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Abstract. Let L be a number field and let E/L be an elliptic curve with
complex multiplication by the ring of integers OK of an imaginary quadratic

field K. We use class field theory and results of Skorobogatov and Zarhin to

compute the transcendental part of the Brauer group of the abelian surface
E×E. The results for the odd order torsion also apply to the Brauer group of

the K3 surface Kum(E×E). We describe explicitly the elliptic curves E/Q with

complex multiplication by OK such that the Brauer group of E×E contains a
transcendental element of odd order. We show that such an element gives rise

to a Brauer-Manin obstruction to weak approximation on Kum(E×E), while

there is no obstruction coming from the algebraic part of the Brauer group.

1. Introduction

Let X be a smooth, projective, geometrically irreducible variety over a number
field L. In [12], Manin showed that the Brauer group of X can obstruct the Hasse
principle on X. Let X(AL) denote the set of adelic points of X and let Br(X)
denote the Brauer group of X, Br(X) = H2

ét(X,Gm). There is a pairing

X(AL)× Br(X)→ Q/Z

obtained by evaluating an element of Br(X) at an adelic point and summing the
local invariants [12]. The Brauer-Manin set X(AL)Br(X) is the set of adelic points
of X which are orthogonal to Br(X) under this pairing. It contains the closure of
the set of rational points in the adelic topology.

X(L) ⊂ X(AL)Br(X) ⊂ X(AL).

If X(AL) 6= ∅ but X(AL)Br(X) = ∅, there is said to be a Brauer-Manin obstruction
to the Hasse principle on X. If X(AL) 6= X(AL)Br(X), there is said to be a Brauer-
Manin obstruction to weak approximation on X.

Since Manin’s observation, Brauer groups and the associated obstructions have
been the subject of a great deal of research. Let X denote the base change of X
to an algebraic closure of L. The kernel of the natural map from Br(X) to Br(X)
is called the ‘algebraic’ part of Br(X) and denoted Br1(X). It is usually easier to
handle than the remaining ‘transcendental’ part and a substantial portion of the
literature is devoted to its study. The quotient group Br(X)/Br1(X), known as the
transcendental part of Br(X), is generally more mysterious. Nevertheless, it has
arithmetic importance – transcendental elements in Br(X) can obstruct the Hasse
principle and weak approximation, as shown by Harari in [7] and Wittenberg in
[23].

Results of Skorobogatov and Zarhin in [22] allow one to compute the transcen-
dental part of the Brauer group for a product of elliptic curves. These results were
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used by Ieronymou and Skorobogatov in [9] to compute the odd order torsion in
the transcendental part of the Brauer group for diagonal quartic surfaces over the
rationals. In this paper, we compute the transcendental part of the Brauer group
for abelian surfaces of the form E×E where E/L is an elliptic curve with complex
multiplication by the ring of integers OK of an imaginary quadratic field K.

In [21], Skorobogatov and Zarhin proved that for X an abelian variety or K3 sur-
face, Br(X)/Br1(X) is a finite abelian group. Therefore, computing Br(X)/Br1(X)
is equivalent to computing its `-primary part (Br(X)/Br1(X))`∞ for every prime
number `. To a pair (E, `) consisting of an elliptic curve E defined over a number
field L, with complex multiplication by OK , and a prime number `, we associate
an integer m(`) (Definition 2.2) which can be calculated using class field theory
(Proposition 2.4). We write ΓL for the absolute Galois group of L. We denote the
n-torsion subgroup of an abelian group A by An. For an elliptic curve E/L, we
write En for the n-torsion points of E defined over an algebraic closure of L.

Theorem 1.1. Let ` ∈ Z>0 be an odd prime and let m = m(`). Then(
Br(E × E)

Br1(E × E)

)
`∞

=
Br(E × E)`m

Br1(E × E)`m
=

EndΓL
E`m

(OK ⊗ Z/`m)ΓL

∼=

{
(Z/`m)2 if K ⊂ L
Z/`m if K 6⊂ L.

For brevity, here we state only the result for odd primes. The results for all
primes can be found in Theorems 2.8 and 2.13. In Theorems 2.9 and 2.12, we give
a similar description of the `-primary part of Br(E × E)ΓL for every prime `. One
can apply these results to gain information about the transcendental part of the
Brauer group for a wider class of varieties. If π : X 99K Y is a dominant rational
map of degree d between K3 or abelian surfaces over L, then by the proof of [9]
Corollary 2.2, it induces a surjective map of ΓL-modules

π∗ : Br(Y )→ Br(X)

whose kernel is annihilated by d. Thus, if ` is prime and coprime to d, then(
Br(Y )

Br1(Y )

)
`∞

↪→ Br(Y )ΓL

`∞ = Br(X)ΓL

`∞ .

The following examples are of interest. Suppose that E/L has complex multiplica-
tion by OK .

(1) Y = E × E′ where E′/L is an elliptic curve which is isogenous to E over
L. Take ` coprime to the degree of the isogeny.

(2) Y = E′ × E′ where E′/L is an elliptic curve with complex multiplication
by a non-maximal order O ⊂ OK . Take ` coprime to the index [OK : O].
This is because there is an isogeny of degree [OK : O], defined over L, from
E′ to an elliptic curve over L with complex multiplication by OK .

(3) Y = Kum(E × E), the K3 surface which is the minimal desingularisation
of the quotient of E × E by the involution (P,Q) 7→ (−P,−Q).

More is known for a Kummer surface X = Kum(E × E). By Proposition 1.3 of
[22], there is an isomorphism of ΓL-modules

Br(X)→ Br(E × E)

and therefore

Br(X)ΓL = Br(E × E)ΓL .
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By Theorem 2.4 of [22], for every n ∈ Z>0 there is an embedding

(1) Br(X)n/Br1(X)n ↪→ Br(E × E)n/Br1(E × E)n

which is an isomorphism if n is odd. So for ` an odd prime,

(2) (Br(X)/Br1(X))`∞ = (Br(E × E)/Br1(E × E))`∞ .

Examples involving K3 surfaces are important for applications because for abelian
varieties with finite Tate-Shafarevich group, any Brauer-Manin obstruction can be
explained by the algebraic part of the Brauer group, see §6.2 of [20]. However, for
K3 surfaces there can be obstructions which are only explained by transcendental
elements in the Brauer group. Examples of this are given in [8], [15] and [9]. We
give another example in Section 4. We focus on elliptic curves with a transcendental
element of odd order in Br(E × E) because this will give rise to a transcendental
element in the Brauer group of Kum(E × E).

Theorem 1.2. Let E/Q be an elliptic curve with complex multiplication by OK
such that Br(E × E) contains a transcendental element of odd order. Then E has
affine equation y2 = x3 + 2c3 for some c ∈ Q×. Moreover, for X = Kum(E × E)
we have Br1(X) = Br(Q) and

Br(X)/Br(Q) = Br(X)3/Br(Q)3 = Br(E × E)3/Br1(E × E)3
∼= Z/3.

For c ∈ Q×, let Ec denote the elliptic curve over Q with affine equation y2 =
x3+2c3. Let X = Kum(Ec×Ec) denote the Kummer surface, which is independent
of the choice of c ∈ Q×.

Theorem 1.3. Let A ∈ Br(X)3 \ Br(Q). Let ν be a place of Q. Then the evaluation
map

evA,ν : X(Qν)→ Br(Qv)3

is surjective for ν = 3 and zero for every other place. Consequently,

X(AQ)Br(X) = X(Q3)0 ×X(R)×
∏
` 6=3

X(Q`) ( X(AQ)

where X(Q3)0 denotes the points P ∈ X(Q3) with evA,3(P ) = 0, and the product
runs over prime numbers ` 6= 3.

Theorem 1.3 shows that a transcendental Brauer element gives rise to a Brauer-
Manin obstruction to weak approximation on X. Furthermore, the obstruction
coming from this transcendental element is the sole reason for the failure of weak
approximation on X.

The structure of the paper is as follows. Section 2 is devoted to the computation
of the transcendental part of the Brauer group of E × E for a CM elliptic curve
E. Section 3 contains applications of these results to special cases and explicit
examples. In Section 4, we compute the Brauer-Manin obstruction to weak ap-
proximation on Kum(E×E) for E/Q (a quadratic twist of) the elliptic curve with
affine equation y2 = x3 + 2.

Notation. We fix the following notation.

K an imaginary quadratic field
OK the ring of integers of K
∆K the discriminant of K
HK the Hilbert class field of K
h(OK) the class number of OK , h(OK) = [HK : K]
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L a number field
L an algebraic closure of L such that HK ⊂ L
ΓF the absolute Galois group of a field F
µn the group of nth roots of unity
ζn a primitive nth root of unity
E an elliptic curve over L with complex multiplication by OK
E the base change of E to L, E = E ×L L
En the n-torsion points of E defined over L
En(F ) the n-torsion points of E defined over a field extension F of L
Kum(E × E) the K3 surface which is the minimal desingularisation

of the quotient of E × E by the involution (P,Q) 7→ (−P,−Q)
fq/p the residue class degree fq/p = [OM/q : OF /p] for a prime q in

a number field M lying above a prime p in a subfield F ⊂M .

For any c ∈ Z>0, we use the following notation.

Oc the order Z + cOK of conductor c in OK
Kc the ring class field corresponding to the order Oc.

For an abelian group A and an integer n ∈ Z>0, we write An for the elements of
order dividing n in A. For a prime number ` ∈ Z>0, we write A`∞ for the `-primary
part of the abelian group A.

For x ∈ R, let bxc, dxe denote the floor and ceiling of x respectively.

2. Transcendental Brauer group computations

2.1. Preliminaries. Let L be a number field and let ΓL denote its absolute Galois
group. In [22], for A = E × E′ a product of elliptic curves defined over L and
for every n ∈ Z>0, Skorobogatov and Zarhin gave a canonical isomorphism of
ΓL-modules

(3) Br(A)n = Hom(En, E
′
n)/(Hom(E,E′)⊗ Z/n)

and a canonical isomorphism of abelian groups

(4) Br(A)n/Br1(A)n = HomΓL
(En, E

′
n)/(Hom(E,E′)⊗ Z/n)ΓL .

They used this concrete description of the transcendental part of the Brauer group
to give many examples for which Br(A)/Br1(A) is trivial or a finite abelian 2-group.

From now on, we fix an elliptic curve E/L with complex multiplication by
OK . We begin with a simple observation which enables us to use (4) to compute
(Br(E × E)/Br1(E × E))`∞ .

Lemma 2.1. Let X be a smooth, projective, geometrically irreducible variety over
a number field. Then for any prime number `, we have

(Br(X)/Br1(X))`∞ = Br(X)`∞/Br1(X)`∞ .

Proof. Since X is smooth, Proposition 1.4 of [6] tells us that Br(X) is a torsion
abelian group. It follows that the natural inclusion

Br(X)`∞/Br1(X)`∞ ↪→ (Br(X)/Br1(X))`∞

is an equality. �
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To each prime number ` ∈ Z>0 we associate an integer m(`) which will appear in
our description of the `-primary part of the transcendental Brauer group of E×E.
In order to define m(`), we use the Grössencharacter ψE/KL of E considered as
an elliptic curve over KL. Recall that ψE/KL is unramified at the primes of KL
of good reduction for E. Therefore, for such primes we write ψE/KL(q) for the

evaluation of ψE/KL at an idele (. . . , 1, 1, πq, 1, 1, . . . ) ∈ A×KL where the entry πq
at the prime q is a uniformiser at q.

Definition 2.2. For a prime number ` ∈ Z>0, let m(`) be the largest integer k
such that for all primes q of KL which are of good reduction for E and coprime to
`, the Grössencharacter ψE/KL satisfies

ψE/KL(q) ∈ O`k = Z + `kOK .

We define an auxiliary integer n(`) which aids computation of m(`) and in most
cases removes the dependence on the Grössencharacter.

Definition 2.3. For a prime number ` ∈ Z>0, let n(`) be the largest integer k for
which the ring class field K`k of the order O`k embeds into KL.

Proposition 2.4. Let ` ∈ Z>0 be prime. Then

m(`) ≤ n(`)

with equality if O∗K = {±1} (in other words, if K /∈ {Q(i),Q(ζ3)}).

Proof. Write m = m(`) and n = n(`). Let S be a set of primes of KL containing
the infinite primes, the primes of bad reduction for E, the primes dividing `, the
primes which are ramified in K`n+1L/K, and the primes q with ψE/KL(q) /∈ O`n+1 .
Suppose for contradiction that m ≥ n+ 1, and hence S is a finite set. Then, since
K`n+1 * KL, Exercise 6.1 of [2] tells us that there exists a prime q of KL with q /∈ S
which does not split completely in K`n+1L/KL. Let p = q ∩ OK . Let fq/p denote
the residue class degree of q over p, fq/p = [OKL/q : OK/p]. By Theorems 9.1
and 9.2 of [19], the Grössencharacter ψE/KL sends q to a generator of the principal

ideal NKL/K(q) = pfq/p . Consider the following diagram of field extensions.

K`n+1L

K`n+1 KL q

K p

The restriction of the Artin symbol (q,K`n+1L/KL) to K`n+1 satisfies

ResK`n+1 (q,K`n+1L/KL) = (p,K`n+1/K)fq/p = (pfq/p ,K`n+1/K)

= ((ψE/KL(q)),K`n+1/K).

Since q /∈ S, we have ψE/KL(q) ∈ O`n+1 and hence

((ψE/KL(q)),K`n+1/K) = 1

by definition of the ring class field K`n+1 . But this implies that

ResK`n+1 (q,K`n+1L/KL) = 1
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and therefore

(q,K`n+1L/KL) = 1.

This is a contradiction because q does not split completely in K`n+1L/KL. There-
fore, m ≤ n. It remains to show that m = n when O∗K = {±1}. From now
on, suppose that O∗K = {±1}. Let q be a finite prime of KL of good reduction
for E which is coprime to ` and unramified in KL/K. Let p = q ∩ OK and let
s = q ∩ OK`n

. The Artin symbol (p,K`n/K) has order fs/p in Gal(K`n/K). Since
K ⊂ K`n ⊂ KL, we have fs/p | fq/p, whereby

1 = (p,K`n/K)fq/p = (pfq/p ,K`n/K) = (NKL/K(q),K`n/K).

By definition of the ring class field K`n , this implies that

NKL/K(q) = (α)

for some α ∈ O`n . But ψE/KL(q) is a generator of NKL/K(q) and O∗K = {±1} so
this implies that ψE/KL(q) ∈ O`n , as required. �

Remark 2.5. Class field theory gives [Kc : K] = h(Oc), where h(Oc) denotes the
class number of the order Oc. The following formula for h(Oc) can be found in [3],
Theorem 7.24, for example.

(5) [Kc : K] = h(Oc) =
h(OK)c

[O∗K : O∗c ]

∏
p|c

(
1−

(∆K

p

)1

p

)
where the product is taken over the prime factors of c. The symbol (∆K

p ) denotes

the Legendre symbol for odd primes. For the prime 2, the Legendre symbol is
replaced by the Kronecker symbol (∆K

2 ), defined as

(∆K

2

)
=


0 if 2 | ∆K

1 if ∆K ≡ 1 (mod 8)

−1 if ∆K ≡ 5 (mod 8).

If K`k ⊂ KL, then [K`k : K] divides [KL : K]. Thus, in any given example, (5)
allows one to identify a finite set of primes S such that m(`) = n(`) = 0 for all ` /∈ S.
For a prime ` in S, (5) gives an upper bound for n(`), and therefore also an upper
bound for m(`). For K ∈ {Q(i),Q(ζ3)}, one must examine the Grössencharacter in
order to compute m(`). For explicit descriptions of Grössencharacters for elliptic
curves with complex multiplication by Q(i) or Q(ζ3), see [16] Theorems 5.6 and 5.7
respectively.

We will use the isomorphisms (3) and (4) to compute the `-primary part of the
transcendental Brauer group of E × E in terms of endomorphisms of the `-power
torsion of E. We will need the following two auxiliary lemmas.

Lemma 2.6. Let ` ∈ Z>0 be prime, let k ∈ Z≥0 and let

(EndE`k)+ = {ψ ∈ EndE`k | ψx = xψ ∀x ∈ OK}.

Then, viewing OK ⊗ Z/`k as a subring of EndE`k , we have

(EndE`k)+ = OK ⊗ Z/`k.
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Proof. Recall that EndE = OK , so it makes sense to view OK⊗Z/`k as a subring of
EndE`k . As an abelian group, E`k ∼= (Z/`k)2, and therefore EndE`k ∼= M2(Z/`k).
The proof comes down to an easy calculation with two-by-two matrices with entries
in Z/`k. �

Lemma 2.7. Let ` ∈ Z>0 be prime and let m = m(`). Let k ∈ Z≥0 and let
ϕ ∈ EndE`k . Then

(1) The class of ϕ in EndE`k/(OK ⊗ Z/`k) is fixed by ΓKL if and only if for
all x ∈ OK ,

`m(xϕ− ϕx) ∈ (EndE`k)+ = OK ⊗ Z/`k.

(2) The endomorphism ϕ is fixed by ΓKL if and only if

`mϕ ∈ (EndE`k)+ = OK ⊗ Z/`k.

Proof. The action of ΓKL on EndE`k factors through the abelian Galois group
Gal(KL(E`k)/KL). Let q be a finite prime of KL which is coprime to ` and
of good reduction for E. The Néron-Ogg-Shafarevich criterion tells us that q is
unramified in KL(E`k)/KL. Since E has complex multiplication by OK , the Artin
symbol (q,KL(E`k)/KL) acts on E`k as multiplication by ψE/KL(q). For a proof
of this fact, see [11], Ch. 4, Corollary 1.3 (iii), for example. Therefore, the action
of (q,KL(E`k)/KL) on End(E`k) is conjugation by ψE/KL(q). The Artin symbols
for the unramified primes generate Gal(KL(E`k)/KL).

Let α = (∆K +
√

∆K)/2, so OK = Z[α]. Let a, b ∈ Z be such that a + bα is
invertible in OK ⊗ Z/`k. Let ϕ ∈ EndE`k . We have

(a+ bα)ϕ− ϕ(a+ bα) = b(αϕ− ϕα).

Hence, the class of ϕ in EndE`k/(OK ⊗ Z/`k) is fixed by conjugation by a+ bα if
and only if

(6) b(αϕ− ϕα) ∈ OK ⊗ Z/`k

and ϕ is fixed by conjugation by a+ bα if and only if

(7) b(αϕ− ϕα) = 0.

Recall that m = m(`) is the largest integer t such that for all finite primes q of
KL which are of good reduction for E and coprime to `,

ψE/KL(q) ∈ O`t = Z + `tOK .

In other words, for a prime q which is unramified in KL(E`k)/KL, we can write
ψE/KL(q) = a+ bα for some a, b ∈ Z with ord`(b) = m. Hence, by (6), the class of

ϕ in EndE`k/(OK ⊗ Z/`k) is fixed by ΓKL if and only if

`m(αϕ− ϕα) ∈ OK ⊗ Z/`k.

By (7), the endomorphism ϕ is fixed by ΓKL if and only if

`m(αϕ− ϕα) = 0.

An application of Lemma 2.6 completes the proof. �
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2.2. Case I: Complex multiplication defined over the base field. In this
subsection, we compute the transcendental Brauer group of E × E in the case
where the complex multiplication field K is a subfield of L, the field of definition
of E.

Theorem 2.8. Suppose that K ⊆ L. Let ` ∈ Z>0 be prime and let m = m(`).
Then (

Br(E × E)

Br1(E × E)

)
`∞

=
Br(E × E)`m

Br1(E × E)`m
=

EndE`m

OK ⊗ Z/`m
∼= (Z/`m)2.

Proof. By (4), for all primes ` and all k ∈ Z≥0, we have

Br(E × E)`k

Br1(E × E)`k
=

EndΓL
E`k

OK ⊗ Z/`k
.

Also,
EndE`k

OK ⊗ Z/`k
∼= (Z/`k)2.

The result now follows from Lemma 2.7, part 2. �

Theorem 2.9. Suppose that K ⊆ L. Let ` ∈ Z>0 be prime and let m = m(`).
Then

Br(E × E)ΓL

`∞ =

(
EndE`m+dord`(∆K )/2e

OK ⊗ Z/`m+dord`(∆K)/2e

)ΓL

∼= Z/`m+bord`(∆K)/2c × Z/`m+dord`(∆K)/2e.

In particular, if ` - ∆K then

Br(E × E)ΓL

`∞ =
EndE`m

OK ⊗ Z/`m
∼= (Z/`m)2.

Proof. Fix a prime number ` ∈ Z>0 and let k ∈ Z≥0. By (3), we have

Br(E × E)ΓL

`k
=

(
EndE`k

OK ⊗ Z/`k

)ΓL

.

Write OK = Z[α] where α = (∆K +
√

∆K)/2 and let ϕ ∈ EndE`k . By part 1 of
Lemma 2.7, the class of ϕ in EndE`k/(OK ⊗ Z/`k) is fixed by ΓL if and only if

(8) `m(αϕ− ϕα) ∈ OK ⊗ Z/`k.

Let P, αP be a Z/`k-basis for E`k . With respect to this basis, multiplication by α
is given by the following matrix:(

0 ∆K(1−∆K)
4

1 ∆K

)
.

Subtracting an element of OK ⊗ Z/`k if necessary, we may assume that ϕ is of the
form (

0 t
0 u

)
for some t, u ∈ Z/`k. In terms of matrices, equation (8) becomes(

−`mt −`mt∆K + `mu∆K(1−∆K)
4

−`mu `mt

)
=

(
a b∆K(1−∆K)

4
b a+ b∆K

)
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for some a, b ∈ Z/`k. The resulting equations reduce to

(9) 2`mt ≡ `m∆Kt ≡ `m∆Ku ≡ `m
∆K(1−∆K)

2
u ≡ 0 (mod `k).

We have ord2(∆K) ∈ {0, 2, 3} and for an odd prime `, ord`(∆K) ∈ {0, 1}. Thus,
(9) can be summarised as

`m+bord`(∆K)/2ct ≡ `m+dord`(∆K)/2eu ≡ 0 (mod `k).

Therefore,

Br(E × E)ΓL

`∞ = Br(E × E)ΓL

`m+dord`(∆K )/2e

=

(
EndE`m+dord`(∆K )/2e

OK ⊗ Z/`m+dord`(∆K)/2e

)ΓL

∼= Z/`m+bord`(∆K)/2c × Z/`m+dord`(∆K)/2e.

�

Remark 2.10. The fact that (Br(E×E)/Br1(E×E))`∞ = Br(E×E)ΓL

`∞ for ` - ∆K

also follows from Proposition 5.2 of [5]. A computation of the relevant intersection
pairing shows that the cokernel of the map Br(E×E)/Br1(E×E) ↪→ Br(E×E)ΓL

is annihilated by the discriminant of K.

2.3. Case II: Complex multiplication not defined over the base field.
Throughout this subsection, we make the assumption that K 6⊂ L. We write τ
for an element of ΓL \ ΓKL. We set α = (∆K +

√
∆K)/2, so OK = Z[α].

Lemma 2.11. Suppose that K * L. Let ` ∈ Z>0 be prime and let k ∈ Z≥0. Let
a, b ∈ Z and consider (a+ bα)τ as an element of EndE`k . Then

(1) The class of (a+ bα)τ in EndE`k/(OK ⊗Z/`k) is fixed by ΓKL if and only
if

ord`(a), ord`(b) ≥ k −m(`)− ord`(∆K).

(2) The class of (a+ bα)τ in EndE`k/(OK ⊗ Z/`k) is fixed by τ if and only if

ord`(b) ≥ k − ord`(∆K).

(3) We have (a+ bα)τ ∈ (EndE`k)+ = OK ⊗ Z/`k if and only if

ord`(a) ≥ k − bord`(∆K)/2c
and ord`(b) ≥ k − dord`(∆K)/2e.

(4) We have (a+ bα)τ ∈ EndΓKL
E`k if and only if

ord`(a) ≥ k −m(`)− bord`(∆K)/2c
and ord`(b) ≥ k −m(`)− dord`(∆K)/2e.

(5) The endomorphism (a+ bα)τ is fixed by the action of τ if and only if

ord`(b) ≥ k − bord`(∆K)/2c.

Proof. Write m = m(`).

(1) By part 1 of Lemma 2.7, the class of (a+ bα)τ in EndE`k/(OK ⊗ Z/`k) is
fixed by ΓKL if and only if

(10) `m(a+ bα)(ατ − τα) = `m
√

∆K(a+ bα)τ ∈ (EndE`k)+.
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By the definition of (EndE`k)+, (10) shows that the class of (a + bα)τ in
EndE`k/(OK ⊗ Z/`k) is fixed by ΓKL if and only if

`m
√

∆K(a+ bα)(ατ − τα) = `m∆K(a+ bα)τ ≡ 0 (mod `k).

(2) The class of (a+ bα)τ in EndE`k/(OK ⊗ Z/`k) is fixed by τ if and only if

(11) (a+ bα)τ − τ(a+ bα)ττ−1 = b
√

∆Kτ ∈ OK ⊗ Z/`k.

By Lemma 2.6, OK ⊗ Z/`k = (EndE`k)+. So, by (11) and the definition
of (EndE`k)+, the class of (a+ bα)τ in EndE`k/(OK ⊗Z/`k) is fixed by τ
if and only if

αb
√

∆Kτ − b
√

∆Kτα = b∆Kτ ≡ 0 (mod `k).

(3) By definition of (EndE`k)+, we have

(a+ bα)τ ∈ (EndE`k)+ ⇐⇒ (a+ bα)(ατ − τα) ≡ 0 (mod `k).

Expanding (a+ bα)(ατ − τα) gives

(a+ bα)(ατ − τα) =
(
b
∆K(1−∆K)

2
−∆Ka+ (2a+ b∆K)α

)
τ.

The conditions of part 3 are precisely those arising from

b
∆K(1−∆K)

2
−∆Ka ≡ 2a+ b∆K ≡ 0 (mod `k).

(4) By part 2 of Lemma 2.7,

(a+ bα)τ ∈ EndΓKL
E`k ⇐⇒ `m(a+ bα)τ ∈ (EndE`k)+.

Now apply part 3 of Lemma 2.11.
(5) The endomorphism (a+ bα)τ is fixed by the action of τ if and only if

(12) (a+ bα)τ − τ(a+ bα)ττ−1 = b
√

∆Kτ ≡ 0 (mod `k).

It is easily seen that b
√

∆K ≡ 0 (mod `k) if and only if

ord`(b) ≥ k − bord`(∆K)/2c.
�

Theorem 2.12. Suppose that K * L and let ` ∈ Z>0 be prime. Let m = m(`)
and let k = m + ord`(∆K). Let θ denote the image of τ in the quotient group
EndE`k/(OK ⊗ Z/`k). Then

Br(E × E)ΓKL

`∞ = OKθ
and

Br(E × E)ΓL

`∞ =O`mθ ∼=

{
Z/`k if ` is odd or ` - ∆K

Z/2k−1 × Z/2 if ` = 2 and 2 | ∆K .

Proof. Since ord`(∆K) ≥ dord`(∆K)/2e, applying Theorem 2.9 to KL gives

Br(E × E)ΓKL

`∞ = Br(E × E)ΓKL

`k
= (EndE`k/(OK ⊗ Z/`k))ΓKL(13)

∼= Z/`m+bord`(∆K)/2c × Z/`m+dord`(∆K)/2e.(14)

By part 1 of Lemma 2.11,

OKθ ⊂ (EndE`k/(OK ⊗ Z/`k))ΓKL .
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Using part 3 of Lemma 2.11 to count the number of elements in OKθ and comparing
to (14) gives

OKθ = (EndE`k/(OK ⊗ Z/`k))ΓKL .

Now part 2 of Lemma 2.11 shows that

O`mθ = (EndE`k/(OK ⊗ Z/`k))ΓL .

Moreover, since ord`(∆K) ≤ 1 for an odd prime `, part 3 of Lemma 2.11 gives
O`mθ ∼= Z/`k if ` is odd or ` - ∆K . If ` = 2 and 2 | ∆K , then part 3 of Lemma 2.11
gives O2mθ ∼= Z/2k−1 × Z/2. �

Theorem 2.13. Suppose that K * L and let ` ∈ Z>0 be prime. Let m = m(`).
Let η denote the image of τ in the quotient group EndE`m/(OK ⊗ Z/`m). Then(

Br(E × E)

Br1(E × E)

)
`∞

=
Br(E × E)`m

Br1(E × E)`m
=

EndΓL
E`m

(OK ⊗ Z/`m)ΓL
= (Z/`m)η ∼= Z/`m

unless ` = 2, 2 | ∆K , m ≥ 1 and E2 = E2(L), in which case(
Br(E × E)

Br1(E × E)

)
2∞

=
Br(E × E)2m+1

Br1(E × E)2m+1

=
EndΓL

E2m+1

(OK ⊗ Z/2m+1)ΓL

∼= Z/2m × Z/2

where the copy of Z/2m is generated by the image of τ .

Proof. Let k = m+ord`(∆K) and let θ denote the image of τ in the quotient group
EndE`k/(OK ⊗ Z/`k). Then

(15)
Br(E × E)`∞

Br1(E × E)`∞
↪→ Br(E × E)ΓL

`∞ = O`mθ,

by Theorem 2.12. For all t ∈ Z≥0,

(16)
Br(E × E)`t

Br1(E × E)`t
=

EndΓL
E`t

(OK ⊗ Z/`t)ΓL
↪→ EndΓKL

E`t

OK ⊗ Z/`t
.

First suppose that ` is odd or ` - ∆K . Then (15) and (16) combined with Theorems
2.8 and 2.12 show that

(17)
( Br(E × E)

Br1(E × E)

)
`∞

↪→ Z/`m.

Consider τ as an element of EndE`m . By parts 4 and 5 of Lemma 2.11,
τ ∈ EndΓL

E`m . By part 3 of Lemma 2.11, η has order `m in

EndΓL
E`m/(OK ⊗ Z/`m)ΓL = Br(E × E)`m/Br1(E × E)`m .

Hence, by (17),

(Z/`m)η =
EndΓL

E`m

(OK ⊗ Z/`m)ΓL
=
( Br(E × E)

Br1(E × E)

)
`∞
.

Now suppose that ` = 2 and 2 | ∆K . If m(2) = 0, then (Br(E × E)/Br1(E ×
E))2∞ = 0, by (16) and Theorem 2.8 applied to KL. So we assume from now on
that m = m(2) ≥ 1. Theorems 2.8 and 2.12 combined with (15) and (16) show that

(18)

(
Br(E × E)

Br1(E × E)

)
2∞

↪→ Z/2m × Z/2.
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By parts 3, 4 and 5 of Lemma 2.11, the image of τ generates a copy of Z/2m inside
EndΓL

E2m+1/(OK⊗Z/2m+1)ΓL = Br(E×E)2m+1/Br1(E×E)2m+1 . Therefore, (18)
shows that (Br(E×E)/Br1(E×E))2∞ is isomorphic to either Z/2m or Z/2m×Z/2.

First suppose that E2 = E2(L). Then ΓL acts trivially on E2 and hence

Br(E × E)2

Br1(E × E)2
=

EndΓL
E2

(OK ⊗ Z/2)ΓL
=

EndE2

OK ⊗ Z/2
∼= Z/2× Z/2.

Therefore, (
Br(E × E)

Br1(E × E)

)
2∞

=
Br(E × E)2m+1

Br1(E × E)2m+1

∼= Z/2m × Z/2.

Now suppose that E2 6= E2(L). By Theorem 2.12,

Br(E × E)ΓL
2∞ =

(
EndE2k

OK ⊗ Z/2k

)ΓL

= O2mθ

and, in particular, for any t ∈ Z≥0 the natural injection

(19) O2mθ =

(
EndE2k

OK ⊗ Z/2k

)ΓL

↪→
(

EndE2k+t

OK ⊗ Z/2k+t

)ΓL

induced by multiplication by 2t on E2k+t is an isomorphism. Let t ∈ Z≥0 and let
ϕ ∈ EndΓL

E2k+t . We have

(20)
EndΓL

E2k+t

(OK ⊗ Z/2k+t)ΓL
↪→
(

EndE2k+t

OK ⊗ Z/2k+t

)ΓL

.

Since 2 | ∆K , we can write OK = Z[
√
−d] where ∆K = −4d. Since the injection in

(19) is an isomorphism, we can use (20) to write

(21) ϕ = 2t(x+ 2my
√
−d)τ + z + w

√
−d

for some x, y, z, w ∈ Z/2k+t. Here we abuse notation slightly by using τ to denote
the image of τ in EndΓL

E2k+t . Since ϕ is fixed by τ , we have

2
√
−d(2m+tyτ + w) ≡ 0 (mod 2k+t).

Multiplying by
√
−d and recalling that k = m+ ord2(∆K) = m+ ord2(d) + 2, we

see that

2m+tyτ + w ≡ 0 (mod 2m+t+1).

Therefore, w = 2m+tu for some u ∈ Z/2k+t and we have

yτ + u ≡ 0 (mod 2).

Suppose for contradiction that y 6≡ 0 (mod 2). Then τ acts as multiplication by
a scalar on E2. Furthermore, since τ is invertible, this scalar cannot be zero and
therefore must be 1. In other words, τ acts as the identity on E2. Furthermore,
since m(2) ≥ 1, ΓKL acts trivially on E2 and hence E2 = E2(L), giving the re-
quired contradiction. Therefore, y ≡ 0 (mod 2) and we can write y = 2v for some
v ∈ Z/2k+t and substituting into (21) gives

(22) ϕ = 2t(x+ 2m+1v
√
−d)τ + z + w

√
−d.

Now part 3 of Lemma 2.11 shows that 2t+m+1
√
−dτ ∈ OK ⊗ Z/2k+t. Thus, (22)

shows that the class of ϕ in (EndE2k+t/(OK ⊗ Z/2k+t))ΓL is represented by 2txτ .
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But ϕ was arbitrary and (20) is injective, hence EndΓL
E2k+t/(OK ⊗ Z/2k+t)ΓL is

a cyclic group. Therefore,(
Br(E × E)

Br1(E × E)

)
2∞

=
Br(E × E)2m+1

Br1(E × E)2m+1

∼= Z/2m.

�

3. Special cases and examples

We retain the notation and conventions of Section 2. In particular, L is a number
field and E/L is an elliptic curve with complex multiplication by OK .

Theorem 3.1. Suppose that L ⊂ HK , where HK denotes the Hilbert class field of
K. Let ` ∈ Z>0 be prime. Then m(`) = n(`) = 0, except in the following special
cases where n(`) = 1:

(1) K = Q(ζ3) and ` ≤ 3,
(2) K = Q(i) and ` = 2,
(3) ∆K ≡ 1 (mod 8) and ` = 2.

Consequently, if O∗K = {±1} and ∆K 6≡ 1 (mod 8), then

Br(E × E) = Br1(E × E).

Proof. Let j(E) denote the j-invariant of the elliptic curve E. Since E is defined
over L, we have Q(j(E)) ⊂ L. The theory of complex multiplication tells us that
K(j(E)) = HK . Therefore, [KL : K] = [HK : K] = h(OK). Using the formula
for the degree of a ring class field, as given in (5), we see that in every case,
[K`2 : K] > h(OK) so n(`) ≤ 1. Furthermore, [K` : K] > h(OK) except in the
special cases (i), (ii) and (iii) of the theorem. The rest follows immediately from
Proposition 2.4 and Theorems 2.8 and 2.13. �

Remark 3.2. Since K(j(E)) = HK , the hypothesis L ⊂ HK holds precisely when
L = HK or L = Q(j(E)).

If O∗K = {±1}, then Proposition 2.4 allows us to calculate m(`) for all primes
` ∈ Z>0, and hence compute the transcendental part of Br(E × E). On the other
hand, if K ∈ {Q(i),Q(ζ3)}, then Proposition 2.4 only tells us that m(`) ≤ n(`)
for all primes ` ∈ Z>0. The following two propositions deal with K = Q(i) and
K = Q(ζ3), and in each case give sufficient conditions which allow us to conclude
that m(`) = 0.

Proposition 3.3. Let ` ∈ Z>0 be an odd prime. Let K = Q(i). Suppose that there
exists a finite prime q of KL satisfying all of the following conditions.

(1) q is coprime to 2`,
(2) E has good reduction at q,
(3) fs/p | fq/p, where p = q ∩ OK and s is a prime of K2` above p,
(4) ψE/KL(q) /∈ O2.

Then m(`) = 0, and hence

(Br(E × E)/Br1(E × E))`∞ = Br(E × E)ΓL

`∞ = Br(E × E)ΓKL

`∞ = 0.

Note that condition 3 is trivially satisfied if K2` ⊆ KL.
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Proof. Let q be a finite prime of KL satisfying conditions (1)–(4). Let p and s be
primes as described in condition 3. The Artin symbol (p,K2`/K) has order fs/p in
Gal(K2`/K). Since fs/p divides fq/p, we have

1 = (p,K2`/K)fq/p = (pfq/p ,K2`/K) = (NKL/K(q),K2`/K).

By the definition of the ring class field K2`, this implies that

NKL/K(q) = (α)

for some α ∈ O2`. Now ψE/KL(q) is a generator of NKL/K(q) but ψE/KL(q) /∈ O2

by the hypothesis, so ψE/KL(q) = ±iα. Therefore, ψE/KL(q) /∈ O`, and hence
m(`) = 0. �

Proposition 3.4. Let K = Q(ζ3) and let ` ∈ Z>0 be prime with ` 6= 3. Suppose
that there exists a finite prime q of KL satisfying all of the following conditions.

(1) q is coprime to 3`
(2) E has good reduction at q,
(3) fs/p | fq/p, where p = q ∩ OK and s is a prime of K3` above p,
(4) ψE/KL(q) /∈ O3.

Then m(`) = 0 and hence

(Br(E × E)/Br1(E × E))`∞ = Br(E × E)ΓL

`∞ = Br(E × E)ΓKL

`∞ = 0.

As before, condition 3 is trivially satisfied if K3` ⊆ KL.

Proof. The strategy is the same as for Proposition 3.3. �

Example 3.5. Let E be the elliptic curve over Q with affine equation

y2 + y = x3 − x2 − 7x+ 10.

E has complex multiplication by the ring of integers of K = Q(
√
−11). Theorem

3.1 tells us that m(`) = n(`) = 0 for every prime ` ∈ Z>0 and therefore

Br(E × E) = Br1(E × E).

Let θ denote the image of complex conjugation in EndE11/(OK ⊗ Z/11). Then
Theorem 2.12 gives

Br(E × E)ΓQ(
√
−11) = Br(E × E)ΓQ = OKθ ∼= Z/11.

Example 3.6. Let E be the elliptic curve over Q with affine equation

y2 = x3 −Dx
where D ∈ Z\{0}. Then EndE = Z[i]. Let K = Q(i). For any odd prime ` ∈ Z>0,
Theorem 3.1 gives

(Br(E × E)/Br1(E × E))`∞ = Br(E × E)
ΓQ
`∞ = Br(E × E)ΓK

`∞ = 0.

Theorem 3.1 tells us that n(2) = 1. We must compute m(2). By Proposition 2.4,
m(2) ≤ n(2). Let q be a finite prime of Z[i] that is coprime to 2D. Let πq ∈ Z[i]
be the unique generator of q such that πq ≡ 1 (mod (2 + 2i)). Exercise 2.34 in [19]
shows that

ψE/K(q) =

(
D

πq

)−1

4

πq

where ( ·· )4 denotes the quartic residue symbol on Z[i].
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First suppose that D is a square in Z[i]. Then for all finite primes q which are
coprime to 2D, ψE/K(q) = ±πq ∈ O2 and therefore m(2) = 1. Let θ denote the
image of complex conjugation in EndE8/(Z[i]⊗Z/8). Applying Theorems 2.12 and
2.9, we see that

Br(E × E)ΓK = Br(E × E)ΓK
2∞ = Z[i]θ ∼= Z/4× Z/4

and Br(E × E)ΓQ = Br(E × E)
ΓQ
2∞ = O2θ ∼= Z/4× Z/2.

Applying Theorem 2.13, we see that

Br(E × E)

Br1(E × E)
=

Br(E × E)4

Br1(E × E)4
=

EndΓQ E4

(Z[i]⊗ Z/4)ΓQ

∼=

{
Z/2× Z/2 if D is a square in Z
Z/2 if D is not a square in Z.

Now suppose that D is not a square in Z[i]. By [2], Exercise 6.1, there exist infin-
itely many finite primes q of K coprime to 2D such that D is not a square modulo q.
For such q, we have ψE/K(q) = ±iπq and therefore ψE/K(q) /∈ O2. Consequently,
m(2) = 0. Let η denote the image of complex conjugation in EndE4/(Z[i]⊗ Z/4).
Then Theorem 2.12 gives

Br(E × E)ΓK = Br(E × E)ΓQ = Z[i]η ∼= Z/2× Z/2

and Theorem 2.13 gives Br(E × E) = Br1(E × E).

Example 3.7. Let E be the elliptic curve over Q with affine equation

y2 = x3 +D

where D ∈ Z \ {0}. Then EndE = Z[ζ3], where ζ3 denotes a primitive 3rd root of
unity. Let K = Q(ζ3). For any prime ` > 3, Theorem 3.1 tells us that m(`) = 0
and therefore

(Br(E × E)/Br1(E × E))`∞ = Br(E × E)
ΓQ
`∞ = Br(E × E)ΓK

`∞ = 0.

It remains to compute m(`) for ` ≤ 3. For ` ≤ 3, Theorem 3.1 gives m(`) ≤ 1.
Let q be a finite prime of K that is coprime to 6D. Let πq ∈ Z[ζ3] be the unique
generator of q which satisfies πq ≡ 1 (mod 3). By [19], Ch. II, Example 10.6, the
Grössencharacter attached to E/K is given by

(23) ψE/K(q) =

(
4D

πq

)−1

6

πq

where ( ·· )6 denotes the sextic residue symbol on Z[ζ3].

Computing m(2). By the law of cubic reciprocity,

(24)

(
4

πq

)
6

=

(
2

πq

)
3

=

(
πq
2

)
3

≡ πq (mod 2)

where ( ·· )3 denotes the cubic residue symbol on Z[ζ3]. Substituting (24) into (23)
gives

(25) ψE/K(q) =

(
4

πq

)−1

6

(
D

πq

)−1

6

πq ≡

(
D

πq

)−1

6

(mod 2).
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First, suppose that D is a cube in Z (equivalently, D is a cube in Z[ζ3]). Then(
D
πq

)
6

= ±1 and (25) shows that ψE/K(q) ∈ O2 for all finite primes q that are

coprime to 6D. Therefore, m(2) = 1.
Now suppose that D is not a cube in Z. By [2], Exercise 6.1, there exists a finite

prime q of K coprime to 6D such that D is not a cube modulo q. For such q,(
D
πq

)
6
6= ±1, and (25) shows that ψE/K(q) /∈ O2. Therefore, m(2) = 0.

Computing m(3). First suppose that 4D is a cube in Z. Then (23) shows that for all

finite primes q which are coprime to 6D, ψE/K(q) = ±πq ∈ O3. Hence, m(3) = 1.
Now suppose that 4D is not a cube in Z. By [2], Exercise 6.1, there exists a

finite prime q of K coprime to 6D such that 4D is not a cube modulo q. For such
q,
(

4D
q

)
6
6= ±1, whereby ψE/K(q) /∈ O3. Therefore, m(3) = 0.

4. Transcendental Brauer-Manin obstructions to weak
approximation

Let L be a number field and let E/L be an elliptic curve with complex multipli-
cation by an order O of an imaginary quadratic field K. Let X = Kum(E ×E) be
the K3 surface which is the minimal desingularisation of the quotient of E ×E by
the involution (P,Q) 7→ (−P,−Q).

Proposition 4.1. If ∆K ≡ 1 (mod 4) and 2 - [OK : O] then

Br1(X) = Br(L)

and consequently there is no algebraic Brauer-Manin obstruction to weak approxi-
mation on X.

Proof. By Proposition 1.4 of [22], it suffices to show that H1(L,O) = 0. Inflation-
restriction gives

0→ H1(Gal(KL/L),O)→ H1(L,O)→ H1(KL,O) = Homcts(ΓKL,Z2) = 0.

Therefore, H1(L,O) ∼= H1(Gal(KL/L),O). IfK ⊂ L thenH1(Gal(KL/L),O) = 0,
so suppose that

Gal(KL/L) = 〈τ〉 ∼= Z/2.
Then

H1(Gal(KL/L),O) =
{x ∈ O | x+ τ(x) = 0}
{τ(x)− x | x ∈ O}

.

Writing O = Z[fα], where f = [OK : O] and α = (1 +
√

∆K)/2, gives

{x ∈ O | x+ τ(x) = 0} = {τ(x)− x | x ∈ O} = f
√

∆K · Z.
�

By (1), the existence of a transcendental element of odd order in Br(E × E)
implies that Br(X) contains a transcendental element. The same cannot be said
for transcendental elements of even order. For this reason, we concentrate on elliptic
curves E for which Br(E × E) contains a transcendental element of odd order.

Theorem 4.2. Let E/Q be an elliptic curve with complex multiplication by OK
such that Br(E×E) contains a transcendental element of odd order. Then K = Q(ζ3)
and E has affine equation y2 = x3 + 2c3 for some squarefree c ∈ Z. Furthermore,

Br(E × E)/Br1(E × E) = Br(E × E)3/Br1(E × E)3 = (Z/3)η ∼= Z/3
where η denotes the image of complex conjugation in EndE3/(Z[ζ3]⊗ Z/3).
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Proof. Setting L = Q = Q(j(E)) in Theorem 3.1 shows that K = Q(ζ3). Since
Z[ζ3] has class number 1, E is isomorphic over Q to the elliptic curve E′ with
affine equation y2 = x3 + 1. Therefore, E is the sextic twist of E′ by a class
in H1(Q, µ6) = Q×/(Q×)6. Consequently, E has an affine equation of the form
y2 = x3 + D for some sixth-power-free D ∈ Z. Example 3.7 shows that m(`) = 0
for every odd prime ` with ` 6= 3. Since Br(E × E) contains a transcendental
element of odd order, we have m(3) 6= 0. The computation of m(3) in Example 3.7
shows that m(3) = 1 and 4D is a cube in Z. Now the computation of m(2) in
Example 3.7 gives m(2) = 0. Thus, the statement on the transcendental Brauer
group follows from Theorem 2.13. �

Henceforth, for each c ∈ Q×, let Ec be the elliptic curve over Q with affine
equation

y2 = x3 + 2c3.

Let X = Kum(Ec × Ec). An affine model for X is

(26) u2 = (x3 + 2c3)(t3 + 2c3)

Note that X is independent of c ∈ Q×, since (x, t, u) 7→ (x/c, t/c, u/c3) gives the
following alternative affine model for X

(27) u2 = (x3 + 2)(t3 + 2).

By Proposition 4.1, Br1(X) = Br(Q) and therefore there is no algebraic Brauer-
Manin obstruction to weak approximation on X. By (1),

Br(X)/Br(Q) = Br(X)3/Br1(X)3 = Br(Ec × Ec)3/Br1(Ec × Ec)3.

Let τ ∈ ΓQ \ ΓQ(ζ3) and let θ denote the image of τ in EndEc3. The image of τ
generates EndΓQ(Ec3)/(Z/3) ∼= Br(X)/Br(Q) ∼= Z/3. Let A ∈ Br(X) \ Br(Q) be a
corresponding generator of Br(X)/Br(Q). For a prime `, let

∪ : H1(Q`, Ec3)×H1(Q`, Ec3) // Br(Q`)3
inv` // 1

3Z/Z

be the non-degenerate pairing given by the composition of the cup product, the Weil
pairing and the local invariant. Let θ∗ denote the map induced by θ on H1(Q`, Ec3).
For P ∈ E(Q`), let χP denote the image of P under the homomorphism

χ : Ec(Q`)→ H1(Q`, Ec3).

Proposition 4.3. Let P,Q ∈ Ec(Q`) \Ec2. The Q`-point (P,Q) on Ec ×Ec gives
rise to a point R ∈ X(Q`). We have

(28) evA,`(R) = χP ∪ θ∗(χQ) ∈ 1

3
Z/Z.

Proof. The statement follows from the results of [22], Section 3. The details are
explained in Section 5.1 of [9]. �

Theorem 4.4. Let A ∈ Br(X)3 \ Br(Q). Let ν 6= 3 be a rational place. Then the
evaluation map evA,ν : X(Qν)→ Br(Qν)3 is zero.

Proof. The statement for the infinite place is clear, since Br(R) = Z/2 has trivial
3-torsion. By [4], finite primes of good reduction do not appear in the description of
the Brauer-Manin set. Lemma 4.2 of [13] shows that odd primes of good reduction
for an abelian surface are primes of good reduction for the corresponding Kummer
surface. Thus, by (27), evA,` is zero for every finite prime ` - 6. From now on,
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let ` = 2. Let R ∈ X(Q2). We will show that evA,2(R) = 0. We can represent
R by (x0, t0, u0) satisfying (27). Let dR = t30 + 2. Since the evaluation map
evA,2 : X(Q2)→ Br(Q2)3 is locally constant, we are free to use the implicit function
theorem to replace R by a point R′ = (x1, t1, u1) ∈ X(Q2), sufficiently close to R,
such that d = dR′ ∈ Q× and u1 6= 0. Now R′ gives rise to P = (dx1, du1) ∈ Ed(Q2)
and Q = (dt1, d

2) ∈ Ed(Q2). Recalling that X = Kum(Ed × Ed), we apply
Proposition 4.3 to see that

(29) evA,2(R′) = χP ∪ θ∗(χQ) ∈ 1

3
Z/Z.

The elliptic curve Ed has either good or additive reduction. First suppose that
Ed has additive reduction. Denote by Ed0 (Q2) the Q2-points of Ed that reduce to
smooth points on the reduction of Ed modulo 2. By Theorem 1 of [14], Ed0 (Q2)
is topologically isomorphic to Z2, which is 3-divisible. An application of Tate’s
algorithm (see [19], Ch. IV, §9, for example) shows that #Ed(Q2)/Ed0 (Q2) ∈ {1, 2}.
Therefore, Ed(Q2) is 3-divisible and χ = 0.

Now suppose that Ed has good reduction. Tate’s algorithm shows that Ed has
a minimal Weierstrass equation of the form y2 + y = x3 + a for a ∈ Z2. Therefore,
Ed(Q2)/Ed1 (Q2) ∼= Z/3, where Ed1 (Q2) denotes the kernel of the reduction map.
Thus, 3Ed(Q2) ⊂ Ed1 (Q2). We will show that this inclusion is an equality. The
standard filtration on the Q2-points of Ed gives

Ed(Q2) ⊃ Ed1 (Q2) ⊃ Ed2 (Q2) ⊃ . . .
The theory of formal groups shows that Ed2 (Q2) ∼= 4Z2. Hence, Ed2 (Q2) is 3-divisible.
Since Ed1 (Q2)/Ed2 (Q2) ∼= Z/2, it follows that Ed1 (Q2) is 3-divisible. Therefore,

Ed1 (Q2) = 3Ed1 (Q2) = 3Ed(Q2).

Thus, χ factors through Ed(Q2)/3Ed(Q2) = Ed(Q2)/Ed1 (Q2) ∼= Z/3 and it is
enough to show that

χP ∪ θ∗(χP ) = 0

for any P ∈ Ed(Q2)\Ed1 (Q2) with 2P 6= 0. The diagonal embedding Ed → Ed×Ed
induces a map Ed → X whose image is a copy of P1

Q. The restriction of A to P1
Q is

in Br(P1
Q) = Br(Q). In other words, A restricts to a constant algebra on the image

of Ed in X. Thus, the evaluation of A at a point on X corresponding to (P, P ) on
Ed(Q2) × Ed(Q2) is independent of the point P . Hence, it suffices to show that
χP ∪ θ∗(χP ) = 0 for a single P ∈ Ed(Q2). Taking P ∈ 3Ed(Q2) completes the
proof. �

The main result of this section is the following theorem.

Theorem 4.5. The evaluation map

evA,3 : X(Q3)→ 1

3
Z/Z

is surjective. Consequently,

X(AQ)Br(X) = X(Q3)0 ×X(R)×
∏
` 6=3

X(Q`) ( X(AQ)

where X(Q3)0 denotes the points P ∈ X(Q3) with evA,3(P ) = 0, and the product
runs over prime numbers ` 6= 3.

Theorem 4.5 will be proved via several auxiliary results.
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Lemma 4.6. In order to show that evA,3 : X(Q3) → 1
3Z/Z is surjective, it is

enough to exhibit c ∈ Q× and P ∈ Ec(Q3) such that θ∗(χP ) is not in the image of
Ec(Q3) inside H1(Q3, E

c
3).

Proof. Suppose that P ∈ Ec(Q3) is such that θ∗(χP ) is not in the image of Ec(Q3)
inside H1(Q3, E

c
3). Since the image of Ec(Q3) is a maximal isotropic subspace

inside H1(Q3, E
c
3), there exists Q ∈ Ec(Q3) such that χQ ∪ θ∗(χP ) 6= 0. Note that

P,Q /∈ Ec2 because if, for example, 2P = 0 then χP = χ3P = 0. Now by Proposition
4.3, the point R ∈ X(Q3) coming from (Q,P ) ∈ Ec × Ec satisfies

evA,3(R) = χQ ∪ θ∗(χP ) 6= 0.

Surjectivity follows since for every n ∈ Z, χnQ ∪ θ∗(χP ) = n(χQ ∪ θ∗(χP )). �

In Proposition 4.8, we will show that we can take c = 3 and P = (3, 9) in
Lemma 4.6. From now on, let E = E(3) be the elliptic curve with affine equation
y2 = x3 +2.33. First, we determine the group E(Q3)/3 and give explicit generators.

Lemma 4.7. We have E(Q3)/3 ∼= (Z/3)2, with generators P = (3, 9) and Q =

(4,
√

2.59).

Proof. Denote by E0(Q3) the Q3-points of E that reduce to smooth points on the
reduction of E modulo 3. Denote by E1(Q3) the kernel of reduction. The elliptic
curve E/Q3 has additive reduction and hence

(30) E0(Q3)/E1(Q3) ∼= F3.

Applying Tate’s algorithm, we find that

(31) E(Q3)/E0(Q3) ∼= Z/3.

By Theorem 1 of [14], E0(Q3) ∼= Z3. The following sequence is exact.

0 // E0(Q3)
3E(Q3)

// E(Q3)
3E(Q3)

// E(Q3)
E0(Q3)

// 0.

Since E0(Q3) ∼= Z3 and E0(Q3)/E1(Q3) ∼= F3, we have 3E0(Q3) = E1(Q3). By (31),
E(Q3)/E0(Q3) ∼= Z/3. A suitable generator is P = (3, 9). A calculation shows that
3P = (3−2.19,−3−3.5.43) ∈ E1(Q3). Therefore, 3E(Q3) = E1(Q3). The point Q
generates E0(Q3)/E1(Q3). �

In light of Lemma 4.6, we will study the action of θ on the image of E(Q3) in
H1(Q3, E3). We have

E3 = {OE , (0, 3
√

6), (0,−3
√

6)} ∪
⋃

0≤k≤2

{(−6ζk3 , 9
√
−2), (−6ζk3 ,−9

√
−2)}.

Let F = Q3(E3) = Q3(ζ3). The inflation-restriction exact sequence gives

H1(Gal(F/Q3), E3)→ H1(Q3, E3)→ H1(F,E3)Gal(F/Q3) → H2(Gal(F/Q3), E3).

Since [F : Q3] = 2, we have H1(Gal(F/Q3), E3) = H2(Gal(F/Q3), E3) = 0. There-
fore, the restriction map gives an isomorphism

H1(Q3, E3)→ H1(F,E3)Gal(F/Q3).

Let T ∈ E(Q3). In a slight abuse of notation, we continue to write χT for the
image of T in H1(F,E3) = Homcts(ΓF , E3). In order to study the action of θ on
χT (ΓF ) ⊂ E3, we will use the following polynomials. Let fT ∈ Q3[t] be the degree
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9 polynomial satisfied by the x-coordinates of the points R ∈ E(Q3) such that
3R = T . By Exercise III.3.7 of [19],

(32) fT (t) = 32t2(t− x(T ))(t3 + 23.33)2 − 23(t3 + 2.33)(t6 + 23.33.5t3 − 25.36).

Let gT ∈ Q3(ζ3)[t] be the cubic polynomial satisfied by the x-coordinates of the
points S ∈ E(Q3) such that (1− ζ3)S = T . The addition formula shows that

(33) gT (t) = t3 + 3ζ3x(T )t2 + 23.33.

Combining Lemma 4.6 with Proposition 4.8 below completes the proof of The-
orem 4.5.

Proposition 4.8. Let P = (3, 9) ∈ E(Q3). Then θ∗(χP ) is not in the image of
E(Q3) inside H1(Q3, E3).

Proof. We have Q3(E3) = Q3(ζ3). By Lemma 4.7, E(Q3)/3 is generated by

P = (3, 9) and Q = (4,
√

2.59). A calculation using MAGMA [1] shows that the
degree 9 polynomial fP given by (32) is irreducible over Q3 and therefore also
irreducible over Q3(ζ3). By (33), we have

gP (t) = t3 + 32ζ3t
2 + 23.33 and gQ(t) = t3 + 223ζ3t

2 + 23.33.

Making a change of variables t = 3u, we see that gQ(t) defines the same extension of
Q(ζ3) as hQ(u) = u3+22ζ3u

2+23. Now hQ(u) ≡ u3+u2−1 (mod (1−ζ3)), which is
irreducible over the residue field F3 of Q3(ζ3). Thus, gQ(t) defines an unramified ex-
tension of Q3(ζ3). On the other hand, we claim that gP (t) defines a ramified exten-
sion of Q3(ζ3). Making a change of variables t = 3(u+ 1), we see that gP (t) defines
the same extension of Q(ζ3) as hP (u) = u3 + 3(1 + ζ3)u2 + 3(1 + 2ζ3)u+ 3ζ3 + 32.
Let π = (1 − ζ3). Examining the π-adic valuation of the terms in hP (u), we see
that any root of hP (u) has π-adic valuation 2/3. Therefore, gP (t) defines a ramified
extension of Q3(ζ3), as claimed.

Let RP , RQ ∈ E(Q3) be such that 3RP = P and 3RQ = Q. Let SP = (1− ζ2
3 )RP

and let SQ = (1 − ζ2
3 )RQ. Recall that Q3(ζ3, x(RP )) is the degree 9 extension of

Q3(ζ3) defined by fP . Since P is not a 2-torsion point, Q3(ζ3, x(RP )) = Q3(ζ3, RP ).
Likewise, gP defines the ramified cubic extension Q3(ζ3, SP )/Q3(ζ3) and gQ defines
the unramified cubic extension Q3(ζ3, SQ)/Q3(ζ3). Therefore, there exists σ ∈
ΓQ3(ζ3) such that σ(SQ) 6= SQ, σ(SP ) = SP and σ(RP ) 6= RP . We have

(1− ζ2
3 )χP (σ) = (1− ζ2

3 )(σ(RP )−RP ) = σ(SP )− SP = 0

and

(1− ζ2
3 )χQ(σ) = (1− ζ2

3 )(σ(RQ)−RQ) = σ(SQ)− SQ 6= 0.

Thus, χQ(σ) /∈ E(1−ζ3) and χP (σ) ∈ E(1−ζ3) \ {OE}. Suppose for contradiction

that θ∗(χP ) is in the image of E(Q3) inside H1(Q3, E3), so that

(34) θ∗(χP ) = χ(aP+bQ) = aχP + bχQ

for a, b ∈ F3.
Note that θ acts as multiplication by −1 on E(1−ζ3) = {OE , (0, 3

√
6), (0,−3

√
6)},

so

(35) − χP (σ) = θ∗(χP )(σ) = aχP (σ) + bχQ(σ)
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which implies that bχQ(σ) ∈ E(1−ζ3) and hence b = 0 and a = −1. Since gP is
irreducible over Q3(ζ3), there exists ρ ∈ ΓQ(ζ3) such that ρ(SP ) 6= SP . For such ρ
we have

(1− ζ2
3 )χP (ρ) = (1− ζ2

3 )(ρ(RP )−RP ) = ρ(SP )− SP 6= 0

and hence χP (ρ) /∈ E(1−ζ3). Therefore, χP (ΓQ(ζ3)) = E3. In particular, T =

(−6ζ3, 9
√
−2) is in the image of χP . But θ(T ) 6= −T , which contradicts θ∗(χP ) =

−χP .
�
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