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SURJECTIVITY OF CERTAIN WORD MAPS ON
PSL(2,C) AND SL(2,C)

TATIANA BANDMAN AND YURI G. ZARHIN

Abstract. Let n ≥ 2 be an integer and Fn the free group on n

generators, F (1), F (2) its first and second derived subgroups. LetK
be an algebraically closed field of characteristic zero. We show that
if w ∈ F (1)\F (2), then the corresponding word map PSL(2,K)n →
PSL(2,K) is surjective. We also describe certain words maps that
are surjective on SL(2,C).

1. Introduction

The surjectivity of word maps on groups became recently a vivid
topic: the review on the latest activities may be found in [21], [18], [3],
[16].

Let w ∈ Fn be an element of the free group Fn on n > 1 generators
g1, . . . , gn :

w =

k∏

i=1

gmi
ni
, 1 ≤ ni ≤ n.

For a group G by the same letter w we shall denote the corresponding
word map w : Gn → G defined as a non-commutative product by the
formula

(1) w(x1, . . . , xn) =
k∏

i=1

xmi

ni
.

We call w(x1, . . . , xn) both a word in n letters if considered as an
element of a free group and a word map in n letters if considered as
the corresponding map Gn → G.

We assume that it is reduced, i.e. ni 6= ni+1 for every 1 ≤ i ≤ k − 1
and mi 6= 0 for 1 ≤ i ≤ k.

Let K be a field and H a connected semisimple algebraic linear
group. If w is not the identity then by Theorem of A Borel ([6]) the
regular map of (affine) K-algebraic varieties

w : Hn → H, (h1, . . . , hn) 7→ w(x1, . . . , xn)
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is dominant, i.e., its image is a Zariski dense subset of H . Let us
consider the group G = H(K) and the image

wG := w(Gn) = {z ∈ G | z = w(x1, . . . , xn) for some (x1, . . . , xn) ∈ Gn}.

We say that a word (a word map) w is surjective on G if wG = G.
In [17], [18] formulated is the following Question.
Problem 7 of [17], Question 2.1 (i) of [18]. Assume that w

is not a power of another reduced word and G = H(K) a connected
semisimple algebraic linear group.

Is w surjective when K = C is a field of complex numbers and H is
of adjoint type?

According to[18], Question 2.1(i) is still open, even in the simplest
case G = PSL(2,C), even for words in two letters.

We consider word maps on groupsG = SL(2, K) and G̃ = PSL(2, K).
Put

F := Fn, F
(1) = [F, F ], F (2) = [F (1), F (1)].

As usual, Z,Q,R,C stand for the ring of integers and fields of rational,
real and complex numbers respectively. A(K)mx1,...,xm or, simply, Am,
stands for the n−dimensional affine space over a field K with coordi-
nates x1, . . . , xm. If K = C, we use Cm

x1,...,xm
.

Let w ∈ F . For a corresponding word map on G = SL(2, K) we
check the following properties of the image wG.

Properties 1.1.

a: wG contains all semisimple elements x with tr(x) 6= 2;
b: wG contains all unipotent elements x with tr(x) = 2;
c: wG contains all minus unipotent elements x with tr(x) = −2
and x 6= −id;

d: wG contains −id.

The word map w is surjective on G = SL(2, K) if all Properties 1.1

are met. For surjectivity on G̃ = PSL(2, K) it is sufficient that only
Properties 1.1 a and b are valid.

Definition 1.2. (cf.[2]) We say that the word map w is almost sur-
jective on G = SL(2, K) if it has Properties 1.1 a,b, and c, i.e wG ⊃
SL(2, K) \ −{id}.

The goal of the paper is to describe certain words w ∈ F such that
the corresponding word maps are surjective or almost surjective on G
and/or G̃.

Assume that the field K is algebraically closed. If w(x1, . . . , xd) = xni
then w is surjective on G if and only if n is odd (see ([10], [11]). Indeed,
the element

x =

(
−1 1
0 −1

)



SURJECTIVITY OF CERTAIN WORD MAPS ON PSL(2,C) AND SL(2,C) 3

is not a square in SL(2, K). Since only the elements with tr(x) = −2
may be outside wG ([10], [11]), the induced by w word map w̃ is sur-
jective on G̃.

Consider a word map (1). For an index j ≤ n let Sj =
∑

ni=j

mi.

If, say, S1 6= 0, then w(x1, id, . . . , id) = xS1

1 , hence word w is surjec-
tive on PSL(2, K). If Sj = 0 for all 1 ≤ j ≤ d, then w ∈ F (1) = [F, F ].
In Section 5 we prove (see Corollary 5.4) the following

Theorem 1.3. The word map defined by a word w ∈ F (1) \ F (2)

is surjective on PSL(2, K) if K is an algebraically closed field with
char(K) = 0.

The proof makes use of a variation on the Magnus Embedding The-
orem, which is stated in Section 3 and proven in Section 4.

In Section 6, Section 7, and Section 8 we consider words in two vari-
ables, i.e. n = 2. In this case we give explicit formulas for w(x, y),where
x, y ∈ SL(2,C) are upper triangular matrices. Using explicit formulas
in Section 7 and Section 8 we provide criteria for surjectivity and almost
surjectivity of a word map on G = SL(2,C). In Section 7 these criteria
are formulated in terms of properties of exponents ai, bi, i = 1 . . . , k,
of a word

(2) w(x, y) =
k∏

i=1

xaiybi,

where ai 6= 0 and bi 6= 0, for all i = 1, ..., k. A sample of such criteria is

Corollary 1.4. If all bi are positive, then the word map w is either
surjective or the square of another word v 6= id.

In Section 8 we connect the almost surjectivity of a word map with
a property of the corresponding trace map. The last sections contain
explicit examples.
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2. Semisimple elements

Let K be an algebraically closed field with char(K) = 0, and G =
SL(2, K). Consider a word map w : Gn → G :

w(x1, . . . , xn) =
k∏

i=1

xmi

ni
.

We consider G as an affine set

G = {ad− bc = 1} ⊂ A4
a,b,c,d.

The following Lemma is , may be , known, but the authors do not
have a proper reference.

Lemma 2.1. A regular non-constant function on Gn omits no values
in K.

Proof. Since all the sets are affine, a function f regular on Gk is a
restriction of a polynomial Pf onto Gk. We use induction on k.

Step 1. k = 1.

G = {ad− bc = 1} ⊂ A4
a,b,c,d

is an irreducible quadric. Assume that f ∈ K[G] omits a value. Let
p : G → A1

a be a projection defined by p(a, b, c, d) = a. If a 6= 0
then fiber Fa := p−1(a) ∼= A2

b,c, is an affine space with coordinates b, c

because d = 1+bc
a
. Since f omits a value, the restriction f

∣
∣
Fa

is constant

for every a 6= 0. ‘Therefore it is constant on every fiber ( note that the
fiber a = 0 is conneceted). On the other hand, f has to be constant
along the curve

C = {(a, 0, 1, 1)} ∼= A1
a(K).

Since curve C ⊂ G intersects every fiber Fa of projection p, function f
is constant on G.

Step 2. Assume that the statement of the Lemma is valid for all
k ≤ n. Let f ∈ K[Gn] omit a value. We have: Gn =M×N, whereM =
Gn−1 and N = G. Let p : Gn → N be a natural projection. Then, by
induction assumption, f is constant along every fiber of this projection.
Take x ∈ M and consider the set C = x ×N ⊂ Gn. Thenf

∣
∣
C
= const

and C intersects every fiber of p. Hence, f is constant. �

Proposition 2.2. For every word w(x1, . . . , xk) 6= id the image wG
contains every element z ∈ G with a := tr(z) 6= ±2.
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Proof. We consider Gn ⊂ A(K)4n as the product (1 ≤ i ≤ n) of

Gi = {aidi − bici = 1} ⊂ A4
ai,bi,ici,di

.

The function f(a1, b1, c1, d1, . . . , an, bn, cn, dn) = tr(w(x1, . . . , xn)) is
a polynomial in 4n variables with integer coefficients, i.e f ∈ K[Gn].
According to Lemma 2.1, it takes on all the values in K.

Thus for every value A ∈ K there is element u = w(y1, . . . , yn) ∈ wG
such that tr(u) = A.

Let now z ∈ G, A := tr(z) 6= ±2. Since tr(z) = tr(u), z is conjugate
to u, i.e there is v ∈ G such that vuv−1 = z. Hence

z = w(vy1v
−1, . . . , vynv

−1).

�

It follows that in order to check whether the word map w is surjective
on G (or on G̃) it is sufficient to check whether the elements z with
tr(z) = ±2 (or the elements z with tr(z) = 2, respectively) are in the
image. For that we need a version of the Embedding Magnus Theorem.

3. Variation on Magnus Embedding Theorem: Statements

Let n ≥ 2 be an integer and Λn = Z[t1, t
−1
1 , . . . , tn, t

−1
n ] be the ring of

Laurent polynomials in n independent variables t1, . . . , tn over Z. Let
F = Fn be a free group of rank n with generators {g1, . . . , gn}. Recall:
we write F (1) for the derived subgroup of F and F (2) for the derived
subgroup of F (1). We have

F (2) ⊂ F (1) ⊂ F ;

both F (1) and F (2) are normal subgroups in F . The quotient A :=
F/F (1) = Zn is a free abelian group of rank n with (standard) genera-
tors {e1, . . . , en} where each ei is the image of gi (1 ≤ i ≤ n). It is well
known that the group ring Z[A] of A is canonically isomorphic to Λn:
under this isomorphism each

ei ∈ A ⊂ Z[A]

goes to

ti ∈ Z[t1, t
−1
1 , . . . , tn, t

−1
n ] = Λn.

We write Rn for the ring of polynomials

Λn[s1, . . . , sn] = Z[t1, t
−1
1 , . . . , tn, t

−1
n ; s1, . . . , sn]

in n independent variables s1, . . . , sn over Λn. If R is a commutative
ring with 1 then we write T (R) for the group of invertible 2×2 matrices
of the form

[
a 0
b 1

]
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with a ∈ R∗, b ∈ R and ST (R) for the group of unimodular 2 × 2
matrices of the form [

a 0
b a−1

]

with a ∈ R∗, b ∈ R. We have

T (R) ⊂ GL(2, R), ST (R) ⊂ SL(2, R).

Every homomorphism R → R′ of commutative rings (with 1) induces
the natural group homomorphisms

T (R) → T (R′), ST (R) → ST (R′),

which are injective if R→ R′ is injective.
The following assertion (that is based on the properties of the famous

Magnus embedding [19]) was proven in [25, Lemma 2].

Theorem 3.1. The assignment

gi 7→

[
ti 0
si t−1

i

]

(1 ≤ i ≤ n)

extends to a group homomorphism

µW : F → ST (Λn)

with kernel F (2) and therefore defines an embedding

F/F (2) →֒ ST (Rn) ⊂ SL(2, Rn).

It follows from Theorem 3.1 that if K is a field of characteristic zero,
whose transcendence degree over Q is, at least, 2n then there is an
embedding

F/F (2) →֒ ST (K) ⊂ SL(2, K).

(In particular, it works for K = R, C or the field Qp of p-adic numbers
[25].) The aim of the following considerations is to replace in this
statement the lower bound 2n by n.

Theorem 3.2. The assignment

gi 7→

[
ti 0
1 t−1

i

]

(1 ≤ i ≤ n)

extends to a group homomorphism

µ1 : F → ST (Λn)

with kernel F (2) and therefore defines an embedding

F/F (2) →֒ ST (Λn) ⊂ SL(2,Λn).

Remark 3.3. Let

ev1 : Rn = Λn[s1, . . . , sn] → Λn

be the Λn-algebra homomorphism that sends all si to 1 and let

ev1
∗ : ST (Rn) → ST (Λn)
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be the group homomorphism induced by ev1. Then µ1 coincides with
the composition

ev1
∗µW : F → ST (Rn) → ST (Λn).

Corollary 3.4. Let K be a field of characteristic zero. Suppose that
the transcendence degree of K over Q is, at least, n. Then there is a
group embedding

F/F (2) →֒ ST (K) ⊂ SL(2, K).

Proof of Theorem 3.2 is based on the following observation.

Lemma 3.5. Let K be a field of characteristic zero. Suppose that the
transcendence degree of K over Q is, at least, n and let {u1, . . . , un} ⊂
K be an n-tuple of algebraically independent elements (over Q). Let
Q(u1, . . . , un) be the subfield of K generated by {u1, . . . , un} and let us
consider K as the Q(u1, . . . , un)-vector space. Let {y1, . . . , yn} ⊂ K be
a n-tuple that is linearly independent over Q(u1, . . . , un). Let R be the
subring of K generated by 3n elements u1, u

−1
1 , . . . , un, u

−1
n ; y1, . . . , yn.

Then the assignment

gi 7→

[
ui 0
yi 1

]

(1 ≤ i ≤ n) ∈ T (R)

extends to a group homomorphism

µ : F → T (R) ⊂ T (K)

with kernel F (2) and therefore defines an embedding

F/F (2) →֒ T (R) ⊂ T (K).

Example 3.6. Let K be the field Q(t1, . . . , tn) of rational functions
in n independent variables t1, . . . , tn over Q. One may view Λn as the
subring ofK generated by 2n elements t1, t

−1
1 , . . . , tn, t

−1
n . By definition,

the n-tuple {t1, . . . , tn} ⊂ K is algebraically independent (over Q).
Clearly, the n-tuple

{u1 = t21, . . . , ui = t2i , . . . , un = t2n} ⊂ K

is also algebraically independent. Then the n elements

y1 = t1, . . . , yi = ti, . . . , yn = tn

are linearly independent over the (sub)fileld Q(t21, . . . , t
2
n) = Q(u1, . . . , un).

Indeed, if a rational function

f(t1, . . . , tn) =

n∑

i=1

ti · fi

where all fi ∈ Q(t21, . . . , t
2
n) then

2t1f1 = f(t1, t2, . . . , tn)− f(−t1, t2, . . . , tn), . . . ,

2tifi = f(t1, . . . , ti, . . . , tn)− f(t1, . . . ,−ti, . . . , tn), . . . ,
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2tnfn = f(t1, . . . , ti, . . . , tn)− f(t1, . . . , ti, . . . ,−tn).

This proves that if f = 0 then all fi are also zero, i.e., the set {t1, . . . , tn}
is linearly independent over Q(t21, . . . t

2
n).

By definition, R coincides with the subring of K generated by 3n
elements

t21, t
−2
1 , . . . , t2n, t

−2
n ; t1, . . . , tn.

This implies easily that R = Λn. Applying Lemma 3.5, we conclude
the Example by the following statement.

The assignment

gi 7→

[
t2i 0
ti 1

]

(1 ≤ i ≤ n) ∈ T (Λn)

extends to a group homomorphism

µ : F → T (R) = T (Λn)

with kernel F (2) and therefore defines an embedding

F/F (2) →֒ T (Λn).

We prove Lemma 3.5, Theorem 3.2 and Corollary 3.4 in Section 4.

4. Variation on the Magnus Embedding Theorem: Proofs

Proof of Lemma 3.5. Let

Λ ⊂ Q(u1, . . . , un) ⊂ K

be the subring generated by 2n elements u1, u
−1
1 , . . . , un, u

−1
n . Since ui

are algebraically independent over K, the assignment

ti 7→ ui, t
−1
i 7→ u−1

i

extends to a ring isomorphism Λn ∼= Λ. The linear independence of yi’s
over Q(u1, . . . , un) implies that M = Λ · y1 + · · ·+Λ · yn ⊂ R ⊂ K is a
free Λ-module of rank n. On the other hand, let

U ⊂ Λ∗ ⊂ Q(u1, . . . , un)
∗ ⊂ K∗

be the multiplicative (sub)group generated by all ui. The assignment
gi 7→ ui extends to the surjective group homomorphism

δ : F ։ U

with kernel F (1) and gives rise to the group isomorphism

A ∼= U,

which sends ei to ui and allows us to identify the group ring Z[U ] of U
with Λ ∼= Λn = Z[A]. Notice that M carries the natural structure of
free Z[U ]-module of rank n defined by

λ(m) := λ ·m ∈ K ∀λ ∈ Z[U ] = Λ ⊂ K,m ∈M ⊂ K.
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We have

µ(F ) ⊂

[
U 0
M 1

]

⊂ T (R) ⊂ GL2(R).

It follows from [26, Lemma 1(c) on p. 175] that ker(µ) coincides with
the derived subgroup of ker(δ). Since ker(δ) = F (1), we conclude that
ker(µ) = F (2) and we are done. �

Proof of Theorem 3.2. Let us return to the situation of Example 3.6.
In particular, the group embedding (we know that it is an embedding,
thanks to already proven Lemma 3.5)

µ : F →֒ T (Λn) ⊂ GL2(Λn)

is defined by

µ(gi) =

[
t2i 0
ti 1

]

∈ T (Λn)

for all gi.
Let us consider the group homomorphism

κ : F → Λ∗
n, gi 7→ ti.

Since ti are algebraically independent, they are multiplicatively inde-
pendent and

ker(κ) = F (1).

I claim that µ1 : F → ST (Λn) coincides with the group homomorpism

g 7→ κ(g)−1 · µ(g).

Indeed, we have for all gi

κ(gi)
−1 · µ(gi) = t−1

i ·

[
t2i 0
ti 1

]

=

[
ti 0
1 t−1

i

]

= µ1(gi) ⊂ ST (Λn),

which proves our claim. Recall that we need to check that ker(µ1) =

F (2). In order to do that, first notice that µ1(g) is of the form

[
κ(g) 0
∗ κ(g)−1

]

for all g ∈ F just because it is true for all g = gi. This implies that

ker(µ1) ⊂ ker(κ) = F (1).

But µ = µ1 on F (1). This implies that

ker(µ1) = ker(µ)
⋂

F (1).

However, as we have seen in Example 3.6,

ker(µ) = F (2) ⊂ F (1).

This implies that

ker(µ1) = F (2)
⋂

F (1) = F (2)

and we are done. �
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Proof of Corollary 3.4. There exists an n-tuple {x1, . . . , xn} ⊂ K that
is algebraically independent over Q. The assignment

ti 7→ xi, t
−1
i 7→ x−1

i

extends to an injective ring homomorphism

Λn = Z[t1, t
−1
1 , . . . , tn, t

−1
n ] →֒ K.

This implies that ST (Λn) is isomorphic to a subgroup of ST (K). Thanks
to Theorem 3.2, F/F (2) is isomorphic to a subgroup of ST (Λn). This
implies that F/F (2) is isomorphic to a subgroup of ST (K). �

Remark. Similar arguments prove the following generalization of
Theorem 3.2.

Theorem 4.1. Let {b1, . . . , bn} be an n-tuple of nonzero integers. Then
the assignment

gi 7→

[
ti 0
bi t−1

i

]

(1 ≤ i ≤ n)

extends to a group homomorphism F → ST (Λn) with kernel F (2).

5. Word maps and unipotent elements

Lemma 5.1. Let w be an element of F (1) that does not belong to F (2).
Then there exists a nonzero Laurent polynomial

Lw = Lw(t1, . . . tn) ∈ Z[t1, t
−1
1 , . . . , tn, t

−1
n ] = Λn

such that

µ1(w) =

[
1 0
Lw 1

]

.

Proof. We have seen in the course of the proof of Theorem 3.2 that for
all g ∈ F

µ1(g) =

[
κ(g) 0
∗ κ(g)−1

]

∈ ST (Λn).

This means that there exists a Laurent polynomial Lg ∈ Λn such that

µ1(g) =

[
κ(g) 0
Lg κ(g)−1

]

.

We have also seen that if g ∈ F (1) then κ(g) = 1. Since w ∈ F (1),

µ1(w) =

[
1 0
Lw 1

]

with Lw ∈ Λn. On the other hand, by Theorem 3.2, ker(µ1) = F (2).
Since w 6∈ F (2), Lw 6= 0 in Λn. �
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Corollary 5.2. Let w be an element of F (1) that does not belong to
F (2). Suppose that a = {a1, . . . , an} is an n-tuple of nonzero rational
numbers such that

c := Lw(a1, . . . , an) 6= 0.

(Since Lw 6= 0, such an n-tuple always exists.) Let us consider the
group homomorphism

γa : F → ST (Q) ⊂ SL(2,Q), gi 7→

[
ai 0
1 a−1

i

]

:= Zi.

Then

γa(w) =

[
1 0
c 1

]

= w(Z1, . . . , Zn).

is a unipotent matrix that is not the identity matrix.

Proof. One has only to notice that γa is the composition of µ1 and the
homomorphism ST (Λn) → ST (Q) induced by the ring homomorphism

Λn → Q, ti 7→ ai, t
−1
i 7→ a−1

i .

�

Corollary 5.3. Let w be an element of F (1) that does not belong to
F (2). Let K be a field of characteristic zero. Then for every unipotent
matrix X ∈ SL(2, K) there exists a group homomorphism ψw,X : F →
SL(2, K) such that

ψw,X(w) = X.

In other words, there exist Z1, . . . , Zn ∈ SL(2, K) such that w(Z1, . . . , Zn) =
X.

Proof. We have

Q ⊂ K, SL(2,Q) ⊂ SL(2, K) ⊳ GL(2, K).

We may assume that X is not the identity matrix. Let a = {a1, . . . , an}
and γa be as in Corollary 5.2. Recall that c = Lw(a1, . . . , an) 6= 0. Then
there exists a matrix S ∈ GL(2, K) such that

X = S

[
1 0
c 1

]

S−1.

Let us consider the group homomorphism

ψw,X : F → SL(2, K), g 7→ Sγa(g)S
−1.

Then ψw,X sends w to

(3) Sγa(w)S
−1 = S

[
1 0
c 1

]

S−1 = X.

�
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Corollary 5.4. (Theorem 1.3) Let w be an element of F (1) that does
not belong to F (2). Let K be an algebraically closed field of character-
istic zero. Then the word map w is surjective on PSL(2, K).

Proof. Consider w as a word map on G = SL(2, K). Due to Corol-
lary 5.3 the image wG contains all unipotents. According to Proposi-
tion 2.2 the image contains all the semisimple elements as well. Thus,
the word map w has the Properties 1.1 a and b. It follows that it is
surjective on PSL(2, K). �

Remark 5.5. In [12] the words from F (1) \ F (2) are proved to be sur-
jective on SU(n) for an infinite set of integers n.

Theorem 5.6. Let w be an element of F (1) that does not belong to
F (2). Let G be a connected semisimple linear algebraic group over a
field K of characteristic zero. If u ∈ G(K) is a unipotent element then
there exists a group homomorphism F → G(K) such that the image
of w coincides with u. In other words, there exist Z1, . . . , Zn ∈ G(K)
such that w(Z1, . . . , Zn) = u.

Proof. Let a = {a1, . . . , an}, γa and c = Lw(a1, . . . , an) 6= 0 be as in
Corollary 5.2. By Lemma 5.7 below, there exists a group homomor-
phism φ : ST (K) → G(K) such that u = φ(u1) for

u1 =

[
1 0
c 1

]

∈ ST (K).

Now the result follows from Corollary 5.2: the desired homomorphism
is the composition

φ γa : F → ST (K) → G(K).

�

Lemma 5.7. Let K be a field of characteristic zero, G a connected
semisimple linear algebraic K-group of positive dimension, and u a
unipotent element of G(K). Then for every nonzero c ∈ K there is a
group homomorphism φ : ST (K) → G(K) such that u is the image of

u1 =

[
1 0
c 1

]

∈ ST (K).

Proof. Let us identify the additive algebraic K-group Ga with the

closed subgroup H of all matrices of the form v(t) =

[
1 0
t 1

]

in SL(2).

Its Lie subalgebra Lie(H) is the one-dimensional K-vector subspace
Lie(H) = {λx0 |λ ∈ K} of sl2(K) generated by the matrix

x0 =

[
0 0
1 0

]

⊂ sl2(K).
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Here we view the K-Lie algebra sl2(K) of 2×2 traceless matrices as the
Lie algebra of the algebraicK-group SL(2). Moreover, exp(λx0) = v(λ)
for all λ ∈ K.

We may view G as a closed algebraicK-subgroup of the matrix group
GL(N) = GL(V ), where V is an N−dimensional K-vector space for a
suitable positive integer N . Then

u ∈ G(K) ⊂ AutK(V ) = GL(N,K).

Thus the K-Lie algebra Lie(G) becomes a certain semisimple Lie
subalgebra of EndK(V ). Here we view EndK(V ) as the Lie algebra
Lie(GL(V )) of the K-algebraic group GL(V ). As usual, we write

Ad : G(K) → AutK(Lie(G))

for the adjoint action of G. We have

Ad(g)(u) = gug−1

for all

g ∈ G(K) ⊂ AutK(V ) and u ∈ Lie(G) ⊂ EndK(V ).

Since u is a unipotent element, the linear operator u− 1 : V → V is a
nilpotent. Let us consider the nilpotent linear operator

x = log(u) :=

∞∑

i=1

(−1)i+1 (u− 1)i

i
∈ EndK(V )

([7, Sect 7, p. 106], [23, Sect.23, p. 336]) and the corresponding homo-
morphism of algebraic K-groups

ϕu : H → GL(V ), v(t) 7→ exp(tx) = v(0) + tx+ . . . .

In particular, since u1 = v(1),

ϕu(u1) = u.

Clearly, the differential of ϕu

dϕu : Lie(H) → Lie(GL(V )) = EndK(V )

is defined as
dϕu(λx0) = λx ∀λ ∈ K

and sends x0 to x ∈ Lie(GL(V )). Since ϕu(m) = um ∈ G(K) for all in-
tegersm and G is closed in GL(V ) in Zariski topology, the image ϕu(H)
of H lies in G and therefore one may view ϕu as a homomorphism of
algebraic K-groups

ϕu : H → G.

This implies that
dϕu(Lie(H)) ⊂ Lie(G);

in particular, x ∈ Lie(G).
There exists a cocharacter

Φ : Gm → G ⊂ GL(V )
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of K-algebraic group G such that for each β ∈ K∗ = Gm(K)

Ad(Φ(β))(x) = β2x

(see [20, Sect. 6, pp. 402–403]. Here Gm is the multiplicative algebraic
K-group.) This means that for all λ ∈ K

Φ(β)λxΦ(β)−1 = Ad(Φ(β))(λx) = λβ2x = β2λx ∈ Lie(G) ⊂ EndK(V ),

which implies that

Φ(β)(exp(λx))Φ(β)−1 = exp
(
Φ(β)λxΦ(β)−1

)
= exp(β2λx).

It follows that

Φ(β)

(

exp

(
λ

c
x

))

Φ(β)−1 = exp

(

β2λ

c
x

)

.

Recall that ST (K) is a semi-direct product of its normal subgroup
H(K) and the torus

T1(K) =

{[
β−1 0
0 β

]

, β ∈ K∗

}

⊂ ST (K).

In addition,
[
β−1 0
0 β

] [
1 0
λ 1

] [
β−1 0
0 β

]−1

=

[
1 0
β2λ 1

]

∀λ ∈ K, β ∈ K∗.

It follows from [8, Ch. III, Prop. 27 on p. 240] that there is a group
homomorphism

φ : ST (K) → G(K)

that sends each

[
1 0
λ 1

]

to exp(λ
c
x) and each

[
β−1 0
0 β

]

to Φ(β). Clearly,

φ sends u1 =

[
1 0
c 1

]

to exp( c
c
x)) = exp(x) = u. �

6. Words in two letters on PSL(2,C)

In this section we consider words in two letters. We provide the
explicit formulas for w(x, y), where x, y are upper triangular matrices.
This enables to extract some additional information on the image of
words in two letters. .

Consider a word map w(x, y) = xa1yb1 . . . xakybk , where ai 6= 0 and

bi 6= 0 for all i = 1, ..., k. Let A(w) =
∑k

i=1 ai, B(w) =
∑k

i=1 bi. Let

w : G̃2 → G̃ be the induced word map on G = SL(2,C).
If A(w) = B(w) = 0, then w ∈ F (1) = [F, F ]. Since F (1) is a free

group generated by elements wn,m = [xn, ym], n 6= 0, m 6= 0 ([22],
Chapter 1, §1.3), the word w with A(w) = B(w) = 0 may be written
as a (noncommutative) product (with si 6= 0)

(4) w =
r∏

1

wsini,mi
.
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Moreover, the shortest (reduced) representation of this kind is unique.
We denote by Sw(n,m) the number of appearances of wn,m in repre-
sentation (4) of w and by Rw(n,m) the sum of exponents at all the
appearances. We denote by Supp(w) the set of all pairs (n,m) such
that wn,m appears in the product. For example, if w = w1,1w

5
2,2w

−1
1,1,

then

Supp(w) = {(1, 1), (2, 2)};Sw(1, 1) = 2, Sw(2, 2) = 1,

Rw(1, 1) = 0, Rw(2, 2) = 5.

The subgroup

F (2) = [F (1), F (1)] = {w ∈ F (1)|Rw(n,m) = 0 for all (n,m) ∈ Supp(w)}.

Example 6.1. The Engel word en = [...[x, y], y], ...y]
︸ ︷︷ ︸

n times

belongs to F (1) \

F (2) (see also [12]).
Indeed, the direct computation shows that

(5)
ywn,m = yxnymx−ny−m = yxny−1x−n·xnyymx−ny−my−1·y = w−1

n,1wn,m+1y,

(6)
yw−1

n,m = y·ymxny−mx−n = y(m+1)xny−(m+1)x−n·xnyx−ny−1·y = w−1
n,m+1wn,1y.

It follows that

(7) yws1,my
−1 = (w−1

1,1w1,m+1)
s.

Let us prove by induction that |Ren(1, n)| = 1, Sen(1, n) = 1 and
Sen(r,m) = 0 if r 6= 1 or m > n, i.e.

(8) en = (
s∏

1

wsi1,mi
)wε1,n(

t∏

1

w
tj
1,kj

)

for some integers t ≥ 0, s ≥ 0, mi < n, kj < n, and where ε = ±1.
Indeed e1 = w1,1. Assume that the claim is valid for all k ≤ n. We

have en+1 = enye
−1
n y−1. Using (8), we get

(9) en+1 = en(

1∏

t

yw
−tj
1,kj

y−1)yw−ε
1,ny

−1(

1∏

s

yw−si
1,mi

y−1).

Applying (7) to every factor of this product, we obtain that en+1 has
the needed form. Thus the claim will remain to be valid for n+ 1.

Since |Ren(1, n)| = 1, en 6∈ F (2).

Let us take

(10) x =

(
λ c
0 1

λ

)

,
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(11) y =

(
µ d
0 1

µ

)

,

Then

(12) xn =

(
λn c · h|n|(λ)sgn(n)
0 1

λn

)

,

(13) ym =

(
µm d · h|m|(µ)sgn(m)
0 1

µm

)

,

Here sgn is the signum function, and (see [1], Lemma 5.2) for n ≥ 1

(14) hn(ζ) =
ζ2n − 1

ζn−1(ζ2 − 1)
.

.
Note that hn(1) = n.
Direct computations show that

(15) xnym =

(
λnµm d · λnsgn(m)h|m|(µ) + c · sgn(n)h|n|(λ)µ

−m

0 λ−nµ−m

)

.

(16)

x−ny−m =

(
λ−nµ−m −d · λ−nsgn(m)h|m|(µ)− c · sgn(n)h|n|(λ)µ

m

0 λnµm

)

.

(17) wn,m(x, y) =

(
1 f(c, d, n,m)
0 1

)

,

where

(18)
f(c, d, n,m) = ch|n|(λ)sgn(n)λ

n(1−µ2m)+dh|m|(µ)sgn(m)µm(λ2n−1).

Hence,

(19) w(x, y) =

r∏

1

wsini,mi
(x, y) =

(
1 Fw(c, d, λ, µ)
0 1

)

,

where

Fw(c, d, λ, µ) =
r∑

1

sif(c, d, ni, mi) = cΦw(λ, µ) + dΨw(λ, µ)

and

(20) Φw(λ, µ) =
∑

(α,β)∈Supp(w)

Rw(α, β)sgn(α)(1− µ2β)
(λ2|α| − 1)λα

λ|α|−1(λ2 − 1)
,
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(21) Ψw(λ, µ) =
∑

(α,β)∈Supp(w)

Rw(α, β)sgn(β)(λ
2α − 1)

(µ2|β| − 1)µβ

µ|β|−1(µ2 − 1)
.

(Since the order of factors in w is not relevant for (20) and (21) , we
use here α, β instead of ni, mi to simplify the formulas).

Proposition 6.2. Rational functions Φ(λ, µ) and Ψ(λ, µ) are non-zero
linearly independent rational functions.

Remark 6.3. It is evident from the Magnus Embedding Theorem that
at least one of functions Φ(λ, µ) and Ψ(λ, µ) is not identical zero. It
follows from Proposition 6.2 that the same is valid for both of them.

Proof.

Lemma 6.4. If Φw(λ, µ) ≡ 0 then Rw(α, β) = 0 for all (α, β) ∈
Supp(w).

Proof. We use induction by the number |Supp(w)| of elements in Supp(w)
for the word w. If Supp(w) contains only one pair (α, β), then there is
nothing to prove, because

Φ(λ, µ) = Rw(α, β)h|α|(λ)sgn(α)λ
α(1− µ2β).

Assume that for words v with |Supp(v)| = l it is proved. Let w be such
a word that |Supp(w)| = l + 1.

Let n := max{α |(α, β) ∈ Supp(w)}.
Case 1. n > 0.
We have

Φw(λ, µ) =
∑

(α,β)∈Supp(w)

Rw(α, β)sgn(α)(1− µ2β)
(λ2|α| − 1)λα

λ|α|−1(λ2 − 1)
=

∑

(α,β)∈Supp(w)

Rw(α, β)sgn(α)(1− µ2β)λa−|a|+1(1 + λ2 + · · ·+ λ2(|α|−1)).

It means that the coefficient of λ2|n|−1 in rational function Φw(λ, µ)
is

p(µ) =
∑

(n,β)∈Supp(w)

Rw(n, β)(1− µ2β).

Hence, if Φw(λ, µ) ≡ 0, then p(µ) ≡ 0, and all Rw(n, β) = 0 for all
β.

That means that Φw(λ, µ) = Φv(λ, µ), where v is such a word that
may be obtained from w(x, y) =

∏r

1w
si
ni,mi

(x, y) by taking away every
appearance of wn,β :

v =

r∏

1
ni 6=n

wsini,mi
(x, y).
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But |Supp(v)| ≤ l and by induction assumption Rv(α, β) = 0 for all
(α, β) ∈ Supp(v). Thus Lemma is valid for w in this case.

Case 2. n < 0. Let −n′ := min{α |(α, β) ∈ Supp(w)}. We proceed
as in Case 1 with −n′ instead of n : the coefficient of λ−2n′+1 is q(µ) =

∑

(−n′,β)∈Supp(w)

Rw(−n
′, β)(1− µ2β). If Φw(λ, µ) ≡ 0, then q(µ) ≡ 0, and

all Rw(−n
′, β) = 0 for all β. Once more, we may replace w by a word

v with |Supp(v)| ≤ l. �

Clearly, the similar statement is valid for Ψw(λ, µ).
The functions Φ and Ψ are linearly independent, because Φ is odd

with respect to λ and even with respect to µ, while Ψ has opposite
properties.

�

Proposition 6.5. Assume that the word w ∈ F (1) \ F (2) and that
Φw(1, i) 6= 0, where i2 = −1. Then −id ∈ wG, where G = SL(2,C).

Proof. Assume that Φ(1, i) 6= 0. From (20) we get:

(22) Φw(1, i) =
∑

(α,β)∈Supp(w),β odd

2Rw(α, β)α.

Take

x =

(
a 0
0 a−1

)

y =

(
0 1
−1 0

)

Then

[x, y] =

(
a2 0
0 a−2

)

Thus, if

w =

r∏

1

wsjnj ,mj
,

then

w(x, y) =
∏

mj odd

(
a2njsj 0
0 a−2njsj

)

=

(
aN 0
0 a−N

)

,

where N = 2
∑

mj odd

njsj = Φw(1, i) 6= 0.

Choose a such that aN = −1. Then w(x, y) = −id. �

Remark 6.6. The case Ψ(i, 1) 6= 0 may be treated in the similar way,
one should only exchange roles of x and y.
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Remark 6.7. Let

w =
r∏

1

wsjnj ,mj
,

let gcd(mj) = k = 2ds, s odd. Put µj =
mj

k
and

u =

r∏

1

wsjnj ,µj
.

Note that some of µj are odd. Let z ∈ SL(2,C) be such that

zk = y =

(
0 1
−1 0

)

.

Then w(x, z) = u(x, y), hence, if Φu(1, i) 6= 0, then −id ∈ wG.

7. Surjectivity on SL(2,C)

We keep the notation of Section 6.

Lemma 7.1. Assume that w = xa1yb1 . . . xakybk , ai 6= 0, bi 6= 0, i =
1, ..., k A =

∑
ai 6= 0 or B =

∑
bi 6= 0 and x, y are defined by (10),

(11) respectively. Then

(23) w(x, y) =

(

λAµB F̃w(c, d, λ, µ)
0 λ−Aµ−B

)

,

where

F̃w(c, d, λ, µ) = cΦ̃w(λ, µ) + dΨ̃w(λ, µ)

and

(24) Φ̃w(λ, µ) =

k∑

1

sgn(ai)h|ai|(λ)
λ
∑

j<i ajµ
∑

j<i bj

λ
∑

j>i ajµ
∑

j≥i bj
,

(25) Ψ̃w(λ, µ) =

k∑

1

sgn(bi)h|bi|(µ)
λ
∑

j≤i ajµ
∑

j<i bj

λ
∑

j>i ajµ
∑

j>i bj
.

Proof. We use induction on the complexity k of the word w. Using (15),
we get

(26)

xa1yb1 =

(
λa1µb1 d · λa1sgn(b1)h|b1|(µ) + c · sgn(a1)h|a1|(λ)µ

−b1

0 λ−a1µ−b1

)

.

Thus for k = 1 the Lemma is valid. Assume that it is valid for
k′ < k. Let u = xa1yb1 . . . xak−1ybk−1 and w = uxakybk .

By induction assumption,

u(x, y) =

(

λA−akµB−bk F̃u(c, d, λ, µ)
0 λ−A+akµ−B+bk

)

.



20 TATIANA BANDMAN AND YURI G. ZARHIN

From (15) we get

xakybk =

(
λakµbk d · λaksgn(bk)h|bk|(µ) + c · sgn(ak)h|ak|(λ)µ

−bk

0 λ−akµ−bk

)

.

Multiplying matrices u and xakybk we get

F̃w(c, d, λ, µ) = λA−akµB−bk(d · λaksgn(bk)h|bk|(µ)

+c · sgn(ak)h|ak |(λ)µ
−bk) + F̃u(c, d, λ, µ)λ

−akµ−bk .

Thus, the induction assumption implies that

Φ̃w(λ, µ) = sgn(ak)h|ak|(λ)µ
−bkλA−akµB−bk+

k−1∑

1

sgn(ai)h|ai|(λ)
λ
∑

j<i ajµ
∑

j<i bj

λ
∑k

j=i+1
ajµ

∑k
j=i bj

=
k∑

1

sgn(ai)h|ai|(λ)
λ
∑

j<i ajµ
∑

j<i bj

λ
∑

j>i ajµ
∑

j≥i bj
.

Ψ̃w(λ, µ) = sgn(bk)h|bk|(µ)λ
akλA−akµB−bk+

k−1∑

1

sgn(bi)h|bi|(µ)
λ
∑

j≤i ajµ
∑

j<i bj

λ
∑k

j=i+1
ajµ

∑k
j=i+1

bj

=

k∑

1

sgn(ai)h|ai|(λ)
λ
∑

j≤i ajµ
∑

j<i bj

λ
∑

j>i ajµ
∑

j>i bj
.

�

Denote:
Ai =

∑

j≤i

ai; Bi =
∑

j<i

bi,

and let C be a curve

C = {λAµB = −1} ⊂ C2
λ,µ.

Multiplying (24) and (25) by λAµB we see that on C the following
relations are valid:

(27) Φ̃w(λ, µ)
∣
∣
C
= −

k∑

1

sgn(ai)h|ai|(λ)λ
2Ai−aiµ2Bi ,

(28) Ψ̃w(λ, µ)
∣
∣
C
= −

k∑

1

sgn(bi)h|bi|(µ)λ
2Aiµ

∑
2Bi+bi.

In particular, on C

(29) Φ̃w(1, µ)
∣
∣
C
= −

k∑

1

aiµ
2Bi,

(30) Ψ̃w(λ, 1)
∣
∣
C
= −

k∑

1

biλ
2Ai.
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Lemma 7.2. Assume that A 6= 0 and the word map w is not surjective.
Then

k∑

1

biγ
2Ai = 0

for every root γ of equation

q(z) := zA + 1 = 0.

If B 6= 0 and the word map w is not surjective, then

k∑

1

aiδ
2Bi = 0

for every root δ of equation

p(z) := zB + 1 = 0.

Proof. The matrices z with tr(z) = 2 are in the image because w(x, id) =
xA, w(id, y) = yB. Assume now that for K 6= 0 the matrices

(31)

(
−1 K
0 −1

)

are not in the image. That implies that Φ̃w(λ, µ) ≡ 0 and Ψ̃w(λ, µ) ≡ 0
on the defined above curve

C = {λAµB = −1} ⊂ C2
λ,µ.

If A 6= 0 or B 6= 0, then, respectively, the pairs (γ, 1) and (1, δ)
belong to the curve C. We have to use only (29), (30), respectively
. �

Corollary 7.3. Let 2Bi = kiB + Ti, where ki are integers and 0 ≤
Ti < B 6= 0. If w is not surjective, then for every 0 ≤ T < B

(32)
∑

i:Ti=T

ai(−1)ki = 0.

Proof. Indeed in this case

0 =

k∑

1

aiδ
2Bi =

B−1∑

T=0

δT (
∑

i:Ti=T

ai(−1)ki)

for any root δ of equation

p(z) = zB + 1 = 0.

Since p(z) has no multiple roots, it implies that p(z) divides the poly-
nomial

p1(z) :=

B−1∑

T=0

zT (
∑

i:Ti=T

ai(−1)ki).
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But since degree of p(z) is bigger than degree of p1(z) that can be
only if p1(z) ≡ 0. �

Corollary 7.4. (Corollary 1.4) If all bi are positive, then the word
map w is either surjective or the square of another word v 6= id.

Proof. In this case 0 ≤ 2Bi < 2B and sequence Bi is increasing. If w
is not surjective, p1(z) ≡ 0 by Corollary 7.3. Thus for every Bi there
is Bj such that 2Bi = 2Bj +B and ai − aj = 0.

Thus, the sequence of 2Bi looks like:

0 = 2B1, 2b1 = 2B2, 2(b1+b2) = 2B3, . . . , 2(b1+· · ·+bs) = 2Bs+1 = B,

2(b1 + · · ·+ bs+1) = 2Bs+2 = B + 2B2 = B + 2b1,

2(b1 + · · ·+ bs+2) = 2Bs+3 = B + 2B3 = B + 2b1 + 2b2, . . . ,

2(b1 + · · ·+ b2s−1) = 2B2s = 2Bs +B,

2(b1 + · · ·+ b2s) = 2B2s+1 = B + 2Bs+1 = 2B.

It follows that k = 2s and

bs+1 = Bs+2 −Bs+1 = B2 − B1 = b1;

bs+2 = Bs+3 −Bs+2 = B3 − B2 = b2;

b2s−1 = B2s − B2s−1 = Bs − Bs−1 = bs−1;

bk = b2s = B2s+1 − B2s = Bs+1 − Bs = bs.

Thus,

bi = bi+s, i = 1, . . . , s, 2Bi = 2Bi+s +B, ai = ai+s.

Therefore the word is the square of v = xa1yb1 . . . xasybs. �

Corollary 7.5. If all bi are negative, then the word map of the word
w is either surjective or the square of another word v 6= id.

Proof. We may change y to z = y−1 and apply Corollary 7.4 to the
word w(x, z). �

Corollary 7.6. If all ai are positive, then the word map of the word w
is either surjective or the square of another word v 6= id.

Proof. Consider v = x−1, z = y−1, a word

w′(z, v) = w(x, y)−1 = y−bkx−ak . . . y−b1x−a1 = zbkvak . . . zb1va1 ,

and apply Corollary 7.4 to the word w′(z, v). �
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8. Trace criteria of almost surjectivity

For every word map w(x, y) : G2 → G defined are the trace polyno-
mials Pw(s, t, u) = tr(w(x, y)) and Qw = tr(w(x, y)y) in three variables
s = tr(x), t = tr(y), and u = tr(xy). ([14], [15], [24]).

In other words, the maps

ϕw : G2 → G2, ϕw(x, y) = (w(x, y), y)

and

ψw : C3
s,t,u → C3

s,t,u, ψw(s, t, u) = (Pw(s, t, u), t, Qw(s, t, u))

may be included into the following commutative diagram:

(33)

G×G
ϕ

−−−→ G×G

π



y π



y

C3
s,t,u

ψ
−−−→ C3

s,t,u

.

Moreover, π is a surjective map ([15]). For details, one can be referred
to ([5],[3]) .

Since the coordinate t is invariant under ψ, for every fixed value t =
a ∈ C we may consider the restriction ψa(s, u) = (Pw(s, a, u), Qw(s, a, u))
of morphism ψw onto the plane {t = a} = C2

s,u.

Definition 8.1. We say that ψa(s, u) is Big if the image ψa(C
2
s,u) =

C2
s,u \ Ta, where Ta is a finite set. We say that the trace map ψw of a

word w ∈ F is Big if there is a value a such that ψa(s, u) is Big.

Proposition 8.2. If the trace map ψw of a word w ∈ F is Big then
the word map w : G2 → G is almost surjective.

Proof. Let a be such a value of t that the map ψa is Big. Let Sa =
Ta ∪ {(2, a)} ∪ {(−2,−a)}. Consider a line C+ = {s = 2} and C− =
{s = −2} ⊂ C2

s,u. Let B+ = C+ \ (C+∩Sa); B− = C− \ (C−∩Sa). Since
Sa is finite, B+ 6= ∅, B− 6= ∅. Moreover, since these curves are outside
Sa, we have: D+ = ψ−1(B+) 6= ∅, D− = ψ−1(B−) 6= ∅.

Take (s0, u0) ∈ D+ and (s1, u1) ∈ D−. Then ψw(s0, a, u0) = (2, a, b)
with a 6= b; and ψw(s1, a, u1) = (−2, a, d) with a 6= −d. Projection
π : G2 → C3

s,t,u is surjective, thus there is a pair (x0, y0) ∈ G2 such
that tr(x0) = s0, tr(y0) = a, tr(x0y0) = u0. Then π(w(x0, y0)) =
ψw(s0, a, u0) = (2, a, b). Hence, tr(w(x0, y0)) = 2, but w(x0, y0) 6= id,
since tr(w(x0, y0)y0) = b 6= a = tr(y0). Similarly, there is a pair
(x1, y1) ∈ G2 such that tr(x1) = s1, tr(y1) = a, tr(x1y1) = u1. Then
π(w(x1, y1)) = ψw(s1, a, u1) = (−2, a, d). Hence, tr(w(x1, y1)) = −2,
but w(x1, y1) 6= −id, since tr(w(x1, y1)y1) = d 6= −a = −tr(y1).

It follows that all the elements z 6= −id with trace 2 and −2 are in
the image of the word map w. �
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Corollary 8.3. Assume that the trace map ψw of a word w is Big.
Consider a sequence of words defined recurrently in the following way:

v1(x, y) = w(x, y); vn+1(x, y) = w(vn(x, y), y);

Then the word map vn : G2 → G is almost surjective for all n ≥ 1.

Proof. The trace map ψn = ψvn of the word map vn is the nth iteration

ψ
(n)
1 of the trace map ψ1 = ψw (see [5] or [3]). Let us show by induction,

that all the maps ψn are Big. Indeed ψ1 is Big by assumption, hence
(ψ1)a(C

2
s,u) = C2

s,u−Ta for some value a and some finite set Ta. Assume
now that ψn−1 is Big. Let for a value a of t the image (ψn−1)a(C

2
s,u) =

C2
s,u \N for some finite set N. Hence

(ψn)a(C
2
s,u) = (ψ1)a((ψn−1)a(C

2
s,u)) = (ψ1)a(C

2
s,u \N) ⊃

⊃ (ψ1)a(C
2
s,u) \ (ψ1)a(N) = C2

s,u \ (Ta ∪ (ψ1)a(N)).

Thus (ψn)a is Big as well for the same value a.
According to Proposition 8.2, the word map vn is almost surjective.

�

Example 8.4. Consider the word w(x, y) = [yxy−1, x−1] and the cor-
responding sequence

vn(x, y) = [yvn−1y
−1, v−1

n−1].

This is one of the sequences that were used for characterization of finite
solvable groups (see [9], [5], [3]).

We have ( [5], section 5.1)

tr(w(x, y)) = f1(s, t, u) = (s2 + t2 + u2 − ust− 4)(t2 + u2 − ust) + 2;

tr(w(x, y)y) = f2(s, t, u) = f1t+(s(st−u)−t)(s2+t2+u2−ust−4)−t;

We want to show that for a general value t = a the system of equa-
tions

(34) f1(s, a, u) = A

(35) f2(s, a, u) = B

has solutions for all pairs (A,B) ∈ C2 \ Ta, where Ta is a finite set.
Consider the system

(36) h1(s, u, a, C) := (s2+a2+u2−usa−4)(a2+u2−usa) = A−2 := C,

(37)
h2(s, u, a,D) := (s(sa−u)−a)(s2+a2+u2−usa−4) = B−a(C+1) := D.

Note that the leading coefficient with respect u in h1 is 1, in h2 is s.
The Magma computations show that the resultant (elimination of u )
of h1 − C and h2 −D is of the form

R(s, a, C,D) = s4p1(a, C,D) + s2p2(a, C,D) + p3(a, C,D).
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It has a non-zero root s 6= 0 at any point (a, C,D), where at least
two of three polynomials p1, p2, p3 do not vanish. MAGMA compu-
tation show that the ideals J1 =< p1, p2 >⊂ Q[a, C,D], J2 =<
p1, p3 >⊂ Q[a, C,D], J3 =< p2, p3 >⊂ Q[a, C,D] generated, respec-
tively, by p1(a, C,D) and p2(a, C,D), by p1(a, C,D) and p3(a, C,D),
by p2(a, C,D) and p3(a, C,D), are one-dimensional. It follows that for
a general value of a the set

{p1(a, C,D) = p2(a, C,D) = 0}
∪{p1(a, C,D) = p3(a, C,D) = 0}

∪{p2(a, C,D) = p3(a, C,D) = 0}
is a finite subset Na ⊂ CC,D. On the other hand, at any point (C,D)
outside Na polynomial Ra(s) = R(s, a, C,D) has a non-zero root, and,
therefore system (36), (37) has a solution. Thus, outside the finite set
of points Ta = {(A = C +2, B = D+ a(C +1)) |(C,D) ∈ Na} ⊂ CA,B,
system (34), (35) has a solution as well. Thus, ψw = (f1, t, f2) is Big
and all the word maps vn are almost surjective on G.

Let us cite the Magma computations for t = a = 1, where p = h1−C
and q = h2 −D. R is the resultant of p, q with respect to u.

> r:=u^2+s^2+1-u*s;

>

> p:=(r-4)*(r-s^2)-C;

>

> q:=(r-4)*(s*(s-u)-1)-D;

>

> R:=Resultant(p,q,u);

> R;

-s^4*C^3 - 2*s^4*C^2*D + s^4*C^2 - 2*s^4*C*D^2 + s^4*C*D

- s^4*D^3 + s^4*D^2 + 4*s^2*C^2*D - 4*s^2*C^2 + 8*s^2*C*D^2

- 6*s^2*C*D + 6*s^2*D^3 - 8*s^2*D^2 +

C^2 - 2*C*D^2 + 8*C*D + D^4 - 8*D^3 + 16*D^2

>

>

> p1:=-C^3 - 2*C^2*D + C^2 - 2*C*D^2 + C*D - D^3 + D^2;

> p2:= 4*C^2*D - 4*C^2 + 8*C*D^2 - 6*C*D + 6*D^3 - 8*D^2;

> p3:=C^2 - 2*C*D^2 + 8*C*D + D^4 - 8*D^3 + 16*D^2;

> Factorization(p1);

[

<C + D - 1, 1>,

<C^2 + C*D + D^2, 1>

]

> Factorization(p2);

[

<C^2*D - C^2 + 2*C*D^2 - 3/2*C*D + 3/2*D^3 - 2*D^2, 1>

]
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> Factorization(p3);

[

<C - D^2 + 4*D, 2>

Clearly every pair among polynomials p1, p2, p3 has only finite num-
ber of common zeros. For example, p1 = p3 = 0 implies D2−5D+1 = 0
or (D2 − 4D)2 + (D2 − 4D)D +D2 = 0.

Computations show also that the word w(x, y) takes on value −id.
For example, one make take

x =

(
−1 1
−2 1

)

, y =

(
1 t
0 1

)

,

where t2 = −1/2. Here are computations:

> R<t>:=PolynomialRing(Q);

> X:=Matrix(R,2,2,[-1,1,-2,1]);

> Y:=Matrix(R,2,2,[ 1,t,0,1]);

> X1:= Matrix(R,2,2,[1,-1,2,-1]);

> Y1:=Matrix(R,2,2,[1,-t,0,1]);

>

> Z:=Y*X*Y1;

>

> p11:=Z[1,1];

> p12:=Z[1,2];

> p21:=Z[2,1];

> p22:=Z[2,2];

>

> Z1:=Matrix(R,2,2,[p22,-p12,-p21,p11]);

>

> W:=Z*X1*Z1*X;

>

> q11:=W[1,1];

> q12:=W[1,2];

> q21:=W[2,1];

> q22:=W[2,2];

>

>

> q11;

16*t^4 + 8*t^3 + 12*t^2 + 4*t + 1

> q12;

-8*t^4 - 4*t^2

> q21;

16*t^3 + 8*t

> q22;

-8*t^3 + 4*t^2 - 4*t + 1

Therefore, t2 = −1/2 implies that q11 = q22 = −1, q12 = q21 = 0.
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9. The word v(x, y) = [[x, [x, y]], [y, [x, y]]]

In this section we provide an example of a word v that is surjective
though it belongs to F (2). The interesting feature of this word is the
following: if we consider it as a polynomial in the Lie algebra sl2, ([x, y]
being the Lie bracket) then it is not surjective ([4], Example 4.9).

Theorem 9.1. The word v(x, y) = [[x, [x, y]], [y[x, y]]] is surjective on
SL(2,C) (and, consequently, on PSL(2,C)).

Proof. As it was shown in Proposition 2.2, for every z ∈ SL(2,C) with
tr(z) 6= ±2 there are x, y ∈ SL(2,C)2 such that v(x, y) = z.

Assume now that a = ±2. We have to show that −id is in the image
and that there are matrices x, y in SL(2,C), such that

v(x, y) :=

(
q11 q12
q21 q22

)

has the following properties :

• q12 + q22 = ±2;
• q12 6= 0.

We may look for these pairs among the matrices x =

(
0 b
c d

)

and

y =

(
1 t
0 1

)

.

In the following MAGMA calculations C = [x, y], D = [[x, y], x],
B = [[x, y], y], A = [D,B].

Ideal I in the polynomial ring Q[b, c, d, t] is defined by conditions
det(x) = 1, tr(A) = 2. Ideal J in the polynomial ring Q[b, c, d, t] is
defined by conditions det(x) = 1, tr(A) = −2. Let T+ ⊂ SL(2)2 and
T− ⊂ SL(2)2 be, respectively, the corresponding affine subsets in affine
variety SL(2)2.

The computations show that q12(b, c, d, t) does not vanish identically
on T+ or T−.

> Q:=Rationals();

> R<t,b,c,d>:=PolynomialRing(Q,4);

> X:=Matrix(R,2,2,[0,b,c,d]);

> Y:=Matrix(R,2,2,[ 1,t,0,1]);

> X1:= Matrix(R,2,2,[d,-b,-c,0]);

> Y1:=Matrix(R,2,2,[1,-t,0,1]);

> C:=X*Y*X1*Y1;

> p11:=C[1,1];

> p12:=C[1,2];

> p21:=C[2,1];

> p22:=C[2,2];

> C1:=Matrix(R,2,2,[p22,-p12,-p21,p11]);
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> D:=C*X*C1*X1;

>

>

> d11:=D[1,1];

> d12:=D[1,2];

> d21:=D[2,1];

> d22:=D[2,2];

> D1:=Matrix(R,2,2,[d22,-d12,-d21,d11]);

>

> B:=C*Y*C1*Y1;

>

>

> b11:=B[1,1];

> b12:=B[1,2];

> b21:=B[2,1];

> b22:=B[2,2];

> B1:=Matrix(R,2,2,[b22,-b12,-b21,b11]);

>

> A:=D*B*D1*B1;

>

> TA:=Trace(A);

>

> q12:=A[1,2];

> I:=ideal<R|b*c+1,TA-2>;

>

> IsInRadical(q12,I);

false

> J:=ideal<R|b*c+1,TA+2>;

>

> IsInRadical(q12,J);

false

>

It follows that the function q12(b, c, d, t) does not vanish identically on
the sets T+ and T−, hence, there are pairs with tr(v(x, y)) = 2, v(x, y) 6=
id, and tr(v(x, y)) = −2, v(x, y) 6= −id.

In order to produce the explicit solutions for v(x, y) = −id and
v(x, y) = z, z 6= −id, tr(z) = −2, consider the following matrices de-
pending on one parameter d:

x =

(
1− d 1
−2

3
d

)

,

y =

(
2− 3d 0

0 3d− 1

)

.
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Since images of the commutator word on GL(2,C) and SL(2,C) are
the same, we do not require that det(x) = 1 or det(y) = 1. We only
assume that det(x) = d2−d−2/3 6= 0 and det(y) = −9d2+9d2−2 6= 0.

Let

A = v(x, y) :=

(
q11(d) q12(d)
q21(d) q22(d)

)

and TA = tr(A). Magma computations show that

q11(d) + 1 = N11(d
2 − d+ 1/3)H11(d),

q22(d) + 1 = N22(d
2 − d+ 1/3)H22(d),

q21(d) = N21(d−2/3)2(d−1/2)3(d−1/3)2(d2−d−2/3)(d2−d+1/3)H21(d),

q12(d) = N21(d−2/3)2(d−1/2)3(d−1/3)2(d2−d−2/3)(d2−d+1/3)H12(d),

TA+ 2 = N(d2 − d+ 1/3)H(d),

where Nij and N are non-zero rational numbers; Hij and H are polyno-
mials with rational coefficients that are irreducible over Q . Moreover
degH21 = degH12 = 25, degH = 38. It follows that if d2 − d+ 1/3 = 0
then A = −id. If d is a root of H that is not a root of H21, then A is a
minus unipotent.

�
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