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Salajan’s conjecture on discriminating terms in
an exponential sequence

Pieter Moree and Ana Zumalacárregui

Abstract

Given a sequence of distinct positive integers v1, v2, . . . and any positive
integer n, the discriminatorDv(n) is defined as the smallest positive integer
m such v1, . . . , vn are pairwise incongruent modulo m. We consider the
discriminator for the sequence u1, u2, . . ., where uj equals the absolute
value of ((−3)j − 5)/4, that is uj = (3j − 5(−1)j)/4. We prove a 2012
conjecture of Sabin Salajan characterizing the discriminator of the sequence
u1, u2, . . ..

1 Introduction

Given a sequence of distinct positive integers v1, v2, . . . and any positive integer
n, the discriminator Dv(n) is defined as the smallest positive integer m such
v1, . . . , vn are pairwise incongruent modulo m. Browkin and Cao [5] relate it to
cancellations algorithms similar to the sieve of Eratosthenes.

The main problem is to give an easy description or characterization of Dv(n)
(in many cases such a characterization does not seem to exist). Arnold, Benkoski
and McCabe [2] might have been the first to consider this type of problem (they
introduced also the name). They considered the case where vj = j2. Subse-
quently various authors, see e.g. [4, 11, 16, 17], studied the discriminator for
polynomial sequences.

It is a natural problem to study the discriminator for non-polynomial se-
quences. Very little work has been done in this direction. E.g. there are some
conjectures due to Sun [16] in case vj = j!, vj =

(
2j
j

)
and vj = aj.

In this paper we study the discriminator for a closely related sequence u1, u2, . . .
with uj = |(−3)j − 5|/4 = (3j − 5(−1)j)/4. This sequence satisfies the binary
recurrence un = 2un−1 + 3un−2, for every n ≥ 3. with starting values u1 = 2 and
u2 = 1. The first few terms are

2, 1, 8, 19, 62, 181, 548, 1639, 4922, . . .

Note that for j ≥ 2 we have uj+1 > uj and that all uj are distinct. It is almost
immediate that the terms are of alternating parity. Since all uj are distinct the
number

DS(n) = min{m ≥ 1 : u1, . . . , un are pairwise distinct modulo m}
Mathematics Subject Classification (2000). 11T22, 11B83
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is well-defined. Note that DS(n) ≥ n. In Table 1 we give the values of DS(n) for
1 ≤ n ≤ 32768 (with the powers of 5 underlined).

TABLE 1

range value range value
1 1 129− 256 256
2 2 257− 512 512

3− 4 4 513− 1024 1024
5− 8 8 1025− 2048 2048
9− 16 16 2049− 2500 3125
17− 20 25 2501− 4096 4096
21− 32 32 4097− 8192 8192
33− 64 64 8193− 12500 15625
65− 100 125 12501− 16384 16384
101− 128 128 16385− 32768 32768

Based on this table Sabin Salajan, who at the time was an intern with the first
author, proposed a conjecture that we will prove in this paper to be true. The
first author had asked Sabin to find second order linear recurrences for which
the discriminator values have a nice structure. After an extensive search Sabin
came up with the sequence u1, u2, . . .. For convenience we call this sequence the
Salajan sequence S and its associated discriminator DS the Salajan discriminator.
If m = DS(n) for some n ≥ 1, then we say that m is a Salajan value, otherwise
it is a Salajan non-value.

Theorem 1 Let n ≥ 1. Put e = ⌈log2(n)⌉ and f = ⌈log5(5n/4)⌉. Then

DS(n) = min{2e, 5f}.

Corollary 1 If the interval [n, 5n/4) contains a power of 2, say 2a, then we have
DS(n) = 2a.

Note that 2e is the smallest power of 2 which is ≥ n and that 5f is the smallest
power of 5 which is ≥ 5n/4.

From Table 1 one sees that not all powers of 5 are Salajan values. Let F
be the set of integers b ≥ 1 such that the interval [4 · 5b−1, 5b] does not contain
a power of 2. Then it is not difficult to show that the image of DS is given by
{2a : a ≥ 0} ∪ {5b : b ∈ F}. Using Weyl’s criterion one can easily establish (see
Section 7.2) the following proposition.

Proposition 1 As x tends to infinity we have #{b ∈ F : b ≤ x} ∼ βx, with
β = 3− log 5/ log 2 = 0.678 . . ..

2 Strategy of the proof of Theorem 1

For the benefit of the reader we describe the strategy of the (somewhat lengthy)
proof of Theorem 1.

We first show that if 2e ≥ n and 5f ≥ 5n/4, then DS(n) ≤ min{2e, 5f}. This
gives us the absolutely crucial upper bound DS(n) < 2n.
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Next we study the periodicity of the sequence modulo d and determine its
period ρ(d). The idea is to use the information so obtained to show that many d
are Salajan non-values. In case 3 ∤ d the sequence turns out to be purely periodic
with even period that can be given precisely. This is enough for our purposes as
we can show that 3|DS(n) does not occur.

Now we restrict to the d with 3 ∤ d. Using that DS(n) < 2n one easily sees
that if ρ(d) ≤ d/2, then d is a Salajan non-value. The basic property (3) of the
period together with the evenness of the period now excludes composite values
of d. Thus we have d = pm, with p a prime.

In order for ρ(pm) > pm/2 to hold we find that we must have ord9(p) =
(p − 1)/2, that is 9 must have maximal possible order modulo p. Moreover, 9
must have maximal possible order modulo pm, that is ord9(p) = ϕ(pm)/2. (A
square cannot have a multiplicative order larger than ϕ(pm)/2 modulo pm.) This
is about as far as the study of the periodicity will get us. To get further we
will use a more refined tool, the incongruence index. Given an integer m, this is
the maximum k such that u1, . . . , uk are pairwise distinct modulo m. We write
ι(m) = k. For 3 ∤ m, ι(m) ≤ ρ(m). Using that DS(n) < 2n one notes that if
ι(d) ≤ d/2, then d is a Salajan non-value.

For the primes p > 3 we show by a lifting argument that if ι(p) < ρ(p), then
p2, p3, . . . are Salajan non-values. Likewise, we prove that if ι(p) ≤ p/2, then
p, p2, p3, . . . are Salajan non-values. We then show that except for p = 5, all primes
with ord9(p) = (p − 1)/2 satisfy ι(p) < ρ(p). At this point we are left with the
primes p > 5 satisfying ord9(p) = (p−1)/2 as only possible Salajan values. Then
using classical exponential sums techniques, and some combinatorial arguments,
we infer that ι(p) < 4p3/4. Using this bound, after some computational work, we
then conclude that ι(p) ≤ p/2 for every p > 5.

Thus we are left with DS(n) = 2a for some a or DS(n) = 5b for some b. By
Lemma 2 and Lemma 3 it now follows that 2a ≥ n and 5b ≥ 5n/4. This then
completes the proof.

3 Preparations for the proof

We will show that 2e with 2e ≥ n and 5f with 5f ≥ 5n/4 are admissible discrim-
inators. That is, we will show that the sequence u1, . . . , un lie in distinct residue
classes modulo 2e and in distinct residue classes modulo 5f .

Let p be a prime. If pa|n and pa+1 ∤ n, then we put νp(n) = a. The following
result is well-known, for a proof see, e.g., Beyl [3].

Lemma 1 Let p be a prime, r 6= −1 an integer satisfying r ≡ 1(mod p) and n a
natural number. Then

νp(r
n − 1) =

{
ν2(n) + ν2(r

2 − 1)− 1 if p = 2 and n is even;

νp(n) + νp(r − 1) otherwise.

Corollary 2 Let f ≥ 2 and p be an odd prime. If g is a primitive root modulo
p, then g is a primitive root modulo pf if and only if gp−1 6≡ 1(mod p2).

3



Corollary 2 is a classical result from elementary number theory. For an alternative
proof see, e.g., Apostol [1, Theorem 10.6].

Proposition 2 Let n ≥ 1 be an integer, p a prime and put ep = ⌊logp(n− 1)⌋.
Let r ≡ 1(mod p) be an integer 6= −1. Put rp = νp(r − 1). If p = 2, we assume
in addition that r is a square. The integers r, . . . , rn are pairwise distinct modulo
pep+rp+1.

Proof. Write m = pep+rp+1. Let 1 ≤ i < j ≤ n and suppose that ri ≡ rj(mod m),
thus rj−i ≡ 1(mod m) and hence νp(r

j−i− 1) ≥ ep+ rp+1. Note that νp(k) ≤ ep
for 1 ≤ k ≤ n − 1. Thus νp(j − i) ≤ ep and, by Lemma 1, we deduce that
νp(r

j−i − 1) ≤ ep + rp. Contradiction. ✷

Corollary 3

The integers 9, . . . , 9n are pairwise distinct modulo 2e2+4.
The integers 81, . . . , 81n are pairwise distinct modulo 5e5+2.

Lemma 2 Let n ≥ 2 be an integer with n ≤ 2m. Then, we have that u1, . . . , un
are pairwise distinct modulo 2m.

Proof. For n = 2 the result is obvious. So assume that n ≥ 3. Since the
terms of the sequence alternate between even and odd, it suffices to compare the
remainders (mod 2m) of the terms having an index with the same parity. Thus
assume that we have

u2j+α ≡ u2k+α(mod 2m) with 1 ≤ 2j + α < 2k + α ≤ n, α ∈ {1, 2}.

It follows from this that 9k−j ≡ 1(mod 2m+2). We have ν2(9
k−j−1) = ν2(k−j)+3

by Lemma 1. Further, 2k− 2j ≤ n− 1 < 2m, so ν2(k− j) ≤ m− 2 (here we used
that n ≥ 3). Therefore ν2(9

k−j−1) = ν2(k− j)+3 ≤ (m−2)+3 = m+1, which
implies that 9k−j − 1 cannot be divisible by 2m+2. Contradiction. ✷

Remark. The incongruence of ui and uj (mod 2m) with i and j of the same parity
and 1 ≤ i < j ≤ n is equivalent with 9, 92, . . . , 9⌊(n−1)/2⌋ being pairwise incon-
gruent mod 2m. Using this observation and Corollary 3 we obtain an alternative
proof of Lemma 2.

On noting that trivially DS(n) ≥ n and that for n ≥ 2 the interval [n, 2n− 1]
always contains some power of 2, we obtain the following corollary to Lemma 2.

Corollary 4 We have n ≤ DS(n) ≤ 2n− 1.

Lemma 3 The integers u1, . . . , un are pairwise distinct modulo 5m iff

5m ≥ 5n/4.

Proof. If 5m < 5n/4, then 1 + 4 · 5m−1 ≤ n. By Lemma 1 we have

815
m−1 ≡ 1(mod 5m),
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which ensures that u1 ≡ u1+4·5m−1(mod 5m). Next let us assume that 5m ≥
5n/4. This ensures that m ≥ 1. The remainders of the sequence modulo 5 are
2, 1, 4, 3, 2, 1, . . . and so the sequence has period 4 modulo 5. Thus we may assume
that m ≥ 2. It suffices to show that uj1 6≡ uk1(mod 5m) with 1 ≤ j1 < k1 ≤ n in
the same congruence class modulo 4. We will argue by contradiction. Thus we
assume that

u4j+α ≡ u4k+α(mod 5m) with 1 ≤ 4j + α < 4k + α ≤ n, α ∈ {1, 2, 3, 4}.
From this it follows that 81k−j ≡ 1(mod 5m), where k − j ≤ (n− α)/4 < n/4 ≤
5m−1 by hypothesis and hence ν5(k− j) ≤ m− 2. On invoking Lemma 1 we now
infer that ν5(81

k−j − 1) = ν5(k − j) + 1 ≤ m− 2 + 1 = m− 1. Contradiction. ✷

Remark. The incongruence of ui and uj (mod 5m) with i and j in the same residue
class modulo 4 and 1 ≤ i < j ≤ n is equivalent with 81, 812, . . . , 81⌊(n−1)/4⌋ being
pairwise incongruent mod 5m. Using this observation and Corollary 3 we obtain
an alternative proof of Lemma 3.

In order to determine whether a given m discriminates u1, . . . , un modulo m, we
can separately consider whether ui 6≡ uj(mod m) with 1 ≤ i < j ≤ n of the
same parity (case 1) and with distinct parity (case 2). The first case is easy and
covered by Lemma 4, the second case is trivial in case m is a power of 2 or 5, but
in general much harder than the first case.

Lemma 4 Suppose that 3 ∤ m and 1 ≤ α ≤ n. We have ui 6≡ uj(mod m) for
every pair (i, j) satisfying α ≤ i < j ≤ n with i ≡ j(mod 2) iff ord9(4m) >
(n− α)/2.

Proof. We have ui 6≡ ui+2k(mod m) iff 9k 6≡ 1(mod 4m). Thus ui 6≡ uj(mod m)
for every pair (i, j) with α ≤ i < j ≤ n and i ≡ j(mod 2) iff 9k 6≡ 1(mod 4m) for
1 ≤ k ≤ (n− α)/2. ✷

Alternative proof of Lemma 2. If i and j are of different parity, then ui 6≡
uj(mod 2). Hence we may assume that i and j are of the same parity. On
invoking Lemma 4 we then obtain that u1, . . . , un are distinct modulo 2m iff
ord9(2

m+2) > (n − 1)/2. By Lemma 1 we have ord9(2
m+2) = 2m−1, concluding

the proof. ✷

Alternative proof of Lemma 3. The remainders of the sequence modulo 5 are
2, 1, 4, 3, 2, 1, . . . and so terms ui and uj with i and j of different parity are
incongruent. Now by Lemma 4 the integers u1, . . . , un are pairwise distinct mod-
ulo 5f iff ord9(4 · 5f) > (n − 1)/2. Since 3 is a primitive root modulo 5 and
34 6≡ 1(mod 52), we have by Corollary 2 that 3 is a primitive root modulo 5f and
hence ord3(5

f ) = 4 · 5f−1 = ϕ(5f), with ϕ Euler’s totient function. On making
use of the trivial observation that, for integers m coprime to 3,

2ord9(4m) = lcm(2, ord3(4m)), (1)

we infer that ord9(4 · 5f) = ord9(5
f) = ord3(5

f)/2 = 2 · 5f−1. The proof is now
finished by noting that the condition ord9(4 · 5f) > (n − 1)/2 is equivalent to
5f ≥ 5n/4. ✷
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4 Periodicity and discriminators

4.1 Generalities

We say that a sequence of integers {vj}∞j=1 is (eventually) periodic modulo d if
there exist integers n0 ≥ 1 and k ≥ 1 such that

vn ≡ vn+k(mod d) (2)

for every n ≥ n0. The minimal choice for n0 is called the pre-period. The smallest
k ≥ 1 for which (2) holds for every n ≥ n0 is said to be the period and denoted
by ρv(d). In case we can take n0 = 1 we say that the sequence is purely periodic
modulo d.

Let {vj}∞j=1 be a second order linear recurrence with the two starting values
and the coefficients of the defining equation being integers. Note that, for a given
d, there must be a pair (a, b) such hat a ≡ vn and b ≡ vn+1 modulo d for infinitely
many n. Since a pair of consecutive terms determines uniquely all subsequent
ones, it follows that the sequence is periodic modulo d. If we consider n-tuples
instead of pairs modulo d, we see that an nth order linear recurrence with the
n starting values and the coefficients of the defining equation being integers, is
always periodic modulo d.

If a sequence v is periodic modulo d1 and modulo d2 and (d1, d2) = 1, then
we obviously have

ρv(d1d2) = lcm(ρv(d1), ρv(d2)). (3)

If the sequence is purely periodic modulo d1 and modulo d2 and (d1, d2) = 1, then
it is also purely periodic modulo d1d2. Another trivial property of ρv is that if
the sequence v is periodic modulo d2, then for every divisor d1 of d2 we have

ρv(d1)|ρv(d2). (4)

The following result links the period with the discriminator. Its moral is that
if ρv(d) is small enough, we cannot expect d to occur as Dv-value, i.e. d does not
belong to the image of Dv.

Lemma 5 Assume that Dv(n) ≤ g(n) for every n ≥ 1 with g non-decreasing.
Assume that the sequence v is purely periodic modulo d with period ρv(d). If
g(ρv(d)) < d, then d is a Dv-non-value.

Proof. Since v1 ≡ v1+ρv(d)(mod d) we must have ρv(d) ≥ n. Suppose that d is
a Dv-value, that is for some n we have Dv(n) = d. Then d = Dv(n) ≤ g(n) ≤
g(ρv(d)). Contradiction. ✷

4.2 Periodicity of the Salajan sequence

The purpose of this section is to establish Theorem 2, which gives an explicit
formula for the period ρ(d) and the pre-period for the Salajan sequence. Since it
is easy to show that 3 ∤ DS(n), it would be actually enough to study those integers
d with 3 ∤ d (in which case the Salajan sequence is purely periodic modulo d).
However, for completeness we discuss the periodicity of the Salajan sequence for
every d.
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Theorem 2 Suppose that d > 1. Write d = 3α · δ with (δ, 3) = 1. The period of
the Salajan sequence modulo d, ρ(d), exists and satisfies ρ(d) = 2ord9(4δ). The
pre-period equals max(1, α).

Corollary 5 The Salajan sequence is purely periodic iff 9 ∤ d.

Lemma 6 Write d = 3α · δ with (δ, 3) = 1. The Salajan sequence is purely
periodic iff 9 ∤ d. Furthermore, if 9 ∤ d, then ρ(d) | 2ord9(δ).

Proof. Since u = 2, 1, 8(mod 9) the condition 9 ∤ d is necessary for the Salajan
sequence to be purely periodic modulo d.

We will now show that it is also sufficient. Let us first consider the case
where α = 0. We note that un ≡ un+2k(mod d) iff 3n ≡ 3n+2k(mod 4δ). It follows
that ρ(d) | 2ord9(4δ) | 2k. If α = 1, then we use (3) and the observation that
2 = ρ(3) | 2ord9(4δ). ✷

Remark. The above proof shows that if ρ(d) is even, then ρ(d) = 2ord9(4δ).

Lemma 7 Assume that 9 ∤ d and d > 1. The Salajan sequence is purely periodic
with period ρ(d) = 2ord9(4δ), where d = 3α · δ with (δ, 3) = 1.

Proof. By the previous remark it suffices to show that ρ(d) is even. If α = 1, then
2 = ρ(3) | ρ(d) (here we use (4)) and we are done, so we may assume that α = 0.
If 5 | d, then 4 = ρ(5) | ρ(d) and so we may assume that (5, d) = 1. Suppose that
ρ(d) is odd. Then

un ≡ un+ρ(d)(mod d) (5)

iff 3n−5(−1)n ≡ 3n+ρ(d)+5(−1)n(mod 4d) iff 5∗(1−3ρ(d))/2 ≡ (−3)−n(mod 2d),
where 5∗ is the inverse of 5 modulo 2d. Now if (5) is to hold for every n ≥ 1,
then (−3)n assumes only one value as n ranges over the positive integers. Since
(−3)φ(2d) ≡ 1(mod 2d) we must have (−3)n ≡ 1(mod 2d) for every n ≥ 1. This
implies that d = 2 or d = 1. Since 5∗(1− 32)/2 6≡ 1(mod 4) it follows that d = 1.
Contradiction. ✷

Proof of Theorem 2. It is an easy observation that modulo 3α the Salajan sequence
has pre-period max(α, 1) and period two. This in combination with Lemma 7
and (3) then completes the proof. ✷

4.3 Comparison of ρ(d) with d

Lemma 8 Let p > 3. We have ρ(pm) | ρ(p)pm−1.

Proof. Since 3ρ(p) ≡ 1(mod p) we have 3ρ(p)p
m−1 ≡ 1(mod pm) and, provided that

ρ(p) is even, this implies that uk ≡ uk+ρ(p)pm−1(mod pm) for every k ≥ 1. ✷

Corollary 6 Either ρ(p2) = ρ(p) or ρ(p2) = pρ(p).

Proof. We have ρ(p)|ρ(p2)|pρ(p).

Lemma 9 We have ρ(2e) = 2e and ρ(3e) = 2. If p is odd, then ρ(pe)|ϕ(pe).
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Proof. From Lemma 1 and Lemma 7 we infer that ord9(2
e+2) = 2e−1 and hence

ρ(2e) = 2e. For n large enough modulo 3e the sequence alternates between −5/4
and 5/4 modulo 3e. Since these are different residue classes, we have ρ(3e) = 2.

It remains to prove the final claim. If p = 3 it is clearly true and thus we
may assume that p > 3. Note that ρ(pe) = 2ord9(4p

e) = 2ord9(p
e) and that

2ord9(p
e) | 2(ϕ(pe)/2) = ϕ(pe). ✷

Corollary 7 We have ρ(d) ≤ d.

Lemma 10 Suppose that d1, d2 > 1 and (d1, d2) = 1. Then

ρ(d1d2) ≤ ρ(d1)ρ(d2)/2 ≤ d1d2/2.

Proof. We have ρ(d1d2) = lcm(ρ(d1), ρ(d2)). By Lemma 7 both ρ(d1) and ρ(d2)
are even. It thus follows that ρ(d1d2) ≤ ρ(d1)ρ(d2)/2. The final estimate follows
by Corollary 7. ✷

5 Non-values of DS(n)

Recall that if m = DS(n) for some n ≥ 1 we call m a Salajan value and otherwise
a Salajan non-value.

Most of the following proofs rely on the simple fact that for certain sets of
integers we have that if u1, . . . , un are in n distinct residue classes modulo m,
then m ≥ 2n contradicting Corollary 4.

5.1 DS(n) is not a multiple of 3

Lemma 11 We have 3 ∤ DS(n).

Proof. We argue by contradiction and so assume thatDS(n) = 3αm with (m, 3) =
1 and α ≥ 1. Since by definition uα 6≡ uα+2t(mod 3αm) for t = 1, . . . , ⌊(n− α)/2⌋
and uα ≡ uα+2t(mod 3α) for every t ≥ 1, it follows that ui 6≡ uj(mod m) with
α ≤ i < j ≤ n and i and j of the same parity. By Lemma 4 it then follows
that ord9(4m) > (n − α)/2. By Lemma 7, Corollary 7 and Corollary 4 we then
find that n − α + 1 ≤ 2ord9(4m) = ρ(m) ≤ m ≤ 2n/3α. This implies that
n ≤ 3α(α − 1)/(3α − 1). On the other hand, by Corollary 4 we have 3αm ≤ 2n
and hence n ≥ 3α/2. Combining the upper and the lower bound for n yields
3α ≤ 2α− 1, which has no solution with α ≥ 1. ✷

Remark. It is not difficult to show directly that if 3 ∤ m, then 2ord9(4m) ≤ m and
thus a proof of Lemma 11 can be given that is free of periodicity considerations
and only involves material from Section 3.

5.2 DS(n) is a prime-power

Assume 9 ∤ d. By Corollary 5 and Corollary 4 we can take g(n) = 2n − 1 in
Lemma 5. This yields Lemma 12. However, for the convenience of the reader we
give a more direct proof.
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Lemma 12 Suppose that d with 9 ∤ d satisfies ρ(d) ≤ d/2, then d is a Salajan
non-value.

Proof. Suppose that d = DS(n) for some integer n. By Corollary 4 we have
d < 2n. By Lemma 2 the condition 9 ∤ d guarantees that the Salajan se-
quence is purely periodic modulo d. Since u1 ≡ u1+ρ(d)(mod d) we must have
ρ(d) ≥ n. Now suppose that d ≥ 2ρ(d). It then follows that d ≥ 2n, contradict-
ing d = DS(n) < 2n. ✷

We now have the necessary ingredients to establish the following result. Let
p be odd. On noting that in (Z/pmZ)∗ a square has maximal order ϕ(pm)/2, we
see that the following result says that a Salajan value is either a power of two or
prime power pm with 9 having maximal multiplicative order in (Z/pmZ)∗.

Lemma 13 A Salajan value > 1 must be of the form pm, with p = 2 or p > 3
and m ≥ 1. Further, one must have ord9(p

m) = ϕ(pm)/2 and ord9(p) = (p−1)/2.
If m ≥ 2 we must have 3p−1 6≡ 1(mod p2).

Proof. Suppose that d > 1 is a Salajan value that is not a prime power. Thus
we can write d = d1d2 with d1, d2 > 1, (d1, d2) = 1. By Lemma 11 we have
3 ∤ d1d2. By Lemma 10 we have ρ(d1d2) ≤ d1d2/2, which by Lemma 12 im-
plies that d = d1d2 is a non-value. Thus d is a prime power pm. By Lemma
11 we have p = 2 or p > 3. Now let us assume that p > 3. By Lemma 9 we
have either ρ(pm) = ϕ(pm) or ρ(pm) ≤ ϕ(pm)/2. The latter inequality leads to
ρ(pm) ≤ pm/2 and hence to pm being a non-value. Using Theorem 2 we infer that
ord9(p

m) = ϕ(pm)/2. Now if ord9(p
m) < (p−1)/2, this leads to ord9(p

m) < ϕ(pm)
and hence we must have ord9(p

m) = (p− 1)/2. Finally, suppose that m ≥ 2 and
3p−1 ≡ 1(mod p2). Then ord9(p

m) < ϕ(pm)/2. This contradiction shows that if
m ≥ 2 we must have 3p−1 6≡ 1(mod p2). ✷

The possible Salajan values can be further limited by using some results on a
quantity we will baptise as the incongruence index.

5.3 DS(n) is a prime or a small prime power

Put P = {p : p > 3, ord9(p) = (p − 1)/2}. If a prime p > 3 is a Salajan value,
then by Lemma 13 we must have p ∈ P. If p ∈ P, then by Theorem 2 we have
ρ(p) = p− 1. This will be used a few times in the sequel. Let

Pj = {p : p > 3, p ≡ j(mod 4), ord3(p) = p− 1}, j ∈ {1, 3}

and
P2 = {p : p > 3, p ≡ 3(mod 4), ord3(p) = (p− 1)/2}.

By equation (1) we have 2ord9(p) = lcm(2, ord3(p)). From this we infer that
P = P1 ∪ P2 ∪ P3. We have

P1 = {5, 17, 29, 53, 89, 101, 113, 137, 149, 173, 197, 233, 257, 269, 281, 293, . . .},

P2 = {11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263, . . .},
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P3 = {7, 19, 31, 43, 79, 127, 139, 163, 199, 211, 223, 283, . . .}.
(The reader interested in knowing the natural densities of these sets, under GRH,
is referred to the appendix.)

The aim of this section is to establish the following result, the proof of which
makes use of properties of the incongruence index and is given in Section 5.4.1.

Proposition 3 Let d > 1 be an integer coprime to 10. If d is a Salajan value,
then d ∈ P1 ∪ P2.

5.3.1 The incongruence index

Definition 1 Let {vj}∞j=1 be a sequence of integers and m an integer. Then the
largest number k such that v1, . . . , vk are pairwise incongruent modulo m, we call
the incongruence index, ιv(m), of v modulo m.

Note that ιv(m) ≤ m. In case the sequence v is purely periodic modulo d, we
have ιv(d) ≤ ρv(d). A minor change in the proof of Lemma 5 yields the following
result.

Lemma 14 Assume that Dv(n) ≤ g(n) for every n ≥ 1 with g non-decreasing.
If d > g(ιv(d)), then d is a Dv-non-value.

Likewise a minor variation in the proof of Lemma 12 gives the following result,
which will be of vital importance in order to discard possible Salajan values. (For
the Salajan sequence u we write ι(d) instead of ιu(d).)

Lemma 15 If ι(d) ≤ d/2, then d is a Salajan non-value.

5.3.2 Lifting from pm to pm+1

Lemma 16 If p > 3 and ι(pm) < ρ(pm), then ι(pm+1) < pm+1/2.

Proof. Either ρ(pm+1) = ρ(pm) or ρ(pm+1) = pρ(pm). In the first case

ι(pm+1) ≤ ρ(pm+1) = ρ(pm) ≤ pm < pm+1/2,

so we may assume that ρ(pm+1) = pρ(pm). This implies that

3ρ(p
m) ≡ 1 + kpm(mod pm+1) (6)

with p ∤ k. From this we infer that ui+jρ(pm) assumes p different values modulo
pm+1 as j runs through 0, 1, . . . , p− 1. Put j1 = ι(pm) + 1. By assumption there
exists 1 ≤ i1 < j1 such that ui1 ≡ uj1(mod pm). Modulo pm+1 we have

{ui1+jρ(pm) : 0 ≤ j ≤ p− 1} = {uj1+jρ(pm) : 0 ≤ j ≤ p− 1}.

The cardinality of these sets is p. Now let us consider the subsets obtained from
the above two sets if we restrict j to be ≤ p/2. Each contains (p+ 1)/2 different
elements. It follows that these sets must have an element in common. Say we
have

ui1+k1ρ(pm) ≡ uj1+k2ρ(pm)(mod pm+1), 0 ≤ k1, k2 ≤ p/2.

10



Since by assumption i1 6≡ j1(mod ρ(pm)), we have that

i1 + k1ρ(p
m) 6= j1 + k2ρ(p

m).

The proof is completed on noting that i1+k1ρ(p
m) and j1+k2ρ(p

m) are bounded
above by

ι(pm)+1+(p−1)
ρ(pm)

2
≤ (p+1)

ρ(pm)

2
≤ (p+1)

ϕ(pm)

2
= pm−1 (p

2 − 1)

2
<
pm+1

2
,

where we used that by assumption ι(pm) + 1 ≤ ρ(pm) and Lemma 9. ✷

Lemma 17 Suppose that l ≥ 1. If ι(pl) ≤ pl/2, then ι(pm) ≤ pm/2 for every
m > l.

Proof. Note that p > 5. If p 6∈ P, then ρ(pm) ≤ pm−1ρ(p) ≤ pm−1(p−1)/2 ≤ pm/2
and hence ι(pm) ≤ ρ(pm) ≤ pm/2, so we may assume that p ∈ P. Now we
proceed by induction. Suppose that we have established that ι(pk) ≤ pk/2 for
l ≤ k ≤ m− 1. By Corollary 6 there are two cases to be considered.
Case 1. ρ(p2) = ρ(p) = p− 1.
In this case ρ(pm) ≤ pm−2ρ(p) = ϕ(pm−1) ≤ pm−1 ≤ pm/2, and hence ι(pm) ≤
pm/2.
Case 2. We have ρ(p2) = pρ(p) and hence ρ(pm) = pm−1ρ(p) = ϕ(pm). By as-
sumption we have ι(pm−1) ≤ pm−1/2 < pm−2(1− 1/p) = ρ(pm−1). By Lemma 16
it then follows that ι(pm) ≤ pm/2. ✷

On combining the latter two lemmas with Lemma 15 we arrive at the following
more appealing result.

Lemma 18

1) If p > 3 and ι(p) < ρ(p), then p2, p3, . . . are all Salajan non-values.
2) If ι(p) ≤ p/2, then p, p2, p3, . . . are all Salajan non-values.

Proof. 1) If the conditions on p are satisfied, then by Lemma 16 it follows that
ι(p2) ≤ p2/2, which by Lemma 17 implies that ι(pm) ≤ pm/2 for every m ≥ 2.
By Lemma 15 it then follows that pm is a non-value.
2) If ι(p) ≤ p/2, then ι(pm) ≤ pm/2 for every m ≥ 1 by Lemma 17 and by Lemma
15 it then follows that pm is a non-value. ✷

We will see in Proposition 5 that actually ι(p) ≤ p/2 for p > 5.

5.4 If ord9(p) = (p− 1)/2, then ι(p) < ρ(p) unless p = 5

Lemma 15 in combination with the following lemma shows that every p ∈ P3 is
a Salajan non-value. Recall that if p ∈ P, then ρ(p) = p− 1.

Lemma 19 Suppose that p ∈ P3. Then ι(p) ≤ p/2 < p− 1 = ρ(p).

11



Proof. Since by assumption 3 is a primitive root modulo p, we have that (3
p
) = −1.

It follows that

1 = u2 =
(3
p
) + 5

4
≡ 3(p−1)/2 + 5

4
= u p−1

2

(mod p).

We infer that ι(p) ≤ (p− 1)/2. ✷

On using Lemma 16 the following result can be used to show that if p ∈ P1

and m ≥ 2, then pm is a Salajan non-value.

Lemma 20 If p > 5 and p ∈ P1 ∪ P2, then there exists k ≤ p − 3 such that
uk ≡ uk+1(mod p) and hence ι(p) < p− 1 = ρ(p).

Proof. Note that

u2m−1 ≡ u2m(mod p) iff 32m ≡ 15(mod p)

and
u2m ≡ u2m+1(mod p) iff 32m ≡ −5(mod p).

If p ∈ P1, then 3 is a primitive root modulo p, hence (3
p
) = −1 and (−3

p
) = −1 as

p ≡ 1(mod 4). If p ∈ P2, then (3
p
) = 1 and (−3

p
) = −1 as p ≡ 3(mod 4). We see

that (15
p
) = (−3

p
)(−5

p
) = −(−5

p
) and hence either 15 or −5 is a square modulo p.

Since by assumption ord9(p) = (p− 1)/2, every square s 6= 0 modulo p is of the
form s = 32k for some 1 ≤ k ≤ (p− 1)/2. It follows that either 32k ≡ −5(mod p)
or 32k ≡ 15(mod p) for some 1 ≤ k ≤ (p − 1)/2. Since 3p−1 ≡ 1(mod p) and,
modulo p, −5 and 15 are not congruent to 1, it follows that 2k ≤ p − 3 and so
ι(p) ≤ p− 3 + 1 = p− 2. ✷

Remark. We have (15
p
) = (−5

p
) in case p ∈ P3 and (−5

p
) = −1 iff p ≡ ±1(mod 5).

We infer that if p > 5 and p ∈ P, then there exists k ≤ p − 3 such that
uk ≡ uk+1(mod p), except when p ∈ P3 and p ≡ ±1(mod 5).

Remark. It is not true in general that ι(p) < ρ(p), there are many counter-
examples, e.g., p = 193, 307, 1093, 1181, 1871. It is an open problem whether
there are infinitely many prime numbers p such that ι(p) = ρ(p).

5.4.1 Proof of Proposition 3

Suppose that (d, 10) = 1. By Lemma 13 it follows that d = pm with p > 5 and
p ∈ P. It follows from Lemmas 19 and 20 that ι(p) < ρ(p) for every p ∈ P with
p > 5, which implies by Lemma 18 that m = 1 and d = p.

By Lemma 12 and Lemma 19 every prime p ∈ P3 is a Salajan non-value. On
recalling that P = P1 ∪ P2 ∪ P3 the proof is then completed. ✷

5.5 DS(n) is not a ‘big’ prime

We will now use classical exponential sum techniques to show that, for sufficiently
large primes, the condition given in Corollary 2 is not satisfied. Therefore, big
primes are Salajan non-values.
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Let us denote by ψ the additive characters of the group G and ψ0 the trivial
character. For any non-empty subset A ⊆ G, let us define the quantity

|Â| = max
ψ 6=ψ0

∣∣∣∣∣
∑

a∈A

ψ(a)

∣∣∣∣∣ , (7)

where the maximum is taken over all non-trivial characters in G.

Lemma 21 Let G be a finite abelian group. For any given non-empty subsets
A,B ⊆ G, whenever A ∩ (B +B) = ∅ we have

|B| ≤ |Â||G|
|A|+ |Â|

,

where |Â| is the quantity defined in (7).

Proof. The number N of pairs (b, b′) ∈ B × B such that b+ b′ ∈ A equals

N =
1

|G|
∑

ψ

∑

A

∑

B×B

ψ(b+ b′ − a) =
|B|2|A|
|G| +R (8)

where, by the orthogonality of the characters,

|R| =
∣∣∣∣∣
1

|G|
∑

ψ 6=ψ0

∑

A

∑

B×B

ψ(b+ b′ − a)

∣∣∣∣∣ ≤
1

|G|
∑

ψ 6=ψ0

∣∣∣∣∣
∑

A

ψ(a)

∣∣∣∣∣

∣∣∣∣∣
∑

B

ψ(b)

∣∣∣∣∣

2

≤ |Â|
|G|

∑

ψ 6=ψ0

∣∣∣∣∣
∑

B

ψ(b)

∣∣∣∣∣

2

.

Note that ∣∣∣∣∣
∑

B

ψ(b)

∣∣∣∣∣

2

=
∑

b,b′∈B

ψ(b− b′),

since as complex numbers ψ(b) = ψ(−b), and that by orthogonality of the char-
acters ∑

ψ

∑

b,b′∈B

ψ(b− b′) =

{
0 if b 6= b′,
|G| if b = b′.

Thus

|R| ≤ |Â|
|G|

∑

ψ 6=ψ0

∣∣∣∣∣
∑

B

ψ(b)

∣∣∣∣∣

2

=
|Â|
|G|

(
|G||B| − |B|2

)
. (9)

Since by assumption N = 0, it follows from (8) and (9) that

|B|2|A|
|G| ≤ |Â|

|G|(|G||B| − |B|2),

which concludes the proof. ✷

We will need the following auxiliary result, which can be found in [7].
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Lemma 22 Let p be a prime and g be a primitive root modulo p. The set

A = {(x, y) : 3gx − gy ≡ 30 (mod p)} ⊂ Zp−1 × Zp−1

has p− 2 elements and satisfies |Â| < p1/2.

Remark. It is easy to see that any subset of an abelian group satisfies that
|A|1/2 ≤ |Â|, so the bound in Lemma 22 is essentially best possible.

Remark. In fact this result is true in a more general context (see for example [7]):
let g be a primitive root in a finite field Fq and a, b and c be non-zero elements
in the field. Then, the set Ag(a, b, c) = {(x, y) : agx − bgy = c} in Fq has q − 2

elements and satisfies |Âg(a, b, c)| < q1/2.

Proposition 4 Let p > 3 be a prime. Suppose that u1, . . . , un are pairwise dis-

tinct modulo p. Then p >
⌊
n
4

⌋4/3
.

Proof. First observe that if two elements have the same parity index, then ui 6≡
ui+2k(mod p) iff 9k 6≡ 1(mod p), thus ord9(p) ≥ n/2. (Alternatively one might
invoke Lemma 4 to obtain this conclusion.) By hypothesis, comparing elements
with distinct parity index, it follows that

3 · 9k − 9s ≡ 30 (mod p), 1 ≤ k, s ≤
⌊
n
2

⌋
(10)

has no solution (otherwise u2k ≡ u2s−1 (mod p), with 1 ≤ 2k, 2s− 1 ≤ n).
We will now show that the non existence of solutions to equation (10) implies

that p > ⌊n
4
⌋4/3. Let g be a primitive root modulo p and let A be the set defined

in Lemma 22. Let m be the smallest integer such that gm ≡ 9 (mod p) and

B = {(mx,my) : 1 ≤ x, y ≤ ⌊n/4⌋} ⊂ Zp−1 × Zp−1.

Note that, since ord9(p) ≥ n/2, it follows that |B| =
⌊
n
4

⌋2
(since m generates a

subgroup of order at least n/2 modulo p− 1).
Observe that the non existence of solutions to equation (10) implies that

3 · gmk − gms ≡ 30 (mod p), 1 ≤ k, s ≤
⌊
n
2

⌋

has no solutions and in particular A ∩ (B + B) = ∅ (since clearly B + B ⊆
{(mx,my) : 1 ≤ x, y ≤ ⌊n/2⌋}). It follows from Lemma 21 and Lemma 22 that

|B| =
⌊n
4

⌋2
≤ |Â||G|

|A|+ |Â|
≤ p1/2(p− 1)2

p− 2 + p1/2
< p3/2, (11)

which concludes the proof. ✷

Corollary 8 If p > 5 is a prime number, then p is a Salajan non-value.

Proof. First observe that, if n ≥ 2060 then it follows from Proposition 4 that if,
for some prime p ≥ n the elements u1, . . . , un are pairwise distinct modulo p then

p >
⌊n
4

⌋4/3
≥ 2n,
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and by Corollary 2 it follows that p is a Salajan non-value. For primes 5 ≤ p ≤
2060, the result follows from the calculations included in Table 1. ✷

Taking n = ι(p) in Proposition 4 we obtain, after some numerical work, the
following estimate. Since ι(29) = 14 the bound is sharp.

Proposition 5 Let p > 5 be a prime. Then ι(p) ≤ min((p− 1)/2, 4p3/4).

Proof. By Proposition 4 we infer that ι(p) < 3 + 4p3/4. A tedious analysis
using the one but last estimate for |B| in (11) gives the more elegant bound
ι(p) < 4p3/4. For p < 4111 one verifies the claimed bound by direct computation.
Since 4p3/4 < (p− 1)/2 for p ≥ 4111, we are done. ✷

6 The proof of Salajan’s conjecture

In Section 3, we established that powers of 2 and powers of 5 were candidates for
Salajan values. Finally, after studying the characteristics of the period and the
incongruence index of the Salajan sequence, we discard in Section 5 any other
possible candidates.

Proof of Theorem 1. It follows from Proposition 3 that if d > 1 is a Salajan
value, then either (10, d) > 1 or d ∈ P1 ∪ P2. It follows from Corollary 8 that no
prime greater than 5 can be a Salajan value and hence (10, d) > 1. By Lemma 12
it follows that d has to be a prime power. Therefore, since (10, d) > 1, the
discriminator must be a power of 2 or a power of 5.

First suppose that DS(n) = 2e. On invoking Lemma 2 it then follows that
e = min{a : 2a ≥ n}. Next suppose that DS(n) = 5f . By Lemma 3 it then
follows that f = min{a : 2a ≥ 5n/4}. So we have DS(n) = 2e or DS(n) = 5f . By
the definition of the discriminator we now infer that DS(n) = min{2e, 5f}. ✷

7 Appendix

7.1 The natural density of the sets Pi

Standard methods allow one to determine, assuming the Generalized Riemann
Hypothesis, the densities of the sets Pi defined in Section 5.3. (For a survey of
related material see Moree [13].)

Proposition 6 Assume GRH. We have

#{p ≤ x : p ∈ Pi} = δ(Pi)
x

log x
+O

(x log log x
log2 x

)
,

with δ(P1) = δ(P2) = 3A/5 = 0.224373488 . . . and δ(P3) = 2A/5 = 0.149582325 . . .
and

A =
∏

p

(
1− 1

p(p− 1)

)
= 0.3739558136 . . . ,

the Artin constant.
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Corollary 9 The result also holds for the set P, where we find δ(P) = δ(P1) +
δ(P2) + δ(P3) = 8A/5 = 0.598329301 . . ..

Proof. These three results can be obtained by a variation of the classical re-
sult of Hooley [8] and this yields the estimate with δ(Pi) yet to be determined.
We note that the sets Pi are mutually disjunct. By [12, Theorem 4] we have
δ(P1) = 3A/5 and δ(P1 ∪ P3) = A. This gives δ(P3) = 2A/5. By [14, Theorem
3] we have δ(P) = 8A/5 and hence δ(P2) = δ(P)− δ(P1 ∪ P3) = 3A/5. ✷

For the benefit of the reader we give a perhaps more insightful argument why
δ(P2) = 3A/5.

Assuming GRH we have, cf. Moree [14],

δ(P2) =

∞∑

n=1

µ(n)

[Q(ζ2n, 31/2n) : Q]
−

∞∑

n=1

µ(n)

[Q(i, ζ2n, 31/2n) : Q]
,

where the first sum gives the density of the primes p such that ord3(p) = (p−1)/2
and the second sum the density of the primes p such that p ≡ 1(mod 4) and
ord3(p) = (p− 1)/2. Since for n even, i ∈ Q(ζ2n), we find that

δ(P2) =
∞∑

(n,2)=1

µ(n)

[Q(ζ2n, 31/2n) : Q]
−

∞∑

(n,2)=1

µ(n)

[Q(i, ζ2n, 31/2n) : Q]
.

Now suppose that n is odd. If 3|n, then
√
−3 ∈ Q(ζ2n). Since

√
3 ∈ Q(ζ2n, 3

1/2n),
it follows that Q(i, ζ2n, 3

1/2n) = Q(ζ2n, 3
1/2n). On the other hand, if (n, 3) = 1

one infers that [Q(i, ζ2n, 3
1/2n) : Q] = 2[Q(ζ2n, 3

1/2n) : Q]. This leads to

δ(P2) =
1

2

∞∑

(n,6)=1

µ(n)

[Q(ζ2n, 31/2n) : Q]
=

1

4

∑

(n,6)=1

µ(n)

nϕ(n)
=

3

5
A,

where we used that [Q(ζ2n, 3
1/2n) : Q] = ϕ(2n)2n = 2ϕ(n)n if (n, 6) = 1 and the

identity
∑

(n,6)=1

µ(n)

nϕ(n)
=

∏

p>3

(
1− 1

p(p− 1)

)
=

12

5
A.

7.2 Counting the elements ≤ x in F
In this section, written jointly with Izabela Petrykiewicz, we will establish Propo-
sition 1 from the introduction.

Recall that F = {f : [4 · 5f−1, 5f ] contains no power of 2}. Consider G =
N\F . We have that g is in G iff 4·5g−1 ≤ 2k ≤ 5g for some k ∈ N. Thus we have g
is in G iff 2 log 2+(g−1) log 5 ≤ k log 2 ≤ g log 5, that is iff 2+(g−1)α ≤ k ≤ gα,
where α = log 5/ log 2. Since k is an integer, we may replace gα by [gα] and the
condition becomes k ∈ [[gα] + {gα} + 2 − α, [gα]]. Note that there can be only
an integer in this interval iff {gα} ≤ α − 2. Note that α is irrational. Now it is
a consequence of Weyl’s criterion, see, e.g., [6, 9], that for a fixed 0 < β < 1 we
have

#{g ≤ x : {gα} ≤ β} ∼ βx, x→ ∞.
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On applying this with β = α−2 the proof of Proposition 1 is easily completed. ✷
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