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SOLUTIONS OF THE CONGRUENCE
∑n

k=1 k
f(n) ≡ 0 (mod n)

JOSÉ MARÍA GRAU, PIETER MOREE, AND ANTONIO M. OLLER-MARCÉN

Abstract. In this paper we characterize, in terms of the prime divisors of n, the pairs
(k, n) for which n divides

∑n
j=1 j

k. As an application, we derive some results on the sets

Mf := {n ≥ 1 : f(n) > 1 and
∑n

j=1 j
f(n) ≡ 0 (mod n)} for some choices of f .

1. Introduction

In the literature on power sums Sk(n) :=
∑n

j=1 j
k the following congruence is well known

Proposition 1. (von Staudt [19], 1840). Let k, n ≥ 1 be integers with k even. We have that

Sk(n) ≡ −
∑

p|n, p−1|k

n

p
(mod n).

This result motivates us to study Sk(n) (mod n) and, more generally, to study Sf(n)(n)
(mod n) for different arithmetic functions f (see [11] for some results in this spirit). Thus,
if p− 1 | f(p), for every prime p, we have that the congruence Sf(n)(n) ≡ −1 (mod n) holds
for every n = p prime and it is interesting to find the composite numbers which also satisfy
it. In this direction we have the Giuga numbers (see [1]), which are composite numbers such
that Sφ(n)(n) ≡ −1 (mod n), the strong Giuga numbers, which are composite numbers such
that Sn−1(n) ≡ −1 (mod n) (Giuga’s conjecture [3] states that there are no strong Giuga
numbers. Tipu [20] estimates the number of strong Giuga numbers up to x to be O(x1/2 log x)
while Luca, Pomerance and Shparlinski [9] improve this to O(x1/2/ log2 x)), or the K-strong
Giuga numbers, which are composite numbers such that SK(n−1)(n) ≡ −1 (mod n) (see [5]).

In this paper we characterize, in terms of the prime divisors of n, the pairs (k, n) for which
n divides Sk(n). This characterization is given in the following theorem.

Theorem 1. Let k, n ≥ 1 be integers. Then, n | Sk(n) if and only if one of the following
holds:

i) n is odd and p− 1 - k for every prime divisor p of n.
ii) n is a multiple of 4 and k > 1 is odd.

Moreover, inspired by Giuga’s ideas we investigate the congruence Sf(n)(n) ≡ 0 (mod n)
for some functions f . This work started in [4], where the case f(n) = (n−1)/2 was considered.
The case of arithmetic functions f such that p−1 - f(p) for every prime p is of special interest.

In what follows we will consider the natural numbers

(1) Mf := {n ≥ 1 : f(n) > 1 and Sf(n)(n) =
n∑
j=1

jf(n) ≡ 0 (mod n)}

associated to an arbitrary function f : N −→ N. The reader might wonder why the definition
involves f(n) > 1, rather than f(n) ≥ 1. The reason for this is that by Theorem 1 the case
f(n) = 1 is somewhat exceptional.

1
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Here we study the sets Mf in the case f(n) = an + b, the affine case, and in some cases
such that Mf contains all prime numbers. We have characterized the elements of these sets
and, in some cases, we have computed their asymptotic density.

In [6] the related problem of studying the sets {n : SQn(n) ≡ n (mod Qn)} for certain
very special Q (‘weak primary pseudoperfect numbers’) is studied

2. A proof of Theorem 1

In this section we will establish Theorem 1. It will be convenient to work with

Sk(n) :=
n∑
j=1

jk and S∗k(n) :=
n−1∑
j=1

jk.

In particular we will characterize the pairs (k, n) such that n divides Sk(n). If k = 0, clearly
Sk(n) = n and there is no problem to study. Thus, in what follows we will assume k > 0.

We will start this section with three simple lemmas.

Lemma 1. Let p be a prime and let k > 0 be an integer. Then, we have

Sk(p) ≡

{
−1 (mod p) if p− 1 | k;

0 (mod p) if p− 1 - k.

Proof. See [7] for the standard proof using primitive roots, or [10] for a recent elementary
proof. �

The next lemma extends Lemma 2 in Moree [17], where it is proved that (2) holds if p is
odd or p = 2 and r is even.

Lemma 2. Let λ and r be positive integers and p be a prime. We have

(2) Sr(p
λ+1) ≡ pSr(p

λ) (mod pλ+1),

unless λ = 1, p = 2, r is odd and r ≥ 3 in which case we have 0 ≡ Sr(4) 6≡ 2Sr(2) ≡ 2
(mod 4).

Proof. Note that it is equivalent to prove the statement with Sr(·) replaced by S∗r (·). Since
the statement clearly holds for r = 1 we may assume that r ≥ 2. Every 0 ≤ j < pλ+1 can
be uniquely written as j = αpλ + β with 0 ≤ α < p and 0 ≤ β < pλ. Hence we obtain by
invoking the binomial theorem

S∗r (p
λ+1) =

p−1∑
α=0

pλ−1∑
β=0

(αpλ + β)r ≡ p

pλ−1∑
β=0

βr + rpλ
p−1∑
α=0

α

pλ−1∑
β=0

βr−1 (mod p2λ).

Since the first single sum equals S∗r (p
λ), we see that (2) holds if and only if r

2
p(p−1)S∗r−1(p

λ) ≡
0 (mod p). Now suppose that the latter congruence does not hold. Then we must have
p = 2, 2 - r and r ≥ 3. Since 2 | S∗r−1(2λ) for λ ≥ 2 we must have λ = 1. The proof is easily
completed on noting that for r ≥ 3 and odd we have Sr(4) ≡ 1r + 3r ≡ 0 (mod 4). �

As so often in number theory, ‘two is the oddest of primes’ and needs special treatment

Lemma 3. Let e, k ≥ 1. We have 2e | Sk(2e) if and only if k ≥ 3 is odd and e ≥ 2.

Proof. Follows on combining the previous two lemmas. �
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In fact, using Lemma 2 it is easy to evaluate Sk(2
e) modulo 2e (where we ignore the trivial

case e = 1). We give the result for completeness’ sake.

Lemma 4. Let e > 1. Then

Sk(2
e) ≡

{
0 (mod 2e) if k is odd;

2e−1 (mod 2e) if k > 1 is even.

Proof of Theorem 1. If b | n, then clearly Sk(n) ≡ n
b
Sk(b) (mod b). Now let n =

∏s
i=1 p

ei
i be

the canonical prime factorisation of n. Noting that pi - np−eii we infer from Sk(n) ≡ n
p
ei
i

Sk(p
ei
i )

(mod peii ) that

(3) n | Sk(n) if and only if peii | Sk(p
ei
i ), for i = 1, 2, . . . , s.

If pi is odd, then it follows on combining Lemma 1 and Lemma 2 that

(4) peii | Sk(p
ei
i ) if and only if pi − 1 - k.

Using this and Lemma 3 we see that n | Sk(n) if and only if
i) n is odd and p− 1 - k for every odd prime divisor p of n;
or
ii) n is a multiple of 4, k > 1 is odd and p− 1 - k for every odd prime divisor p of n.

Note that in i) the second ‘odd’ is a consequence of the first ‘odd’. Likewise in ii) the
condition that k is odd implies that p− 1 - k for every odd prime divisor p of n. On leaving
out the redundant parts of i) and ii) the proof is completed. �

3. Some remarks concerning Theorem 1

3.1. The Erdős-Moser equation. Erdős conjectured around 1950 that the Diophantine
equation

(5) Sk(n− 1) = nk

has only the solution 1 + 2 = 3 corresponding to (k, n) = (1, 3). Note that if (k, n) satisfies
Sk(n − 1) = nk, then n | Sk(n). The first results on this problem were obtained by original
but entirely elementary methods by Leo Moser [18], cf. [17]. He showed that if (5) has a

further solution with k > 1, then k is even and n > 10106 . He showed that either n ≡ 0
(mod 8) or n ≡ 3 (mod 8). Note that by Theorem 1 we can actually deduce that n ≡ 3
(mod 8) and p | n implies p − 1 - k. A slightly improved and extended version of Moser’s
results was given by the second author as Theorem 4 in [16]. This also incorporates that
n ≡ 3 (mod 8) (explicitly) and p | n implies p− 1 - k (implicitly). The implicit fact follows
from [16, (8)] which states that

(6)
∑

(p−1)|k, p|n

1

p
∈ Z

and the remark that a sum of reciprocals of distinct primes can never be a positive integer.
Moser’s proof rests on deriving four equations similar to (6) (these are the four mathemagical
rabbits in the title of [16]). The baby mathemagical rabbit (6) he apparently overlooked.

Theorem 1 can also be used to get some information on the generalized Erdős-Moser
equation Sk(n−1) = ank, with a a fixed positive integer. Here it is not difficult to show that
if there is a solution with k > 1, then k must be even. By Theorem 1 we then infer that if
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(a, n, k) is a solution with k > 1, then n is odd and p | n implies p− 1 | k. These are known
results, see Moree [13].

3.2. The Carlitz-von Staudt theorem. Proposition 1 deals only with the case k even.
Carlitz [2] considered the case k is odd and claimed that n | Sk(n) in that case. The second
author [12] pointed out that this is false. It is true, however, that Sk(n) = rn/2 with r an
integer. The following lemma from a preprint of Kellner [8] gives the parity of r.

Lemma 5. Let k ≥ 3 be odd. We have Sk(n) = rn/2 with r an integer. Here r is odd if
n ≡ 2 (mod 4) and r is even otherwise.

Proof. Since k is odd, we have jk ≡ −(n− j)k (mod n) for every integer j.
Case n is even: All terms of the sum cancel each other modulo n except for the middle

term (n/2)k. We infer that Sk(n) = rn/2 with r ≡ (n/2)k−1 (mod n). It follows that r is
even if 4 | n and r is odd if n ≡ 2 (mod 4).

Case n is odd: The sum Sk(n), having no middle term, vanishes modulo n and hence r is
even. �

Using this lemma we can give a general version of Proposition 1

Proposition 2. Let k, n ≥ 1 be integers, then

Sk(n) ≡


−
∑

p|n
p−1|k

n
p

(mod n), if k is even;

n/2 (mod n), if k = 1 and n is even;

n/2 (mod n), if k > 1 is odd and n ≡ 2 (mod 4);

0 (mod n), otherwise.

Proof. If k is even this is the classical result given in Proposition 1. If k = 1 it is clear that
Sk(n) = n(n+ 1)/2 so, Sk(n) ≡ n/2 (mod n) if n is even and Sk(n) ≡ 0 (mod n) if n is odd.
The remaining cases follow immediately from Lemma 5. �

Lemma 5 can be sharpened. In [16] the second author showed that in fact Sk(n) =
tn(n+ 1)/2. We now determine the parity of t

Proposition 3. Let k ≥ 3 be odd. We have Sk(n) = tn(n + 1)/2 with t an integer. Here t
is odd if n ≡ 1, 2 (mod 4) and t is even otherwise.

Proof. Since k is odd, we have jk ≡ −(n− j)k (mod n) and jk ≡ −(n− j + 1)k (mod n+ 1)
for every integer j.

Case n is even: In this case we have that Sk(n) ≡ (n/2)k (mod n) and Sk(n) ≡ 0 (mod n+
1). Since gcd(n, n + 1) = 1, we infer that Sk(n) = tn(n + 1)/2 with t ≡ (n/2)k−1 (mod 2).
It follows that t is even if 4 | n and t is odd if n ≡ 2 (mod 4).

Case n is odd: In this case we have that Sk(n) ≡ 0 (mod n) and Sk(n) ≡ ((n + 1)/2)k

(mod n+1). Since gcd(n, n+1) = 1, we infer that Sk(n) = tn(n+1)/2 with t ≡ ((n+1)/2)k−1

(mod 2). It follows that t is even if 4 | n+ 1 and t is odd if n ≡ 1 (mod 4). �

4. The affine case

In this section we will focus on the case where f is an affine function; i.e., a linear function.
In what follows we will denote an + b by fa,b(n). Recall the definition (1) of Mf . In what
follows it will be easier to characterize Nf \Mf instead of Mf itself, where

Nf = {n ∈ N : f(n) > 1}.
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Let us introduce some further notation. Given (a, b) ∈ N× Z, we will consider the set

Pa,b := {p odd prime : b ≡ 0 (mod gcd(a, p− 1))}.
and if (a, b, p) ∈ N× Z× Pa,b we define

µa,b(p) := min{x ∈ N : xpa ≡ −b (mod p− 1)}.
Note that in case p is an odd prime the equation xpa ≡ −b (mod p − 1) has a solution if
and only if p is in Pa,b. For notational convenience we shorten {n ∈ N : n ≡ c (mod d)} to
{c (mod d)}. The intersection of a set S with Nf will be denoted by Sf . With this notation
in mind we can prove the following result.

Theorem 2. Let (a, b) ∈ N× Z. Put pa := (p− 1)/gcd(a, p− 1) and f(n) := a+ bn. Then

i) If a and b are even,

Nf \Mf = {2N}f ∪
⋃

p∈Pa,b

{pµa,b(p) (mod p · pa)}f .

ii) If a and b are odd,

Nf \Mf = {2 (mod 4)}f ∪
⋃

p∈Pa,b

{pµa,b(p) (mod p · pa)}f .

iii) If a is even and b is odd, then

Nf \Mf = {2 (mod 4)}f .
iv) If a is odd and b is even, then

Nf \Mf = {2N}f .

Proof. Suppose that n ∈ Nf . Then f(n) > 1. By Theorem 1 we have n - Sf (n) if and only if
a) n is odd and p− 1 | f(n) for some odd prime divisor p of n;
b) n ≡ 2 (mod 4);
or
c) n is a multiple of 4, f(n) is even.

We will give a complete proof of i), the other cases being similar.
Since by assumption a and b are even, f(n) is even and hence, by b) and c), we have that
{2N}f ⊆ Nf \Mf . Now, assume that n 6∈ Mf is odd. Then by a) there must exist an odd
prime p | n such that p − 1 | an + b. Since an ≡ 0 (mod ap) and an ≡ −b (mod p − 1) it
follows that p is in Pa,b and an ∈ {A+ s · lcm(ap, p− 1) : s ≥ 0} with

A = min{x ∈ N : x ≡ 0 (mod ap), x ≡ −b (mod p− 1)}.
Using that A = apµa,b(p) we find that

n ∈ {A
a

+
s

a
lcm(ap, p− 1) : s ≥ 0} = {pµa,b(p) (mod p · pa)}.

On taking the requirement f(n) > 1 into account we obtain that n ∈ {pµa,b(p) (mod p ·pa)}f
for some p ∈ Pa,b is necessary and sufficient for an odd n to be in Nf \Mf . �

Here and throughout, we denote by δ(A) (resp. δ(A), δ(A)) the asymptotic (resp. lower,
upper asymptotic) density of an integer sequence A. Recall that

δ(A) = lim
N→∞

card([0, N ] ∩ A)

N
,
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while δ(A) and δ(A) are obtained using the lower or upper limit in the previous expression.
We will be interested in computing the asymptotic density of the sets Mfa,b , at least for

some particular values of a and b. To do so we must first show that this density exists and
the following lemma will be our main tool.

Lemma 6. Let A := {ak}k∈N and {ck}k∈N be two sequences of positive integers and

Bk := {ak + (s− 1)ck : s ∈ N}.
If
∑∞

k=1 c
−1
k is convergent and A has zero asymptotic density, then

⋃∞
k=1 Bk has an asymptotic

density with δ(
⋃∞
k=1 Bk) = limn→∞ δ(

⋃n
k=1 Bk) and

δ(
∞⋃
k=1

Bk)− δ(
n⋃
k=1

Bk) ≤
∞∑

i=n+1

1

ci
.

Proof. Let us denote Bn :=
⋃∞
k=n+1 Bk and ϑ(n,N) := card([0, N ] ∩Bn). Then

ϑ(n,N) ≤ card([0, N ] ∩ A) +N
∞∑

k=n+1

1

ck
.

From this, we get

δ̄(Bn) = lim sup
ϑ(n,N)

N
≤ lim sup

card([0, N ] ∩ A)

N
+

∞∑
k=n+1

1

ck
=

∞∑
k=n+1

1

ck
.

Now, for every n,
⋃n
k=1 Bk has an asymptotic density and the sequence δn := δ (

⋃n
k=1 Bk) is

non-decreasing and bounded (by 1), thus convergent. Consequently

δn ≤ δ (∪∞k=1Bk) ≤ δ (∪∞k=1Bk) = δ (∪nk=1Bk ∪Bn) ≤ δn + δ̄(Bn) ≤ δn +
∞∑

k=n+1

c−1k ,

and taking into account that
∑∞

k=n+1 c
−1
j converges to zero, it is enough to take limits in

order to finish the proof. �

With the help of this lemma the following proposition is easy to prove.

Proposition 4. If (a, b) ∈ N× Z, then the set Mfa,b has an asymptotic density δ(Mfa,b).

Proof. As δ(Nfa,b) = 1 it is enough to see that Nfa,b \Mfa,b has an asymptotic density.
Cases iii) and iv) above are obvious. In cases i) and ii) it is enough to apply the previous

lemma since Nfa,b \Mfa,b is a countable union of arithmetic progressions modulo p · pa whose
initial terms, p · µa,b(p), form a set of zero asymptotic density, and the associated series of
reciprocal moduli ∑

p prime

1

p · pa
=
∑
p prime

gcd(a, p− 1)

p(p− 1)

is convergent. �

The rest of this section will be devoted to the study of δ(Mf
1,b

). If b is even, Mf
1,b

is

exactly the set of odd positive integers > 1−b and its asymptotic density is 1
2
. The case when

b is odd is much more interesting. In particular we will see that, in this case, the asymptotic
density of Mf1,b is slightly greater than 1

2
. Our density computation will be based on the

following corollary of Theorem 2.
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Corollary 1. Put

(7) Gbp := {−bp (mod p(p− 1))}.

If b ∈ Z is odd, then Nf
1,b
\Mf

1,b
=
⋃
p≥3{Gbp}f1,b ∪ {2 (mod 4)}f1,b.

We note that δ(
⋃
p≥3 G0p) is the density of the set of integers such that p(p − 1) | m for

some p | m with p ≥ 3. Note that, for b odd,

(8) δ(Mf
1,b

) = 1− δ(Nf1,b \Mf1,b) = 1− δ(
⋃
p≥3

Gbp ∪ {2 (mod 4)}) =
3

4
− δ(

⋃
p≥3

Gbp),

where we used the observation that Gbp consists of odd integers only. The final density in (8)
can be computed using the inclusion-exclusion principle. For this it will be necessary to have
a good criterion to determine when the intersection of Gbp for various odd primes p is empty.
For m square-free we have lcm[p− 1 : p | m] = λ(m), with λ the Carmichael function.

Proposition 5. Let P be a finite set of odd primes and put m :=
∏

p∈P p. Then
⋂
p∈P Gbp

is non-empty if and only if gcd(m,φ(m)) | b. If the intersection is non-empty, then the set⋂
p∈P Gbp is an arithmetic progression having modulus lcm(m,λ(m)).

Proof. It is clear that
⋂
p∈P Gbb is non-empty if and only if there exists n such that n/p ≡

n ≡ −b (mod p − 1) and p | n for every p ∈ P . This happens if and only if there exists n
such that n ≡ −b (mod λ(m)) and n ≡ 0 (mod m). Note that the latter congruences have
a solution if and only if gcd(m,λ(m)) divides b. To finish the proof it is enough to observe
that, m being square-free, gcd(m,λ(m)) = gcd(m,φ(m)) and to apply the Chinese remainder
theorem. �

To compute the density of the set N \Mf1,b we define, given ε > 0, k := k(ε) to be the
smallest integer such that ∑

j≥k

1

pj(pj − 1)
< ε.

Thus, with an error of at most ε, the density of the set N \Mf1,b is the same as the density

of
⋃
j<k Gbpj :

δ

(⋃
j<k

Gbpj

)
< δ(N \Mf1,b) < δ

(⋃
j<k

Gbpj

)
+ ε

and, by the inclusion-exclusion principle, we find

δ

(⋃
j<k

Gbpj

)
=
∑
s≥1

∑
1≤i1<i2<···<is≤k−1

αi1,i2,...,is
lcm[pi1(pi1 − 1), . . . , pis(pis − 1)]

,

with the coefficient αi1,i2,...,is being zero if
⋂s
t=1 Gbpit = ∅, and being (−1)s−1 otherwise. Alter-

natively we can write this as

(9) δ

(⋃
j<k

Gbpj

)
= −

∑
m>1, m|p2p3···pk−1

gcd(m,ϕ(m)|b

µ(m)

lcm(m,λ(m))
.
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It is not difficult to see, cf. [4], that the series∑
gcd(m,ϕ(m))|b

µ(m)

lcm(m,λ(m))

converges absolutely. Using this, (8) and (9), we then obtain the following result.

Theorem 3. If b ∈ Z is odd, then

δ(Mf
1,b

) =
3

4
+

∑
m>1, 2-m

gcd(m,ϕ(m))|b

µ(m)

lcm(m,λ(m))
.

Corollary 2. We have

δ(Mf1,±1
) =

3

4
+

∑
m>2

gcd(m,ϕ(m))=1

(−1)ω(m)

mλ(m)
,

where ω(m) is the number of distinct prime factors of m.

Proof. Note that m > 1, 2 - m and gcd(m,ϕ(m)) ∈ {−1, 1} if and only if m > 2 and
gcd(m,ϕ(m)) = 1. The m satisfying these conditions are odd and square-free and thus we
have gcd(m,ϕ(m)) = gcd(m,λ(m)) = 1 and hence lcm(m,λ(m)) = mλ(m) and µ(m) =
(−1)ω(m). �

The asymptotic density of Mf1,±1
is closely related to that of the set

P := {n ≥ 1 : 2 - n, Sn−1
2
≡ 0 (mod n)},

which was defined and studied in [4] and where it is shown that

δ(P) =
1

2
+

∑
m>2

gcd(m,ϕ(m)=1

(−1)ω(m)

2mλ(m)
∈ [0.379005, 0.379826].

On combining this with Corollary 2 we reach the following conclusion.

Proposition 6. We have δ(Mf1,±1
) = 2δ(P)− 1/4 ∈ [0.50801, 0.50966].

Recall that a Carmichael number n is a positive composite integer that satisfies Fermat’s
Little Theorem: an−1 ≡ 1 (mod n) for every a coprime to n. It follows that a Carmichael
number n meets Korselt’s criterion: it must be square-free with p− 1 dividing n− 1 for each
prime factor p of n. We will say that a positive integer n is an anti-Korselt number if for
every p prime divisor of n, p− 1 does not divide n− 1.

Lemma 7.
i) An integer n is an anti-Korselt number if and only if 2 - n and n | Sn−1(n).
ii) The set of anti-Korselt numbers K has an asymptotic density δ(K) satisfying

δ(K) = δ(Mf1,−1
)− 1

4
= 2δ(P)− 1

2
∈ [0.25801, 0.259652].

Proof. i) This follows from Theorem 1 and the observation that anti-Korselt numbers are
odd.
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ii) The density δ(K) equals that of the odd integers in Mf1,−1 , and hence, keeping in mind
that the sets G−1p , p ≥ 3, consist of odd numbers only, we infer from Corollary 1 that

δ(K) = δ({n : 2 - n})− δ(
⋃
p≥3

G−1p ) =
1

2
− δ(

⋃
p≥3

G−1p ).

By (8) we see that δ(K) = δ(Mf1,−1
)− 1/4. Now invoke Proposition 6. �

Lemma 8. Let {Ai}ni=1 and {Bi}ni=1 be two families of sets such that:

i) δ(Ai) = δ(Bi).
ii) δ(Ai

⋂
Aj) ≥ δ(Bi

⋂
Bj).

Then

δ(
n⋃
i=1

Ai) ≤ δ(
n⋃
i=1

Bi),

with the inequality being strict if any of the inequalities in ii) is strict.

Proof. We proceed by induction on n. The result for n = 2 is trivial. Now, assume that

δ(
n⋃
i=1

Ai) ≤ δ(
n⋃
i=1

Bi).

Note that, from condition ii) it follows that

δ(An+1

⋂
(
n⋃
i=1

Ai)) ≥ δ(Bn+1

⋂
(
n⋃
i=1

Bi)).

Hence, we have that

δ(
n+1⋃
i=1

Ai) = δ(
n⋃
i=1

Ai) + δ(An+1)− δ(An+1

⋂
(
n⋃
i=1

Ai)) ≤

≤ δ(
n⋃
i=1

Bi) + δ(Bn+1)− δ(Bn+1

⋂
(
n⋃
i=1

Bi)) = δ(
n+1⋃
i=1

Bi),

and the result follows. �

Lemma 9. Let b | b′ and suppose that m is an odd integer. We have

δ(
⋃
p|m

Gb
p) ≥ δ(

⋃
p|m

Gb
p) ≥ δ(

⋃
p|m

G0
p) = −

∑
d|m, d>1

µ(d)

lcm(d, λ(d))
.

Proof. We consider the families {Gb′p }, {Gbp} and {Gbp} (recall Corollary 1). Since Gb′p , Gbp and

Gbp are arithmetic progressions of the same modulus p(p−1), it follows that δ(Gb′p ) = δ(Gb′p ) =

δ(G0p). Also observe that, if p 6= q are primes and Gb′p ∩Gb
′
q = ∅, then also Gbp∩Gbq = ∅. On the

other hand, if Gb′p ∩Gb
′
q 6= ∅, then Gbp ∩Gbq is either empty or has the same density as Gb′p ∩Gb

′
q .

Note that the intersection G0p ∩G0q is never empty. On applying Lemma 8 the two inequalities
are established. The final identity holds by an argument similar to the one used to establish
equation (9), where we use again that that the intersection G0p ∩ G0q is never empty. �
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Corollary 3. If b | b′ and m is odd, then

δ(Mf1,b) ≤ δ(Mf1,b′
) ≤

∑
d|m

µ(d)

lcm(d, λ(d))
− 1

4
.

On applying Proposition 6 and Corollary 3 with m the product of the first 22 odd primes,
we obtain

0.508 < δ(Mf1,1
) < δ(Mf

1,b
) < 0.647.

It is easy to observe using Lemma 8 that if b is odd and |b| > 1, then δ(Mf
1,b

) > δ(Mf1,1
).

Let κ(n) =
∏

p|n p denote the squarefree kernel of n. By Theorem 3 it follows that if κ(b) =

κ(b′), then δ(Mf
1,b′

) = δ(Mf
1,b

). Moreover, if κ(b) | κ(b′) and κ(b) < κ(b′), then δ(Mf
1,b′

) >

δ(Mf
1,b

).

5. Mf containing the prime numbers

In this section we will characterize the set Mf for some functions f such that f(p) = p−1
2

for every odd prime. Note that in this caseMf contains all odd primes p > 3. In particular,
we will focus on f = ϕ

2
and f = λ

2
, where ϕ and λ denote the Euler and Carmichael function,

respectively.

Proposition 7. We have Mϕ
2

= {pk : p odd prime} \ {3}.

Proof. Note that ϕ(pk)
2

> 1 if and only if pk 6= 3. Hence, 3 6∈ Mϕ
2

and in what follows we

assume that pk 6= 3.

If p is an odd prime and k ∈ N, ϕ(pk)
2

= pk−1(p−1)
2

and gcd
(
pk−1(p−1)

2
, p− 1

)
< p − 1.

Consequently we can apply Theorem 1 to get that pk ∈Mϕ
2
.

Now, if n is odd and there exist distinct odd primes p, q dividing n, it readily follows that

p− 1 divides ϕ(n)
2

so Theorem 1 i) applies and it follows that n 6∈ Mϕ
2
. Thus, if there is an

odd n ∈Mϕ
2

it must be a prime power exceeding 3.

Finally, if n ∈ Mϕ
2

is even, Theorem 1 ii) implies that 4 divides n and also that ϕ(n)
2

is
odd and exceeding 1. Since these statements are contradictory the result follows. �

In what follows we will use the notation ν2(m) := max{k ∈ N : 2k divides m}.

Proposition 8. Let n = 2mpr11 · · · prss with s > 0. Then 3 6= n ∈ Mλ
2

if and only if one of

these conditions holds:

i) m = 0 and ν2(pi − 1) = ν2(pj − 1) for every i, j.
ii) m = 2 or 3, ν2(pi − 1) = 1 for every i and n

2m
6= 3.

Proof. Note that λ(n)
2

> 1 if and only if n 6= 3. Hence, 3 6∈ Mλ
2

and in what follows we

assume that n 6= 3.
If condition i) holds, n = pr11 · · · prss and pi = 2tqi + 1 with qi even and t not depending

on i. In this case λ(n) = lcm(ϕ(pr11 ), . . . , ϕ(prss )) = 2tlcm(pr1−11 q1, . . . , p
rs−1
s qs) = 2tL with L

odd. Consequently λ(n)
2

= 2t−1L and since L is odd it follows that pi− 1 does not divide λ(n)
2

and Theorem 1 i) implies that n ∈Mλ
2
.

If condition ii) holds, it follows that λ(n) = 2L with L > 1 odd. Consequently λ(n)/2 =
L > 1 is odd and by Theorem 1 ii) we conclude that n ∈Mλ

2
.



SOLUTIONS OF THE CONGRUENCE
∑n
k=1 k

f(n) ≡ 0 (mod n) 11

Finally, assume that n = 2mpr11 · · · prss with s > 0 and pi = 2miqi + 1 with qi odd is such
that n ∈Mλ

2
. First of all, Theorem 1 implies that m = 0 or m > 1.

If m > 1, Theorem 1 ii) implies that n
2m
6= 3 and also that λ(n)

2
is odd so m = 2 or 3 and

pri−1i (pi − 1) = ϕ(prii ) = 2Li with Li odd; i.e., pi − 1 = 2qi with qi odd as claimed.

If, on the other hand, m = 0, Theorem 1 i) implies that pi− 1 does not divide λ(n)
2

for any

i. But if mi > mj for some i 6= j we have that 2mi−1qj divides λ(n)
2

and, consequently, pj − 1

divides λ(n)
2

. A contradiction. �

Now, given a positive integer k we define the set

Υk := {n odd : ν2(p− 1) = k for every p | n}.
Note that if k 6= j, then Υk and Υj are disjoint. With this notation, Proposition 8 can be
stated as

(10) Mλ
2

=

(
∞⋃
k=1

Υk ∪ 4Υ1 ∪ 8Υ1

)
\ {3, 12, 24}.

Let Mλ
2
(x) denote the number of integers ≤ x in the set Mλ

2
and Υj(x) the number of

integers ≤ x in the set Υj.

Proposition 9. Let k ≥ 1 be an arbitrary integer. We have

Mλ
2
(x) =

x

log x

(
c1 log1/2 x+

k∑
j=2

cj log2−k x+Ok(log2−k−1

x)
)
,

with

c1 =
11

16

∏
p≡1 (mod 4)

(
1− 1

p2

)1/2
= 0.66896484 · · ·

and all constants c2, . . . , ck positive. The implied constant in the error term depends at most
on k.

Proof. For positive coprime integers a and d, let Na,d(x) denote the number of integers
n ≤ x that are composed only of primes p ≡ a (mod d). It is a standard result, cf. [15], that

(11) Na,d(x) =
ca,dx

log1−1/ϕ(d) x

(
1 +Od(

1

log x
)
)
,

with ca,d a positive constant. For j ≥ 1 we have, by (11),

(12) Υj(x) = N1+2j ,2j+1(x) =
djx

log1−2−j x

(
1 +Oj(

1

log x
)
)
,

with dj a positive constant. One has, cf. [15, pp. 235],

(13) d1 =
1

2

∏
p≡1 (mod 4)

(
1− 1

p2

)1/2
= 0.4865198883 · · ·

Note that

(14)
∞∑

j=k+1

Υj(x) ≤ N1,2k+1(x) = O(x log2−k−1−1 x).



12 JOSÉ MARÍA GRAU, PIETER MOREE, AND ANTONIO M. OLLER-MARCÉN

Since the infinite sets in the decomposition (10) are pairwise disjoint we see from (10) that

Mλ
2
(x) = Υ1(x) + Υ1(

x

4
) + Υ1(

x

8
) +

k∑
j=2

Υj(x) +
∞∑

j=k+1

Υj(x) +O(1).

The result now follows from (12) and (14) with c1 = 11d1/8 and cj = dj for j ≥ 2. �

Remark. By Satz 1 of Wirsing [22] we have

N3,4(x) ∼ e−γ/2√
π

x

log x

∏
p≤x

p≡3 (mod 4)

(1− 1/p)−1.

On inserting Uchiyama’s asymptotic for the latter product (see [21]) and using
∏

p(1−1/p2) =

1/ζ(2) = 6/π2, one finds that N3,4(x) ∼ d1x(log x)−1/2 with d1 as in (13).
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