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Complexity of tropical Schur polynomials

Dima Grigoriev∗and Gleb Koshevoy†

Abstract

We study the complexity of computation of a tropical Schur polynomial Tsλ
where λ is a partition, and of a tropical polynomial Tmλ obtained by the tropical-
ization of the monomial symmetric function mλ. Then Tsλ and Tmλ coincide as
tropical functions (so, as convex piece-wise linear functions), while differ as trop-
ical polynomials. We prove the following bounds on the complexity of computing
over the tropical semi-ring (R,max,+):

• a polynomial upper bound for Tsλ and

• an exponential lower bound for Tmλ.

Also the complexity of tropical skew Schur polynomials is discussed.

Introduction

We study computations (i. e. circuits, see e. g. [2]) over a tropical semi-ring (R,max,+)
where max plays a role of addition, and + plays a role of multiplication (see e. g. [9]).
Actually, computations over (R,max,+) were considered in Computer Science earlier
than tropical algebra and geometry (and even the term ”tropical” itself) have emerged
(see e. g. [10] and further references there).

The tropicalization of a polynomial f =
∑

I aIx
i1
1 · · ·xinn ∈ R[x1, . . . , xn] is a tropical

polynomial Trop(f) := maxI{i1x1 + · · · + inxn} defined over the tropical semi-ring
(R,max,+) (see e. g. [9]). One can treat a tropical polynomial as a convex piece-wise
linear function.

We study a tropical Schur polynomial Tsλ = Trop(sλ) (see Section 1) being the
tropicalizations of the Schur function sλ, where λ = {λ1, . . . , λn} is a partition.

Since Tsλ is a convex piece-wise linear function maxW{w1x1 + · · · + wnxn} where
the multiindices W range over all integer points of the Newton polyhedron of sλ, it
coincides with a function Tmλ := maxJ{j1x1 + · · · + jnxn} where the multiindices J
range over all the vertices of the Newton polyhedron of sλ. Note that Tmλ are the
tropicalizations of the monomial symmetric functions mλ which form (as well as sλ) a
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basis in the ring of symmetric functions (see [11]). On the other hand, Tsλ and Tmλ

differ as the elements of the semi-ring of tropical polynomials [9].
We exhibit (see Theorem 1) a polynomial complexity algorithm which computes

Tsλ over (R,max,+). On the contrary, we prove (see Theorem 2) an exponential lower
bound on the complexity of computing Tmλ over (R,max,+). This demonstrates
an interesting phenomenon: while Tsλ and Tmλ coincide as tropical functions, their
complexities as tropical polynomials differ considerably.

Observe that in [7] there was designed a polynomial complexity subtraction-free
algorithm (relying on the cluster transformations), in other words a computation over
(R,+,×, /) for Schur polynomials. The tropicalization of this algorithm provides a
polynomial complexity computation of Tsλ over a tropical semi-field (R,max,+,−).
Thus, the algorithm from Theorem 1 is better because it avoids subtraction (viewed
as a tropical analog of division). It is unclear, whether the complexity of computation
of Tmλ over (R,max,+,−) is polynomial?

On the other hand, from the tropicalization of the results of [7] we conclude that
the tropical polynomial expressing the maximal weight directed spanning tree in the
complete graph has a polynomial complexity over (R,max,+,−), while its complexity
over (R,max,+) is exponential. In the proofs of complexity lower bounds we make
use of technical tools developed in [12], [10], where some exponential complexity lower
bounds were established for computations over (R,+,×) as well as over the tropical
semi-ring (R,max,+).

In Sections 2, we speculate that the complexity of a skew Schur polynomial Tsλ/µ
in n variables (being the tropicalization of the skew Schur polynomial sλ/µ) might
depend on the shapes of the partitions λ, µ, and we conjecture that for some shapes
its complexity over the semi-ring (R,max,+) is exponential, while over the semi-field
(R,max,+,−) the complexity is (polynomial) O(n5) due to the tropicalization of the
subtraction-free algorithm from [7] which computes skew Schur polynomials.

In the Appendix we provide some necessary concepts and results on base-polytopes
and submodular functions.

1 Tropical Schur polynomials

For a fixed alphabet [n] := {1, . . . , n} and a partition λ = (λ1 ≥ . . . ≥ λn), we consider
a tropical Schur polynomial Tsλ in the form of maximization of a linear function over
the set of integer points of the Newton polytope of the usual Schur polynomial [11]

sλ(x) =
∑

µ∈ch(w(λ), w∈Sn)

Kµ,λx
µ,

where x = (x1, . . . , xn), xµ = xµ1

1 · · · xµn
n , Sn denotes the group of permutations of the

finite set [n], w(λ) = (λw(1), . . . , λw(n)), and ch(w(λ), w ∈ Sn) denotes the convex hull
of the points w(λ), w ∈ Sn, we denote µ � λ if µ ∈ ch(w(λ), w ∈ Sn), and Kµ,λ are
the Kostka numbers. For details see [11].

Thus, the tropicalization of Schur polynomial sλ(x) is

Tsλ(x) = max
µ∈ch(w(λ), w∈Sn)

x(µ),
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here we consider x as a linear functional on Rn, and x(µ) denotes the value of the
functional at µ ∈ Zn.

1.1 Complexity: upper bound

The tropicalization (see [1]) of the cluster algorithm in [7] provides an algorithm for
computing tropical polynomial Tsλ(x) within bit-complexity O(k3), k := λ1 + n, over
the tropical semi-field (R,max,+,−) (in the algebraic setup in [7] we consider R with
addition, multiplication and division).

We conjecture that in the algebraic setup, it is exponential hard to calculate sλ
without division, i.e. over (R,+,×).

However, the situation drastically changes in the tropical setup. Namely, we can
calculate Tsλ over the tropical semi-ring (R,max,+) within bit-complexity O(n2 · λ1).

Let us recall that the Newton polytopeNP (ek) of an elementary symmetric function

ek(x1, . . . , xn) =
∑

i1<i2<...<ik

xi1xi2 . . . xik ,

is a hypersimplex, that is the convex hull of the set(
[n]

k

)
= {I ⊂ [n], |I| = k},

where a subset I is naturally identified with a vertex of the hypercube 2[n].
A hypersimplex is a matroid, a subclass of base-polytopes. The useful facts on base

polytopes are collected in the Appendix.
Denote by λ′ the dual partition to λ, that is λ′i = |{j : λj ≥ i}, i = 1, . . . , λ1}|.

From the Littlewood formula (see [11]) it follows∏
k

eλ′k = sλ +
∑
µ≺λ

Kλ′,µ′sµ.

Hence the Newton polytope NP (Tsλ) of the Schur polynomial sλ coincides with
the Minkowski sum of the Newton polytopes

∑
kNP (eλ′k). Moreover, since the hy-

persymplexes are matroids, the directions of edges of any hypersimplex take the form
{ei − ej}. The latter set is unimodular, and from [4] we get

NP (Tsλ)(Z) =
∑

1≤k≤λ1

NP (eλ′k)(Z), (1)

where, for a polytope P , P (Z) denotes the set of integer points in P .
Because of this, we have

Theorem 1. A tropical Schur polynomial Tsλ can be calculated within (polyno-
mial) O(n2 · λ1) bit complexity over (R,max,+).

Proof. Due to (1), in order to calculate Tsλ, one needs first to calculate tropical
elementary Schur functions Teλ′k , 1 ≤ k ≤ λ1. Since

ek(x1, . . . , xn) = ek(x1, . . . , xn−1) + xnek−1(x1, . . . , xn−1),
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and a similar identity holds in the tropical setup, the complexity of computation of
a tropical elementary Schur function is quadratic in n (to this end, one can use the
Pascal triangle). �

1.2 Complexity: lower bound

Since tropical Schur function takes the form of maximization of a linear functional over
a polytope, it suffices to consider only the vertices of such a polytope. However, over the
semi-ring (R,max +) the complexity of such a modification can increase exponentially.
We demonstrate this phenomenon for a tropical Schur function.

Namely, let us consider the tropicalization of the monomial symmetric functions
mλ =

∑
w∈Sn

xw(λ),
Tmλ(x) = max

w∈Sn

x(w(λ)).

Observe that Tsλ and Tmλ coincide as tropical functions, while they differ as the
elements of the semi-ring of tropical polynomials, and the complexity of computation
in the latter semi-ring is polynomial for Tsλ (Theorem 1), while the complexity of Tmλ

is exponential as we prove in the following theorem.

Theorem 2. For λ with the ith part of the form λn−i+1 := ni + i2, i = 1, . . . , n,
the complexity of computation of Tmλ over the tropical semiring (R,max,+) is expo-
nential.

Proof. Throughout the proof we omit the adjective ”tropical” for tropical poly-
nomials and utilize for the latter the customary notations +,× for tropical opera-
tions max,+, respectively. For a (homogeneous) polynomial P by mon(P ) denote the
set of monomials of P . We will use the following result from [12], [10]. If for any
homogeneous polynomials R, Q such that mon(P ) ⊃ mon(RQ), and of the powers

1/3 degP ≤ degR, degQ ≤ 2/3 degP , we have |monP |
|mon(RQ)| > cn1 , for some c1 > 1, then

the complexity of computation of P over (R,max,+) is exponential. We mention that
a similar complexity lower bound holds as well for computations over (R,+,×) [12],
[10].

In our case we have to show that R and Q have exponentially small deal of mono-
mials wrt n! (which equals the number of monomials in P := Tmλ).

Let us explain our choice of such a specific λ. The parts of λ form a Golomb ruler
([6]), that is λi + λj = λk + λl iff {i, j} = {k, l}.

This property allows us to separate variables, namely we have Q = Q′(xi, i ∈
S)M(xj, j ∈ [n] \ S) and R = N(xi, i ∈ S)R′(xj, j ∈ [n] \ S), where M and N are
monomials in variables xj, j ∈ [n] \ S and xi, i ∈ S, respectively. Indeed, assume the
contrary. Then there exists m ∈ [n] and four monomials

q1 = · · ·xαm · · · , q2 = · · ·xβm · · · ∈ mon(Q); r1 = · · ·xγm · · · , r2 = · · · xδm · · · ∈ mon(R)

such that α 6= β, γ 6= δ. Since

r1q1, r2q2, r1q2, r2q1 ∈ mon(RQ) ⊂ mon(P )
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there are i, j, k, l ∈ [n] for which α+ γ = λi, β+ δ = λj, α+ δ = λk, β+ γ = λl. Hence
λi + λj = λk + λl, and we get a contradiction with the Golomb property.

Thus, we have a separation of variables. We get two polynomials A := NQ′ and
B := MR′ in variable xi, i ∈ S, and xj, j ∈ [n] \ S, respectively.

At the beginning we consider a case of no separation of variables. This means that
either Q or R is a monomial. Let for definiteness Q be a monomial.

Then we claim that if c := degQ
degP

∈ [1
4
, 3

4
], then R has exponentially small number

of monomials wrt n!. Throughout this Section we assume in all the bounds n to be
sufficiently big.

Let us prove this claim.
Let Q = xν11 · · ·xνn

n . Firstly, we observe that w.l.o.g. one can suppose that for any i
there exists j such that νi = λj. Indeed, if at least two νi1 , νi2 among {νi}i violate this
condition, we can increase νi1 by 1 and decrease νi2 also by 1, thereby not decreasing
|mon(R)| for which mon(QR) ⊂ mon(P ). Observe that herein |mon(R)| could increase
only if νi2 = λj + 1 for some j. If just a single λj > νi > λj+1 violates the condition
under discussion, we can preserve inequalities degQ

degP
∈ [1

4
, 3

4
] as follows: either replace νi

by λj which keeps |mon(R)| or replace by λj+1 which does not decrease |mon(R)|.
Let bj := {i : νi = λj}, j = n, . . . , 1. Then the number of monomials in R(x) is

equal to
M := bn(bn + bn−1 − 1) · · · (bn + . . .+ b1 − (n− 1)).

We have ∑
biλi = c

∑
λi.

Then, we have

∑
i

λi −
∑

biλi + λ1 − λn =
n−2∑
j=0

(bn + . . .+ bn−j − j)(λn−j−1 − λn−j).

Thus

M
∏

(λj−1 − λj) ≤
((1− c)

∑
λi + λ1 − λn
n

)n
.

We have
∑
λi ∼ 5n3

6
,
∏

(λj−1 − λj) ∼ 2n (3/2n)!
(1/2n)!

∼ (33/2

e
n)n.

Therefore it holds (taking into account that due to the choice of λi, the degree of
P is 5/6n3 +O(n2)) that

M ≤ (
5e(1− c)n

33/26
)n. (2)

Thus, for 1 − c < 6·33/2

5e2
< 31.14

38.64
, the number of monomials in R is exponentially small

wrt n!. For c ∈ [1/4, 3/4], this is the case.

Now consider the case of a non-monomial Q. In such a case we have a separation
of variables.

Let us recall that the polytope Pern := ch(σ(λ), σ ∈ Sn) is a base-polytope (see
the Appendix) which is set by a submodular function bλ(T ) =

∑
i=1,...|T | λn−i, T ⊂ [n].

Thus, a pair of parallel facets (we agree that a facet is a face of codimension 1) labeled
by a subset W ⊂ [n], |W | = k, are defined by x(W ) = bλ(W ) =

∑
i=1,...,k λi and
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x([n] −W ) = bλ([n] −W ) =
∑

i=1,...,n−k λi, respectively, and any cut with the same

separation of coordinates is defined by x(W ) = a, a ∈ [
∑k

j=1 λj,
∑k

i=1 λn−i] (for details
see the Appendix). Because of symmetry of bλ wrt permutations of coordinates, facets
of Pern are labeled by numbers in [n]. The number of the vertices of a facet labeled by
k ∈ [n] (recall that k corresponds to separation of variables in groups of k and n − k
variables) is

k!(n− k)!.

Because of this, the cardinality of monomials of the product A · B is bounded by
k(A)!(n − k(A))!, where k := k(A) = |S|. Note that deg(A) = λi1 + · · · + λik for
suitable 1 ≤ i1 < · · · < ik ≤ n satisfies

deg(A) ∈ [
k∑
j=1

λj,

k∑
i=1

λn−i].

There are two cases.
Case 1. degA, degB ≥ c′ · degP , for some sufficiently small constant c′ which we

choose later. In such a case, k = k(A), n−k = k(B) ≥ c′′ ·n for some sufficiently small
constant c′′ depending on c′ (since degP is cubic in n). This implies that A ·B has at
most k!(n− k)! number of monomials, so exponentially small wrt n! and we are done.

Case 2. Either degA < c′ degP or degB < c′ degP . Let for definiteness degA <
c′ degP . Then, the degree of the monomial M satisfies degM

degB
∈ [1

4
, 3

4
] since c′ is suffi-

ciently small.
Then, the same reasoning as above in the case of no separation with a single mono-

mial, provides a bound |mon(R′)| ≤ (c0(n− k))n−k for any fixed c0 >
5e(1−c)
33/26

(see (2))
due to an appropriate choice of sufficiently small c′ in Case 1. We take c0 < 1/e.
Because of this and that A has at most k! monomials we get that

|mon(RQ)| = |mon(AB)| ≤ k!(c0(n− k))n−k < cn2n!

for some c2 < 1. This finishes the proof of Theorem 2. �

2 Tropical skew Schur polynomials

In this Section we discuss a conjecture that for a tropical skew Schur polynomial its
complexity over the tropical semi-ring might depend on the shape of the corresponding
diagram and could be exponential. While over the tropical semi-field the complexity
is always polynomial.

Recall that, for a skew Young diagram λ \ µ (where µ ≤ λ, which denotes the
coordinate-wise inequality of the partitions), a semi-standard Young tableaux (SSYT)
of a shape λ \ µ (in the alphabet [n]) is a filling of the Young diagram λ \ µ with
entries from [n] strictly increasing along the columns and non-decreasing along the
rows ([11]). We accept the French style to draw Young diagram. Here is an example
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of a skew SSYT of shape (5, 3, 3, 1) \ (2, 1)

3
2 2 4

1 2
1 1 2

The weight of such a tableau T is the tuple wt(T ) := (#1(T ),#2(T ), . . . ,#n(T )),
where #i(T ) denotes the number of times integer i occurs in T . The skew Schur
polynomial sλ\µ is defined by (see [11])

sλ\µ =
∑
T

xwt(T ),

where the sum runs over the set of all skew semistandard Young tableaux of shape
λ \ µ.

The tropical Schur polynomial Tsλ\µ(x) is a piece-wise linear function defined by
the tropicalization of the above formula in the tropical semi-ring, that is

Tsλ\µ(x) = max
T

(x,wt(T )).

where max is taken over all SSYT T of shape λ \ µ. For µ = 0, we obtain a usual
tropical Schur polynomial (cf. Section 1).

Thus, Tsλ\µ(x) is a piece-wise linear function of the form of the maximum of a
linear function (x, ·) over the set of points ν := wt(T ), while T runs over the set of all
skew semistandard Young tableaux of shape λ \ µ.

This set of weights constitute the set of integer points of the polytope GC(λ, µ)
defined by the inequalities

λ([1, |I|])−∆|I| ≥ ν(I), λ([n])−∆n = ν([n]),

where λ([1, |I|]) = λ1 + · · ·λ|I|, ν(I) =
∑

i∈I νi, ∆|I| = ∆1 + . . .∆|I|, ∆k := max{0, µ1−
λk+1} + max{0, µ2 − λk+2}+ · · ·+ max{0, µn−k − λn} (for details see [3]).

For given λ and µ we get a function Λ : 2[n] → R, Λ(I) = λ([1, |I|])−∆|I|, I ⊆ [n].
The properties of this function depend on shape λ \ µ. For example, for µ = 0,

this function is submodular (see the Appendix below). Let λ and µ be such that the
function Λ is submodular. That is, for any |I|, it holds

λ([1, |I|])−∆|I|−λ([1, |I|+1])−∆|I|+1 ≥ λ([1, |I|+1])−∆|I|+1−λ([1, |I|+2])−∆|I|+2.

In such a case, the polytope GC(λ, µ) is a base-polytope, and the complexity of
computation of Tsλ\µ(x) as a tropical function using the greedy algorithm (see [5] and
the Appendix) is polynomial in n.

While, for λ and µ, for which Λ fails to be submodular, the problem of finding
maximum can be hard, since some of the vertices of GC(λ, µ) do not even corresponds
to the weights of SSYT. Because of this we conjecture that the complexity of com-
putation of the tropical polynomial Tsλ\µ(x) is exponential as well over the semi-ring
(R,+,max).
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However, over the semi-field (R,max,+,−), the complexity of the tropical skew
Schur polynomial Tsλ\µ(x) is polynomial independently of λ and µ. This follows from
the tropicalization of the subtraction-free algorithm in [7] which computes skew Schur
polynomials.

Appendix

Here we recall some basic facts on base-polytopes. For details see [5, 8].
A function f : 2[n] :→ R is submodular if, for any S, T ⊆ [n], it holds

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

To a submodular function f is associated a base-polytope Bf in Rn

Bf := {x ∈ Rn : x(S) ≤ f(S), x([n]) = f([n])},
where x(S) denotes the sum

∑
i∈S xi.

This polytope is located in the hyperplane x([n]) = f([n]). Edges of such a polytope
are parallel to ’roots’ αi − αj, where αi denotes the i-th basis vector in Rn.

The Edmonds greedy algorithm [5] implies that the vertices of the base-polytope are
labeled by permutations from Sn. Namely, for a permutation σ ∈ Sn, the corresponding
vertex has coordinates defined by the rule xσ(1) = f({σ(1)}), xσ(2) = f({σ(1), σ(2)})−
f({σ(1)}), . . . ,

xσ(i) = f({σ(1), . . . , σ(i)})− f({σ(1), . . . , σ(i− 1)}).
Any facet of a base-polytope is a direct product of two base-polytopes. Moreover,

each facet is labeled by a subset W ⊂ [n] and is the product of the base-polytope
Bf |W := {x ∈ RW : x(S) ≤ f(S), S ⊂ W,x(W ) = f(W )} and the base-polytope
BfW := {x ∈ R[n]\W : x(T ) ≤ f(T ∪W ) − f(W ), T ⊂ [n] \W,x([n] \W ) = f([n]) −
f(W )}. The polytope Bf |W is a subset of RW , and the polytope BfW is a subset
of R[n]−W . Remark that the facet labeled by the complementary set [n] −W , is the
product of the polytope Bf |[n]−W

in R[n]−W and the polytope Bf [n]−W in RW . In other

words, these facets are parallel and decomposed as the product of polytopes in RW and
R[n]−W .

Thus, a facet labeled by a subset W of cardinality k has at most k! × (n − k)!
vertices. Moreover, this bound on the number of vertices is valid for any ’cut’

Bf ∩ {x ∈ R[n] : x(W ) = a, xi = 0, i /∈ W},
where a is in the segment f([n])− f([n]−W ) ≤ a ≤ f(W ). (From the submodularity
it holds that f(W ) + f([n] −W ) ≥ f([n]).) In fact, such a cut is a facet of the base
polytope

Bf ∩ {x ∈ R[n] : x(W ) ≤ a, xi = 0, i /∈ W}.
Let us warn that in general the intersection of base-polytopes may be not a base-
polytope, but the intersection of a base-polytope with a half-space {x ∈ R[n] : x(W ) ≤
a, xi = 0, i /∈ W} is always a base-polytope.
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