# Max-Planck-Institut für Mathematik Bonn 

Complexity of tropical Schur polynomials
by

Dima Grigoriev<br>Gleb Koshevoy



Max-Planck-Institut für Mathematik
Preprint Series 2014 (11)

# Complexity of tropical Schur polynomials 

Dima Grigoriev<br>Gleb Koshevoy

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

CNRS, Mathématiques
Université de Lille
59655 Villeneuve d'Ascq
France

Central Institute of Economics and
Mathematics RAS
117418 Moscow
Russia

# Complexity of tropical Schur polynomials 

Dima Grigoriev*and Gleb Koshevoy ${ }^{\dagger}$


#### Abstract

We study the complexity of computation of a tropical Schur polynomial $T s_{\lambda}$ where $\lambda$ is a partition, and of a tropical polynomial $T m_{\lambda}$ obtained by the tropicalization of the monomial symmetric function $m_{\lambda}$. Then $T s_{\lambda}$ and $T m_{\lambda}$ coincide as tropical functions (so, as convex piece-wise linear functions), while differ as tropical polynomials. We prove the following bounds on the complexity of computing over the tropical semi-ring $(\mathbb{R}, \max ,+)$ :


- a polynomial upper bound for $T s_{\lambda}$ and
- an exponential lower bound for $T m_{\lambda}$.

Also the complexity of tropical skew Schur polynomials is discussed.

## Introduction

We study computations (i. e. circuits, see e. g. [2]) over a tropical semi-ring ( $\mathbb{R}, \max ,+$ ) where max plays a role of addition, and + plays a role of multiplication (see e. g. [9]). Actually, computations over ( $\mathbb{R}, \max ,+$ ) were considered in Computer Science earlier than tropical algebra and geometry (and even the term "tropical" itself) have emerged (see e. g. [10] and further references there).

The tropicalization of a polynomial $f=\sum_{I} a_{I} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is a tropical polynomial $\operatorname{Trop}(f):=\max _{I}\left\{i_{1} x_{1}+\cdots+i_{n} x_{n}\right\}$ defined over the tropical semi-ring $(\mathbb{R}, \max ,+)$ (see e. g. [9]). One can treat a tropical polynomial as a convex piece-wise linear function.

We study a tropical Schur polynomial $T s_{\lambda}=\operatorname{Trop}\left(s_{\lambda}\right)$ (see Section 1) being the tropicalizations of the Schur function $s_{\lambda}$, where $\lambda=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ is a partition.

Since $T s_{\lambda}$ is a convex piece-wise linear function $\max _{W}\left\{w_{1} x_{1}+\cdots+w_{n} x_{n}\right\}$ where the multiindices $W$ range over all integer points of the Newton polyhedron of $s_{\lambda}$, it coincides with a function $T m_{\lambda}:=\max _{J}\left\{j_{1} x_{1}+\cdots+j_{n} x_{n}\right\}$ where the multiindices $J$ range over all the vertices of the Newton polyhedron of $s_{\lambda}$. Note that $T m_{\lambda}$ are the tropicalizations of the monomial symmetric functions $m_{\lambda}$ which form (as well as $s_{\lambda}$ ) a

[^0]basis in the ring of symmetric functions (see [11]). On the other hand, $T s_{\lambda}$ and $T m_{\lambda}$ differ as the elements of the semi-ring of tropical polynomials [9].

We exhibit (see Theorem 1) a polynomial complexity algorithm which computes $T s_{\lambda}$ over ( $\mathbb{R}, \max ,+$ ). On the contrary, we prove (see Theorem 2 ) an exponential lower bound on the complexity of computing $T m_{\lambda}$ over ( $\mathbb{R}, \max ,+$ ). This demonstrates an interesting phenomenon: while $T s_{\lambda}$ and $T m_{\lambda}$ coincide as tropical functions, their complexities as tropical polynomials differ considerably.

Observe that in [7] there was designed a polynomial complexity subtraction-free algorithm (relying on the cluster transformations), in other words a computation over $(\mathbb{R},+, \times, /)$ for Schur polynomials. The tropicalization of this algorithm provides a polynomial complexity computation of $T s_{\lambda}$ over a tropical semi-field ( $\mathbb{R}, \max ,+,-$ ). Thus, the algorithm from Theorem 1 is better because it avoids subtraction (viewed as a tropical analog of division). It is unclear, whether the complexity of computation of $T m_{\lambda}$ over ( $\mathbb{R}, \max ,+,-$ ) is polynomial?

On the other hand, from the tropicalization of the results of [7] we conclude that the tropical polynomial expressing the maximal weight directed spanning tree in the complete graph has a polynomial complexity over ( $\mathbb{R}, \max ,+,-$ ), while its complexity over ( $\mathbb{R}, \max ,+$ ) is exponential. In the proofs of complexity lower bounds we make use of technical tools developed in [12], [10], where some exponential complexity lower bounds were established for computations over $(\mathbb{R},+, \times)$ as well as over the tropical semi-ring ( $\mathbb{R}, \max ,+$ ).

In Sections 2, we speculate that the complexity of a skew Schur polynomial $T s_{\lambda / \mu}$ in $n$ variables (being the tropicalization of the skew Schur polynomial $s_{\lambda / \mu}$ ) might depend on the shapes of the partitions $\lambda, \mu$, and we conjecture that for some shapes its complexity over the semi-ring $(\mathbb{R}, \max ,+)$ is exponential, while over the semi-field $(\mathbb{R}, \max ,+,-)$ the complexity is (polynomial) $O\left(n^{5}\right)$ due to the tropicalization of the subtraction-free algorithm from [7] which computes skew Schur polynomials.

In the Appendix we provide some necessary concepts and results on base-polytopes and submodular functions.

## 1 Tropical Schur polynomials

For a fixed alphabet $[n]:=\{1, \ldots, n\}$ and a partition $\lambda=\left(\lambda_{1} \geq \ldots \geq \lambda_{n}\right)$, we consider a tropical Schur polynomial $T s_{\lambda}$ in the form of maximization of a linear function over the set of integer points of the Newton polytope of the usual Schur polynomial [11]

$$
s_{\lambda}(x)=\sum_{\mu \in \operatorname{ch}\left(w(\lambda), w \in S_{n}\right)} K_{\mu, \lambda} x^{\mu},
$$

where $x=\left(x_{1}, \ldots, x_{n}\right), x^{\mu}=x_{1}^{\mu_{1}} \cdots x_{n}^{\mu_{n}}, S_{n}$ denotes the group of permutations of the finite set $[n], w(\lambda)=\left(\lambda_{w(1)}, \ldots, \lambda_{w(n)}\right)$, and $\operatorname{ch}\left(w(\lambda), w \in S_{n}\right)$ denotes the convex hull of the points $w(\lambda), w \in S_{n}$, we denote $\mu \preceq \lambda$ if $\mu \in \operatorname{ch}\left(w(\lambda), w \in S_{n}\right.$ ), and $K_{\mu, \lambda}$ are the Kostka numbers. For details see [11].

Thus, the tropicalization of Schur polynomial $s_{\lambda}(x)$ is

$$
T s_{\lambda}(x)=\max _{\mu \in c h\left(w(\lambda), w \in S_{n}\right)} x(\mu),
$$

here we consider $x$ as a linear functional on $\mathbb{R}^{n}$, and $x(\mu)$ denotes the value of the functional at $\mu \in \mathbb{Z}^{n}$.

### 1.1 Complexity: upper bound

The tropicalization (see [1]) of the cluster algorithm in [7] provides an algorithm for computing tropical polynomial $T s_{\lambda}(x)$ within bit-complexity $O\left(k^{3}\right), k:=\lambda_{1}+n$, over the tropical semi-field $(\mathbb{R}, \max ,+,-)$ (in the algebraic setup in $[7]$ we consider $\mathbb{R}$ with addition, multiplication and division).

We conjecture that in the algebraic setup, it is exponential hard to calculate $s_{\lambda}$ without division, i.e. over $(\mathbb{R},+, \times)$.

However, the situation drastically changes in the tropical setup. Namely, we can calculate $T s_{\lambda}$ over the tropical semi-ring $(\mathbb{R}, \max ,+)$ within bit-complexity $O\left(n^{2} \cdot \lambda_{1}\right)$.

Let us recall that the Newton polytope $N P\left(e_{k}\right)$ of an elementary symmetric function

$$
e_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i_{1}<i_{2}<\ldots<i_{k}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}},
$$

is a hypersimplex, that is the convex hull of the set

$$
\binom{[n]}{k}=\{I \subset[n],|I|=k\},
$$

where a subset $I$ is naturally identified with a vertex of the hypercube $2^{[n]}$.
A hypersimplex is a matroid, a subclass of base-polytopes. The useful facts on base polytopes are collected in the Appendix.

Denote by $\lambda^{\prime}$ the dual partition to $\lambda$, that is $\left.\lambda_{i}^{\prime}=\mid\left\{j: \lambda_{j} \geq i\right\}, i=1, \ldots, \lambda_{1}\right\} \mid$. From the Littlewood formula (see [11]) it follows

$$
\prod_{k} e_{\lambda_{k}^{\prime}}=s_{\lambda}+\sum_{\mu \prec \lambda} K_{\lambda^{\prime}, \mu^{\prime}} s_{\mu} .
$$

Hence the Newton polytope $N P\left(T s_{\lambda}\right)$ of the Schur polynomial $s_{\lambda}$ coincides with the Minkowski sum of the Newton polytopes $\sum_{k} N P\left(e_{\lambda_{k}^{\prime}}\right)$. Moreover, since the hypersymplexes are matroids, the directions of edges of any hypersimplex take the form $\left\{e_{i}-e_{j}\right\}$. The latter set is unimodular, and from [4] we get

$$
\begin{equation*}
N P\left(T s_{\lambda}\right)(\mathbb{Z})=\sum_{1 \leq k \leq \lambda_{1}} N P\left(e_{\lambda_{k}^{\prime}}\right)(\mathbb{Z}) \tag{1}
\end{equation*}
$$

where, for a polytope $P, P(\mathbb{Z})$ denotes the set of integer points in $P$.
Because of this, we have
Theorem 1. A tropical Schur polynomial $T s_{\lambda}$ can be calculated within (polynomial) $O\left(n^{2} \cdot \lambda_{1}\right)$ bit complexity over ( $\mathbb{R}, \max ,+$ ).

Proof. Due to (1), in order to calculate $T s_{\lambda}$, one needs first to calculate tropical elementary Schur functions $T e_{\lambda_{k}^{\prime}}, 1 \leq k \leq \lambda_{1}$. Since

$$
e_{k}\left(x_{1}, \ldots, x_{n}\right)=e_{k}\left(x_{1}, \ldots, x_{n-1}\right)+x_{n} e_{k-1}\left(x_{1}, \ldots, x_{n-1}\right),
$$

and a similar identity holds in the tropical setup, the complexity of computation of a tropical elementary Schur function is quadratic in $n$ (to this end, one can use the Pascal triangle).

### 1.2 Complexity: lower bound

Since tropical Schur function takes the form of maximization of a linear functional over a polytope, it suffices to consider only the vertices of such a polytope. However, over the semi-ring $(\mathbb{R}, \max +)$ the complexity of such a modification can increase exponentially. We demonstrate this phenomenon for a tropical Schur function.

Namely, let us consider the tropicalization of the monomial symmetric functions $m_{\lambda}=\sum_{w \in S_{n}} x^{w(\lambda)}$,

$$
\operatorname{Tm}_{\lambda}(x)=\max _{w \in S_{n}} x(w(\lambda)) .
$$

Observe that $T s_{\lambda}$ and $T m_{\lambda}$ coincide as tropical functions, while they differ as the elements of the semi-ring of tropical polynomials, and the complexity of computation in the latter semi-ring is polynomial for $T s_{\lambda}$ (Theorem 1), while the complexity of $T m_{\lambda}$ is exponential as we prove in the following theorem.

Theorem 2. For $\lambda$ with the $i$ th part of the form $\lambda_{n-i+1}:=n i+i^{2}, i=1, \ldots, n$, the complexity of computation of $T m_{\lambda}$ over the tropical semiring $(\mathbb{R}, \max ,+)$ is exponential.

Proof. Throughout the proof we omit the adjective "tropical" for tropical polynomials and utilize for the latter the customary notations,$+ \times$ for tropical operations max, + , respectively. For a (homogeneous) polynomial $P$ by $\operatorname{mon}(P)$ denote the set of monomials of $P$. We will use the following result from [12], [10]. If for any homogeneous polynomials $R, Q$ such that $\operatorname{mon}(P) \supset \operatorname{mon}(R Q)$, and of the powers $1 / 3 \operatorname{deg} P \leq \operatorname{deg} R, \operatorname{deg} Q \leq 2 / 3 \operatorname{deg} P$, we have $\frac{|\operatorname{mon} P|}{|\operatorname{mon}(R Q)|}>c_{1}^{n}$, for some $c_{1}>1$, then the complexity of computation of $P$ over $(\mathbb{R}, \max ,+)$ is exponential. We mention that a similar complexity lower bound holds as well for computations over $(\mathbb{R},+, \times)$ [12], [10].

In our case we have to show that $R$ and $Q$ have exponentially small deal of monomials wrt $n$ ! (which equals the number of monomials in $P:=T m_{\lambda}$ ).

Let us explain our choice of such a specific $\lambda$. The parts of $\lambda$ form a Golomb ruler ([6]), that is $\lambda_{i}+\lambda_{j}=\lambda_{k}+\lambda_{l}$ iff $\{i, j\}=\{k, l\}$.

This property allows us to separate variables, namely we have $Q=Q^{\prime}\left(x_{i}, i \in\right.$ S) $M\left(x_{j}, j \in[n] \backslash S\right)$ and $R=N\left(x_{i}, i \in S\right) R^{\prime}\left(x_{j}, j \in[n] \backslash S\right)$, where $M$ and $N$ are monomials in variables $x_{j}, j \in[n] \backslash S$ and $x_{i}, i \in S$, respectively. Indeed, assume the contrary. Then there exists $m \in[n]$ and four monomials

$$
q_{1}=\cdots x_{m}^{\alpha} \cdots, q_{2}=\cdots x_{m}^{\beta} \cdots \in \operatorname{mon}(Q) ; r_{1}=\cdots x_{m}^{\gamma} \cdots, r_{2}=\cdots x_{m}^{\delta} \cdots \in \operatorname{mon}(R)
$$

such that $\alpha \neq \beta, \gamma \neq \delta$. Since

$$
r_{1} q_{1}, r_{2} q_{2}, r_{1} q_{2}, r_{2} q_{1} \in \operatorname{mon}(R Q) \subset \operatorname{mon}(P)
$$

there are $i, j, k, l \in[n]$ for which $\alpha+\gamma=\lambda_{i}, \beta+\delta=\lambda_{j}, \alpha+\delta=\lambda_{k}, \beta+\gamma=\lambda_{l}$. Hence $\lambda_{i}+\lambda_{j}=\lambda_{k}+\lambda_{l}$, and we get a contradiction with the Golomb property.

Thus, we have a separation of variables. We get two polynomials $A:=N Q^{\prime}$ and $B:=M R^{\prime}$ in variable $x_{i}, i \in S$, and $x_{j}, j \in[n] \backslash S$, respectively.

At the beginning we consider a case of no separation of variables. This means that either $Q$ or $R$ is a monomial. Let for definiteness $Q$ be a monomial.

Then we claim that if $c:=\frac{\operatorname{deg} Q}{\operatorname{deg} P} \in\left[\frac{1}{4}, \frac{3}{4}\right]$, then $R$ has exponentially small number of monomials wrt $n!$. Throughout this Section we assume in all the bounds $n$ to be sufficiently big.

Let us prove this claim.
Let $Q=x_{1}^{\nu_{1}} \cdots x_{n}^{\nu_{n}}$. Firstly, we observe that w.l.o.g. one can suppose that for any $i$ there exists $j$ such that $\nu_{i}=\lambda_{j}$. Indeed, if at least two $\nu_{i_{1}}, \nu_{i_{2}}$ among $\left\{\nu_{i}\right\}_{i}$ violate this condition, we can increase $\nu_{i_{1}}$ by 1 and decrease $\nu_{i_{2}}$ also by 1 , thereby not decreasing $|\operatorname{mon}(R)|$ for which $\operatorname{mon}(Q R) \subset \operatorname{mon}(P)$. Observe that herein $|\operatorname{mon}(R)|$ could increase only if $\nu_{i_{2}}=\lambda_{j}+1$ for some $j$. If just a single $\lambda_{j}>\nu_{i}>\lambda_{j+1}$ violates the condition under discussion, we can preserve inequalities $\frac{\operatorname{deg} Q}{\operatorname{deg} P} \in\left[\frac{1}{4}, \frac{3}{4}\right]$ as follows: either replace $\nu_{i}$ by $\lambda_{j}$ which keeps $|\operatorname{mon}(R)|$ or replace by $\lambda_{j+1}$ which does not decrease $|\operatorname{mon}(R)|$.

Let $b_{j}:=\left\{i: \nu_{i}=\lambda_{j}\right\}, j=n, \ldots, 1$. Then the number of monomials in $R(x)$ is equal to

$$
M:=b_{n}\left(b_{n}+b_{n-1}-1\right) \cdots\left(b_{n}+\ldots+b_{1}-(n-1)\right) .
$$

We have

$$
\sum b_{i} \lambda_{i}=c \sum \lambda_{i} .
$$

Then, we have

$$
\sum_{i} \lambda_{i}-\sum b_{i} \lambda_{i}+\lambda_{1}-\lambda_{n}=\sum_{j=0}^{n-2}\left(b_{n}+\ldots+b_{n-j}-j\right)\left(\lambda_{n-j-1}-\lambda_{n-j}\right)
$$

Thus

$$
M \prod\left(\lambda_{j-1}-\lambda_{j}\right) \leq\left(\frac{(1-c) \sum \lambda_{i}+\lambda_{1}-\lambda_{n}}{n}\right)^{n}
$$

We have $\sum \lambda_{i} \sim \frac{5 n^{3}}{6}, \Pi\left(\lambda_{j-1}-\lambda_{j}\right) \sim 2^{n} \frac{(3 / 2 n)!}{(1 / 2 n)!} \sim\left(\frac{3^{3 / 2}}{e} n\right)^{n}$.
Therefore it holds (taking into account that due to the choice of $\lambda_{i}$, the degree of $P$ is $\left.5 / 6 n^{3}+O\left(n^{2}\right)\right)$ that

$$
\begin{equation*}
M \leq\left(\frac{5 e(1-c) n}{3^{3 / 2} 6}\right)^{n} . \tag{2}
\end{equation*}
$$

Thus, for $1-c<\frac{6 \cdot 3^{3 / 2}}{5 e^{2}}<\frac{31.14}{38.64}$, the number of monomials in $R$ is exponentially small wrt $n$ !. For $c \in[1 / 4,3 / 4]$, this is the case.

Now consider the case of a non-monomial $Q$. In such a case we have a separation of variables.

Let us recall that the polytope $\operatorname{Per}_{n}:=\operatorname{ch}\left(\sigma(\lambda), \sigma \in S_{n}\right)$ is a base-polytope (see the Appendix) which is set by a submodular function $b_{\lambda}(T)=\sum_{i=1, \ldots|T|} \lambda_{n-i}, T \subset[n]$. Thus, a pair of parallel facets (we agree that a facet is a face of codimension 1) labeled by a subset $W \subset[n],|W|=k$, are defined by $x(W)=b_{\lambda}(W)=\sum_{i=1, \ldots, k} \lambda_{i}$ and
$x([n]-W)=b_{\lambda}([n]-W)=\sum_{i=1, \ldots, n-k} \lambda_{i}$, respectively, and any cut with the same separation of coordinates is defined by $x(W)=a, a \in\left[\sum_{j=1}^{k} \lambda_{j}, \sum_{i=1}^{k} \lambda_{n-i}\right]$ (for details see the Appendix). Because of symmetry of $b_{\lambda}$ wrt permutations of coordinates, facets of $\mathrm{Per}_{n}$ are labeled by numbers in $[n]$. The number of the vertices of a facet labeled by $k \in[n]$ (recall that $k$ corresponds to separation of variables in groups of $k$ and $n-k$ variables) is

$$
k!(n-k)!.
$$

Because of this, the cardinality of monomials of the product $A \cdot B$ is bounded by $k(A)!(n-k(A))!$, where $k:=k(A)=|S|$. Note that $\operatorname{deg}(A)=\lambda_{i_{1}}+\cdots+\lambda_{i_{k}}$ for suitable $1 \leq i_{1}<\cdots<i_{k} \leq n$ satisfies

$$
\operatorname{deg}(A) \in\left[\sum_{j=1}^{k} \lambda_{j}, \sum_{i=1}^{k} \lambda_{n-i}\right] .
$$

There are two cases.
Case 1. $\operatorname{deg} A, \operatorname{deg} B \geq c^{\prime} \cdot \operatorname{deg} P$, for some sufficiently small constant $c^{\prime}$ which we choose later. In such a case, $k=k(A), n-k=k(B) \geq c^{\prime \prime} \cdot n$ for some sufficiently small constant $c^{\prime \prime}$ depending on $c^{\prime}$ (since $\operatorname{deg} P$ is cubic in $n$ ). This implies that $A \cdot B$ has at most $k!(n-k)$ ! number of monomials, so exponentially small wrt $n$ ! and we are done.

Case 2. Either $\operatorname{deg} A<c^{\prime} \operatorname{deg} P$ or $\operatorname{deg} B<c^{\prime} \operatorname{deg} P$. Let for definiteness $\operatorname{deg} A<$ $c^{\prime} \operatorname{deg} P$. Then, the degree of the monomial $M$ satisfies $\frac{\operatorname{deg} M}{\operatorname{deg} B} \in\left[\frac{1}{4}, \frac{3}{4}\right]$ since $c^{\prime}$ is sufficiently small.

Then, the same reasoning as above in the case of no separation with a single monomial, provides a bound $\left|\operatorname{mon}\left(R^{\prime}\right)\right| \leq\left(c_{0}(n-k)\right)^{n-k}$ for any fixed $c_{0}>\frac{5 e(1-c)}{3^{3 / 2} 6}($ see (2)) due to an appropriate choice of sufficiently small $c^{\prime}$ in Case 1 . We take $c_{0}<1 / e$. Because of this and that $A$ has at most $k$ ! monomials we get that

$$
|\operatorname{mon}(R Q)|=|\operatorname{mon}(A B)| \leq k!\left(c_{0}(n-k)\right)^{n-k}<c_{2}^{n} n!
$$

for some $c_{2}<1$. This finishes the proof of Theorem 2 .

## 2 Tropical skew Schur polynomials

In this Section we discuss a conjecture that for a tropical skew Schur polynomial its complexity over the tropical semi-ring might depend on the shape of the corresponding diagram and could be exponential. While over the tropical semi-field the complexity is always polynomial.

Recall that, for a skew Young diagram $\lambda \backslash \mu$ (where $\mu \leq \lambda$, which denotes the coordinate-wise inequality of the partitions), a semi-standard Young tableaux (SSYT) of a shape $\lambda \backslash \mu$ (in the alphabet $[n]$ ) is a filling of the Young diagram $\lambda \backslash \mu$ with entries from $[n]$ strictly increasing along the columns and non-decreasing along the rows ([11]). We accept the French style to draw Young diagram. Here is an example
of a skew SSYT of shape $(5,3,3,1) \backslash(2,1)$
3
224
12
112
The weight of such a tableau $T$ is the tuple $w t(T):=(\# 1(T), \# 2(T), \ldots, \# n(T))$, where $\# i(T)$ denotes the number of times integer $i$ occurs in $T$. The skew Schur polynomial $s_{\lambda \backslash \mu}$ is defined by (see [11])

$$
s_{\lambda \backslash \mu}=\sum_{T} x^{w t(T)},
$$

where the sum runs over the set of all skew semistandard Young tableaux of shape $\lambda \backslash \mu$.

The tropical Schur polynomial $T s_{\lambda \backslash \mu}(x)$ is a piece-wise linear function defined by the tropicalization of the above formula in the tropical semi-ring, that is

$$
T s_{\lambda \backslash \mu}(x)=\max _{T}(x, w t(T)) .
$$

where max is taken over all SSYT $T$ of shape $\lambda \backslash \mu$. For $\mu=0$, we obtain a usual tropical Schur polynomial (cf. Section 1).

Thus, $T s_{\lambda \backslash \mu}(x)$ is a piece-wise linear function of the form of the maximum of a linear function $(x, \cdot)$ over the set of points $\nu:=w t(T)$, while $T$ runs over the set of all skew semistandard Young tableaux of shape $\lambda \backslash \mu$.

This set of weights constitute the set of integer points of the polytope $\mathcal{G C}(\lambda, \mu)$ defined by the inequalities

$$
\lambda([1,|I|])-\Delta_{|I|} \geq \nu(I), \quad \lambda([n])-\Delta_{n}=\nu([n]),
$$

where $\lambda([1,|I|])=\lambda_{1}+\cdots \lambda_{|I|}, \nu(I)=\sum_{i \in I} \nu_{i}, \Delta_{|I|}=\Delta_{1}+\ldots \Delta_{|I|}, \Delta_{k}:=\max \left\{0, \mu_{1}-\right.$ $\left.\lambda_{k+1}\right\}+\max \left\{0, \mu_{2}-\lambda_{k+2}\right\}+\cdots+\max \left\{0, \mu_{n-k}-\lambda_{n}\right\}($ for details see [3]).

For given $\lambda$ and $\mu$ we get a function $\Lambda: 2^{[n]} \rightarrow \mathbb{R}, \Lambda(I)=\lambda([1,|I|])-\Delta_{|I|}, I \subseteq[n]$.
The properties of this function depend on shape $\lambda \backslash \mu$. For example, for $\mu=0$, this function is submodular (see the Appendix below). Let $\lambda$ and $\mu$ be such that the function $\Lambda$ is submodular. That is, for any $|I|$, it holds
$\lambda([1,|I|])-\Delta_{|I|}-\lambda([1,|I|+1])-\Delta_{|I|+1} \geq \lambda([1,|I|+1])-\Delta_{|I|+1}-\lambda([1,|I|+2])-\Delta_{|I|+2}$.
In such a case, the polytope $\mathcal{G C}(\lambda, \mu)$ is a base-polytope, and the complexity of computation of $T s_{\lambda \backslash \mu}(x)$ as a tropical function using the greedy algorithm (see [5] and the Appendix) is polynomial in $n$.

While, for $\lambda$ and $\mu$, for which $\Lambda$ fails to be submodular, the problem of finding maximum can be hard, since some of the vertices of $\mathcal{G C}(\lambda, \mu)$ do not even corresponds to the weights of SSYT. Because of this we conjecture that the complexity of computation of the tropical polynomial $T s_{\lambda \backslash \mu}(x)$ is exponential as well over the semi-ring $(\mathbb{R},+, \max )$.

However, over the semi-field $(\mathbb{R}, \max ,+,-)$, the complexity of the tropical skew Schur polynomial $T s_{\lambda \backslash \mu}(x)$ is polynomial independently of $\lambda$ and $\mu$. This follows from the tropicalization of the subtraction-free algorithm in [7] which computes skew Schur polynomials.

## Appendix

Here we recall some basic facts on base-polytopes. For details see [5, 8].
A function $f: 2^{[n]}: \rightarrow \mathbb{R}$ is submodular if, for any $S, T \subseteq[n]$, it holds

$$
f(S)+f(T) \geq f(S \cup T)+f(S \cap T)
$$

To a submodular function $f$ is associated a base-polytope $B_{f}$ in $\mathbb{R}^{n}$

$$
B_{f}:=\left\{x \in \mathbb{R}^{n}: x(S) \leq f(S), x([n])=f([n])\right\}
$$

where $x(S)$ denotes the sum $\sum_{i \in S} x_{i}$.
This polytope is located in the hyperplane $x([n])=f([n])$. Edges of such a polytope are parallel to 'roots' $\alpha_{i}-\alpha_{j}$, where $\alpha_{i}$ denotes the $i$-th basis vector in $\mathbb{R}^{n}$.

The Edmonds greedy algorithm [5] implies that the vertices of the base-polytope are labeled by permutations from $S_{n}$. Namely, for a permutation $\sigma \in S_{n}$, the corresponding vertex has coordinates defined by the rule $x_{\sigma(1)}=f(\{\sigma(1)\}), x_{\sigma(2)}=f(\{\sigma(1), \sigma(2)\})-$ $f(\{\sigma(1)\}), \ldots$,

$$
x_{\sigma(i)}=f(\{\sigma(1), \ldots, \sigma(i)\})-f(\{\sigma(1), \ldots, \sigma(i-1)\}) .
$$

Any facet of a base-polytope is a direct product of two base-polytopes. Moreover, each facet is labeled by a subset $W \subset[n]$ and is the product of the base-polytope $B_{\left.f\right|_{W}}:=\left\{x \in \mathbb{R}^{W}: x(S) \leq f(S), S \subset W, x(W)=f(W)\right\}$ and the base-polytope $B_{f^{W}}:=\left\{x \in \mathbb{R}^{[n] \backslash W}: x(T) \leq f(T \cup W)-f(W), T \subset[n] \backslash W, x([n] \backslash W)=f([n])-\right.$ $f(W)\}$. The polytope $B_{\left.f\right|_{W}}$ is a subset of $\mathbb{R}^{W}$, and the polytope $B_{f^{W}}$ is a subset of $\mathbb{R}^{[n]-W}$. Remark that the facet labeled by the complementary set $[n]-W$, is the product of the polytope $B_{\left.f\right|_{[n]-W}}$ in $\mathbb{R}^{[n]-W}$ and the polytope $B_{f^{[n]-W}}$ in $\mathbb{R}^{W}$. In other words, these facets are parallel and decomposed as the product of polytopes in $\mathbb{R}^{W}$ and $\mathbb{R}^{[n]-W}$.

Thus, a facet labeled by a subset $W$ of cardinality $k$ has at most $k!\times(n-k)$ ! vertices. Moreover, this bound on the number of vertices is valid for any 'cut'

$$
B_{f} \cap\left\{x \in \mathbb{R}^{[n]}: x(W)=a, x_{i}=0, i \notin W\right\}
$$

where $a$ is in the segment $f([n])-f([n]-W) \leq a \leq f(W)$. (From the submodularity it holds that $f(W)+f([n]-W) \geq f([n])$.) In fact, such a cut is a facet of the base polytope

$$
B_{f} \cap\left\{x \in \mathbb{R}^{[n]}: x(W) \leq a, x_{i}=0, i \notin W\right\}
$$

Let us warn that in general the intersection of base-polytopes may be not a basepolytope, but the intersection of a base-polytope with a half-space $\left\{x \in \mathbb{R}^{[n]}: x(W) \leq\right.$ $\left.a, x_{i}=0, i \notin W\right\}$ is always a base-polytope.

Acknowledgements. The authors are grateful to the Max-Planck Institut für Mathematik, Bonn for its hospitality during writing the paper.

## References

[1] A.Berenstein, S.Fomin, and A.Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996), 49-149.
[2] P.Bürgisser, M.Clausen, and A.Shokrollahi, Algebraic Complexity Theory, Springer-Verlag, 1997.
[3] V.Danilov, A.Karzanov and G.Koshevoy, Discrete strip-concave functions, Gelfand-Tsetlin patterns, and related polyhedra, J. Comb. Theory, Ser.A 112 (2005), 175-193
[4] V.Danilov and G.Koshevoy, Discrete Convexity and Unimodularity. I. Advances in Mathematics, 189 (2004), 301-324
[5] J.Edmonds, Submodular functions, matroids, and certain polyhedra, in: R. Guy, et al., (Eds.), Combinatorial Structures and their applications, Gordon and Breach, Scientific Publishers, New York, 1970, pp. 69-87.
[6] P. Erdös, and P.Turán, On a problem of Sidon in additive number theory and some related problems, Journal of the London Mathematical Society 16:4(1941), 212-215.
[7] S.Fomin, D.Grigoriev, and G.Koshevoy, Subtraction-free complexity, cluster transformations, and spanning trees, arXiv:1307.8425
[8] S.Fujishige, Submodular Functions and Optimization, (North-Holland, 1991)
[9] I.Itenberg, G.Mikhalkin, and E.Shustin, Tropical algebraic geometry. Second edition. Oberwolfach Seminars, 35. Birkhäuser Verlag, Basel, 2009
[10] M.Jerrum, and M.Snir, Some exact complexity results for straight-line computations over semirings. J. Assoc. Comput. Mach. 29 (1982), no. 3, 874-897.
[11] I.G.Macdonald, Symmetric functions and Hall polynomials, Oxford mathematical monographs, 1979
[12] L.G.Valiant, Negation can be exponentially powerful, Theor. Comput. Sci. 12, (1980), 303-314.


[^0]:    *CNRS, Mathématiques, Université de Lille, Villeneuve d'Ascq, 59655, France E-mail address: Dmitry.Grigoryev@math.univ-lille1.fr
    ${ }^{\dagger}$ Central Institute of Economics and Mathematics RAS, 117418, Moscow, Russia; email: koshevoy@cemi.rssi.ru

