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GALOIS GROUPS OF MORI TRINOMIALS AND

HYPERELLIPTIC CURVES WITH BIG MONODROMY

YURI G. ZARHIN

Abstract. We compute the Galois groups for a certain class of polynomials
over the the field of rational numbers that was introduced by S. Mori and
study the monodromy of corresponding hyperelliptic jacobians.

1. Mori polynomials, their reductions and Galois groups

We write Z, Q and C for the ring of integers, the field of rational numbers and
the field of complex numbers respectively. If a and b are nonzero integers then we
write (a, b) for its (positive) greatest common divisor. If ℓ is a prime then Fℓ,Zℓ

and Qℓ stand for the prime finite field of characteristic ℓ, the ring of ℓ-adic integers
and the field of ℓ-adic numbers respectively. If A and B are nonzero integers then
we write (A,B) for its greatest (positive) common divisor.

We consider the subring Z
[

1
2

]

⊂ Q generated by 1/2 over Z. We have

Z ⊂ Z

[

1

2

]

⊂ Q.

If ℓ is an odd prime then the principal ideal ℓZ
[

1
2

]

is maximal in Z
[

1
2

]

and

Z

[

1

2

]

/ℓZ

[

1

2

]

= Z/ℓZ = Fℓ.

If K is a field then we write K̄ for its algebraic closure and denote by Gal(K) its
absolute Galois group Aut(K̄/K). If u(x) ∈ K[x] is a degree n polynomial with
coefficients inK and without multiple roots then we writeRu ⊂ K̄ for the n-element
set of its roots, K(Ru) the splitting field of u(x) and Gal(u/K) = Gal(K(Ru)/K)
the Galois group of u(x) viewed as a certain subgroup of the group Perm(Ru) ∼= Sn

of permutations of Ru. As usual, we write An for the alternating group, which is
the only index 2 subgroup in the full symmetric group Sn.

1.1 (Discriminants and alternating groups). We write ∆(u) for the discrimi-
nant of u. We have

0 6= ∆(u) ∈ K,
√

∆(u) ∈ K(Ru).

It is well known that

Gal(K(Ru)/K(
√

∆(u))) = Gal(K(Ru)/K)
⋂

An ⊂ An ⊂ Sn = Perm(Ru).

In particular, the permutation (sub)group Gal(K(Ru)/K(
√

∆(u))) does not con-
tain transpositions; ∆(u) is a square in K if and only if Gal(u/K) lies in the
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2 YURI G. ZARHIN

alternating (sub)group An ⊂ Sn. On the other hand, if Gal(u/K) = Sn then

Gal(K(Ru)/K(
√

∆(u))) = An.

If n is odd and char(K) 6= 2 then we write Cu for the genus n−1
2 hyperelliptic

curve
Cu : y2 = u(x)

and J(Cu) for its jacobian, which is a n−1
2 -dimensional abelian variety over K. We

write End(J(Cu)) for the ring of all K̄-endomorphisms of J(Cu) and EndK(J(Cu))
for the (sub)ring of all its K-endomorphisms. We have

Z ⊂ EndK(J(Cu)) ⊂ End(J(Cu)).

About forty years ago S. Mori [8, Prop. 3 on p. 107] observed that if n = 2g +1 is
odd and Gal(f/K) is a doubly transitive permutation group then EndK(J(Cu)) =
Z. He constructed [8, Th. 1 on p. 105] explicit examples (in all dimensions g)
of polynomials (actually, trinomials) f(x) over Q such that Gal(f/Q) is doubly
transitive and End(J(Cf )) = Z.

On the other hand, about fifteen years ago the following assertion was proven
by the author [17].

Theorem 1.2. Suppose that char(K) = 0 and Gal(u/K) = Sn. Then

End(J(Cu)) = Z.

The aim of this note is to prove that in Mori’s examples Gal(f/Q) = S2g+1.
This gives another proof of the theorem of Mori [8, Th. 1 on p. 105]. Actually, we
extend the class of Mori trinomials with End(J(Cf )) = Z, by dropping one of the
congruence conditions imposed by Mori on the coefficients of f(x). We also prove
that the images of Gal(Q) in the automorphism groups of Tate modules of J(Cf )
are almost as large as possible.

1.3 (Mori trinomials). Throughout this paper, g, p, b, c are integers that enjoy

the following properties [8].

(i) The number g is a positive integer and p is an odd prime. In addition, there

is a positive integer N such that (p−1
2 )N is divisible by g. This means that

every prime divisor of g is also a divisor of p−1
2 . This implies that

(p, g) = (p, 2g) = 1.

It follows that if g is even then p is congruent to 1 modulo 4.
(ii) The residue b mod p is a primitive root of Fp = Z/pZ; in particular, (b, p) =

1.
(iii) The integer c is odd and

(b, c) = (b, 2g + 1) = (c, g) = 1.

This implies that (c, 2g) = 1.

S. Mori [8] introduced and studied the monic degree (2g + 1) polynomial

f(x) = fg,p,b,c(x) := x2g+1 − bx− pc

4
∈ Z

[

1

2

]

[x] ⊂ Q[x],

which we call a Mori trinomial. He proved the following results [8, pp. 106–107].

Theorem 1.4 (Theorem of Mori). Let f(x) = fg,p,b,c(x) be a Mori trinomial.
Then:
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(i) The polynomial f(x) is irreducible over Q2 and therefore over Q.
(ii) The polynomial f(x) mod p ∈ Fp[x] is a product x(x2g−b) of a linear factor

x and an irreducible (over Fp) degree 2g polynomial x2g − b.
(iii) Let Gal(f) be the Galois group of f(x) over Q considered canonically as a

(transitive) subgroup of the full symmetric group S2g+1. Then Gal(f) is a
doubly transitive permutation group. More precisely, the transitive Gal(f)
contains a permutation σ that is a cycle of length 2g.

(iv) For each odd prime ℓ every root of the polynomial f(x) mod ℓ ∈ Fℓ[x] is
either simple or double.

(v) Let us consider the genus g hyperelliptic curve

Cf : y2 = f(x)

and its jacobian J(Cf ), which is a g-dimensional abelian variety over Q.
Assume additionally that c is congruent to −p modulo 4.

Then Cf is a stable curve over Z and J(Cf ) has everywhere semistable
reduction over Z. In addition, End(J(Cf ) = Z.

Remarks 1.5. (1) The 2-adic Newton polygon of Mori trinomial f(x) consists
of one segment that connects (0,−2) and (2g + 1, 0), which are its only in-
teger points. Now the irreducibility of f(x) follows from Eisenstein–Dumas
Criterion [9, Cor. 3.6 on p. 316], [4, p. 502]. It also follows that the field
extension Q(Rf )/Q is ramified at 2.

(2) If g = 1 then 2g+1 = 3 and the only doubly transitive subgroup of S3 is S3

itself. Concerning the double transitivity of the Galois group of trinomials
of arbitrary degree, see [2, Th. 4.2 on p. 9 and Note 2 on p. 10].

(3) The additional congruence condition in Theorem 1.4(v) guarantees that Cf

has stable (even good) reduction at 2 [8, p. 106]. Mori’s proof of the last
assertion of Theorem 1.4(v) is based on results of [12] and the equality
EndQ(J(Cf )) = Z; the latter follows from the double transitivity of Galois
groups of Mori trinomials.

Remark 1.6. Since a cycle of even length 2g is an odd permutation, it follows
from Theorem 1.4(iii) that Gal(f) is not contained in A2g+1. In other words, ∆(f)
is not a square in Q.

Our first main result is the following statement.

Theorem 1.7. Let f(x) = fg,p,b,c(x) be a Mori trinomial.

(i) If ℓ is an odd prime then the polynomial f(x) mod ℓ ∈ Fℓ[x] has, at most,
one double root and this root (if exists) lies in Fℓ.

(ii) There exists an odd prime ℓ 6= p that f(x) mod ℓ ∈ Fℓ[x] has a double root
ᾱ ∈ Fℓ. All other roots of f(x) mod ℓ (in an algebraic closure of Fℓ) are
simple.

(iii) The Galois group Gal(f) of f(x) over Q coincides with the full symmetric

group S2g+1. The Galois (sub)group Gal(Q(Rf )/Q(
√

∆(f))) coincides with
the alternating group A2g+1.

(iiibis) The Galois extension Q(Rf)/Q(
√

∆(f)) is ramified at all prime divisors
of 2. It is unramified at all prime divisors of every odd prime ℓ.

(iv) Suppose that g > 1. Then End(J(Cf )) = Z.

Remark 1.8. Theorem 1.7(iv) was proven by S. Mori under an additional assump-
tion that c is congruent to −p modulo 4 (see Theorem 1.4(v) above).
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Remark 1.9. Thanks to Theorem 1.2, Theorem 1.7(iv) follows readily from The-
orem 1.7(iii).

Remark 1.10. Let g > 1 and suppose we know that Gal(f) contains a transpo-
sition. Now the double transitivity implies that Gal(f) coincides with S2g+1 (see
[15, Lemma 4.4.3 on p. 40]).

Let K be a field of characteristic zero and u(x) ∈ K[x] be a degree 2g + 1
polynomial without multiple roots. Then the jacobian J(Cu) is a g-dimensional
abelian variety overK. For every prime ℓ let Tℓ(J(Cu)) be the ℓ-adic Tate module of
J(Cu), which is a free Zℓ-module of rank 2g provided with the canonical continuous
action

ρℓ,u : Gal(K) → AutZℓ
(Tℓ(J(Cu)))

of Gal(Q) [10, 14, 20]. There is a Riemann form

eℓ : Tℓ(J(Cu))× Tℓ(J(Cu)) → Zℓ

that corresponds to the canonical principal polarization on J(Cu) ([10, Sect. 20],
[21, Sect. 1]) and is a nondegenerate (even perfect) alternating Zℓ-bilinear form
that satisfies

eℓ(σ(x), σ(y)) = χℓ(σ)eℓ(σ(x), σ(y)).

This implies that the image

ρℓ,u(Gal(K)) ⊂ AutZℓ
(Tℓ(J(Cu)))

lies in the (sub)group

Gp(Tℓ(J(Cu)), eℓ) ⊂ AutZℓ
(Tℓ(J(Cu)))

of symplectic similitudes of eℓ [18, 19, 21].
Using results of Chris Hall [5] and the author [21], we deduce from Theorem 1.7

the following statement. (Compare it with [18, Th. 2.5] and [19, Th. 8.3].)

Theorem 1.11. Let K = Q and f(x) = fg,p,b,c(x) ∈ Q[x] be a Mori trinomial.
Suppose that g > 1.

Then:

(i) for all primes ℓ the image ρℓ,f(Gal(Q)) is an open subgroup of finite index
in Gp(Tℓ(J(Cf )), eℓ).

ii Let L be a number field and Gal(L) be its absolute Galois group, which we
view as an open subgroup of finite index in Gal(Q). Then for all but finitely
many primes ℓ the image ρℓ,f (Gal(L)) coincides with Gp(Tℓ(J(Cf )), eℓ).

The paper is organized as follows. In Section 2 we deduce Theorem 1.11 from
Theorem 1.7. In Section 3 we discuss a certain class of trinomials that is related
to Mori polynomials. Section 4 deals with discriminants of Mori polynomials. We
prove Theorem 1.7 in Section 5.

Acknowledgements. This work was started during my stay at the Max-Planck-
Institut für Mathematik (Bonn, Germany) in September of 2013 and finished during
the academic year 2013/2014 when I was Erna and JakobMichael Visiting Professor
in the Department of Mathematics at the Weizmann Institute of Science (Rehovot,
Israel): the hospitality and support of both Institutes are gratefully acknowledged.

I am grateful to the referee, whose comments helped to improve the exposition.
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2. Monodromy of hyperelliptic jacobians

Proof of Theorem 1.11 (modulo Theorem 1.7). By Theorem 1.7(iii), Gal(f/Q) co-
incides with the full symmetric group S2g+1. By Theorem 1.7(iv), End(J(Cf )) = Z.
It follows from Theorem 1.7(i) that there is an odd prime ℓ such that J(Cf ) has at
ℓ a semistable reduction with toric dimension 1 [5]. Now the assertion (i) follows
from [21, Th. 4.3]. The assertion (ii) follows from [5, Th. 1]. �

3. Reduction of certain trinomials

In order to prove Theorem 1.7(i), we will use the following elementary statement
that was inspired by [15, Remark 2 on p. 42] and [8, p. 106]

Lemma 3.1 (Key Lemma). Let

u(x) = un,B,C(x) := xn +Bx+ C ∈ Z[x]

be a monic polynomial of degree n > 1 such that B 6= 0 and C 6= 0.

(1) If u(x) has a multiple root then n divides B and (n− 1) divides C.
(2) Let ℓ be a prime that enjoys the following properties.

(i) (B,C) is not divisible by ℓ.
(ii) (n,B) is not divisible by ℓ.
(iii) (n− 1, C) is not divisible by ℓ.
Suppose that u(x) has no multiple roots. Let us consider the polynomial

ū(x) := u(x) mod ℓ ∈ Fℓ[x].

Then:
(a) ū(x) has, at most, one multiple root in an algebraic closure of Fℓ.
(b) If such a multiple root say, γ, does exist, then ℓ does not divide

n(n−1)BC and γ is a double root of ū(x). In addition, γ is a nonzero
element of Fℓ.

(c) If such a multiple root does exist then either the field extension Q(Ru)/Q
is unramified at ℓ or a corresponding inertia subgroup at ℓ in

Gal(Q(Ru)/Q) = Gal(u/Q) ⊂ Perm(Ru)

is generated by a transposition. In both cases the Galois extension
Q(Ru)/Q(

√

∆(u)) is unramified at all prime divisors of ℓ.

Remark 3.2. The discriminant

Discr(n,B,C) := ∆(un,B,C)

of un,B,C(x) is given by the formula

Discr(n,B,C) = (−1)n(n−1)/2nnCn−1 + (−1)(n−1)(n−2)/2(n− 1)n−1Bn

[3, Ex. 834].

Remark 3.3. In the notation of Lemma 3.1, assume that ū(x) has no multiple
roots, i.e., ∆(u) is not divisible by ℓ. Then obviously Q(Ru)/Q is unramified at ℓ.

This implies that Q(Ru)/Q(
√

∆(u)) is unramified at all prime divisors of ℓ.

Proof of Lemma 3.1. Proof of (1). Since u(x) has a multiple root, its discriminant

∆(u) = (−1)n(n−1)/2nnCn−1 + (−1)(n−1)(n−2)/2(n− 1)n−1Bn = 0.
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This implies that
nnCn−1 = ±(n− 1)n−1Bn.

Since n and (n − 1) are relatively prime, nn | Bn and (n − 1)n−1 | Cn−1. This
implies that n | B and (n− 1) | C.

Proof of (2). We have

ū(x) := xn + B̄x+ C̄ ∈ Fℓ[x]

where
B̄ = B mod ℓ ∈ Fℓ, C̄ = C mod ℓ ∈ Fℓ.

The condition (i) implies that either B̄ 6= 0 or C̄ 6= 0. The condition (ii) implies
that if B̄ = 0 then n 6= 0 in Fℓ. The condition (iii) implies that if (n− 1) = 0 in Fℓ

then C̄ 6= 0 and n 6= 0 in Fℓ. We have

∆(ū) = (−1)n(n−1)/2nnC̄n−1 + (−1)(n−1)(n−2)/2(n− 1)n−1B̄n = 0

and therefore

(1) nnC̄n−1 = ±(n− 1)n−1B̄n.

This implies that if (n−1) = 0 in Fℓ then C̄ = 0, which is not the case. This proves
that (n − 1) 6= 0 in Fℓ. On the other hand, if B̄ = 0 then C̄ 6= 0 and n 6= 0 in Fℓ.
Then (1) implies that C̄ = 0 and we get a contradiction that proves that B̄ 6= 0. If
n = 0 in Fℓ then n− 1 6= 0 in Fℓ and formula 1 implies that B̄ = 0, which is not the
case. The obtained contradiction proves that n 6= 0 in Fℓ. If C̄ = 0 then formula
(1) implies that B̄ = 0, which is not the case. This proves that ℓ does not divide
n(n− 1)BC.

The derivative of ū(x) is

ū′(x) = nxn−1 + B̄.

We have

(2) x · ū′(x) − n · ū(x) = −(n− 1)B̄x− nC̄.

Suppose ū(x) has a multiple root γ in an algebraic closure of Fℓ. Then

ū(γ) = 0, ū′(γ) = 0, n · γ · ū′(γ)− n · ū(γ) = 0.

Using formula (2), we conclude that

0 = γ · ū′(γ)− n · ū(γ) = −(n− 1)B̄γ − nC̄, γ = − nC̄

(n− 1)B̄
∈ Fℓ.

This implies that γ 6= 0.
Notice that the second derivative ū′′(x) = n(n− 1)xn−2. This implies that

ū′′(γ) = n(n− 1)γn−2 6= 0.

It follows that γ is a double root of ū(x). This ends the proof of (a) and (b).
In order to prove (c), notice that there exists a monic degree (n− 2) polynomial

h̄(x) ∈ Fℓ[x] such that
ū(x) = (x− γ)2 · h̄(x).

Clearly, γ is not a root of h̄(x) and therefore h̄(x) has no multiple roots and relatively
prime to (x− γ)2.1 By Hensel’s Lemma, there exist monic polynomials

h(x), v(x) ∈ Zℓ[x], deg(h) = n− 2, deg(v) = 2

1Compare with [11, Lemma 1 on p. 231].
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such that

u(x) = v(x)h(x)

and

h̄(x) = h(x) mod ℓ, (x− γ)2 = v(x) mod ℓ.

This implies that the splitting field Qℓ(Rh) of h(x) (over Qℓ) is an unramified
extension of Qℓ while the splitting field Qℓ(Ru) of u(x) (over Qℓ) is obtained from
Qℓ(Rh) by adjoining to it two (distinct) roots say, α1 and α2 of quadratic v(x).
Clearly, Qℓ(Ru) either coincides with Qℓ(Rh) or with a certain quadratic extension
of Qℓ(Rh), ramified or unramified. It follows that the inertia subgroup I of

Gal(Qℓ(Ru)/Qℓ) ⊂ Perm(Ru)

is either trivial or is generated by the transposition that permutes α1 and α2 (and
leaves invariant every root of h(x)). In the former case Q(Ru)/Q is unramified at
ℓ while in the latter one an inertia subgroup in

Gal(Q(Ru)/Q) ⊂ Perm(Ru)

that corresponds to ℓ is generated by a transposition. However, the permutation
subgroup Gal(Q(Ru)/Q(

√

∆(u))) does not contain transpositions (see Sect. 1.1).

This implies that Q(Ru)/Q(
√

∆(u)) is unramified at all prime divisors of ℓ. �

Example 3.4. Let us consider the polynomial

u(x) = un,−1,−1(x) = xn − x− 1 ∈ Q[x]

over the field K = Q. Here B = C = −1 and the conditions of Lemma 3.1 hold
for all primes ℓ. It is known that u(x) is irreducible [13], its Galois group over
Q is Sn [11, Cor. 3 on p. 233] and there exists a prime ℓ such that u(x) mod ℓ
acquires a multiple root [15, Remark 2 on p. 42]. Clearly, the discriminant ∆(u) =
Discr(n,−1,−1) of u(x) is an odd integer and therefore such an ℓ is odd. It follows
from Lemma 3.1 that u(x) mod ℓ has exactly one multiple root and its multiplicity
is 2.

Let n = 2g + 1 be an odd integer ≥ 5 and

u(x) = u2g+1,−1,−1(x) = x2g+1 − x− 1 ∈ Q[x].

Let us consider the g-dimensional jacobian J(Cu) of the hyperelliptic curve Cu :
y2 = x2g+1−x−1. Since Gal(u/Q) = S2g+1, Theorem 1.2 tells us that End(J(Cu)) =
Z. Now the same arguments as in Section 2 prove that:

(i) For all primes ℓ the image

ρℓ,u(Gal(Q)) ⊂ Gp(Tℓ(J(Cu)), eℓ)

is an open subgroup of finite index in Gp(Tℓ(J(Cu)), eℓ).
(ii) Let L be a number field and Gal(L) be its absolute Galois group, which

we view as an open subgroup of finite index in Gal(Q). Then for all but
finitely many primes ℓ the image

ρℓ,u(Gal(L)) ⊂ Gp(Tℓ(J(Cu)), eℓ)

coincides with Gp(Tℓ(J(Cu)), eℓ).
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Corollary 3.5 (Corollary to Lemma 3.1). Let

u(x) = un,B,C(x) := xn +Bx+ C ∈ Z[x]

be a monic polynomial of degree n > 1 without multiple roots such that both B and
C are nonzero integers that enjoy the following properties.

(i) (B,C) is either 1 or a power of 2.
(ii) (n,B) is either 1 or a power of 2.
(iii) (n− 1, C) is either 1 or a power of 2.

Suppose that the discriminant D = Discr(n,B,C) = 22M · D0 where M is a
nonnegative integer and D0 is an integer such that

D0 ≡ 1 mod 4.

Assume also that D is not a square. Then:

(a) The quadratic extension Q(
√
D)/Q is unramified ar 2. For all odd primes

ℓ the Galois extension Q(Ru)/Q(
√
D) is unramified at every prime divisor

of ℓ.
(b) There exists an odd prime ℓ that enjoys the following properties.

(i) ℓ divides D0 and

u(x) mod ℓ ∈ Fℓ[x]

has exactly one multiple root and its multiplicity is 2. In addition, this
root lies in Fℓ.

(ii) The field extension Q(Ru)/Q is ramified at ℓ and the Galois group

Gal(Q(Ru)/Q) = Gal(u/Q) ⊂ Perm(Ru)

contains a transposition. In particular, if Gal(u/Q) is doubly transitive
then

Gal(u/Q) = Perm(Rf ) ∼= Sn

and
Gal(Q(Ru)/Q(

√
D)) = An.

Proof. Clearly, D0 is not a square and

Q(
√
D) = Q(

√

D0)

is a quadratic field. Since D0 is congruent to 1 modulo 4, the quadratic extension
Q(

√
D0)/Q is unramified at 2, which proves the first assertion of (a). The conditions

of Lemma 3.1(2) hold for all odd primes ℓ. Now the second assertion of (a) follows
from Remark 3.3 and Lemma 3.1(2)(c).

Let us start to prove (b). There are nonzero integers S and S0 such that D0 =
S2S0 and S0 is square-free. Clearly, both S and S0 are odd. Since

D = 22M ·D0 = 22M · S2S0 =
(

2MS
)2

S0

is not a square, S0 6= 1. Since S is odd, S2 ≡ 1 mod 4. Since D0 ≡ 1 mod 4, we
obtain that S0 ≡ 1 mod 4. It follows that S0 6= −1. We already know that S0 6= 1.
This implies that there is a prime ℓ that divides S0. Since S0 is odd and square-free,
ℓ is also odd and ℓ2 does not divide S0. Let T be the nonnegative integer such that
ℓT || S. Then ℓ2T+1 || 22MS2S0, and therefore ℓ2T+1 || D. This implies that the

quadratic field extension Q(
√
D)/Q is ramified at ℓ. Since

Q ⊂ Q(
√
D) ⊂ Q(Ru),
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the field extension Q(Ru)/Q is also ramified at ℓ. Since ℓ | D, the polynomial

u(x) mod ℓ ∈ Fℓ[x]

has a multiple root. Now the result follows from Lemma 3.1 combined with Remark
1.10. �

4. Discriminants of Mori trinomials

Let

f(x) = fg,p,b,c(x) = x2g+1 − bx− pc

4
be a Mori trinomial. Following Mori [8], let us consider the polynomial

u(x) = 22g+1f(x/2) = x2g+1 − 22gbx− 22g−1pc = un,B,C(x) ∈ Z[x] ⊂ Q[x]

with

n = 2g + 1, B = −22gb, C = −22g−1pc.

Remarks 4.1. (i) Clearly, f(x) and u(x) have the same splitting field and
Galois group. It is also clear that

∆(u) = 2(2g+1)2g ·∆(f) =
[

2(2g+1)g
]2

·∆(f).

In particular, ∆(u) is not a square, thanks to Remark 1.6.
(ii) By Theorem 1.4(i,iii), the polynomial f(x) is irreducible over Q and its

Galois group is doubly transitive. This implies that u(x) is irreducible over
Q and its Galois group over Q is also doubly transitive. (See also Theorem
6.6(i,ii) below.)

(iii) For all g the hyperelliptic curves Cf and Cu are biregularly isomorphic over

Q(
√
2). It follows that the jacobians J(Cu) and J(Cf ) are also isomorphic

over Q(
√
2). In particular, End(J(Cu)) = End(J(Cf )).

Clearly, the conditions of Lemma 3.1 hold for u(x) = u(x) for all odd primes ℓ.
The discriminant ∆(u) of u(x) coincides with

Discr(n,B,C) = (−1)(2g+1)2g/2(2g+1)2g+1[−22g−1pc]2g+(−1)2g(2g−1)/2(2g)2g[−22gb]2g+1.

It follows that

∆(u) = (−1)g22g(2g−1)
[

(2g + 1)2g+1(pc)2g − 26gg2gb2g+1
]

.

This implies that

(3) ∆(u) = 22[g(2g−1)]D0

where

D0 = (−1)g
{

(2g + 1) [(2g + 1)g(pc)g]
2 − 26gg2gb2g+1

}

.

Clearly, D0 is an odd integer that is not divisible by p. It is also clear that D0 is
congruent to (−1)g(2g + 1) modulo 4 (because every odd square is congruent to 1
modulo 4). This implies that

(4) D0 ≡ 1 mod 4

for all g.



10 YURI G. ZARHIN

5. Proof of Theorem 1.7

Let us apply Lemma 3.1(ii) to

u(x) = 22g+1f(x/2) = x2g+1 − 22gbx− 22g−1pc.

We obtain that for each odd prime ℓ the polynomial

u(x) mod ℓ ∈ Fℓ[x]

has, at most, one multiple root; in addition, this root is double and lies in Fℓ.
Applying to u(x) Corollary 3.5 combined with formulas (3) and (4) of Sect. 4,
we conclude that there exists an odd ℓ 6= p such that u(x) mod ℓ has exactly one
multiple root; this root is double and lies in Fℓ. In addition, Gal(u/Q) coincides
with S2g+1, because it is doubly transitive. Now the assertions (i) and (ii) follow
readily from the equality

f(x) mod ℓ =
u(2x)

22g+1
mod ℓ.

that holds for all odd primes ℓ.
By Remarks 4.1, Gal(f/Q) = Gal(u/Q) and therefore also coincides with S2g+1,

which implies (in light of Section 1.1) that Gal(Q(Rf )/Q(
√

∆(f))) = A2g+1. This
proves (iii). Now Remark 1.9 implies that End(J(Cf )) = Z. This proves (iv). In
order to prove (iiibis), first notice that the Galois extension Q(Rf )/Q is ramified

at 2 (Remark 1.5(1) ) while Q(
√

∆(f)) = Q(
√

∆(u)) is unramified at 2 over Q

in light of formulas (3) and (4) in Sect. 4 (and Corollary 3.5(a)). This implies

that Q(Rf )/Q(
√

∆(f)) is ramified at some prime divisor of 2. Since all the field

extensions involved are Galois, Q(Rf )/Q(
√

∆(f)) is actually ramified at all prime
divisors of 2. This proves the first assertion of (iiibis). The second assertion of
(iiibis) follows from Corollary 3.5(a). This proves (iiibis).

6. Variants and Complements

Throughout this section, K is a number field. We write O for the ring of integers
in K. If b is a maximal ideal in O then we write k(b) for the (finite) residue field
O/b. As usual, we call char(k(b)) the residual characteristic of b. We write Kb for
the b-adic completion of K and

Ob ⊂ Kb

for the ring of b-adic integers in the field Kb. We consider the subring O
[

1
2

]

⊂ K

generated by 1
2 over O. We have

O ⊂ O
[

1

2

]

⊂ K.

If b ⊂ O is a maximal ideal in O with odd residual characteristic then

O ⊂ O
[

1

2

]

⊂ Ob,

the ideal bO
[

1
2

]

is a maximal ideal in O
[

1
2

]

and

k(b) = O/b = O
[

1

2

]

/bO
[

1

2

]

= Ob/bOb.

Lemma 3.1(ii) and its proof admit the following straightforward generalization.
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Lemma 6.1. Let

u(x) = un,B,C(x) := xn +Bx+ C ∈ O[x]

be a monic polynomial of degree n > 1 such that B 6= 0 and C 6= 0. Let b be a
maximal ideal in O that enjoys the following properties.

(i) BO + CO + b = O.
(ii) nO +BO + b = O.
(iii) (n− 1)O + CO + b = O.

Suppose that u(x) has no multiple roots. Let us consider the polynomial

ū(x) := u(x) mod b ∈ k(b)[x].

Then:

(a) ū(x) has, at most, one multiple root in an algebraic closure of k(b).
(b) If such a multiple root say, γ, does exist, then

n(n− 1)BC 6∈ b

and γ is a double root of ū(x). In addition, γ is a nonzero element of k(b).
(c) If such a multiple root does exist then either the field extension K(Ru)/K

is unramified at b or a corresponding inertia subgroup at b in

Gal(K(Ru)/K) = Gal(u/K) ⊂ Perm(Ru)

is generated by a transposition. In both cases the Galois extension K(Ru)/K(
√

∆(u))
is unramified at all prime divisors of b.

Remark 6.2. In the notation of Lemma 6.1, suppose that ū(x) has no multiple
roots, i.e., ∆(u) 6∈ b. Then clearly the Galois extension K(Ru)/K is unramified at
b.

Proof. We have
ū(x) := xn + B̄x+ C̄ ∈ k(b)[x]

where
B̄ = B mod b ∈ k(b), C̄ = C mod b ∈ k(b).

The condition (i) implies that either B̄ 6= 0 or C̄ 6= 0. The condition (ii) implies
that if B̄ = 0 then n 6= 0 in k(b). It follows that if B̄ = 0 then nC̄ 6= 0.

The condition (iii) implies that if (n− 1) = 0 in k(b) then C̄ 6= 0 (and, of course,
n 6= 0 in k(b)). On the other hand, if C̄ = 0 then (n− 1) 6= 0 in k(b).

Suppose ū(x) has a multiple root γ in an algebraic closure of k(b). Then as in
the proof of Lemma 3.1(2),

0 = ∆(ū) = (−1)n(n−1)/2nnC̄n−1 + (−1)(n−1)(n−2)/2(n− 1)n−1B̄n = 0.

This implies that

(5) nnC̄n−1 = ±(n− 1)n−1B̄n.

This implies that if (n − 1) = 0 in k(b) then C̄ = 0, which is not the case. This
proves that (n − 1) 6= 0 in k(b). On the other hand, if B̄ = 0 then C̄ 6= 0 and
n 6= 0 in k(b). Then formula (5) implies that C̄ = 0 and we get a contradiction
that proves that B̄ 6= 0. If n = 0 in k(b) then n − 1 6= 0 in k(b) and formula (5)
implies that B̄ = 0, which is not the case. The obtained contradiction proves that
n 6= 0 in k(b). If C̄ = 0 then formula (5) implies that B̄ = 0, which is not the case.
This proves that the maximal ideal b does not contain n(n− 1)BC.
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On the other hand, we have as in the proof of Lemma 3.1(2) that

x · ū′(x)− n · ū(x) = −(n− 1)B̄x− nC̄

and therefore
−(n− 1)B̄γ − nC̄ = 0.

It follows that

γ = − nC̄

(n− 1)B̄

is a nonzero element of k(b). The second derivative ū′′(x) = n(n− 1)xn−2 and

ū′′(γ) = n(n− 1)γn−2 6= 0.

It follows that γ is a double root of ū(x). This proves (a) and (b).
In order to prove (c), notice that as in the proof of Lemma 3.1(ii)(c), there exists

a monic degree (n− 2) polynomial h̄(x) ∈ k(b)[x] such that

ū(x) = (x− γ)2 · h̄(x)
and h̄(x) and (x− γ)2 are relatively prime. By Hensel’s Lemma, there exist monic
polynomials

h(x), v(x) ∈ Ob[x], deg(h) = n− 2, deg(v) = 2

such that
u(x) = v(x)h(x)

and
h̄(x) = h(x) mod b, (x− γ)2 = v(x) mod b.

This implies that the splitting field Kb(Rh) of h(x) (over Kb) is an unramified
extension of Kb while the splitting field Kb(Ru) of u(x) (over Kb) is obtained from
Kb(Rh) by adjoining to it two (distinct) roots say, α1 and α2 of quadratic v(x). The
field Kb(Ru) coincides either with Kb(Rh) or with a certain quadratic extension of
Kb(Rh), ramified or unramified. It follows that the inertia subgroup I of

Gal(Kb(Ru)/Kb) ⊂ Perm(Ru)

is either trivial or is generated by the transposition that permutes α1 and α2 (and
leaves invariant every root of h(x)). In the former case K(Ru)/K is unramified at
b while in the latter one an inertia subgroup in

Gal(K(Ru)/K) ⊂ Perm(Ru)

that corresponds to b is generated by a transposition. In both cases the Galois
(sub)group Gal(K(Ru)/K(

√

∆(u))) does not contain transpositions (see Sect. 1.1).

This implies that K(Ru)/K(
√

∆(u)) is unramified at all prime divisors of b. �

Corollary 3.5 admits the following partial generalization.

Lemma 6.3. Let K be a number field and O be its ring of integers Let

u(x) = un,B,C(x) := xn +Bx+ C ∈ O[x]

be a monic polynomial without multiple roots of degree n > 1 such that both B and
C are not zeros. Suppose that there is a nonnegative integer N such that

2NO ⊂ BO + CO, 2NO ⊂ nO +BO, 2NO ⊂ (n− 1)O + CO.

Suppose that there is a nonnegative integer M such that the discriminant D :=
∆(u) = 22M ·D0 with D0 ∈ O.

Assume also that D,D0 and K enjoy the following properties.
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(i) D is not a square in K and

D0 − 1 ∈ 4O.

(ii) The class number of K is odd (e.g., O is a principal ideal domain).
(iii) Either K is totally imaginary, i.e., it does not admit an embedding into the

field of real numbers or K is totally real and D0 is totally positive.

Then:

(a) The quadratic extension K(
√

∆(u))/K is unramified at every prime divisor

of 2. The Galois extension K(Ru)/K(
√

∆(u)) is unramified at every prime
ideal b of odd residual characteristic.

(b) There exists a maximal ideal b ⊂ O with residue field k(b) of odd charac-
teristic that enjoys the following properties.
(i) D0 ∈ b, the polynomial

u(x) mod b ∈ k(b)[x]

has exactly one multiple root and its multiplicity is 2. In addition, this
root lies in k(b).

(ii) The field extension K(Ru)/K is ramified at b and the Galois group

Gal(K(Ru)/K) = Gal(u/K) ⊂ Perm(Ru)

contains a transposition. In particular, if Gal(u/K) is doubly transitive
then

Gal(u/K) = Perm(Rf ) ∼= Sn

and

Gal(K(Ru)/K(
√

∆(u))) = An.

Proof. Let us prove (a). Clearly,

E := K
(

√

D0

)

= K
(√

D
)

= K
(

√

∆(u)
)

⊂ K(Ru)

is a quadratic extension of K. Notice that

θ =
1 +

√
D0

2
∈ E

is a root of the quadratic equation

v2(x) := x2 − x+
1−D0

4
∈ O[x]

and therefore is an algebraic integer. In addition,

E = K(θ).

If a maximal ideal b2 in O has residual characteristic 2 then the quadratic polyno-
mial

v2(x) mod b2 = x2 − x+

(

1−D0

4

)

mod b2 ∈ k(b2)[x]

has no multiple roots, because its derivative is a nonzero constant −1. This im-
plies that E/K is unramified at all prime divisors of 2. On the other hand, the
conditions of Lemma 6.1 hold for all maximal ideals b of O with odd residual char-
acteristic. Now Remark 6.2 and Lemma 6.1(c) imply that the Galois extension

K(Ru)/K(
√

∆(u)) is unramified at every b of odd residual characteristic. This
proves (a).
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In order to prove (b), notice that the condition (iii) implies that either all
archimedean places of both E and K are complex or all archimedean places of both
E and K are real. This implies that E/K is unramified at all infinite primes. Since
the class number of K is odd, the classical results about Hilbert class fields [6, Ch.

2, Sect. 1.2] imply that there is a maximal ideal b ⊂ O such that E/K = K(
√
D)/K

is ramified at b. Since E/K is unramified at all prime divisors of 2, the residual
characteristic of b is odd, i.e., 2 6∈ b. This implies that

∆(u) = D ∈ b.

Since D = 22M ·D0 and b is a prime (actually, maximal) ideal in O, we haveD0 ∈ b.
It also follows that

u(x) mod b ∈ k(b)[x]

has a multiple root. Now we are in a position to apply Lemma 6.1. Since K(Ru) ⊃
E, the field extension K(Ru)/K is ramified at b. Applying Lemma 6.1, we conclude
that u(x) mod b has exactly one multiple root, this root is double and lies in k(b).
In addition,

Gal(K(Ru)/K) ⊂ Perm(Ru)

contains a transposition. This implies that if Gal(K(Ru)/K) is doubly transitive
then Gal(K(Ru)/K) coincides with Perm(Ru) ∼= Sn. Of course, this implies that

Gal(K(Ru)/K(
√

∆(u))) = An. �

6.4 (Generalized Mori quadruples). Let us consider a quadruple (g, p,b, c)
where g is a positive integer, p is a maximal ideal in O while b and c are elements
of O that enjoy the following properties.

(i) The residue field k(p) = O/p is a finite field of odd characteristic. If q is
the cardinality of k(p) then every prime divisor of g is also a divisor of q−1

2 .
In particular, if g is even then (q − 1) is divisible by 4.

(ii) The residue b mod p is a primitive element of k(p), i.e., it has multiplicative
order q − 1. In particular,

bO + p = O.

The conditions (i) and (ii) imply that for each prime divisor d of g the
residue b mod p is not a dth power in k(p). Since (q − 1) is even, b mod p

is not a square in k(p). So, if d is a prime divisor of 2g then b mod p is
not a dth power in k(p). If 2g is divisible by 4 then g is even and (q− 1) is
divisible by 4, i.e., −1 is a square in k(p). It follows that −4b mod p is not
a square in k(p). Thanks to Theorem 9.1 of [7, Ch. VI, Sect. 9], the last
two assertions imply that the polynomial

x2g − b mod p ∈ k(p)[x]

is irreducible over k(p). This implies that its Galois group over (the finite
field) k(p) is an order 2g cyclic group.

(iii) c ∈ p, c− 1 ∈ 2O and

O = bO + cO = bO + (2g + 1)O = 2gO + cO.

We call such a quadruple a generalized Mori quadruple (in K).
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Example 6.5. Suppose that K and g are given. By Dirichlet’s Theorem about
primes in arithmetic progressions, there is a prime p that does not divide (2g + 1)
and is congruent to 1 modulo 2g . (In fact, there are infinitely many such primes.)
Clearly, p is odd. Let us choose a maximal ideal p of O that contains p and denote
by q the cardinality of the finite residue field k(p). Then char(k(p)) = p and q is a
power of p. This implies that q − 1 is divisible by p − 1 and therefore is divisible
by 2g. Let us choose a generator b̃ ∈ k(p) of the multiplicative cyclic group k(p)∗.
Let r be a nonzero integer that is relatively prime to (2g + 1). (E.g., r = ±1,±2.)
Using Chinese Remainder Theorem, one may find b ∈ O such that

b mod p = b̃, b− r ∈ (2g + 1)O.

(Clearly, b 6∈ p.) Now the same Theorem allows us to find c ∈ p ⊂ O such that
c− 1 ∈ 2gbO. Then (g, p,b, c) is a generalized Mori quadruple in K.

Let us consider the polynomials

F (x) = Fg,p,b,c(x) = x2g+1 − bx− c

4
∈ O

[

1

2

]

[x] ⊂ K[x]

and
U(x) = 22g+1F (x/2) = x2g+1 − 22gbx− 22g−1c ∈ O[x] ⊂ K[x].

Theorem 6.6. Let (g, p,b, c) be a generalized Mori quadruple in K. Assume also
that there exists a maximal ideal b2 ⊂ O of residual characteristic 2 such that the
ramification index e(b2) of b2 (over 2) in K/Q is relatively prime to (2g+1). Then:

(i) The polynomial
F (x) = Fg,p,b,c(x) ∈ K[x]

is irreducible over Kb2
and therefore over K. In addition, the Galois ex-

tension K(RF )/K is ramified at b2.
(ii) The transitive Galois group

Gal(F/K) = Gal(K(RF )/K) ⊂ Perm(RF ) = S2g+1

contains a cycle of length 2g. In particular, Gal(F/K) is doubly transitive
and is not contained in A2g+1, and ∆(F ) is not a square in K.

(iii) Assume that K is a totally imaginary number field with odd class number.
Then Gal(F/K) = Perm(RF ). If, in addition, g > 1 then End(J(CF )) =
Z.

(iv) Assume that K is a totally imaginary number field with odd class number
and g > 1. Then:
(1) for all primes ℓ the image ρℓ,F (Gal(K)) is an open subgroup of finite

index in Gp(Tℓ(J(CF )), eℓ).
(2) Let L be a number field that contains K and Gal(L) be the absolute

Galois group of L, which we view as an open subgroup of finite index in
Gal(L). Then for all but finitely many primes ℓ the image ρℓ,F (Gal(L))
coincides with Gp(Tℓ(J(CF )), eℓ).

Remark 6.7. If K is a quadratic field then for every maximal ideal b2 ⊂ O (with
residual characteristic 2) the ramification index e(b2) of b2 in K/Q is either 1 or
2: in both cases it is relatively prime to odd (2g + 1). This implies that if K
is an imaginary quadratic field with odd class number then all the conclusions of
Theorem 6.6 hold for every generalized Mori quadruple (g, p,b, c). In particular,
the Galois extension K(RF )/K is ramified at every b2.
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One may find the list of imaginary quadratic fields with small (≤ 23) odd class
number in [1, pp. 322–324]; see also [16, Table 4 on p. 936].

Proof of Theorem 6.6. The b2-adic Newton polygon of F (x) consists of one segment

that connects the points (0,−2e(b2)) and (2g + 1, 0), which are its only integer
points, because e(b2) and (2g + 1) are relatively prime and therefore 2e(b2) and
(2g + 1) are relatively prime. Now the irreducibility of F (x) over Kb2

follows from
Eisenstein–Dumas Criterion [9, Cor. 3.6 on p. 316], [4, p. 502]. This proves (i). It
also proves that the Galois extension K(RF )/K is ramified at b2.

In order to prove (ii), let us consider the reduction

F̃ (x) = F (x) mod pO
[

1

2

]

= x2g+1 − b̃x ∈ k(p)[x]

where

b̃ = b mod p ∈ k(p).

So,

F̃ (x) = x(x2g − b̃) ∈ k(p)[x].

We have already seen (Sect. 6.4) that x2g − b̃ is irreducible over k(p) and its

Galois group is an order 2g cyclic group. We also know that b̃ 6= 0 and therefore
the polynomials x and x2g − b̃ are relatively prime. This implies that K(RF )/K
is unramified at p and a corresponding Frobenius element in Gal(K(RF )/K) ⊂
Perm(RF ) is a cycle of length 2g. This proves (ii). (Compare with arguments on
p. 107 of [8].)

The map α 7→ 2α is a Gal(K)-equivariant bijection between the sets of roots
RF and RU , which induces a group isomorphism between permutation groups
Gal(RF ) ⊂ Perm(RF ) and Gal(RU ) ⊂ Perm(RU ). In particular, the double tran-
sitivity of Gal(RF ) implies the double transitivity of Gal(RU ). On the other hand,

∆(U) = 2(2g+1)2g∆(F ) =
[

2(2g+1)g
]2

∆(F ).

This implies that ∆(U) is not a square in K as well. The discriminant ∆(U) is
given by the formula (Remark 3.2)

D := ∆(U) = (−1)(2g+1)2g/2(2g+1)2g+1[−22g−1c]2g+(−1)2g(2g−1)/2(2g)2g[−22gb]2g+1

= (−1)g22g(2g−1)
[

(2g + 1)2g+1c2g − 26gg2gb2g+1
]

=

22[g(2g−1)]
{

(−1)g
[

(2g + 1)2g+1c2g − 26gg2gb2g+1
]}

.

We have

D = 22MD0

where M = g(2g − 1) is a positive integer and

D0 = (−1)g
[

(2g + 1)2g+1c2g − 26gg2gb2g+1
]

∈ O.

Since c− 1 ∈ 2O, we have c2 − 1 ∈ 4O and

D0 ≡ (−1)g(2g + 1)2g+1 mod 4O.

Since (2g + 1)2g =
[

(2g + 1)2
]g ≡ 1 mod 4, we conclude that

D0 ≡ (−1)g(2g + 1) mod 4O.

This implies that

D0 − 1 ∈ 4O.
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Applying Lemma 6.3 to

n = 2g + 1, B = −22gb, C = −22g−1c, u(x) = U(x),M = g(2g − 1), N = 2g,

we conclude that doubly transitive Gal(U/K) coincides with Perm(RU ) and there-
fore Gal(F/K) coincides with Perm(RF ) ∼= S2g+1. If g > 1 then Theorem 1.2 tells
us that End(J(CF )) = Z. This proves (iii). We also obtain that there exists a
maximal ideal b ⊂ O with odd residual characteristic such that

U(x) mod b ∈ k(b)[x]

has exactly one multiple root, this root is double and lies in k(b). Since

F (x) =
U(2x)

22g+1
,

we obtain that

F (x) mod bO
[

1

2

]

=
U(2x)

22g+1
mod b ∈ k(b)[x].

This implies that the polynomial F (x) mod bO
[

1
2

]

∈ k(b)[x] has exactly one mul-

tiple root, this root is double and lies in k(b). The properties of F (x) mod bO
[

1
2

]

imply that J(CF ) has a semistable reduction at b with toric dimension 1. Now it
follows from [21, Th. 4.3] that for for all primes ℓ the image ρℓ,F (Gal(K)) is an
open subgroup of finite index in Gp(Tℓ(J(CF )), eℓ). It follows from [5, Th. 1] that
if L is a number field containing K then for all but finitely many primes ℓ the image
ρℓ,F (Gal(L)) coincides with Gp(Tℓ(J(CF )), eℓ). This proves (iv). �

Corollary 6.8. We keep the notation of Theorem 6.6. Let K be an imaginary
quadratic field with odd class number. Let (g, p,b, c) be a generalized Mori quadruple
in K and

F (x) = Fg,p,b,c(x) ∈ K[x].

Then

Gal(K(RF )/K(
√

∆(F ))) = A2g+1

and the Galois extension K(RF )/K(
√

∆(F )) is unramified everywhere outside 2
and ramified at all prime divisors of 2.

Proof. As above, let us consider the polynomial

U(x) = 22g+1F (x/2) = x2g+1 − 22gbx− 22g−1c ∈ O[x] ⊂ K[x].

We have

K(RF ) = K(RU ), K(
√

∆(F )) = K(
√

∆(U)).

Since

S2g+1 = Perm(RU ) = Gal(U/K) = Gal(K(RU )/K),

we have

Gal(K(RU )/K(
√

∆(U))) = A2g+1.

It follows from Remark 6.7 that the Galois extension K(RU )/K is ramified at
every prime divisor of 2 (in K). On the other hand, Lemma 6.3(a) (applied to

u(x) = U(x)) tells us that the quadratic extension K(
√

∆(U))/K is unramified at
every prime divisor of 2 (in K). Since all the field extensions involved are Galois,

K(RU )/K(
√

∆(U)) is ramified at every prime divisor of 2 (in K(
√

∆(U))).
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Since K is purely imaginary, K(
√

∆(U)) is also purely imaginary and therefore
(its every field extension, including) K(RU ) is unramified at all infinite places (in

K(
√

∆(U))).
Remark 6.2 and Lemma 6.3(a) (applied to u(x) = U(x)) imply that the field

extension K(RU )/K(
√

∆(U)) is unramified at all maximal ideals b in O with odd
residual characteristic. �

7. Corrigendum to [20]

• Page 660, the 6th displayed formula: insert ⊂ between EndGal(K)Vℓ(X) and
EndQℓ

Vℓ(X).
• Page 662, Theorem 2.6, line 3: r1 should be r2.
• Page 664, Remark 2.16: The reference to [23, Theorem 1.5] should be
replaced by [23, Theorem 1].

• Page 664, Theorem 2.20. The following additional condition on ℓ was in-
advertently omitted.
“ (iii) IfC is the center of End(X) then C/ℓC is the center of End(X)/ℓEnd(X).”

In addition, “be” on the last line should be “is”.
• Page 666, Theorem. 3.3. Line 2: ℓ should be assumed to be in P , i.e. one
should read “Then for all but finitely many ℓ ∈ P . . .”. In addition, Xn

should be Xℓ throughout lines 3–6.
• Page 668, Lemma 3.9, line 1: IsogP should be IsP .
• Page 668, Theorem 3.10, line 1: replace IsogP ((X×Xt)8,K, 1) by IsP ((X×
Xt)4,K, 1).

• Page 670, Sect. 5.1, the first displayed formula: t should be g.
• Page 672, line 9: X ′

ℓ should be Xℓ.

(I am grateful to Kestutis Cesnavicius, who has sent me this list of typos.)
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