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ALGEBRAIC CYCLES ON QUADRIC SECTIONS OF CUBICS

IN P4 UNDER THE ACTION OF SYMPLECTOMORPHISMS

V. GULETSKĬI, A. TIKHOMIROV

Abstract. Let τ be the involution changing the sign of two coordinates in P4.
We prove that τ induces the identity action on the second Chow group of the
intersection of a τ -invariant cubic with a τ -invariant quadric hypersurfaces in
P4. Let lτ and Πτ be the 1- and 2-dimensional components of the fixed locus of
the involution τ . We describe the generalized Prymian associated to the pro-
jection of a τ -invariant cubic C ⊂ P4 from lτ onto Πτ in terms of the Prymians
P2 and P3 associated to the double covers of two irreducible components, of
degree 2 and 3 respectively, of the reducible discriminant curve. This gives a
precise description of the induced action of the involution τ on the continuous
part in the Chow group CH

2(C ). The action on the subgroup corresponding
to P3 is the identity, and the action on the subgroup corresponding to P2 is
the multiplication by −1.

1. Introduction

The aim of this paper is to have yet another look at the correlation between
0-cycles on algebraic surfaces, on one side, and codimension 2 algebraic cycles
of their 3-dimensional spreads, on the other. For that purpose we have chosen a
fairly concrete model, the intersections of quadric and cubic hypersurfaces invari-
ant under the involution τ changing the sign of two homogeneous coordinates in
P4. Such intersections are K3-surfaces, and τ induces symplectomorphic actions
on their second cohomology groups. We will study the induced actions on the
second Chow groups of τ -invariant cubics and their τ -invariant quadric sections
in P4.
The primary motivation comes from the Bloch-Beilinson conjecture on mixed

motives, [11], which implies that the induced action of a symplectomorphism
of a K3-surface on its Chow group of 0-cycles must be the identity, [8]. The
first results along this line had been obtained in [17], where such identity action
was proved for quartics in P3 and intersections of 3 quadrics in P5, covering the
cases d = 2 and d = 4 in terms of [7]. In [14] the identity action on the second
Chow group was proved for the case d = 1, and for K3-surfaces admitting elliptic
pencils with sections.
In the first part of the paper we slightly generalize the method developed in

[17] and apply it to prove the identity action of the involution τ on the second
Chow group for intersections of invariant cubics and quadrics in P4 (Theorem 4).
It should be noted that when the second version of our manuscript was published
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on the web, we learnt about the paper [9], where the identity action of symplectic
involutions on the second Chow group was proved in one third of the moduli,
and soon after C. Voisin proved the same for all symplectic involutions on K3-
surfaces, [20]. In [10] Huybrechts showed that these results suffice to prove the
identity action of symplectomorphisms of any finite order.
In the second part we deal with the induced action of the involution τ on the

second Chow group of a τ -invariant cubic hypersurface C in P4. Our approach is
based on the following geometric idea. The set of fixed points of the involution
τ is a union of a line lτ and a plane Πτ in P4. Projecting C from lτ onto
the plane Πτ we observe that the corresponding discriminant curve splits into a
conic C2 and a cubic C3 in Πτ . Following [15], we construct an isogeny from the
generalized Prymian P associated to the double cover of the whole discriminant
curve C2∪C3 onto the direct product of two Prymians P2 and P3, corresponding
to the double covers of C2 and C3 respectively. An enjoyable thing here is that
the involution τ induces the identity action on P3, and it is the multiplication
by −1 on P2. This gives a complete description of the induced action of the
involution τ on P, on the continuous part A2(C ) in the second Chow group
of the cubic C , as well as on the Hodge pieces of its third cohomology group
H3(C ,C). In particular, the action on the subgroup in A2(C ) corresponding to
P3 is the identity, and the action on the subgroup corresponding to P2 is the
multiplication by −1 (Theorem 5). Pulling back algebraic cycles to the generic
fibre of a pencil of quadrics sections we will see that those algebraic cycles which
correspond to P2 vanish in the Chow group of the generic fibre.
In a sense, this gives a geometrical reflection, in terms of split discriminant

curves and corresponding Prymians, of the behaviour of codimension 2 algebraic
cycles predicted by the Bloch-Beilinson conjectures.
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2. Notation and terminology

Throughout the paper we work over C. By default, H∗(−, A) are the Betti
cohomology with coefficients A = Z, Q or C. The Chow groups will be with
coefficients in Z. For any quasi-projective variety X over C, and for any positive
integer q, let CHq(X) be the Chow group of dimension q algebraic cycles modulo
rational equivalence on X . If X is equidimensional of dimension d then the group
CHq(X) will be often denoted by CHp(X), where p = d− q. Our main object of
study will be the subgroups Ap(X) ⊂ CHp(X) generated by cycles algebraically
equivalent to zero on X .
Let X be a nonsingular projective complex variety and let CHp(X)hom be the

kernel of the cycle class homomorphism cl : CHp(X) → H2p(X,Z). Each group
H i(X,Z) carries a pure weight i Hodge structure on it. Let F p be the correspond-
ing decreasing Hodge filtration on the complexified vector spaceH i(X,C), and let
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Hp,q(X) be the adjoint quotient (F p/F p+1)Hp+q(X,C). The filtration F p is op-

posite to the complex conjugate filtration F̄ p, in the sense that F p⊕F q+1 = Hp+q.
Let

Jp(X) = H2p−1(X,C)/(im(H2p−1(X,Z)) + F pH2p−1(X,C))

be the p-th intermediate Jacobian of X . Here im(H2p−1(X,Z)) is the image of
the natural homomorphism from integral to complex cohomology, i.e. the group
H2p−1(X,Z) modulo the torsion subgroup in it. The Poincaré duality gives the
isomorphism

Jp(X) ≃ (F d−p+1H2d−2p+1(X,C))∨/im(H2d−2p+1(X,Z)) ,

where d is the dimension ofX and im(H2d−2p+1(X,Z)) is the image of the integral
homology in the dual space of the d − p + 1-th term of the Hodge filtration
via integration of forms over topological chains. Integrating over 2d − 2p + 1-
dimensional topological chains whose boundaries are homologically trivial d− p-
cycles gives the Abel-Jacobi homomorphism AJ : CHp(X)hom → Jp(X).
For any nonsingular projective complex variety Y and a cycle Z of codimension

p on Y ×X flat over Y , we can fix a closed point y0 on Y and define a map from
Y to Jp(X) by sending a closed point y ∈ Y to the image of the algebraically
trivial cycle Zy − Zy0 under the Abel-Jacobi homomorphism AJ . This extends
to the homomorphism A0(Y ) → Jp(X), where A0(Y ) is the subgroup generated
by algebraically trivial 0-cycles in CH0(Y ). The image of this homomorphism
is a complex subtorus TY,Z in Jp(X) whose tangent space at 0 is contained in
Hp−1,p(X). Let Jp

alg(X) be the maximal subtorus of Jp(X) having this property,

so that Jp
alg(X) contains TY,Z for all possible Y and Z. Then Jp

alg(X) is an abelian
variety over C, which is a functor in X . The homomorphism AJ sends Ap(X)
into Jp

alg(X), so that we obtain the Abel-Jacobi homomorphism AJ : Ap(X) →
Jp
alg(X) on algebraic parts. Notice that the latter homomorphism is expected to

be surjective. This is not known in general, but will be the case in the concrete
applications below.
All the details on intermediate Jacobians and Abel-Jacobi homomorphisms

can be found, for example, in Chapter 12 of [18].
Throughout the paper, for an abelian group A and a finite group G acting on

A let N : A → A be the integral averaging operator sending a ∈ A to Σg∈Gg(a),
let AG be the subgroup of G-invariant elements in A, and let A♯ be the kernel
of the endomorphism N . If the group A is divisible and torsion free, then it is a
direct sum of AG and A♯. Let ♮ stay for G or ♯ simultaneously.
Assume now that a finite group G acts by regular automorphisms on X . For

any g ∈ G let g∗ be the induced automorphism of Hp(X,A), where A is Z, Q
or C. Each g∗ preserves the degrees of differential forms. This is why it pre-
serves Hp,q(X) and so the Hodge filtration. Moreover, g∗ is compatible with
the integration of forms, which gives the automorphism g∗ of the complex torus
Jp(X) induced by the above automorphisms of complex and integral cohomology
groups. By the same reason, g∗ is compatible with the corresponding automor-
phism of CHp(X)hom via the Abel-Jacobi homomorphism AJ . Since Jp

alg(X) is a
functor ofX , the automorphism g∗ gives the automorphism of the abelian variety
Jp
alg(X). The norm N =

∑
g∈G g∗ is an endomorphism of Jp

alg(X) as an abelian

variety over C. Note that Jp
alg(X)♮ is an abelian subvariety in Jp

alg(X) and one
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has the Abel-Jacobi homomorphisms

AJ ♮ : Ap(X)♮ −→ Jp
alg(X)♮

for ♮ = G and ♮ = ♯, which will play an important role in what follows.
Next, let d = 2 and let NS(X) be the Néron-Severy group of the surface X .

The space NS(X)⊗Q can be identified with the image H2(X,Q)alg of the Chow
Q-vector space CH1(X) ⊗ Q under the cycle class map to H2(X,Q). The ∪ -
product on H2(X,Q) is non-degenerate by the Poincaré duality theorem, and it
remains non-degenerate after the restriction to H2(X,Q)alg by the Hodge index
theorem. This is why we can consider the orthogonal complement H2(X,Q)tr
to H2(X,Q)alg with respect to the intersection pairing on H2(X,Q). The group
H2(X,Q) is called algebraic if H2(X,Q)tr is trivial. This is equivalent to say
that pg = 0, where pg = dimH2,0(X) is the geometric genus of the surface X .
The action of G is compatible with the complex conjugation on the Dolbeault
cohomology. This implies that H2,0(X)G = 0 if and only if H0,2(X)G = 0,
and H2,0(X)♯ = 0 if and only if H0,2(X)♯ = 0. Thus, if H2,0(X)G = 0 then
H2(X,C)G = H1,1(X)G, whence theQ-vector spaceH2(X,Q)G is algebraic in the
sense that any cohomology class inH2(X,Q)G comes from the class in NS(X)G⊗
Q via the cycle class map. Similarly, if H2,0(X)♯ = 0 then H2(X,C)♯ = H1,1(X)♯,
so that the Q-vector space H2(X,Q)♯ is algebraic, i.e. a cohomology class in
H2(X,Q)♯ comes from a certain class in the Neron-Severi group NS(X)♯⊗Q via
the cycle class map.
In the second half of the paper we will be mainly interested in the case when

G is a group of order 2 generated by an involution τ acting on a nonsingular
projective variety X . In particular, if X is a K3-surface over C, ω ∈ H2,0(X) a
symplectic form onX and τ ∗(ω) = ω, then we say that τ is a symplectomorphism
of order 2 or a Nikulin involution on X .

3. Voisin’s theorem

Let X be a nonsingular projective threefold and let f : X 99K P1 be a pencil
of surfaces on X with base locus B. We will assume that f is nice in the sense
that B is nonsingular and that it is the irreducible transversal intersection of two
generic members of the pencil. Let X̃ → X be the blow up of X at B giving
the regular map f̃ : X̃ → P1. The short exact sequence for Chow groups under
blowup, [6, Section 6.7], yields the isomorphism A2(X̃ ) ≃ A2(X )⊕A1(B). The
Jacobian J(B) of the curve B is a direct summand of the intermediate Jacobian

J2(X̃ ), see [4] or [16]. As taking algebraic parts in intermediate Jacobians is
functorial, we obtain the regular surjective morphism of abelian varieties ǫ :
J2
alg(X̃ ) → J(B). Assume that a finite group G acts on X fibre-wise. Then G

acts also on B, and ǫ induces the regular epimorphism ǫ♮ : J2
alg(X̃ )♮ → J(B)♮

which will be used later. For any t ∈ P1 let Xt be the fibre of the regular
morphism f̃ . We impose the following assumption on the pencil f : X 99K P1.

(A) ∃ a Zariski open U ⊂ P1, such that Xt is nonsingular, H2(Xt,Q)♮ is
algebraic and H1(Xt,Q)♮ = 0 for any t ∈ U .
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For any t ∈ P1 let jt : B → Xt be the closed embedding of the base locus into
the fibre. Since B is a Cartier divisor in Xt, the embedding jt induces the Gysin
homomorphism j∗t : CH1(Xt) → CH1(B), see [6, Section 2.6].

Theorem 1. Under Assumption (A), the group A1(B)♮ is contained in the im-
age of the natural homomorphism ⊕t∈P1CH1(Xt)

♮ → CH1(B)♮ induced by the
homomorphisms j∗t .

Proof. Let U be as in (A), let η be the generic and η̄ the geometric generic point

of P1. Consider the relative Picard scheme P → U of the pull-back f̃U : X̃U → U
of f̃ to U . Its fibre Pη̄ is the Picard scheme of the fibre Xη̄ and, by Assumption

(A), P
♮
η̄ is isomorphic to the Néron-Severi group NS(Xη̄)

♮. The group G acts in
the fibres of the structural morphism from P onto U . Since NS(Xη̄) is finitely

generated, we choose a finite number of points P1, . . . , Pn in P
♮
η̄ generating the

group NS(Xη̄)
♮. For each Pi let Wi → U be a finite morphism onto the curve U ,

such that the curve Wi is nonsingular and the residue field of the scheme Pη at
Pi is C(Wi). Let W

♮ be the union of the curves Wi with the structural morphism

g♮ : W ♮ → U . Then, for any t ∈ U , the fibre W ♮
t generates the Q-vector space

NS(Xt)
♮
Q, which in turn is isomorphic to H2(Xt,Q)♮ by the assumption imposed

on f .
As U is locally contractible, the stalk of R0g♮

∗
Q at t ∈ U is H0(W ♮

t ,Q) and

the stalk of R2f̃∗Q at t is H2(Xt,Q). Shrinking U if necessary we can assume
that g♮ and fU are smooth. Trivializing these morphisms in complex topology
one can define the sheaf (R2(f̃U)∗Q)♮ and the surjective morphism

α : R0g♮
∗
Q −→ (R2(f̃U)∗Q)♮

of sheaves on U , such that for any t ∈ U and P ∈ W ♮
t the local homomorphism

αt sends Pi to the corresponding element in NS(Xt). Since U is homotopy
equivalent to a 1-dimensional CW -complex, it has cohomological dimension 1,
so that the induced homomorphism

α∗ : H
1(U,R0g♮

∗
Q) → H1(U, (R2(f̃U)∗Q)♮)

is surjective.
Let Yi be the fibred product Wi×U X̃U and let Si → Wi be the Picard scheme

of the relative scheme Yi → Wi. Each point Pi is rational over the field C(Wi)
bringing a section of the morphism Si → Wi over some possibly smaller Zariski
open subset Vi in Wi. This section in turn induces the section of the morphism
Yi×Wi

S → Yi over (Yi)Vi
. Let Di be the pull-back of the Poincaré divisor on the

scheme Yi ×Wi
Si to (Yi)Vi

, and let D be the union of Di’s. Using appropriate
nonsingular compactifications W̄i and considering their union W̄ ♮ we can also
work with the morphism ḡ♮ : W̄ ♮ → P1, such that g♮ is the pull-back of ḡ♮ under
the embedding of U into P1. Let D̄i be the closure of Di in the fibred product
W̄ ♮× X̃ over Spec(C) and D̄ be the union of D̄i’s. Then D̄ is an algebraic cycle

of codimension 2 in the fourfold W̄ ♮ × X̃ . Let

β̄ = cl(D̄) ∈ H4(W̄ ♮ × X̃ ,Z)

be the cohomology class of D̄ . Passing to rational coefficients in cohomology
groups, the (1, 3)-Künneth component β̄(1, 3) of β̄ induces the homomorphism
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of Hodge structures

β̄(1, 3)∗ : H
1(W̄ ♮,Q) → H3(X̃ ,Q) .

Let β̄(1, 3)i,∗ be its restriction on H1(W̄ ♮
i ,Z) and let Ji be the Jacobian of the

curve W̄i. Then β̄(1, 3)i,∗ induces the regular morphism

β̄(1, 3)i,∗ : Ji −→ J2(X̃ ) ,

which factorizes through J2
alg(X̃ ). For any two points P and P0 on Wi, let DP

and DP0
be the divisors on Xt and Xt0 respectively, whose cohomology classes

correspond to P and P0 as points in the fibres of the morphism P → U . Then
β̄(1, 3)i,∗([P −P0]) = AJ [DP −DP0

] in J2
alg(X̃ ), see Theorems 12.4 and 12.17 in

[18].

Next, R1g♮
∗
Q = 0 as the fibres W ♮

t are 0-dimensional, and (R3(f̃U)∗Q)♮ =
0 by Assumption (A). Since the corresponding Leray spectral sequences E2-
degenerate, we obtain the isomorphisms

H1(U,R0g♮
∗
Q) ≃ H1(W ♮,Q) and H1(U, (R2(f̃U)∗Q)♮) ≃ H3(X̃U ,Q)♮ .

Due to the above description of the action of β̄(1, 3)i,∗ on [P −P0], one can check
that the diagram

H1(W̄ ♮,Q)

r1

��

β̄(1,3)∗
// H3(X̃ ,Q)♮

r2

��

H1(W ♮,Q)
ζ∗

// H3(X̃U ,Q)♮

commutes, where ζ∗ is the modification of α∗ by means of the above two isomor-
phisms coming from the Leray spectral sequences, and r1, r2 are the restriction
homomorphisms on cohomology groups.
By Deligne’s results, the cohomology groups at the bottom possess mixed

Hodge structures with weights

W0H
1(W ♮,Q) = im(r1) and W0H

3(f̃−1(U),Q)♮ = im(r2) ,

see [19, Section 11.1.4]. Morphisms between mixed Hodge structures are strict
with respect to both Hodge and weight filtrations, see [5]. Since ζ∗ is a morphism
of mixed Hodge structures and it is surjective, we obtain that

ζ∗(W0H
1(W ♮,Q)) = W0H

3(X̃U ,Q)♮ .

This gives that im(r2) = im(r2 ◦ β̄(1, 3)∗). Then H3(X̃ ,Z)♮ is generated by
ker(r2) and im(β(1, 3)∗).
On the other hand, ker(r2) is generated by the images of the homomorphisms

(i′t)∗ : H
1(X ′

t,Q)♮ → H3(X̃ ,Q)♮ ,

where t ∈ P1 rU , X ′

t is the resolution of singularities of Xt and i′t is the compo-
sition of the desingularization X ′

t → Xt with the closed embedding it : Xt → X .
All these things together give that the homomorphism

θ : H1(W̄ ♮,Q)⊕ (⊕t∈P1rUH
1(X ′

t,Q)♮) → H3(X̃ ,Q)♮ ,

induced by the homomorphisms β̄(1, 3)∗ and (it)∗, is surjective.
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Since θ is a homomorphism of polarized Hodge structures, it induces a surjec-
tive homomorphism of the corresponding abelian varieties

ρ♮ : J ♮ ⊕ (⊕t∈P1rU(P
′

t, 0)
♮) → J2

alg(X̃ )♮ ,

where J ♮ is the union of Ji’s and P ′

t,0 is the component of 0 in the Picard scheme
P ′

t of the surface X ′

t.

Now, let B̃ be the exceptional divisor of the blow-up X̃ → X , p : B̃ → B the
projection and e : B̃ → X̃ the embedding of B̃ into X̃ . Let ε♮ : CH2(X̃ )♮ →
CH1(B)♮ be the composition of the pull-back (e∗)♮ : CH2(X̃ )♮ → CH2(B̃)♮

and push-forward p ♮
∗
: CH2(B̃)♮ → CH1(B)♮, induced by e and p respectively.

For each t ∈ P1 let ĩt be the closed embedding of the fibre Xt into X̃ , and let
(̃it)

♮
∗
: CH1(Xt)

♮ → CH2(X̃ )♮ be the push-forward homomorphism induced by
the closed embedding ĩt.
The above surjective homomorphisms ρ♮ and ǫ♮, constructed on the level of

Jacobians, guarantee that, on the level of Chow groups, A1(B)♮ is contained in
the image of the sum

⊕t∈P1(ε♮ ◦ (̃it)
♮
∗
) : ⊕t∈P1CH1(Xt)

♮ → CH1(B)♮

A straightforward verification shows that, for each t ∈ P1, the composition ε♮ ◦
(̃it)

♮
∗
is the restriction of the pull-back homomorphism j∗t : CH1(Xt) → CH1(B)

onto the ♮-parts of the Chow groups. This completes the proof of Theorem 1.

Remark 2. Theorem 1 can be strengthened by saying that A1(B)♮ is contained
in the image of the homomorphism ⊕t∈P1rZCH1(Xt)

♮ → CH1(B)♮, where Z is a
finite subset in U . This is because we can always move a zero-cycle in its class
modulo rational equivalence on W̄ ♮.

4. The τ-action on CH2(S)

Symplectomorphisms over C have order ≤ 8, see [13]. If τ is a Nikulin invo-
lution, then ρ ≥ 9, where ρ is the rank of the Néron-Severi group NS(X), see
[7]. Assume that ρ = 9 and let L be a generator of the orthogonal complement
of the lattice E8(−2) in NS(X) whose self-intersection is 2d, for some positive
integer d. Let Γ be a direct sum of ZL and E8(−2), if the integer d is odd, or
the unique even lattice containing ZL ⊕ E8(−2) as a sublattice of index 2, if d
is even. For each Γ there exists a K3-surface X with a Nikulin involution and
ρ = 9, such that NS(X) ≃ Γ, and all such surfaces are parametrized by a coarse
moduli space of dimension 11, see [7], Proposition 2.3.
Let S0 be a K3-surface over C with a Nikulin involution τ , such that ρ = 9 and

d = 3. In this case the generator L gives the regular embedding φL : S0 → P4,
which identifies S0 with the complete intersection of nonsingular cubic C0 and
quadric Q0 in P4. The involution τ extends to the involution τP4 on the whole
projective space P4. In suitable coordinates, τP4 sends (x0 : x1 : x2 : x3 : x4)
to (−x0 : −x1 : x2 : x3 : x4). The cubic C0 and quadric Q0 are both invariant
under τP4 . Vice versa, if C0 and Q0 are general nonsingular cubic and quadric
in P4, both invariant under the involution τP4 , and such that their intersection
S0 = C0∩Q0 is nonsingular, then S0 is a K3-surface with the Nikulin involution
τ = τP4|S0

, see Section 3.3 in [7].
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For short, we will write τ for τP4 and for the involution on S0 simultaneously.
The fixed locus of τ on P4 is the disjoint union of the line lτ and the plane Πτ

given by the equations

(1) lτ : x2 = x3 = x4 = 0 , and Πτ : x0 = x1 = 0 .

Let V be a vector space, such that P4 = P(V ). In coordinate-free terms, τ lifts to
the involution τ : V → V which induces two involutions τi : Sym

iV ∨ → SymiV ∨,
where i = 2, 3, Symi is the i-th symmetric power of a vector space over k, and
V ∨ is the k-vector space dual to V . Consider the subspaces

(SymiV ∨)+ = {F ∈ SymiV ∨ | τi(F ) = F} .

for i = 2, 3. Any F ∈ (Sym2V ∨)+ has the shape

(2) α00x
2
0 + α11x

2
1 + α01x0x1 + f2(x2, x3, x4)

and Φ ∈ (Sym3V ∨)+ has the shape

(3) l00(x2, x3, x4)x
2
0 + l11(x2, x3, x4)x

2
1 + l01(x2, x3, x4)x0x1 + f3(x2, x3, x4) ,

where αij are constants, lij are linear forms, f2 and f3 are homogeneous polyno-
mials of degree 2 and 3 respectively. If

L2 = P((Sym2V ∨)+) and L3 = P((Sym3V ∨)+) ,

then Q0 ∈ L2 ⊂ |O(2)| and C0 ∈ L3 ⊂ |O(3)|.
The explicit formulae (1) and (3) show that any cubic C ∈ L3 contains the

line lτ . From (3) it follows that L3 is spanned by the subsystem

L3,i = P(Vi) , i = 1, 2 ,

where V1 is the subspace of forms in Sym3V ∨ of the shape

l00(x2, x3, x4)x
2
0 + l11(x2, x3, x4)x

2
1 + l01(x2, x3, x4)x0x1

and V2 is the subspace of forms in Sym3V ∨ of the shape

f3(x2, x3, x4) ,

and the forms lij , f3 are those described above. The subgroup

G = {g ∈ PGL(5) | g(lτ) = lτ , g(Πτ) = Πτ}

acts transitively on the set P4 r (lτ ⊔ Πτ ). It also acts naturally on the linear
system |O(3)| and fixes the subspaces L3,1 and L3,2 in it. Then L3 is fixed under
the G-action too. Let P0 = (1 : 1 : 1 : 1 : 1) be the point in P4. From (3) we have
that the subsystem {C ∈ L3 | P0 ∈ C } is a proper hyperplane in L3. Since G
acts transitively on P4r(lτ ⊔Πτ ), it follows that, for any point P ∈ P4r(lτ ⊔Πτ )
the subsystem {C ∈ L3 | P ∈ C } is also a proper hyperplane of L . This shows
that the line lτ is the base locus of the linear system L3.
Consider the linear system

M3 = {C ∈ L3 | S0 ⊂ C }

and its subset N3 of the unions Q0 ∪ H ∈ M3, such that H is a hyperplane
containing the line lτ . Then

N3 ≃ P2 and M3 = spanL3
(N3,C0) ≃ P3

We also need the linear system

Σ = {B1 ⊂ S0 | B1 = S0 ∩ C1 , C1 ∈ L3 r M3}
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of curves on S0 cut out by cubics from L3 r M3. As L3
∼= P18, it follows that

Σ ≃ P14. For any point P in S0, the set

ΣP = {B1 ∈ Σ | P ∈ B1}

is a hyperplane in Σ if P 6∈ S0 ∩ lτ , and ΣP = Σ otherwise. In both cases, as
dim(Σ) = 14, for any two distinct points P and Q in S0 we have that

dim(ΣP ∩ ΣQ) ≥ 12 .

Lemma 3. For a general choice of C0 and Q0, there is a nonempty Zariski open
subset N0 in S0, such that, if P0 is a point in N0, one can find a nonempty Zariski
open subset U0 in S0 having the property that for each point P in U0 there exists
a nonsingular curve B1 ∈ Σ passing through P and P0 on S0.

Proof. For a general Q0 in L2, the quadric Q0 intersects lτ at two distinct points,
say P+ and P−. As lτ is the base locus of L3, the union S0 ∩ lτ = P+ ⊔ P− is
the base locus of the linear system Σ on S0. Let V+ be the set of all triples
(C0,C1,Q) ∈ L3 × L3 × L2, such that C0 6= C1, the set B1 = C0 ∩ C1 ∩ Q0

has dimension 1 in a Zariski open neighbourhood of the point P+, and B1 is
nonsingular at P+. Then V+ is a Zariski open subset in L3 × L3 × L2. In
appropriate coordinates, P+ = (1 : 0 : 0 : 0 : 0) and P− = (0 : 1 : 0 : 0 : 0).
Then the triple C0 = {x2x

2
0 = 0}, C1 = {x3x

2
0 = 0}, Q0 = {x0x1 = 0} is in V+,

whence V+ 6= ∅. Similarly, one can construct the nonempty open subset V− in
L3 × L3 × L2, regarding the point P−. Joint with Bertini’s theorem, this gives
that, for a general choice of C0 and Q0, there is a nonempty Zariski open subset
V in Σ, such that each curve B1 ∈ V is nonsingular.
The set T = {(P,Q) ∈ S0 × S0 | dim(ΣP ∩ ΣQ) = 12} is Zariski open, and

hence irreducible, in S0 × S0. The set Z = {(P,Q,B1) ∈ T × Σ |P,Q ∈ B1}
is Zariski closed in T × Σ. The projection π : Z → T is surjective. Since π
is a P12-bundle over T and T is irreducible, Z is irreducible too. Let B1 be
any curve in V and P be any point on B1, not equal to P0 or P1. The set
FP = {Q ∈ S0 | dim(ΣP ∩ ΣQ) > 12} is at most finite. If Q ∈ B1 r FP then
(P,Q,B1) ∈ Z and (P,Q,B1) ∈ S0 ×S0× V . Therefore, W = Z ∩ (S0 ×S0 × V )
is a nonempty Zariski open subset in the irreducible quasi-projective variety Z.
As π is surjective, the Zariski closure of the set π(W ) is T . Since, moreover,

the image π(W ) is constructible, it contains a subset T0, which is open and dense
in T . Then T0 is Zariski open and dense also in S0×S0. It follows that the image
of T0 under the projection of S0×S0 onto the second factor contains a nonempty
Zariski open subset N0. For any point P0 ∈ N0 let then U0 be the image of the
set T0 ∩ (S0 × {P0}) under the projection of S0 × S0 onto the first factor.

Theorem 4. Let S be a general nonsingular complete intersection of cubic and
quadric hypersurfaces, both invariant under the involution τ in P4. Then the
action τ ∗ : CH2(S) → CH2(S) is the identity.

Proof. In the above terms, S = S0 is the intersection of τ -invariant nonsingular
cubic C0 and quadric Q0 in P4. Let N0 be the nonempty Zariski open subset in
S0, coming from Lemma 3, and let P0 be a point in N0. As the action of τ ∗ does
not change the degree of 0-cycles on S, to prove the theorem all we need to show
is that, for any point P on S0, the cycle class [P − P0] is τ -invariant. Let U0 be
the nonempty Zariski open subset in S0, depending on P0, also as in Lemma 3.
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By the Chow moving lemma, one can assume that P ∈ U0. Then, by Lemma 3,
there exists a cubic C1 in L3 rM3, such that C1 passes through P and P0, and
the curve B1 = S0 ∩C1 is nonsingular. Let Q = Q0, and let f : Q 99K P1 be the
pencil of K3-surfaces obtained by restricting the pencil |Ct|t∈P1 , spanned by C0

and C1, onto the quadric Q. The nonsingular curve B = B1 is the base locus of
the pencil f and P, P0 ∈ B.
Now, for any t ∈ P1 let St = Ct∩Q, let it : St → Q be the corresponding closed

embedding, and let jt : B → St be the closed embedding of the base locus into
the fibre (without loss of generality, we may think of S0 as the fibre over the point
t = 0). Let α be the class of P − P0 in A1(B) and let α♯ = α− τ ∗(α) ∈ A1(B)♯.
To prove the theorem we need to show that j0∗(α

♯) vanishes.
The Assumption (A) is satisfied for the pencil f and ♮ = ♯. By Theorem 1

and Remark 2, the cycle class α♯ is a sum of cycle classes of type j∗t (α
♯
t), where

α♯
t ∈ CH1(St)

♯ and t 6= 0. For each t ∈ P1, such that t 6= 0, we have the Cartesian
square

B

jt

��

j0
// S0

i0

��

St
it

// Q

It consists of four closed embeddings, each of which is an embedding of a Cartier
divisor into the target variety. This is why all the embeddings are regular, whence
j0∗ ◦ j

∗

t = i∗0 ◦ it∗, as homomorphisms from CH1(St) to CH2(S0), see [6, Section

6.2]. Since α♯ is a sum of cycle classes j∗t (α
♯
t), it follows that j0∗(α

♯) = i∗0(δ
♯)

for some δ♯ in CH2(Q)♯. Since Q is a 3-dimensional quadric hypersurface in P4,
the group CH2(Q) is isomorphic to Z, with the generator represented by class
of a line L in Q. As the line τ(L) is rationally equivalent to L on Q, the group
CH2(Q)♯ vanishes. Therefore, δ♯ = 0 and hence j0∗(α

♯) = 0. This finishes the
proof of Theorem 4.

5. The τ-action on A2(C )

Let C be a general nonsingular cubic from L3 and consider the linear projec-
tion of P4 onto Πτ from the line lτ ⊂ C . Restricting the projection onto C we
get a rational map p : C 99K Πτ . Blowing up C at the indeterminacy locus lτ
we obtain the conic bundle

p̂ : Ĉ → Πτ .

Let

C ⊂ Πτ

be the discriminant curve of p̂. This is an algebraic curve of degree 5 in Πτ . Let
also F be the Fano surface of lines on C . Following [12], we look at the Zariski
closed subset F0 (respectively, F ′

0) in F generated by lines l, such that for l
there exists a plane Π in P4 with C · Π = 2l + l′ (respectively, C · Π = l + 2l′).
In loc. cit. the cubic is projected from a line belonging neither to F0 nor to F ′

0,
so that the discriminant curve is irreducible. In our case the line lτ is not in F0,
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but still is an element of F ′

0. This has the effect that the discriminant curve C
is reducible and consists of 2 irreducible components,

C = C2 ∪ C3 .

Here C2 is the conic defined by the equation

4l00(x2, x3, x4)l11(x2, x3, x4)− l01(x2, x3, x4)
2 = 0 ,

and C3 is the cubic defined by the equation

f3(x2, x3, x4) = 0

in Πτ , where l00, l11, l01 and f3 are as in (3). For the general choice of l00,
l11, l01 and f3 the curves C2 and C3 are nonsingular and intersect each other
transversally at 6 distinct points in Πτ .
For any point P on Πτ the span ΠP of P and lτ intersects the cubic C along

the line lτ and a conic CP . Since P , as well as the points of lτ are fixed under
the involution τ , the involution acts in the fibres of the morphism p̂. If P ∈ C
then the conic CP splits into two lines

l+P and l−P ,

which coincide when P belongs to C2 ∩ C3.
Let C ′

i be the curve generated by the lines l in the Grassmannian Gr(2, 5),
such that p(l r lτ ) ∈ Ci, for i = 2, 3, and let

C ′ = C ′

2 ∪ C ′

3 .

Then C ′ is a double cover of the curve C which induces the involution ι : C ′ → C ′

by transposing the lines l+P and l−P sitting over the points P in C. The double
covers C ′

2 → C2 and C ′

3 → C3 are ramified over the six points of intersection of
C2 and C3, having no ramification in other points of C ′. Each point P ∈ C2∩C3

is a double point of C, and if P ′ ∈ C ′

2 ∩ C ′

3 sits over P , then P ′ is a double
point of C ′, see 1.5.3 in [2]. This is why the curves C ′

2 and C ′

3 are nonsingular.
The Hurwitz formula shows that the genera of the curves C ′

2 and C ′

3 are 2 and 4
respectively.
The above involution ι acts component-wise, which gives two involutions ι2 on

C ′

2 and ι3 on C ′

3. The curve C ′ has only double point singularities lying over the
six double points in C2 ∩ C3. These six points on C ′ are the fixed points of the
involution ι. Then (C ′, ι) is a Beauville pair, i.e. it satisfies the condition (B) on
page 100 in [15]. Let

P = ker(Nm)0 = (id− ι∗)Pic(C ′)

be the generalized Prymian in the sense of Beauville, see [2] or [15]. Notice that
P is a principally polarized abelian variety over C, loc.cit. Any closed point P
on C ′

2 or C ′

3 gives the line LP on C . By Beauville’s result, [2, Section 3.6], the
correspondence P 7→ LP induces the isomorphism

P ≃ A2(C ) .

Let also Ji be the Jacobian of the curve C ′

i, for i ∈ {2, 3}. The involutions ιi
give the Primians

Pi = (id− ι∗i )Ji .

Since the genus of C2 is zero, P2 coincides with J2, which is an abelian surface
over C.
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Let N6 → · · · → N1 → C be the chain of six subsequent normalizations of the
curve C at the six double points of C, and let N ′

6 → · · · → N ′

1 → C ′ be the chain
of the corresponding six normalizations of the curve C ′ at the double points lying
over the double points of C. Each curve N ′

i+1 inherits an involution from N ′

i , and
the corresponding generalized Prymians Ri, i = 1, . . . , 6, are abelian varieties by
Theorem 3.5 in [15]. Moreover, the involutions on the curves N ′

i satisfy the
the condition (F) of Proposition 3.9 in [15], and so give the tower of isogenies
P → R1 → · · · → R6 by Lemma 3.15 in loc.cit. The curve N ′

6 is the disjoint
union of the curves C ′

2 and C ′

3, and the restrictions of the induced involution on
N ′

6 on the connected components C ′

2 and C ′

3 coincide with the involutions ι2 and
ι3 respectively. Therefore,

R6 = P2 ⊕ P3 ,

and we obtain the isogeny

Λ : P → P2 ⊕ P3 .

Notice that by the same Lemma 3.15 in Shokurov’s paper, the first isogeny
P → R1 is an isomorphism because the Beauville pair (C ′, ι) satisfies the con-
dition (B) and the last isogeny R5 → R6 is an isomorphism because N ′

6 is
disconnected. Each of the rest 4 isogenies is of degree 2, loc.cit. Then the total
isogeny Λ is of degree 24.
Since C is unirational, there exists the classically known rational dominant

morphism P3
99K C , see [4], Appendix B. Resolving its indeterminacy, we get

the dominant regular morphism P̂3 → C . Then P̂3 is balanced by Prop. 1.2 in
[1], and C is balanced by Prop. 1.3 in loc.cit. It follows that the homological
equivalence coincides with the algebraic one for codimension 2 algebraic cycles
on C , see [3, Theorem 1(ii)]. The group H4(C ,Z) is isomorphic to Z by the
Lefschetz’s hyperplane section theorem and the Poincaré duality. This gives
that

CH2(C ) = A2(C )⊕ Z ,

and the action induced by τ on CH2(C ) splits into the action on A2(C ) and the
identity action on Z.
For any i letH i(C ) be the cohomology of the complex cubic C with coefficients

in Q. Recall that

H1(C ) = H5(C ) = 0 , H2(C ) = H4(C ) = Q and H3(C ) = Q⊕10 .

As to Dolbeault cohomology, we have that h3,0(C ) = 0 and h2,1(C ) = 5.
Let Bi be the pre-image of Pi in P under the above isogeny Λ. The Prymian

P is generated by B2 and B3. Identifying P with A2(C ), and A2(C ) with the
intermediate Jacobian J2(C ) via the Abel-Jacobi isomorphism, we can also look
at B2 and B3 as two subgroups generating A2(C ) or J2(C ) respectively.
The genera of the curves C ′

2 and C ′

3 are 2 and 4 respectively, whence P

is an abelian surface and P3 is an abelian threefold over C. Looking at the
intermediate Jacobian of C as the quotient

H2,1(C )∨/H3(C ,Z)

and taking into account that any isogeny induces an isomorphism on the level of
tangent spaces, we see that Λ induces the splitting

H2,1(C ) = W2 ⊕W3 ,
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such that the dual vector spaces W∨

2 and W∨

3 project from the tangent space to
the intermedian Jacobian onto the groups B2 and B3 in J2(C ).

Theorem 5. The involution τ ∗ : A2(C ) → A2(C ) acts identically on B3, and as
the multiplication by −1 on B2. Similarly, the induced action on H2,1(C ) splits
into the identity action on W∨

3 and multiplication by −1 on W∨

2 .

Proof. The involution τ on the cubic C induces the involutions τ2 on C ′

2 and τ3
on C ′

3. In turn, they induce the involutions τ ∗2 and τ ∗3 on J2 and J3 respectively.
Let P be a point on the plane Πτ , let ΠP be the span of P and lτ , and look at
the equation of the cubic C ,

l00(x2, x3, x4)x
2
0 + l11(x2, x3, x4)x

2
1 + l01(x2, x3, x4)x0x1 + f3(x2, x3, x4) = 0 ,

see (3) above. Under an appropriate change of the coordinates x3 and x4, keeping
the coordinates x0, x1 and x2 untouched, the plane ΠP will be given by the
equation

ΠP : x3 = x4 = 0 .

Herewith, as the coordinates x0, x1 and x2 remain the same, the involution τ in
P4 can be expressed by the same formula, so that the equations for lτ and Πτ

remain the same too (see Section 4). Substituting x3 = x4 = 0 into the above
equation for the cubic C , we obtain the equation for the fibre

ΠP ∩ C

of the projection
p : C 99K Πτ

over the point P = (0 : 0 : 1 : 0 : 0) of the intersection of two planes ΠP and Πτ .
Namely, ΠP ∩ C is given by the equation

x2(αx
2
0 + βx2

1 + γx0x1 + δx2
2) = 0 ,

where α, β, γ and δ are some numbers in C. If a point Q = (a0 : a1 : a2 : 0 : 0)
in ΠP ∩C is such that a2 = 0 then Q sits on the line lτ . As we are interested in
the fibre of the projection from C r lτ we must set x2 6= 0. Then, if CP is the
Zariski closure of the set (ΠP ∩ C ) r lτ in C , the curve CP is the conic defined
by the equation

αx2
0 + βx2

1 + γx0x1 + δx2
2 = 0

in ΠP .
The point P is in C if and only if CP = l+P + l−P . Moreover,

P ∈ C3 ⇔ δ = 0 and P ∈ C2 r C3 ⇔ δ 6= 0 .

Then we see that, if P ∈ C3, the lines l+P and l−P meet the plane Πτ at the point
P . It follows then that τ ∗3 = id.
Suppose P ∈ C ′

2. Since CP splits,

αx2
0 + βx2

1 + γx0x1 + δx2
2 = δ(x2 + b0x0 + b1x1)(x2 − b0x0 − b1x1) ,

so that the lines of CP are defined by the equations

l+P : x2 + b0x0 + b1x1 = 0 and l−P : x2 − b0x0 − b1x1 = 0 ,

which show that τ(l+P ) = l−P and τ(l−P ) = l+P .
Thus, we obtain that the involution τ ∗2 coincides with the involution ι∗2 on J2,

while the involution τ ∗3 is the identity on J3. This means that the action of τ ∗
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on the Prymian P2 is the multiplication by −1, and the action of τ ∗ on the
Prymian P3 is the identity. It follows that τ acts as multiplication by −1 on
B2 and identically on B3. Looking at the tangent spaces, we also claim that τ
induces the multiplication by −1 on W∨

2 and the identity on W∨

3 .

Let now Q1 be yet another nonsingular τ -invariant quadric in L2 and consider
the pencil C 99K P1, which is the restriction of the linear system |Qt|t∈P1 spanned
by Q0 and Q1 onto C . Let η be the generic point of P1, Cη the generic fibre and
Cη̄ the geometric generic fibre of the pencil C 99K P1. There exists a countable
subset Z in P1, such that the fibre Cη̄ is isomorphic, as a scheme over a subfield
in C(P1), to the closed fibre Ct, for all t in P1 r Z. Actually, Z is the collection
of all points with algebraic coordinate in A1 and the point at infinity ∞. The
isomorphisms between Cη̄ and Ct, for t ∈ P1 r Z, commute with the action of
the involution τ . Then, by Theorem 4, the action of τ ∗ on A2(Cη̄) is the identity.
Let g : Cη → C be the scheme-theoretical morphism of the generic fibre Cη into

the cubic C . Then g induces the pull-back homomorphism g∗ : A2(C ) → A2(Cη).
This homomorphism is surjective, because any η-rational point on the surface
Cη has its closure in the scheme C .
Now, for any abelian group A let AQ be the tensor product of A with Q over

Z. Theorem 5 implies that B2 ∩B3 is a 2-torsion subgroup in A2(C ). Therefore
A2(C )Q is the direct sum of B2Q and B3Q. By the same theorem, the involution
τ ∗ acts identically on B3Q and as multiplication by −1 on B2Q.
Let g∗Q be the homomorphism induced by g∗ after tensoring with Q. The

rational Chow group A2(Cη)Q is embedded into A2(Cη̄). The action of τ ∗ on
A2(Cη̄) is the identity. This is why the action of τ ∗ on A2(Cη)Q is the identity
too. Since τ ∗ acts as multiplication by −1 on B2Q, we obtain that g∗Q(B2Q) = 0.
It means, in particular, that the rational Chow group A2(Cη)Q of the K3-

surface Cη over C(P1) is covered by the τ ∗-invariant component B2Q of A2(C )Q,
which is isomorphic to the Q-localized Prymian P3Q.
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10, 309 - 391 (1977)

[3] S. Bloch, V. Srinivas. Remarks on correspondences and algebraic cycles, American Jour-
nal of Mathematics, Vol. 105, No. 5 (1983) pp. 1235-1253

[4] H. Clemens, Ph. Griffiths. The intermediate Jacobian of the cubic threefold. Annals of
Mathematics. Second Series 95 (2) (1972) 281 356
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