vect | (S; g) ∈ fSet× N

}

together with degree +1 morphisms ( a•b-operations)

(6) a•b : ä
(

S1 ⊔ {a}; g1
)

⊗ä
(

S2 ⊔ {b}; g2
)

→ ä(S1 ⊔ S2; g1 + g2)

defined for arbitrary disjoint finite sets S1, S2, symbols a, b, and arbitrary g1, g2 ∈ N . There
are, moreover, degree 1 morphisms (the contractions)

•uv = •vu : ä
(

S ⊔ {u, v}; g
)

→ ä(S; g + 1)

given for any finite set S, g ∈ N , and symbols u, v.¶ These data are required to satisfy the
following axioms.

(i) For arbitrary isomorphisms ρ : S1 ⊔ {a} → T1 and σ : S2 ⊔ {b} → T2 of finite sets and
g1, g2 ∈ N , one has the equality

ä
(

ρ|S1
⊔ σ|S2

)

a•b = ρ(a)•σ(b)
(

ä(ρ)⊗ä(σ)
)

of maps

ä
(

S1 ⊔ {a}; g1
)

⊗ä
(

S2 ⊔ {b}; g2
)

→ ä
(

T1 ⊔ T2 \ {ρ(a), σ(b)}; g1 + g2
)

.

(ii) For an isomorphism ρ : S ⊔ {u, v} → T of finite sets and g ∈ N , one has the equality

ä
(

ρ|S
)

•uv = •ρ(u)ρ(v)ä(ρ)

of maps ä
(

S ⊔ {u, v}; g
)

→ ä
(

T \ {ρ(u), ρ(v)}; g + 1
)

.

(iii) For S1, S2, a, b and g1, g2 as in (6), one has the equality

a•b = b•a τ

of maps ä(S1 ⊔ {a}; g1)⊗ä(S2 ⊔ {b}; g2) → ä
(

S1 ⊔ S2; g1 + g2
)

.‖

§Isomorphisms are the only morphisms in fSet by definition.
¶We are using the notation for structure operations of odd modular operads introduced in [3].
‖Recall that τ is the commutativity constraint (3) in the category of graded vector spaces.
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(iv) For mutually disjoint sets S1, S2, S3, symbols a, b, c, d and g1, g2, g3 ∈ N , one has the
equality

a•b(1⊗ c•d) = − c•d( a•b ⊗1)

of maps from ä
(

S1 ⊔ {a}; g1
)

⊗ ä
(

S2 ⊔ {b, c}; g2
)

⊗ ä
(

S3 ⊔ {d}; g3
)

to the space

ä
(

S1 ⊔ S2 ⊔ S3; g1+g2+g3
)

.

(v) For a finite set S, symbols a, b, c, d and g ∈ N one has the equality

•ab •cd = − •cd •ab

of maps ä
(

S ⊔ {a, b, c, d}; g
)

→ ä(S; g + 2).

(vi) For finite sets S1, S2, symbols a, b, c, d and g1, g2 ∈ N , one has the equality

•ab c•d = − •cd a•b

of maps ä
(

S1 ⊔ {a, c}; g1
)

⊗ä
(

S2 ⊔ {b, d}; g2
)

→ ä(S1 ⊔ S2; g1 + g2 + 1).

(vii) For finite sets S1, S2, symbols a, b, u, v, and g1, g2 ∈ N , one has the equality

a•b (•uv ⊗ 1) = − •uv a•b

of maps ä
(

S1 ⊔ {a, u, v}; g1
)

⊗ä
(

S2 ⊔ {b}; g2
)

→ ä(S1 ⊔ S2; g1 + g2 + 1).

As for odd associative algebras discussed in Section 1, the form of some axioms of odd
modular operads evaluated at concrete elements depends on the chosen monoidal structure
of Vect. Let us, for instance, evaluate axiom (iv) at homogeneous elements

x ∈ ä
(

S1 ⊔ {a}; g1
)

, y ∈ ä
(

S2 ⊔ {b, c}; g2
)

and z ∈ ä
(

S3 ⊔ {d}; g3
)

i.e. expand

a•b(1⊗ c•d)(x⊗ y ⊗ z) = − c•d( a•b ⊗1)(x⊗ y ⊗ z).

While in VectS we get

(7a) (−1)|x|x a•b(y c•d z) = −(x a•b y) c•d z,

in VectM we obtain

(7b) x a•b(y c•d z) = −(−1)|z|(x a•b y) c•d z.

Likewise, axiom (vii) in VectS reads

(8a) •uv (x) a•b y = − •uv (x a•b y)

while in VectM one would get

(8b) (−1)|y| •uv (x) a•b y = − •uv (x a•b y)

for x, y belonging to the appropriate components of ä. The remaining axioms are the same
in both monoidal structures.

It turns our that the categories of odd modular operads in VectS and in VectM are iso-
morphic; the modification

(9) x a•b y 7→ (−1)|x|+|y|x a•b y, •uv(x) 7→ (−1)|x| •uv (x),

turns an odd modular operad in VectS into one in VectM and vice versa.

It is however not true that an odd modular operad structure is the same as an ordinary one
on the suspension of the underlying modular module. While the suspended a•b-operations
are of degree 0 as for the ordinary modular operads, the suspended contractions •uv retain
degree 1. The categories of ordinary and odd modular operads are genuinely different.

[odd.tex] [August 10, 2016]



8 MARTIN MARKL

3. Odd endomorphism operads

The classical definition of the (ordinary) modular endomorphism operad EndV given in
[2, (1.7)] requires as the input data a graded vector space V with a non-degenerate symmetric
bilinear form B : V ⊗ V → k of degree 0. For [n] := {1, . . . , n} one puts

EndV

(

[n]
)

:= V ⊗n, n ≥ 0,

with the operadic structure given by ‘contracting indexes’ using B. If B has degree +1, the
same construction leads to an odd modular endomorphism operad [4, Example 5.3].

One easily observes that B need not be non-degenerate – everything makes sense even in
the extreme case when B = 0. Moreover, in mathematical physics, it is more natural to
work in the dual settig with a symmetric degree +1 tensor s ∈ V ⊗V instead of B, and the
components of the odd endomorphism operad given by

EndV

(

[n]
)

:=
(

V ⊗n
)∗
, n ≥ 0.

The operadic structure is given by ‘expanding indexes’ using s. We will focus to this version
of the odd endomorphism operad.

It turns out that there are two interpretations what expanding indexes means. The first,
seemingly preferable one, is expressed by (12a) and (13a) below. It does not involve duals
and uses only canonical isomorphisms. The other one, represented by (12b) and (13b), is
much less aesthetically pleasing since it needs duals and inclusions of the form

A∗ ⊗B∗ →֒ (A⊗ B)∗

which from seemingly random reasons go in the desired direction. It is the peculiarity of
the odd case that both constructions lead to different results. If we assume the standard
monoidal structure of Vect, then the correct result is given by the second, ugly one.

We will need the tensor product of a family {Vc}c∈S of graded vector spaces indexed by
a finite set S ∈ fSet. Since S is not a priory ordered, we want a concept that would not
depend on a chosen order. The idea is to choose an order, then perform the usual tensor
product, and then identify the products over different orders using the Koszul sign rule. Since
an order of a finite set S with n elements is the same as an isomorphism ω : {1, . . . , n}

∼=
→ S,

we are led to the following:

Definition 3. The unordered tensor product
⊗

c∈S Vc of the collection {Vc}c∈S is the vector
space of equivalence classes of usual tensor products

(10) vω(1) ⊗ · · · ⊗ vω(n) ∈ Vω(1) ⊗ · · · ⊗ Vω(n), ω : {1, . . . , n}
∼=

−→ S,

modulo the identifications

vω(1) ⊗ · · · ⊗ vω(n) ∼ ǫ(σ) vωσ(1) ⊗ · · · ⊗ vωσ(n), σ ∈ Σn,

where ǫ(σ) is the Koszul sign (1) of the permutation σ.

The need for a subtler version of the tensor product is caused by the fact that the category
Vect of graded vector spaces is a symmetric monoidal category with a non-trivial symmetry .
Similar unordered products can be defined in any symmetric monoidal category with finite
colimits, see e.g. [5, Def. II.1.58]. Let us formulate two important properties of unordered
tensor products.
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ODD STRUCTURES ARE ODD 9

Lemma 4. Let σ : S → D be an isomorphism of finite sets, {Vc}c∈S and {Wd}d∈D collections
of graded vector spaces, and ϕ = {ϕc : Vc → Wσc}c∈S a family of linear maps. Then the
assignment

⊗

c∈S

Vc ∋
[

vω(1) ⊗ · · · ⊗ vω(n)
]

7−→
[

wσω(1) ⊗ · · · ⊗ wσω(n)

]

∈
⊗

d∈D

Wd

with wσω(i) := ϕω(i)(vω(i)) ∈ Wσω(i), 1 ≤ i ≤ n, defines a natural map

(σ, ϕ) :
⊗

c∈S

Vc →
⊗

d∈D

Wd

of unordered products

Proof. A direct verification. �

A particularly important case of the above lemma is when Vc = Vd = V for all c ∈ S,
d ∈ D, and ϕc : V → V is the identity for all c ∈ S. Lemma 4 then gives a natural map

(11) σ := (σ, ϕ) :
⊗

c∈S

Vc →
⊗

d∈D

Vd.

Lemma 5. For disjoint finite sets S ′, S ′′, one has a canonical isomorphism
⊗

c′∈S′

Vc′ ⊗
⊗

c′′∈S′′

Vc′′
∼=

⊗

c∈S′⊔S′′

Vc.

Proof. Each ω′ : {1, . . . , n}
∼=
→ S ′ and ω′′ : {1, . . . , m}

∼=
→ S ′′ determine an isomorphism

ω′ ⊔ ω′′ : {1, . . . , n+m}
∼=

−→ S ′ ⊔ S ′′

by the formula

(ω′ ⊔ ω′′)(i) :=

{

ω′(i), if 1 ≤ i ≤ n, and

ω′′(i− n), if n < i ≤ n +m .

The isomorphism of the lemma is then given by the assignment

[vω′(1) ⊗ · · · ⊗ vω′(n)]⊗ [vω′′(1) ⊗ · · · ⊗ vω′′(m)] 7−→ [v(ω′⊔ω′′)(1) ⊗ · · · ⊗ v(ω′⊔ω′′)(n+m)].

This finishes the proof. �

The input data of the odd modular endomorphism operad is a graded vector space V with
a symmetric tensor s ∈ V ⊗V of degree +1. The symmetry means that τ(s) = s, where τ is
the interchange (3). We will interpret as usual s as a linear degree +1 map s : k→ V ⊗ V .
For a finite set S put

EndV (S) := Vect

(
⊗

c∈S Vc,k
)

= (
⊗

c∈S Vc)
∗

where Vc := V for each c ∈ S. Given an isomorphism σ : S → D of finite sets, we define the
induced map

EndV (σ) : EndV (S) → EndV (D)

by EndV (σ)(x) := xσ−1 for x :
⊗

c∈S Vc → k ∈ EndV (S) and σ as in (11).

Let S1, S2 be disjoint finite sets and a 6= b two symbols. Our next task will be to define,
for linear functionals

x ∈ EndV

(

S1 ⊔ {a}
)

and y ∈ EndV

(

S2 ⊔ {b}
)

,
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their a•b-product x a•b y ∈ EndV

(

S1 ⊔ S2

)

. The natural choice is obviously the composition
⊗

c∈S1⊔S2

Vc

∼=
−→

⊗

c′∈S1

Vc′ ⊗
⊗

c′′∈S2

Vc′′
∼=

−→
⊗

c′∈S1

Vc′ ⊗ k⊗
⊗

c′′∈S2

Vc′′

11⊗s⊗11
−−−→

⊗

c′∈S1

Vc′ ⊗ Va ⊗ Vb ⊗
⊗

c′′∈S2

Vc′′
∼=

−→
⊗

c′∈S1⊔{a}

Vc′ ⊗
⊗

c′′∈S2⊔{b}

Vc′′

x⊗y

−−−→ k

in which the isomorphisms are those of Lemma 5. In shorthand,

x a•b y = (x⊗ y)
(

1V ⊗S1 ⊗ s⊗ 1V ⊗S2

)

and, denoting 1S1
:= 1V ⊗S1 and 1S2

:= 1V ⊗S2 , still more concisely

(12a) x a•b y := (x⊗ y)
(

1S1
⊗ s⊗ 1S2

)

.

Alternatively, one may define x a•b y as the result of the application of the composition
(

⊗

c′∈S1⊔{a}

Vc′

)∗

⊗
(

⊗

c′′∈S2⊔{b}

Vc′′

)∗

→֒
(

⊗

c′∈S1⊔{a}

Vc′ ⊗
⊗

c′′∈S2⊔{b}

Vc′′

)∗

∼=
−→

(

⊗

c′∈S1

Vc′ ⊗ Va ⊗ Vb ⊗
⊗

c′′∈S2

Vc′′

)∗ (11⊗s⊗11)∗

−−−→
(

⊗

c′∈S1

Vc′ ⊗ k⊗
⊗

c′′∈S2

Vc′′

)∗

∼=
−→

(

⊗

c′∈S1

Vc′ ⊗
⊗

c′′∈S2

Vc′′

)∗ ∼=
−→

(

⊗

c∈S1⊔S2

Vc

)∗

to x⊗ y ∈
(
⊗

c′∈S1⊔{a}
Vc′

)∗
⊗
(
⊗

c′′∈S2⊔{b}
Vc′′

)∗
. In shorthand,

(12b) x a•b y :=
(

1S1
⊗ s⊗ 1S2

)∗
(x⊗ y).

We shall keep in mind that (12b) implicitly involves canonical identifications and inclusions.

An obvious way to define the contraction •uvx ∈ EndV (S; g + 1) of a linear functional
x ∈ EndV

(

S ⊔ {u, v}; g
)

is the composition

⊗

c∈S

Vc
∼= k⊗

⊗

c∈S

Vc

s⊗11
−−−→ Vu ⊗ Vv ⊗

⊗

c∈S

Vc

∼=
−→

⊗

c∈S⊔{u,v}

Vc
x

−→ k.

In shorthand,

(13a) •uv x := x
(

s⊗ 1S).

The commutativity of the diagram

�
��✒

✲

❅
❅❅❘

❅
❅❅❘

✲

�
��✒

1⊗ s

∼=

∼=

s⊗ 1

∼=

∼=
⊗

c∈S Vc ⊗ k
⊗

c∈S Vc ⊗ Vu ⊗ Vv

⊗

c∈S⊔{u,v} Vc .

Vu ⊗ Vv ⊗
⊗

c∈S Vck⊗
⊗

c∈S Vc

⊗

c∈S Vc

implies that we could replace (s⊗1S) in (13a) by (1S ⊗s) with the same result. We could in
fact place s into an arbitrary position without affecting the result. A similar remark applies
also to (12a) and (12b).
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Another possibility is to define •uvx as the result of the application
(

⊗

c∈S⊔{u,v}

Vc

)∗ ∼=
−→

(

Vu ⊗ Vv ⊗
⊗

c∈S

Vc

)∗ (s⊗11)∗

−−−→
(

k⊗
⊗

c∈S

Vc

)∗
∼=

(

⊗

c∈S

Vc

)∗

to x ∈
(
⊗

c∈S⊔{u,v} Vc

)∗
. In shorthand,

(13b) •uv x :=
(

s⊗ 1S)
∗(x).

Here comes a surprise. Since |s| = 1, the two definitions of the a•b-operation, i.e. the one
via (12a) and the one via (12b), lead to different results! The reason is that they are not
dual to each other, since the duality (2) acquires a nontrivial sign. The resulting x a•b y’s
differ by (−1)|x|+|y|.

Likewise, definitions (13a) and (13b) are not dual to each other and the resulting •uv(x)’s
differ by (−1)|x|. What happens is described in the following proposition; recall that VectS
and VectM denote the two versions of the category Vect discussed in Section 1.

Proposition 6. The modular collection EndV with operations a•b and •uv defined by (12b)
and (13b) is an odd modular operad in VectS while (12a) and (13a) give an odd modular
operad in VectM.

Proof. Let us show that the a•b-operations defined by (12b) satisfy (7a). In the following
calculations, s̄ and ¯̄s are two copies of the map s : k→ V ⊗ V . One has

x a•b(y c•d z) =
(

1S1
⊗ s̄⊗ 1S2⊔S3

)∗(
x⊗ (y c•d z)

)

=
(

1S1
⊗ s̄⊗ 1S2⊔S3

)∗(
x⊗ (1S2⊔{b} ⊗ ¯̄s⊗ 1S3

)∗(y ⊗ z)
)

= (−1)|x|
(

1S1
⊗ s̄⊗ 1S2⊔S3

)∗(
1S1⊔{a,b}⊔S2

⊗ ¯̄s⊗ 1S3

)∗
(x⊗ y ⊗ z)

while

(x a•b y) c•d z =
(

1S1⊔S2
⊗ ¯̄s⊗ 1S3

)∗(
(x a•b y)⊗ z

)

=
(

1S1⊔S2
⊗ ¯̄s⊗ 1S3

)∗(
(1S1

⊗ s̄⊗ 1S2⊔{c})
∗(x⊗ y)⊗ z

)

=
(

1S1⊔S2
⊗ ¯̄s⊗ 1S3

)∗(
1S1

⊗ s̄⊗ 1S2⊔{c,d}⊔S3

)∗
(x⊗ y ⊗ z).

To finish the proof of (7a), we observe that
(

1S1
⊗ s̄⊗ 1S2

⊗ ¯̄s⊗ 1S3

)∗
=

(

1S1
⊗ s̄⊗ 1S2⊔S3

)∗(
1S1⊔{a,b}⊔S2

⊗ ¯̄s⊗ 1S3

)∗

= −
(

1S1⊔S2
⊗ ¯̄s⊗ 1S3

)∗(
1S1

⊗ s̄⊗ 1S2⊔{c,d}⊔S3

)∗
,

the minus sign coming from commuting s̄ over ¯̄s.

Let us also verify explicitly that the a•b-operations defined by (12a) satisfy (7b). The
related calculation is of course obtained from the above one by removing duals and inverting
the order of compositions but, very crucially, without inserting Koszul signs. We obtain

x a•b(y c•d z) =
(

x⊗ (y c•d z)
)(

1S1
⊗ s̄⊗ 1S2⊔S3

)

=
(

x⊗ (y ⊗ z)(1S2⊔{b} ⊗ ¯̄s⊗ 1S3
)
)(

1S1
⊗ s̄⊗ 1S2⊔S3

)

= (x⊗ y ⊗ z)
(

1S1⊔{a,b}⊔S2
⊗ ¯̄s⊗ 1S3

)(

1S1
⊗ s̄⊗ 1S2⊔S3

)

on one hand and

(x a•b y) c•d z =
(

(x a•b y)⊗ z
)(

1S1⊔S2
⊗ ¯̄s⊗ 1S3

)
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=
(

(x⊗ y)(1S1
⊗ s̄⊗ 1S2⊔{c})⊗ z

)(

1S1⊔S2
⊗ ¯̄s⊗ 1S3

)

= (−1)|z|(x⊗ y ⊗ z)
(

1S1
⊗ s̄⊗ 1S2⊔{c,d}⊔S3

)(

1S1⊔S2
⊗ ¯̄s⊗ 1S3

)

on the other. Axiom (7b) now follows from the equality
(

1S1
⊗ s̄⊗ 1S2

⊗ ¯̄s⊗ 1S3

)

=
(

1S1
⊗ s̄⊗ 1S2⊔{c,d}⊔S3

)(

1S1⊔S2
⊗ ¯̄s⊗ 1S3

)

= −
(

1S1⊔{a,b}⊔S2
⊗ ¯̄s⊗ 1S3

)(

1S1
⊗ s̄⊗ 1S2⊔S3

)

.

Notice that the sign difference between the results of the above two computations is (−1)|x|

versus (−1)|z| as it should be. The verification of axioms (8a) resp. (8b) is similar. The
remaining axioms are not affected by the choice of the monoidal structure in Vect so we will
not verify them here. �

We evaluated (12a), (12b), (13a) and (13b) inside the standard monoidal structure of Vect.
If we use the McGill one, then (12a) and (13a) would give an odd modular operad in VectS

while (12b) and (13b) would lead to an odd modular operad in VectM.
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