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PARABOLIC BUNDLES OVER THE PROJECTIVE LINE AND

THE DELIGNE-SIMPSON PROBLEMS

ALEXANDER SOIBELMAN

Abstract. In “Quantization of Hitchin’s Integrable System and Hecke Eigen-

sheaves”, Beilinson and Drinfeld introduced the “very good” property for a
smooth complex equidimensional stack. They prove that for a semisimple

group G over C, the moduli stack BunG(X) of G-bundles over a smooth com-

plex projective curve X is “very good”, as long as X has genus g > 1. In the
case of the projective line, when g = 0, this is not the case. However, the re-

sult can sometimes be extended to the projective line by introducing additional

parabolic structure at a collection of marked points and slightly modifying the
definition of a “very good” stack. We provide a sufficient condition for the

moduli stack of parabolic vector bundles over P1 to be very good. We then

use this property to study the space of solutions to the Deligne-Simpson prob-
lem.

1. Introduction

1.1. The Deligne-Simpson Problem. Let X be a Riemann surface. Consider
the divisor D on X. A logarithmic connection or a connection with regular singu-
larities (in D) on a vector bundle E over X is a C-linear morphism

∇ : E → E ⊗ Ω1
X(D) such that

∇(fs) = s⊗ df + f∇(s) for f ∈ OX , s ∈ E.
Note that the connection ∇ has residues at the points of D, so that there exists
Resxi∇ ∈ End(Exi), for each fiber Exi over xi ∈ D.

Let C1, . . . , Ck be conjugacy classes of complex, linear endomorphisms of vector
spaces of dimension n. We can formulate the following:

The Deligne-Simpson Problem. Does there exist (for some D and vector bundle
E) a connection ∇ on P1 with regular singularities such that Resxi∇ ∈ Ci?

We will use this formulation of the Deligne-Simpson problem instead of the ones
given below, as it is easier to generalize to the case of connections with irregular
singularities (see Section 1.5).

The Riemann-Hilbert correspondence provides an equivalence between the cat-
egory of connections ∇ with regular singularities in D on vector bundles over P1

and the category of representations of the fundamental group of P1 −D by way of
the monodromy representation of ∇ (see [11]). This provides the following refor-
mulation of the Deligne-Simpson problem:

Multiplicative Deligne-Simpson Problem. Given conjugacy classes C1, . . . , Ck
of complex matrices in GL(n,C), do there exist A1 ∈ C1, . . . , Ak ∈ Ck such that
A1 ·A2 · · ·Ak = Id?

This work was partially supported by NSF grant DMS 1101558.
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This was the original version of the Deligne-Simpson problem, suggested in a
letter from Deligne to Simpson, who considered it in his paper [28].

By considering connections on trivial (and trivialized) vector bundles over P1 we
get another version of the Deligne-Simpson problem:

Additive Deligne-Simpson Problem. Given conjugacy classes C1, . . . , Ck of
complex matrices in gln(C), do there exist A1 ∈ C1, . . . , Ak ∈ Ck such that A1 +
· · ·+Ak = 0?

The multiplicative Deligne-Simpson problem and its additive analogue were stud-
ied by Crawley-Boevey, Katz, Kostov, and Simpson, among others.

There are several approaches to solving the Deligne-Simpson problem. In [21],
Katz describes an algorithm for the existence of rigid local systems, which Kostov
applies (see e.g. [22] for summary) to determine when solutions to various cases of
the Deligne-Simpson problems exist. The algorithm, called the middle convolution
algorithm, proceeds by changing the rank of the local system by a number δ, called
the defect, dependent on C1, . . . , Ck. Solutions exist for the original rank, as long
as they exist for the altered rank. This continues until δ ≥ 0, in which case there
are solutions by a nontrivial existence theorem, or until one arrives at a situation
when solutions cannot exist. An overview of the Katz algorithm may be found in
[31].

In [6], Crawley-Boevey proposes another approach to the additive version of the
Deligne-Simpson problem by examining fibers of the moment map on the cotangent
bundle to the space of representations of the star-shaped quiver and the represen-
tations of the deformed preprojective algebra associated to this quiver. This gives
him a necessary and sufficient condition for the existence of solutions in the ad-
ditive case. In [10], he and Shaw provide a sufficient condition for the existence
of solutions of the multiplicative Deligne-Simpson problem using a multiplicative
analogue of the preprojective algebra. This condition is also necessary ([9]). A
multiplicative analogue of the moment map approach of [6] may be found in [34].

We approach the Deligne-Simpson problem using at technical condition from
Beilinson’s and Drinfeld’s work on the geometric Langlands program. It provides
us with a way of studying the geometry of the varieties of solutions arising from
the additive and multiplicative versions of the problem.

1.2. The Very Good Property. In [2] Beilinson and Drinfeld introduced the
notion of a “very good” stack. They require this property in order to avoid using
derived categories in their study of D-modules on the moduli stack BunG(X) of
G-bundles over X, where G is a semisimple algebraic group and X is a smooth
complex projective curve.

A smooth complex equidimensional stack Y will be called very good if

codim{y ∈ Y|dim Aut(y) = n} > n, for n > 0,

where Aut(y) is the automorphism group of y ∈ Y. If dim Aut(y) > 0 for all y ∈ Y,
then the stack Y cannot be very good. In this situation, Y will be called almost
very good if

codim{y ∈ Y|dim Aut(y)−m = n} > n, for n > 0,

where m = min dim Aut(y). Beilinson and Drinfeld demonstrate that BunG(X) is
very good when X has genus g > 1. However, in the g = 0 case, when X = P1,
this is no longer true.
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We approach the very good property in the genus g = 0 case, for G = GL(n,C),
by introducing additional parabolic structure at a finite collection of marked points.
Since the reductive group GL(n,C) has a one-dimensional central subgroup C∗ that
acts by dilation on the fibers, the automorphism group of any parabolic bundle has
a one-dimensional subgroup. It follows that the moduli stack of parabolic bundles
can never be very good.

It turns out, however, that a sufficiently elaborate parabolic structure on a vector
bundle is enough to make the corresponding moduli stack of parabolic bundles over
P1 almost very good. This is equivalent to showing that the quotient of the moduli
stack by the classifying stack of C∗ is very good.

1.3. The Very Good Property for Moduli of Parabolic Bundles. Seshadri
introduced the notion of a parabolic structure on a vector bundle in [27], furnishing
parabolic bundles with a stability condition analogous to the usual one for vector
bundles. Expanding upon this, Mehta and Seshadri proved the existence of a moduli
space of semistable parabolic bundles on a smooth projective curve of genus g ≥ 2
in [26].

Parabolic bundles over an algebraic curve generalize vector bundles by defining
additional structure in the fibers over specified points. Namely, let X be a smooth
complex projective curve (in the future, we restrict ourselves to the case when
X = P1). A parabolic bundle E over X consists of a vector bundle E over X,
a collection of distinct points (x1, . . . , xk) on X, and a flag Exi = Ei0 ⊇ Ei1 ⊇
Eiwi−1 ⊇ Eiwi = 0 in the fiber over each such point xi.

If D = x1 + · · · + xk and w = (w1, . . . , wk), we say that the parabolic bundle
E has weight type (D,w). If α0 = rk E and αij = dim Eij , for 1 ≤ i ≤ k and
1 ≤ j ≤ wi−1, we say that E has dimension vector α = (α0, αij).

Note that one possible way of introducing stability and semistability for parabolic
bundles, is by defining a parabolic degree. To do this, additional numbers called
weights are assigned to each subspace in each flag. Since we do not limit ourselves
to stable or semistable parabolic bundles, we do not require weights to be part
of the definition. Parabolic bundles without weights are sometimes referred to as
“quasi-parabolic” bundles.

In order to formulate our main result, we need to specify which dimension vectors
give rise to very good parabolic bundles. Let I = {0} ∪ {(i, j)|1 ≤ i ≤ k, 1 ≤ j ≤
wi−1}. For a dimension vector α ∈ ZI , we define the Tits quadratic form as:

q(α) =
∑
i∈I

α2
i −

∑
i∈I

αiαi+1,

where αwi = 0. Let p(α) = 1 − q(α). We write: δ(α) = −2α0 +
∑
i αi1. We say

that α is in the fundamental region if

δ(α) ≥ 0

−2αij + αij−1 + αij+1 ≥ 0, for 1 ≤ i ≤ k and 1 ≤ j ≤ wi−1

(note that we assume αi0 = α0, for all i). We now introduce our main result.

Theorem 1.3.1. The moduli stack BunD,w,α(P1) of parabolic bundles over P1 of
weight type (D,w) and dimension vector α is almost very good if α is in the fun-
damental region and δ(α) > 0.
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The vector α can be used to define a product of partial flag varieties

Fl(α) =
∏
i

Fl(α0, αi1, . . . , αiwi).

That is, α0 is the dimension of the ambient space Cα0 , and for a fixed 1 ≤ i ≤ k,
each αij is the dimension of the j-th subspace in the flag. The group PGL(α0) acts
diagonally on Fl(α), so it makes sense to discuss the very good property of the
resulting quotient stack. Indeed, when the underlying vector bundle is trivial, we
can use Theorem 1.3.1 to obtain:

Theorem 1.3.2. The quotient stack PGL(α0)\Fl(α) is very good, if α is in the
fundamental region and δ(α) > 0.

Theorem 1.3.2 may also be obtained from Crawley-Boevey’s results in [5], after
noticing that Fl(α) is the quotient of the space of star-shaped quiver representations
of dimension α with injective arrows by the group H(α) =

∏
i,j GL(αij), acting

by conjugation on the arrows. In this case, the very good property is equivalent
to Crawley-Boevey’s inequality p(α) >

∑
i p(βi) (see [5]), for any decomposition

α =
∑
i βi into the sum of positive roots corresponding to the star-shaped quiver

(see Sections 3.3 and 3.4 below). The condition that α is in the fundamental region
and δ(α) > 0 implies this inequality.

1.4. The Deligne-Simpson problem and the very good property. Let E be
a parabolic bundle over P1 of weight type (D,w). Let ζ = (ζij)1≤i≤k,1≤j≤wi . A
ζ-parabolic connection on E is a connection ∇ on the underlying vector bundle E
with regular singularities in D, such that

(Resxi∇− ζij)(Eij−1) ⊂ Eij ,
for all 1 ≤ i ≤ k and 1 ≤ j ≤ wi.

Given semisimple conjugacy classes C1, . . . , Ck of n-dimensional complex vector
space endomorphisms and an ordering on the eigenvalues of these conjugacy classes,
one can write a dimension vector α, where α0 = n and αij is the dimension of the
direct sum of the first j eigenspaces, for the above ordering on the eigenvalues. One
can also obtain a complex vector ζ = (ζij) simply as the vector of eigenvalues for
C1, . . . , Ck, counting multiplicity. For these ζ and α, the ζ-parabolic connections
on parabolic bundles with dimension vector α over P1 will have residues in the
conjugacy classes C1, . . . , Ck.

Conversely, a ζ-parabolic connection on a parabolic bundle with dimension vector
α over P1 determines semisimple conjugacy classes C1, . . . , Ck, with ζ being the
vector of eigenvalues (counting multiplicity), and αij − αij+1 being the dimension
of the eigenspace for ζij .

Given the situation described in the previous two paragraphs, it follows that
semisimple conjugacy classes may be used to determine (not uniquely) a moduli
stack of parabolic bundles BunD,w,α(P1). Furthermore, the moduli stack of so-
lutions of the Deligne-Simpson problem may be defined as ConnD,w,α,ζ(P1), the
moduli stack of ζ-parabolic connections on parabolic bundles over P1 of weight
type (D,w) and dimension vector α. By presenting ConnD,w,α,ζ(P1) as a twisted
cotangent bundle over the moduli stack of parabolic bundles BunD,w,α(P1), we
prove the following theorem:
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Theorem 1.4.1. If BunD,w,α(P1) is almost very good and
∑k
i=1

∑wi
j=1 ζij(αij−1 −

αij) is an integer, then ConnD,w,α,ζ(P1) is a nonempty, irreducible, locally complete
intersection of dimension 2p(α)− 1.

Theorem 1.4.1 and Theorem 1.3.1 give us the following corollary:

Corollary 1.4.2. If α is in the fundamental region, δ(α) > 0, and we have∑k
i=1

∑wi
j=1 ζij(αij−1 − αij) is an integer, then ConnD,w,α,ζ(P1) is a nonempty,

irreducible, locally complete intersection of dimension 2p(α)− 1.

If the vector bundles underlying the parabolic bundles are trivial, then Theorem
1.4.1 may be used to obtain the following:

Theorem 1.4.3. If the conjugacy classes Ci are semisimple, the corresponding quo-
tient stack PGL(α0)\Fl(α) is very good and the eigenvalues of all the Ci add up to 0,
then the space of solutions of the additive Deligne-Simpson problem for C1, . . . , Ck
is a nonempty, irreducible complete intersection of dimension 2 ·dimFl(α)−α2

0 +1.

Applying Theorem 1.3.2 we obtain:

Corollary 1.4.4. If the conjugacy classes Ci are semisimple, the eigenvalues of all
the Ci add up to 0, α is in the fundamental region, and δ(α) > 0, then the space
of solutions of the additive Deligne-Simpson problem for C1, . . . , Ck is a nonempty,
irreducible complete intersection of dimension 2 · dim Fl(α)− α2

0 + 1.

We can obtain results similar to Theorem 1.4.3 and Corollary 1.4.4 for the multi-
plicative Deligne-Simpson problem. Indeed, let C1, . . . , Ck be semisimple conjugacy
classes in GL(n,C). The Riemann-Hilbert correspondence provides an analytic iso-
morphism between the space of solutions to the multiplicative Deligne-Simpson
problem for C1, . . . , Ck and a certain moduli space of ζ-parabolic connections. This
is similar to the analytic isomorphism obtained for the moduli space of stable ζ-
parabolic connections in [16], [17], or [34]. We get the following:

Theorem 1.4.5. If we have that the conjugacy classes Ci are semisimple, the
corresponding moduli stack BunD,w,α(P1) is almost very good, and the eigenvalues
of all the Ci multiply to 1, then the space of solutions of the multiplicative Deligne-
Simpson problem for C1, . . . , Ck is a nonempty, irreducible complete intersection of
dimension 2 · dimFl(α)− α2

0 + 1 = 2p(α) + α2
0 − 1.

Applying Theorem 1.3.1 we obtain:

Corollary 1.4.6. If the conjugacy classes Ci are semisimple, the eigenvalues of
all the Ci multiply to 1, α is in the fundamental region and δ(α) > 0, then the
space of solutions of the multiplicative Deligne-Simpson problem for C1, . . . , Ck is
a nonempty, irreducible complete intersection of dimension 2 ·dimFl(α)−α2

0 +1 =
2p(α) + α2

0 − 1.

Remark 1.4.7. In the above corollaries, δ(α) is actually equal to the defect δ that
appears in Katz’s middle convolution algorithm. Moreover, for the specific ordering
on the eigenspaces described above, the condition that α is in the fundamental
region reduces to δ(α) ≥ 0. Therefore, δ(α) > 0 alone is sufficient to obtain the
properties for the space of solutions.



6 ALEXANDER SOIBELMAN

1.5. Further Discussion. In our formulation, the Deligne-Simpson problem asks
whether there exist connections on P1 with simple poles such that the residues lie
in prescribed conjugacy classes. It is also possible to ask a similar question for
connections with poles of higher order.

We replace the idea of a logarithmic connection on P1 that has residues in pre-
scribed conjugacy classes with the more general one of a connection with irregular
singularities that has prescribed formal types. The notion of formal type (see e.g.
[1]) allows one to classify connections with irregular singularities based on their
restrictions to formal neighborhoods of points. Using this notion it is possible
to formulate a more general version of the Deligne-Simpson problem by asking
whether there exist connections with irregular singularities on P1 with prescribed
formal types at a fixed collection of points D on P1.

Hiroe in [15] solves the “additive” version of this problem (when the connections
are on trivial vector bundles) by using Boalch’s quiver construction from [3]. This
approach, similar to what Crawley-Boevey does in [6] for the case of regular sin-
gularities, suggests that it is possible to apply the very good condition to obtain
certain geometric properties for the space of solutions to the irregular version of
the additive Deligne-Simpson problem. Moreover, it may be possible to generalize
representations of squids, in order to study the space of solutions to the general
version of the irregular Deligne-Simpson problem.

It would also be interesting to extend the result of Theorem 1.3.1 to other re-
ductive groups. By analogy with flag varieties, it is possible to define a parabolic
structure on G-bundles, when G is not GL(n,C), by specifying parabolic sub-
groups Pi at each marked point xi ∈ P1. Although there is no correspondence with
quiver representations for a general G, it may be possible to modify Beilinson and
Drinfeld’s original proof of the very good property for BunG. A key part of their
argument consists of showing that the global nilpotent cone Nilp(G) (introduced in
[23] and [24]), the fiber over 0 in the Hitchin system, is Lagrangian (see [14]). One
can consider the parabolic analogue of the Hitchin system, which has its own global
nilpotent cone. It has been proved to be Lagrangian in specific instances, such as
for complete flags ([12], [32]) or rank 3 ([13]). However, the author is unaware of a
proof for the case of partial flags.

1.6. Acknowledgments. I am extremely grateful to my advisor D. Arinkin for
his numerous comments, corrections, and explanations. I would like to thank P.
Belkale, A. Braverman, I. Cherednik, E. Frenkel, A. Goncharov, M. Kontsevich,
S. Kumar, Z. Lin, A. Polishchuk, L. Rozansky, J. Sawon, A. Varchenko for the
interest they have expressed in my work and for the useful discussions. I would
also like to thank W. Crawley-Boevey for clarifying the status of the multiplicative
Deligne-Simpson problem and inspiring much of the work seen here.

2. Very Good Property

2.1. Definitions. Let Y be an equidimensional algebraic stack over C, and denote
by Aut(y) the automorphism group of y ∈ Y. Let Yn = {y ∈ Y|dim Aut(y) = n},
which gives rise to a reduced locally closed substack of Y. The following two
definitions come from [2]. We call Y good when:

codim Yn ≥ n ∀n > 0,
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and we call it very good when:

codim Yn > n ∀n > 0.

In the case when Y is smooth, being good is equivalent to the condition that
dim T ∗Y = 2 dim Y, where T ∗Y is the cotangent stack to Y (see [2]). Furthermore,
Y is very good if and only if T ∗Y0 is dense in T ∗Y. Now, suppose there exists an
integer m > 0 such that for all y ∈ Y we have dim Aut(y) ≥ m. In this case, we
can see that Y cannot be very good.

Let m = min dim Aut(y) over all y ∈ Y. We say Y is almost good if:

codim Yn+m ≥ n ∀n > 0,

and we say it is almost very good if:

codim Yn+m > n ∀n > 0.

2.2. The very good property and the inertia stack. In order to prove our
Theorem 1.3.1, we will need to reformulate the very good property in terms of
the inertia stack. Let IY be the inertia stack associated with the stack Y, which
consists of pairs (y, f), such that y ∈ Y and f ∈ Aut(y). We will be using the
following lemma (see Properties of Algebraic Stacks in [33]):

Lemma 2.2.1. Let f : X1 → X2 be a flat morphism of stacks of finite type and let
x ∈ X1. We have:

dimx(X1)f(x) = dimx X1 − dimf(x) X2,

where (X1)f(x) is the fiber over f(x).

Now, we can obtain:

Theorem 2.2.2. The stack Y is good if and only if dim IY ≤ dimY.

Proof. Let In be the locally closed, reduced substack of IY consisting of objects
(y, g) such that dim Aut(y) = n. Furthermore, let f : IY → Y be the canonical
morphism and let fn : In → Yn be its restriction to In. By Lemma 2.2.1, we have
that:

dim In = n+ dim Yn.
Note that dim I0 = dim Y0. Now, suppose Y is good. This implies dim In ≤
dim Y for n > 0. By the definition of dimension, there exists an n ≥ 0 such that
dim In = dim IY . It follows that dim IY ≤ dim Y.

Now, suppose dim IY ≤ dim Y. We have that:

n+ dim Yn = dim In ≤ dim Y,
for all n ≥ 0. Therefore, we obtain that codim Yn ≥ n for all n > 0, and Y is
good. �

From this theorem we can then obtain:

Corollary 2.2.3. The stack Y is very good if and only if dim(IY − I0) < dimY.

Similarly, we have:

Corollary 2.2.4. Let m and In be as before. The stack Y is almost very good if
and only if dim(IY −

∐m
i=0 Ii) < dimY.
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Let X be a variety over C, and let G be an algebraic group over C, acting on
X. Consider the quotient stack Y = g\X. For y ∈ Y , we have that dim Aut(y) =
dim Gx, where Gx is the stabilizer subgroup of a point x ∈ X corresponding to y.

If Y ⊂ X is a G-stable constructible subset, then we define the number of
parameters (see e.g. [4] or [5]) of G on Y as

dimGY = maxs{dim Y ∩Xs + s− dim G},
where Xs = {x ∈ X|dim Gx = s}.

We can easily see that the number of parameters for Y = X is simply the
dimension of the inertia stack associated to the quotient stack Y. Therefore, by
Theorem 2.2.2, the good condition on G\Y is equivalent to

dimGX ≤ dim X − dim G.

Similarly, we can apply Corollary 2.2.3 in order to obtain that Y is very good if
and only if

dimGXn < dim X − dim G for all n > 0.

2.3. The very good property and the moment map. Let X be a smooth
algebraic variety over C with a semisimple complex group G acting on it. This gives
rise to a natural Hamiltonian G-action on the cotangent bundle T ∗X equipped with
the standard symplectic form. There is a moment map µ : T ∗X → g∗, defined by:

µ(y)(ξ) = y(ξX(x)),

where g is the Lie algebra of G, y ∈ T ∗xX, and ξX is the vector field on X induced
by ξ ∈ g. It is clear from the above description that µ is linear on each cotangent
space T ∗xX. Therefore, the image is a vector subspace of g∗.

Lemma 2.3.1. The image µ(T ∗xX) is the annihilator of gx, where gx is the Lie
algebra of the stabilizer of x ∈ X under the action of G.

Proof. Let g⊥x be the annihilator of gx and consider ξ ∈ gx. For y ∈ X, let
fy : G→ X be the map that takes g ∈ G to g · y. By definition,

ξX(x) = (dfx)e(ξ),

where e is the identity element of G, so we have that ξX(x) = 0. Therefore,
µ(T ∗xX) ⊂ g⊥x . We can compute the dimension of µ(T ∗xX) as

dim µ(T ∗xX) = dim T ∗xX − dim ker µ|T∗xX .

Let V ⊂ TxX be the vector subspace spanned by ξX(x) for all ξ ∈ g. By definition,
ker µ|T∗xX is the annihilator of V . Therefore, we have that

dim ker µ|T∗xX = dim TxX − dim V.

Note that gx contains all ξ ∈ g such that ξX(x) = 0. It follows that dim V =
dim g− dim gx. Thus:

dim µ(T ∗xX) = dim g− dim gx = dim g⊥x ,

and µ(T ∗xX) = g⊥x . �

Note that the moment map is algebraic, so the fiber µ−1(θ) is a closed algebraic
subvariety of T ∗X for any θ ∈ g∗. We are now ready to prove the following theorem:
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Theorem 2.3.2. If the quotient stack G\X is very good, then for any θ ∈ g∗ we
have that µ−1(θ) is a nonempty, equidimensional complete intersection of dimen-
sion 2 dimX − dimG. Moreover, there is a bijective correspondence between the
irreducible components of µ−1(θ) and the irreducible components of X.

Proof. Let x ∈ X and let π : T ∗X → X be the natural projection. By Lemma
2.3.1 we have that

dimµ(π−1(x)) = dim g∗ − dimGx.

Let X0 = {x ∈ X|dimGx = 0}. We have that π−1(X0) ∩ µ−1(θ) is nonempty.
Since G\X is very good, then X0 is nonempty. Consequently, µ is surjective, and
we have:

dimµ−1(θ) ≥= 2 dimX − dimG.

In fact, for every irreducible component I of µ−1(θ) we have that dim I ≥ 2 dimX−
dimG.

Let p be the restriction of π to µ−1(θ) and let I be an irreducible component
of µ−1(θ), as above. Since X is stratified by the dimension of the stabilizer of the
G-action, there exists an m ≥ 0 such that

dimX − dimG+m = dim I − dim p(I).

If m > 0, by the very good property for the quotient stack G\X we have the
following:

2 dimX − dimG > dimX − dimG+m+ dim p(I) = dim I,

which is impossible by our previous estimate from below. In that case m = 0, and
dim I = 2 dimX − dimG. It follows that µ−1(θ) is an equidimensional complete
intersection of dimension 2 dimX − dimG.

Let Z ⊂ X be an irreducible component of X. Since G\X is very good, then X0

intersects Z. Moreover, X0 is open in X, so Y := Z ∩X0 is irreducible and open.
We have that p−1(Y ) is irreducible in µ−1(θ), since Y is irreducible and the fibers

of p are isomorphic to CdimX . It follows that p−1(Y ) must be contained entirely
in some irreducible component of µ−1(θ).

This means there is a correspondence between the irreducible components of
X and the irreducible components of µ−1(θ). Since X is smooth, its irreducible
components are disjoint, and therefore the correspondence is injective. It is also sur-
jective, because the above computation implies p−1(X0) intersects each irreducible
component of µ−1(θ). �

We immediately obtain the following corollary:

Corollary 2.3.3. If X is irreducible and the quotient stack G\X is very good, then
µ−1(θ) is a nonempty, irreducible, complete intersection of dimension 2 dimX −
dimG.

Remark 2.3.4. If we assume the quotient stack G\X merely to be good, then
the result that µ−1(θ) is an equidimensional complete intersection of dimension
2 dimX − dimG still holds.

Remark 2.3.5. Note that even if G is not assumed to be semisimple, then Lemma
2.3.1 still holds. Let Xs = {x ∈ X|dimGx = s}. If the quotient stack G\X is only
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almost very good for a given m, then Theorem 2.3.2 and Remark 2.3.4 still hold,
as long as µ(π−1(Xm)) contains θ, with the exception that

dimµ−1(θ) = 2 dimX − dimG+m.

3. Quivers and their Representations

3.1. Preliminaries. Before proceeding with the proof of Theorem 1.3.1, we will
consider the very good property for the quotient stack of quiver representations (in
coordinate spaces) by the change of basis action at each vertex. This example is
related to the special case of Theorem 1.3.1, when the vector bundle underlying
the parabolic bundles is trivial. We will largely follow the arguments outlined in
Section 6 of [4] and Sections 1-4 of [5], since his results imply ours.

LetQ be a finite, loop-free quiver, with vertices IQ and arrows AQ. Let Rep(Q,α)
=
⊕

a∈AQ Mat(αh(a)×αt(a),K) be the complex variety of its representations in the

standard coordinate spaces over an algebraically closed field K. The dimensions of
these coordinate spaces can be encoded as the dimension vector α = (αi)i∈IQ . The
elements of Rep(Q,α) may be thought of as left modules of the path algebra R(Q).
The group G(α) =

∏
i∈IQ GL(αi,K)/K∗ acts on Rep(Q,α) by change of basis at

each vertex i ∈ IQ.
The Euler-Ringel form is defined as follows:

〈α, β〉 =
∑
i∈IQ

αiβi −
∑
a∈AQ

αt(a)βh(a).

Let q(α) = 〈α, α〉 be the associated Tits quadratic form, and set p(α) = 1 − q(α)
following [4].

Recall that a dimension vector α is in the fundamental region if it is nonzero,
has connected support, and satisfies the following inequalities:

2αi −
∑
a:i→j

αj −
∑
a:l→i

αl ≤ 0 ∀i ∈ IQ,

where the sums are taken over all arrows going into i and coming out of i.
The symmetrized Euler-Ringel form (·, ·) defines a generalized Cartan matrix (see

[20] for details). Therefore, we can associate to Q a Kac-Moody Lie algebra and
consider a subset of the dimension vectors as roots of this algebra. The fundamental
region consists of integer points of −C∨, where C∨ is the dual of the fundamental
chamber of the Weyl group associated with the Kac-Moody algebra.

3.2. The very good property for quiver representations. The contents of
this section largely follow Crawley-Boevey in [4] and [5]. Let Q be a finite loop-free

quiver, and fix α ∈ ZIQ≥0.

Let Ind(Q, β(1), . . . , β(l)) be the G(α)-stable constructible set consisting of all
quiver representations that can be written as the sum of indecomposable represen-
tations of dimension types β(1), . . . , β(l), where α =

∑
i β

(i). Since Rep(Q,α) is the

union of all the Ind(Q, β(1), . . . , β(l)), the following lemma holds.

Lemma 3.2.1. We have dimG(α) Rep(Q,α) = max {dimG(α) Ind(Q, β(1), .., β(l))},
where the maximum is taken over all decompositions into indecomposables of di-
mensions β(1), . . . , β(l).
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Note that by the Kac Theorem ([18] and [19]) the dimension vectors β(1) . . . β(l)

are actually positive roots of the Kac-Moody algebra corresponding to Q. We can
now prove the following result (compare with Lemma 4.3 in [5]):

Theorem 3.2.2. Let one of the following hold:

(1) The maximum in Lemma 3.2.1 is achieved for l = 1.
(2) The maximum in Lemma 3.2.1 is achieved for l ≥ 2, and for the corre-

sponding collection β(1), ..., β(l) we have p(α) >
∑
i p(β

(i)).

Then the stack G(α)\Rep(Q,α) is very good.

Proof. The case when l = 1 is discussed below. Assume the second case holds.
We have dimG(α)Rep(Q,α) = dimG(α)Ind(Q, β(1), . . . , β(l)), for some β(1), . . . , β(l)

with l ≥ 2. By Lemma 4.3 in [5], we have

dimG(α)Ind(Q, β(1), . . . , β(l)) =
∑
i

p(β(i)).

Now, dim Rep(Q,α) = dim G(α) + p(α) and Corollary 2.2.3 imply that the very
good condition on Rep(Q,α) holds if dimG(α)Rep(Q,α) < p(α). This, however,

is clearly true since dimG(α)Rep(Q,α) =
∑
i p(β

(i)), for the decomposition α =∑
i β

(i). �

Note that a key argument in Lemma 4.3 from [5] is the Kac Theorem, which
computes the number of parameters dimG(α) Ind(Q,α) = p(α). If l = 1 in Theorem
3.2.2, then the fact that G(α)\Rep(Q,α) is very good follows from Lemma 4 in
Section 6 in [4]. Thus, we obtain:

Theorem 3.2.3. Suppose α is in the fundamental region and p(α) >
∑
i p(β

(i))

for any decomposition α =
∑
i β

(i) into the sum of two or more dimension vectors,
then the quotient stack G(α)\Rep(Q,α) is very good.

Note that in the statement of the theorem it suffices for β(i) to be roots of the
Kac-Moody algebra associated with Q.

3.3. Squids and Star-shaped Quivers. Let D = (x1, . . . , xk) be a collection of
points of P1, and let w = (w1, . . . , wk) be a collection of positive integers. Consider
the following quiver QD,w:
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[1, 1]

[k, 2]

[2, 2]
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[k,wk − 1]

[2, w2 − 1]

[1, w1 − 1]

ck2

c21 c22

c12
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Recall that R(QD,w) denotes the path algebra corresponding to the above quiver.
A squid (see e.g. [7]) is the following algebra:

SD,w = R(QD,w)/{(λi0b0 + λi1b1)ci1},
where xi = (λi0 : λi1).

• The part of QD,w consisting of the vertices {0,∞} and the arrows {b0, b1}
is called the Kronecker quiver.
• The quiver QstD,w with vertex set IQD,w−{∞} and arrow set AQD,w−{b0, b1}

is called a star-shaped quiver.

Note that we can identify representations of a star-shaped quiver with representa-
tions of the corresponding QD,w that have α∞ = 0. A representation of the Kro-
necker quiver is called preinjective if λ0b0 + λ1b1 is surjective for all (λ0 : λ1) ∈ P1.
A representation of QD,w is called Kronecker-preinjective, if the corresponding Kro-
necker quiver representation is preinjective.

3.4. The cotangent bundle for squids. The cotangent bundle T ∗Rep(QD,w, α)
to the space of representations Rep(QD,w, α) may be identified with the space of

representations of the quiver QD,w pictured below.

∞ 0
b0

b̂0

b1

b̂1

[1, 1]

c11 ĉ11

[1, 2]
c12

ĉ12

[1, 3] [] [1, w1 − 1]

[2, 1]

c21

ĉ21

[2, 2]
c22

ĉ22

[2, 3] [] [2, w2 − 1]

[k, 1]

ĉk1ck1

[k, 2]

ĉk2

ck2
[k, 3] [] [k,wk − 1]

Recall from Section 3.3 that a squid representation is a representation of QD,w
such that (λi0b0 + λi1b1)ci1 = 0. Further recall that KS(D,w, α) is the space of
Kronecker-preinjective squid representations, such that the arrows cij are injective
(see Section 3.3 for details).

Squid representations form a closed subvariety of representations ofQD,w. There-

fore, it follows T ∗KS(D,w, α) may be identified with the quotient of Rep(QD,w, α)
such that:

• The maps b̂0 ∈ Hom(Cα∞ ,Cα0) are taken modulo the relations λ0ic1iAi =
0, where Ai : Cα∞ → Cαij are linear maps.

• The maps b̂1 ∈ Hom(Cα∞ ,Cα0) are taken modulo the relations λ1ic1iAi =
0.
• The maps ĉ1i ∈ Hom(Cα0 ,Cαi1) modulo the relations Ai(λ0ib0+λ1ib1) = 0.
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Recall from Section 3.1 that the group

G(α) = GL(α∞,C)×GL(α0,C)×
∏

GL(αij ,C)/C∗

acts on Rep(QD,w, α) by change of basis. This action induces a canonical Hamilton-

ian action of G(α) on T ∗Rep(QD,w, α). Identifying Rep(QD,w, α) with its tangent
space at a point, the standard symplectic form on T ∗Rep(QD,w, α) may be written
as:

ω(X,X ′) =
∑
l=0,1

tr(blb̂
′
l)− tr(b′lb̂l) +

∑
1≤i≤k

1≤j≤wi−1

tr(cij ĉ
′
ij)− tr(c′ij ĉij),

where X = (b0, b1, cij , b̂0, b̂1, ĉij) and X ′ = (b′0, b
′
1, c
′
ij , b̂
′
0, b̂
′
1, ĉ
′
ij) are cotangent vec-

tors. Recall that

Mat(α) = Mat(α∞,C)×Mat(α0,C)×
∏
ij

Mat(αij ,C).

Using the trace pairing, we can identify Lie(G(α))∗ with

Mat(α)0 = {(Ai) ∈ Mat(α)|
∑
i

tr(Ai) = 0}.

Note that KS(D,w, α) is invariant under the G(α) action, and the symplectic form
defined above descends to the cotangent bundle T ∗KS(D,w, α). Therefore, we can
write the corresponding moment map as:

µG(α)(X)∞ = b0b̂0 + b1b̂1

µG(α)(X)0 =
∑

1≤i≤k

ci1ĉi1 − (b̂0b0 + b̂1b1)

µG(α)(X)ij = cij+1ĉij+1 − ĉijcij where 1 ≤ i ≤ k and 1 ≤ j ≤ wi − 1 ,

at the vertices ∞, 0, and [i, j], respectively.

3.5. The very good property for star-shaped quivers. We can simplify the
statement of Theorem 3.2.3 if the quiver we are considering is a star-shaped quiver
QstD,w, described above in Section 3.3. The indexing set for the vertices of QstD,w is

IQstD,w = {0} ∪ {(i, j)|1 ≤ i ≤ k, 1 ≤ j ≤ wi−1}. This means a dimension vector of

a representation of QstD,w has the form α = (α0, αij).

Recall that δ(α) = −2α0 +
∑
j αij . In the case of a star-shaped quiver, the

condition that a dimension vector α is in the fundamental region is equivalent to
the following inequalities:

δ(α) ≥ 0

−2αij + αij−1 + αij+1 ≥ 0, for 1 ≤ i ≤ k and 1 ≤ j ≤ wi−1

(note that we assume αi0 = α0, for all i). We wish to prove:

Theorem 3.5.1. Suppose δ(α) > 0 and α is in the fundamental region, then the
quotient stack G(α)\Rep(QstD,w, α) is very good.

Recall from Section 3.1 that we can symmetrize the Euler-Ringel form, in order
to define a bilinear symmetric form on dimension vectors of quiver representations.
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For the quiver QstD,w this form can be written as:

(α, β) = 2α0β0 −
k∑
i=1

β0αi1 +

k∑
i=1

wi−1∑
j=1

2βijαij − βijαij−1 − βijαij+1,

where αiwi = 0, αi0 = α0 and where βiwi = 0, βi0 = β0. The associated Tits
quadratic can be expressed as:

q(α) = α2
0 −

∑
1≤i≤k

α0αi1 +
1

2

∑
1≤i≤k

α2
i1 +

∑
1≤i≤k

∑
1≤j≤wi−1

1

2
(αij − αij+1)2,

where αiwi = 0 and αi0 = α0. Recall that p(α) = 1−q(α). Note that the Tits form
can be defined on real vectors instead of integer vectors. We distinguish the real
version from the integer version by writing q(x), instead of q(α), where x = (x0, xij)
is indexed by IQstD,w .

To prove the theorem, it suffices to show that δ(α) > 0 and α in the fundamental
region imply that p(α) >

∑
i p(β

(i)) for any decomposition α =
∑
i β

(i) into the
sum of nonzero dimension vectors. However, before proving the inequality on p(α),
we need several facts about the signature of q(x). Note that the signature will
consist of a triple (n+, n−, n0), corresponding to the positive index of inertia, the
negative index of inertia, and the nullity, respectively. It is easy to see that:

Proposition 3.5.2. Assume q(x) has rank n. On the (n−1)-dimensional subspace
defined by x0 = 0, we have that q(x) is positive definite.

Corollary 3.5.3. Assume q(x) has rank n. The signature of q(x) can be (n, 0, 0),
(n− 1, 0, 1), or (n− 1, 1, 0).

The ordering on the elements of α, such that αij−1−αij ≥ αij −αij+1, together
with δ(α) > 0, imply that α is in the fundamental region.

Proposition 3.5.4. Suppose δ(α) > 0 and α is in the fundamental region, then
p(α) >

∑
i p(β

(i)), for any decomposition α =
∑
i β

(i) into the sum of two or more

vectors in ZIQst≥0 .

Proof. Note that the necessary inequality may be rewritten as∑
i

q(β(i))− q(α) > l − 1.

We proceed by induction on l. Consider the base case when l = 2. In this case, we
prove that the inequality holds for α = β + γ. We can directly compute

(α, β) = β0(2α0 −
k∑
i=1

αi1) +

k∑
i=1

wi−1∑
j=1

βij(2αij − αij−1 − αij+1) ≤ 0.

Similarly, we obtain (α, γ) ≤ 0. By Corollary 3.5.3, signature of q(x) can be (n, 0, 0),
(n − 1, 0, 1), or (n − 1, 1, 0). Since q(α) < 0 it is (n − 1, 1, 0). Restrict q(x) to the
subspace spanned by α and β. On this space the signature of q(x) is (1, 1, 0). By
the Gram-Schmidt process there is an orthogonal basis for this space containing α.
That means we can write

β = a1α+ δ1

γ = a2α+ δ2,
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where ai are nonnegative with a1 + a2 = 1, δ1 + δ2 = 0, (α, δi) = 0 and q(δi) ≥ 0
(q(δi) = 0 only if δi = 0), for all i. It follows that

q(β) + q(γ)− q(α) = −(β, γ) = −a1a2(α, α)− (δ1, δ2) ≥ 1,

since the last sum is positive and −(β, γ) is an integer. Therefore, we have (β, β) >
(α, β) ≥ (α, α) hence q(β)− q(α) > 0. Similarly, we also have q(γ)− q(α) > 0.

We proceed by considering cases. Let us first suppose that q(β) 6= 0 and q(γ) 6= 0.
We can assume without loss of generality that (α, β) ≤ (α, γ). We will suppose
(β, γ) = −1 and arrive at a contradiction. From the previous decomposition in the
orthogonal basis, we obtain that a1 ≥ a2. Therefore,

(γ, γ) = a2
2(α, α)− (δ1, δ1) ≥ a1a2(α, α) + (δ1, δ1) = −1,

and it follows that q(γ) ≥ − 1
2 . Since q(γ) is an integer we have q(γ) > 0. Together

with q(β)− q(α) > 0 this gives us q(β) + q(γ)− q(α) > 1, which is what we need.
Now suppose q(β) = 0. We have that

(β, γ) = (β, α) = β0(2α0 −
∑
i

αi1) +
∑
ij

βij(2αij − αij−1 − αij+1).

Since δ(α) > 0, we have that 2α0 −
∑
i αi1 ≤ −1. Thus, for β0 ≥ 2 and α in

the fundamental region we have −(β, γ) > 1, contradicting our assumption that
(β, γ) = −1. If β0 = 0, then we have

q(β) =
1

2

∑
1≤i≤k

β2
i1 +

∑
1≤i≤k

∑
1≤j≤wi−1

1

2
(βij − βij+1)2 > 0,

for nontrivial β. This contradicts the original assumption that q(β) = 0. If β0 = 1,
then we can show

q(β) = 1−
∑

1≤i≤k

βi1+
1

2

∑
1≤i≤k

β2
i1+

∑
1≤i≤k

∑
1≤j≤vi−1

1

2
(βij−βij+1)2+

1

2

∑
1≤i≤k

β2
ivi > 0,

where vi is the maximal entry with βivi 6= 0. Indeed, the inequality is valid since
1
2β

2
i1 + 1

2β
2
ivi
− βi1 ≥ 0. Again this contradicts the assumption that q(β) = 0. This

covers all of the possibilities for β. A similar argument works if q(γ) = 0. Hence,
in all cases q(β) + q(γ)− q(α) > 1.

By induction we may assume that:

q(β(1)) + · · ·+ q(β(l))− q(α)

= q(β(1)) + · · ·+ q(β(i) + β(j))− (β(i), β(j)) + · · ·+ q(β(l))− q(α)

> l − 2− (β(i), β(j)),

for any choice i 6= j. Therefore, it suffices to prove that there exist differing
1 ≤ i, j ≤ l such that (β(i), β(j)) < 0. Consider the the subspaces spanned by
α, β(i). As in the l = 2 case, each such space has an orthogonal basis consisting
of α and a vector on which q(x) is positive. It follows that for each i we have
β(i) = aiα + δi, with nonnegative ai such that a1 + · · ·+ al = 1, δ1 + · · ·+ δl = 0,
(α, δi) = 0, and q(δi) ≥ 0. Note that q(δi) = 0 only when δi = 0. Now fix β(i0). If
δi0 = 0, then 1 > ai0 > 0. There is a j0 6= i0 such that

(β(i0), β(j0)) = ai0aj0(α, α) < 0.
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Otherwise, we have:
∑
i(δi, δi0) = 0, so for some β(j0) it is true that (δi0 , δj0) < 0,

because (δi0 , δi0) > 0. It follows that

(β(i0), β(j0)) = ai0aj0(α, α) + (δi0 , δj0) < 0.

So, Proposition 3.5.4 is proven. �

Proof of Theorem 3.5.1. The theorem follows from Theorem 3.2.3 and Proposition
3.5.4. �

4. Moduli of Parabolic Bundles

4.1. Parabolic Bundles. In this section we will that the moduli stack of parabolic
bundles over P1 is almost very good under some restrictions on the parabolic struc-
ture. Our proof resembles Crawley-Boevey’s arguments in [4] and [5]. However,
Kac’s theorem is inapplicable, and we replace it with an algebro-geometric result
that works in the case of nontrivial parabolic bundles.

Let X be a smooth complex projective curve, D = x1 + · · · + xk, and w =
(w1, . . . , wk) be a collection of positive integers. It is possible to generalize the no-
tions such as “subbundle” or “morphism” from vector bundles to parabolic bundles
on X with fixed weight type (D,w) (e.g. [26]). We denote the subsheaf of mor-
phisms of parabolic bundles between F and E by H omPar(F,E) ⊂ H om(F,E)
and the subsheaf of endomorphisms by E ndPar(E) ⊂ E nd(E).

Note that H omPar(F,E) and E ndPar(E) are both vector bundles. Therefore, we
can compute the Euler characteristic of H omPar(F,E) by applying the Riemann-
Roch theorem. Specifically, let E have dimension vector α and let F have dimension
vector β. We obtain:

χ(H omPar(F,E)) = β0 · deg(E)− α0 · deg(F )− gα0β0 + 〈β, α〉,
where 〈β, α〉 is as in Section 3.1. Note that in the case when g = 0 and F = E, we
obtain that χ(E ndPar(E)) = q(α).

4.2. The moduli stack of parabolic bundles over P1. Definitions and general
properties of algebraic stacks are given in Laumon and Moret-Bailly’s book [25].
We will view a stack as a sheaf of groupoids in the fppf-topology and an algebraic
stack as a stack with a smooth presentation by a scheme. We will use 〈 〉 to denote
a category in which the objects are enclosed by the brackets and the morphisms
are all isomorphisms.

As before, let X be the smooth complex projective curve. Fix the weight type
(D,w) as in Section 4.1. Let I = {0} ∪ {(i, j)|1 ≤ i ≤ k, 1 ≤ j ≤ wi − 1}, let d ∈ Z
, and fix α ∈ ZI≥0, such that α0 ≥ αi1 ≥ · · · ≥ αiwi , for all i.

The stack of parabolic bundles of weight type (D,w), degree d, dimension type α,

over X is a functor that associates to a test scheme T the groupoid BundD,w,α(T ) =〈
(E,Ei,j)1≤i≤k

〉
, where

• E is a vector bundle on T ×X,
• E|T×{xi} ⊃ Ei,1 ⊃ · · · ⊃ Ei,wi−1 ⊃ Ei,wi = 0 is a filtration by vector

bundles,
• rk(E) = α0 and rk(Ei,j) = αij ,
• deg E|{y}×P1 = d for all y ∈ T .

In the case when X = P1, we see that BundD,w,α admits the following presentation
as an algebraic stack: U =

∐
N∈Z≥0

〈(E, si, tj)〉, where
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• E is a parabolic bundle on X,
• deg(E) = d and E has dimension vector α,
• H0(E∗ ⊗O(N)) is generated by global sections,
• si is a basis for H0(E∗ ⊗O(N))∗,
• tj is a basis for H0(E∗ ⊗O(N − 1))∗.
• rij is a basis for Eij

For X = P1, we will give a more detailed description of U in Section 5. Let
B := BunD,w,α(X) =

∐
d∈Z BundD,w,α be the moduli stack of parabolic bundles

of weight type (D,w) and with dimension vector α. We can use the presentation
above to turn this stack into an algebraic stack.

Note that BunD,w,α(X) is smooth, and by Lemma 2.2.1 we can compute its
dimension as: dim BunD,w,α(X) = (g − 1)α2

0 + α2
0 − q(α) = gα2

0 − q(α).
From now on, let X = P1. This means g = 0, and therefore dim BunD,w,α(X) =

−q(α). Before proceeding with the proof of Theorem 1.3.1, we introduce serveral
other stacks, which we will refer to in the proof. The descriptions of these as
algebraic stacks may be easily obtained from the description of BunD,w,α(X). Let
PB := PBunD,w,α(X) be the stack of pairs (E, f), where E is in BunD,w,α(X) and f
is its endomorphism.

Let IB := IBunD,w,α(X) be the inertia stack corresponding to BunD,w,α(X). Note
that PBunD,w,α(X) contains the inertia stack associated to BunD,w,α(X) as an open
substack. That is, it contains the stack IBunD,w,α(X), consisting of pairs (E, f),
where E is in BunD,w,α(X) and f is its automorphism.

Similarly, it contains the reduced closed substack N (D,w, α), consisting of pairs
(E, f), where E is in BunD,w,α(X) and f is its nilpotent endomorphism.

4.3. Proof of Theorems 1.3.1 and 1.3.2. Let us define

q̃(α) = min
∑

q(γi),

where the minimum is taken over all positive, finite decompositions α =
∑
i γi. We

can summarize the properties of q̃(α) in the following obvious proposition:

Proposition 4.3.1. Let α and β be dimension vectors. For q̃(α), we have:
a) q̃(α) ≤ q(α)
b) q̃(α+ β) ≤ q̃(α) + q̃(β)
c) q̃(α) = q(α), if α is in the fundamental region.

Consider the two-element complex

C• : E ndPar(W)→H omPar(V,W),

induced by the inclusion of parabolic bundles i : V ↪→W. This complex arises when
we consider first-order deformations of pairs (W, i), for a fixed V. It follows that we
can study the deformations of the pairs (W, i) by studying the hypercohomology
groups of C•.

Lemma 4.3.2. We have that H2(C•) = 0.

Proof. Consider the chain complexes

A• : 0→ E ndPar(W)

B• : 0→H omPar(V,W),
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which are nontrivial only in degree 1. Since i induces the obvious chain map, we
have an exact triangle A• → B• → C•, which gives rise to the long exact sequence
for hypercohomology

· · · → H2(P1, A•)→ H2(P1, B•)→ H2(P1, C•)→ H3(P1, A•)→ · · · .
Since A• and B• are only nontrivial in degree 1, we have both that H2(P1, A•) =
H1(P1,E ndPar(W)) and H2(P1, B•) = H1(H omPar(V,W)). We also obtain that
H3(P1, A•) = 0. Hence, it follows that we have the exact sequence

H1(P1,E ndPar(W))→ H1(H omPar(V,W))→ H2(P1, C•)→ 0.

Therefore, it follows H2(P1, C•) is the cokernel of i∗ : H1(P1,E ndPar(W)) →
H1(H omPar(V,W)). Applying Serre Duality, we obtain that H2(P1, C•) is iso-
morphic to the dual of the kernel of

H0(H omPar(W,V)⊗ Ω1)→ H0(E ndPar(W)⊗ Ω1).

However, this map comes from the inclusion of H omPar(W,V) ↪→ E ndPar(W),
which is induced by i. Therefore, the map is injective, so the kernel is trivial. Thus,
H2(P1, C•) = 0. �

Let V be a parabolic bundle over P1 and let PV = PV(D,w, α) be the algebraic
stack consisting of pairs {W, i : V ↪→ W}, where i is an inclusion of parabolic
bundles and W is a parabolic bundle of weight type (D,w) and dimension vector
α.

Lemma 4.3.3. Either PV(D,w, α) is empty or we have

dimPV(D,w, α) = χ(H omPar(V,W))− χ(E ndPar(W)).

Proof. Assume that PV is nonempty. The dimension of PV is equal to the di-
mension of the corresponding tangent complex. We compute its dimension by
considering the deformations of (W, i) ∈ PV. These deformations are governed by
the hypercohomology of the complex C•, defined above. It follows that

dim PV = dim H1(P1, C•)− dim H0(P1, C•),

since H2(C•) = 0 by Lemma 4.3.2.
Let χ(D•) denote the Euler characteristic of the hypercohomology of a complex

of sheaves D• and let A•, B• be as in Lemma 4.3.2. Since χ(D•) additive on exact
triangles, we have that

χ(C•) = χ(B•)− χ(A•).

Moreover, because χ(B•) = −χ(H omPar(V,W)) and χ(A•) = −χ(E ndPar(W)),
we can simplify this to

χ(C•) = χ(E ndPar(W))− χ(H omPar(V,W)).

By Lemma 4.3.2, dim PV = −χ(C•). Thus,

dim PV = χ(H omPar(V,W))− χ(E ndPar(W)).

�

Let F,G be parabolic bundles over P1, and let g be an endomorphism of G. Let
D• be the following chain complex:

H omPar(G,F)→H omPar(G,F),

where the connecting map is induced by g.
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Lemma 4.3.4. We can compute the following: dimH1(P1, D•)−dimH0(P1, D•) =
dimH1(H omPar(ker g,F)).

Proof. Since D• consists of two copies of H omPar(G,F) we can see (by the argu-
ment from Lemma 4.3.2) that the Euler characteristic for hypercohomology is 0.
That is, we have:

dimH1(P1, D•)− dimH0(P1, D•) = dimH2(P1, D•).

By Serre duality, H2(P1, D•) is isomorphic to H0 for the complex

H omPar(F,G⊗ Ω1
P1)→H omPar(F,G⊗ Ω1

P1),

where the connecting map is induced by g⊗ Id. However, by definition, this is just:

H0(H omPar(F, (ker g)⊗ Ω1
P1)) ∼= H0(H omPar(F,ker g)⊗ Ω1

P1).

Applying Serre duality, we get:

dimH1(P1, D•)−dimH0(P1, D•) = dimH2(P1, D•) = dimH1(H omPar(ker g,F)).

�

We need the following key argument:

Theorem 4.3.5. We have the inequality dimN (D,w, α) ≤ −q̃(α).

Proof. Let (E, f) be a point of N (D,w, α). Let F = ker f and G = E/F. We
wish to prove this theorem by induction on the rank of the vector bundle E (note
that this is α0 in our notation). To that end, it suffices to prove that for all β we
have:

dim Nβ(D,w, α) ≤ −q̃(α),

where Nβ(D,w, α) is a substack consisting of objects (E, f) of N (D,w, α) such that
the corresponding F belongs to BunD,w,β(X). In order to accomplish this, consider
the morphism

φ : Nβ(D,w, α)→ N (D,w, α− β),

which is defined by sending (E, f) to (G, f |G) ∈ N (D,w, α−β), with corresponding
restrictions on the arrows. In this case, after applying the induction hypothesis, we
get

dim Nβ(D,w, α) ≤ dim Nβ(D,w, α)x − q̃(α− β),

for some x = (G, g) ∈ N (D,w, α− β). Now, we wish to compute the dimension of
the fiber X = Nβ(D,w, α)x. Let F1 = ker g and let X ′ = PF1(D,w, β). In this
case, we have two morphisms ψ1 : X → BunD,w,β(X) and ψ2 : X ′ → BunD,w,β(X),
where ψ1 sends the pair (E, f) to ker f and likewise ψ2 sends (F, i) to F.

The deformations of elements of the fiber XF are governed by the hypercoho-
mology of the complex

H omPar(G,F)
g−→H omPar(G,F),

defined in Lemma 4.3.4. Therefore, by Lemma 4.3.4, we get that:

dim XF = dim H1(H omPar(F1,F)).

Furthermore, since f induces an injective morphism ker f2/ker f → ker f ,
then the fiber X ′F is nonempty. Therefore,

dim X ′F = dim H0(H omPar(F1,F)).
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Thus, dim XF = dim X ′F − χ(H omPar(F1,F)). We have dim X = dim X ′ −
χ(H omPar(F1,F)). So, we obtain

dim Nβ(D,w, α) ≤ dim X ′ − q̃(α− β)− χ(H omPar(F1,F)).

It follows from Lemma 4.3.3 that dimX ′ = χ(H omPar(F1,F)) − χ(E ndPar(F)),
which means

dim Nβ(D,w, α) ≤ −χ(E ndPar(F))− q̃(α− β).

Since χ(E ndPar(F)) = q(β) and q̃(α) ≤ q̃(α − β) + q̃(β) (by Proposition 4.3.1 b)),
we can reduce this to

dim Nβ(D,w, α) ≤ −q(β) + q̃(β)− q̃(α).

The result follows from Proposition 4.3.1 a). �

Corollary 4.3.6. For α lying in the fundamental region, we have dimN (D,w, α) ≤
−q(α). If, in addition, δ(α) > 0, then dim(N (D,w, α)−Nα(D,w, α)) < −q(α).

Proof. The first statement clearly follows from Theorem 4.3.5 and Proposition 4.3.1
c). Now, let α be in the fundamental region and δ(α) > 0. By the proof of Theorem
4.3.5,

dim Nβ(D,w, α) ≤ −q(β)− q̃(α− β),

for all nonnegative β ≤ α. If α 6= β, then by Proposition 3.5.4, dim Nβ(D,w, α) <
−q(α). �

Let c : PB → Aα0 be the morphism defined by sending the pair (E, f) to the
coefficients of the characteristic polynomial char(f) of f . We will need the following
lemma:

Lemma 4.3.7. There exists a decomposition into nonnegative dimension vectors
α =

∑r
i=1 β

(i) such that dimPB = r +
∑r
i=1 dimN (D,w, β(i)).

Proof. Fix a point of x ∈ Aα0 . This defines some characteristic polynomial x(t) =
(t−λ1)m1(t−λ2)m2 · · · (t−λr)mr . Consider (PB)x, the fiber of c over x. The points
of (PB)x may be identified with pairs (E, f), such that f is an endomorphism of
the parabolic bundle E with char(f) = x(t). Therefore, E decomposes as

E =
⊕
i

ker(f − λi)mi ,

and the fiber (PB)x is isomorphic to
∏
i Pi. Here Pi is the substack of pairs (Ei, fi),

where Ei is a parabolic bundle and fi is its endomorphism such that char(fi) =
(t− λi)mi . Since fi − λi is nilpotent, we can compute

dimPi = dim N (D,w, β(i)),

for some dimension vector β(i) ≤ α. Note that α = β1 + · · · + βr. Since c maps
(PB)x to the subvariety consisting of polynomials with r distinct roots, we can
compute:

dimPB = r +

r∑
i=1

dimN (D,w, β(i)),

for some decomposition α =
∑r
i=1 β

(i) into nonnegative dimension vectors. �
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Proof of Theorem 1.2.1. Suppose r = 1 in Lemma 4.3.7. That is, the decomposi-
tion of α contains only one summand. Since Nα(D,w, α) may be interpreted as
pairs (E, f), where E is a parabolic bundle and f is the zero endomorphism, we
have by the proof of Lemma 4.3.7:

dim(IB −
1∐
i=0

Ii) ≤ dim(N (D,w, α)−Nα(D,w, α)).

Therefore, by Corollary 4.3.6 and Corollary 2.2.4, BunD,w,α(X) is almost very good.
Now, suppose r ≥ 2 in Lemma 4.3.7. In this case, by Proposition 3.5.4, Lemma

4.3.7, and Corollary 4.3.6, we have that:

dim IB = dimPB ≤
r∑
i=1

p(β(i)) < p(α).

Therefore, dim IB − 1 < dim BunD,w,α(X). It follows from Corollary 2.2.4 that
BunD,w,α(X) is almost very good. �

Proof of Theorem 1.3.2. This is an obvious consequence of Theorem 1.3.1. �

5. Quivers and Parabolic Bundles

5.1. Moduli functor: parabolic bundles and squids. In this and the next
section, we will use 〈 〉 to denote the isomorphism class of the collection of enclosed
objects. All the schemes we consider from now on will be schemes of finite type.
Let

p : T ×K P1 → T π : T ×K P1 → P1

be the two natural projections. Let (D,w) be a parabolic bundle weight type (see
Section 1.3). Let P(D,w) be the category of vector bundles E over T ×K P1 such
that E∗|{x}×P1 is generated by global sections for all x ∈ T , together with filtrations

E|T×{xi} = Ei,0 ⊃ Ei,1 ⊃ · · · ⊃ Ei,wi = 0,

for 1 ≤ i ≤ k. The morphisms of P(D,w) are vector bundle morphisms such that
map filtrations to each other. We can think of P(D,w) as the category of families
over T of parabolic bundles of weight type (D,w) over P1, such that the dual to
the underlying bundle is generated by global sections.

Let V and W be vector bundle over T , and let Ψ0,Ψ1 be morphisms of vector
bundles from V to W such that on every fiber over x ∈ T all linear combinations
λ0Ψ0(x) +λ1Ψ1(x) for (λ0 : λ1) ∈ P1 are surjective. Let Vij be vector bundles over
T , for 1 ≤ i ≤ k and 1 ≤ j ≤ wi − 1. Let Cij : Vij → Vij−1 be injective morphisms
of vector bundles such that (λi0Ψ0(x) + λi1Ψ1(x))Ci1(x) = 0 in the fiber over each
x ∈ T , where xi = (λi0 : λi1) and Vi0 = V.

Let S (D,w) be a category where objects are collections (V,W,Vij ,Ψ0,Ψ1, Cij).

Morphisms between (V,W,Vij ,Ψ0,Ψ1, Cij) and (V ′ ,W ′ ,V ′ij ,Ψ
′

0,Ψ
′

1, C
′

ij) consist of
collections (f, g, hij) of vector bundle morphisms

f : V → V ′

g :W →W ′

hij : Vij → V
′

ij .

such that:

g ◦Ψ0 = Ψ
′

0 ◦ f
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g ◦Ψ1 = Ψ
′

1 ◦ f
hij−1 ◦ Cij = C

′

ij ◦ hij for 1 ≤ i ≤ k and 2 ≤ j ≤ wi − 1

f ◦ Ci1 = C
′

i1 ◦ hi1 for 1 ≤ i ≤ k.

Note that the objects of S (D,w) are families of Kronecker-preinjective squid rep-
resentations but not necessarily in coordinate spaces. By an argument analogous
to Lemma 5.5 in [7] we obtain:

Theorem 5.1.1. The categories P(D,w) and S (D,w) are equivalent.

Let us define a functor F̃ (T ), from the category of schemes over K to the category

of sets as F̃ (T ) =
〈
(E,Ei,j , s, t, rij)

〉
, where

• E is a vector bundle on T × P1,
• p∗(E∗(N)) and p∗(E

∗(N − 1)) are trivial vector bundles,

• s : O(N+1)α0+α∞
T ' p∗(E∗(N)),

• t : ONα0+α∞
T ' p∗(E∗(N − 1)),

• E|T×{xi} ⊃ Ei,1 ⊃ · · · ⊃ Ei,wi−1 ⊃ Ei,wi = 0 are filtrations by trivial

vector subbundles of fixed ranks rk Ei,j = αij ,
• rij : OαijT ' Ei,j .

Here, E∗(N) = E∗ ⊗ π(O(N)). We have the following:

Theorem 5.1.2. Let αN = (Nα0 + α∞, (N + 1)α0 + α∞, αij). The functor F̃ is
representable by the scheme KS(D,w, αN ).

Proof. Fix a test scheme T and let xi = (λi0 : λi1). By Theorem 5.1.1, F̃ (T )
defines a family of elements of KS(D,w, α) over T . Therefore, we have a morphism
T → KS(D,w, α). Conversely, given a morphism T → KS(D,w, α), by Theorem

5.1.1 we have an element of F̃ (T ).
We can now define a pair of natural transformations:

ηT : F̃ (T )→ Hom(T,KS(α))

ρT : Hom(T,KS(α))→ F̃ (T ),

between the functor F̃ and the functor of points KS(D,w, α) corresponding to

KS(D,w, α). It follows from construction that ηT and ρT are mutually inverse.

Therefore, the functors are isomorphic, and KS(D,w, α) represents F̃ . �

6. Application to the Deligne-Simpson Problem

In this section, we wish to relate the almost very good property for the moduli
of parabolic bundles to the space of solutions to the Deligne-Simpson problem.

6.1. Logarithmic Connections and Squid Representations. Let X = P1,
let D = x1 + · · · + xk, and w = (w1, . . . , wk) be a collection of positive integers.
Recall from Section 5.1 that KS(D,w, α) parametrizes parabolic bundles over P1

together with some rigidity conditions. Let µ−1
G(α)(θ

N ) be the fiber of the moment

map described in Section 3.4 over

θN = (N + 1 +
∑

1≤i≤k

ζi1,−N −
∑

1≤i≤k

ζi1, ζi1 − ζi2, . . . , ζiwi−1) ∈ Mat(αN )0.
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Note this is well-defined for ζ coming from a parabolic connection with vector

bundle of degree −α∞, since tr(θN ) = α∞ −
∑k
i=1

∑wi
j=1 ζij(αij−1 − αij) = 0 by

Remark 6.1.3.
Let us define a functor Lζ(T ), from the category of schemes over C to the category

of sets as Lζ(T ) =
〈
(E,Ei,j , s, t, rij ,∇)

〉
, where

• E is a vector bundle on T × P1,
• p∗(E∗(N)) and p∗(E

∗(N − 1)) are trivial vector bundles,

• s : O(N+1)α0+α∞
T ' p∗(E∗(N)),

• t : ONα0+α∞
T ' p∗(E∗(N − 1)),

• E|T×{xi} ⊃ Ei,1 ⊃ · · · ⊃ Ei,wi−1 ⊃ Ei,wi = 0 are filtrations by trivial

vector subbundles of fixed ranks rk Ei,j = αij ,
• rij : OαijT ' Ei,j ,
• ∇ : E → E ⊗ π∗Ω1

P1(log D) is a C-linear morphism of sheaves,
• ∇(fs) = s⊗ df + f∇(s) for s a section of E and f a section of π∗(OP1) ⊂
OT×P1 ,
• (Resxi∇− ζij · Id)(Ei,j−1) ⊂ Ei,j , where Ei,0 = E|T×{xi}, and Resxi∇ :=
∇|T×{xi}.

Here, E∗(N) = E∗⊗π∗(O(N)), and π and p are defined at the beginning of Section
5.1.

Theorem 6.1.1. The functor Lζ is represented by µ−1
G(α)(θ

N ).

Proof. Let Lζ(T ) = (E,Ei,j , s, t, rij ,∇). We know that by Theorem 5.1.2 the func-

tor F̃ is representable by the variety KS(D,w, α). Let F̃ (T ) = (E,Ei,j , s, t, rij).

Note that the natural pairing with the vector field d
dz on P1 defines the C-linear

morphism
∇∗d

dz
: E∗ → E∗(D),

satisfying the Leibniz rule, where E∗(D) = E∗ ⊗ π∗O(D) (we regard D as the
divisor x1 + · · · + xk). Further note that this morphism uniquely determines ∇.
We have that ∇ d

dz
induces the morphism E∗(N)→ E∗(N)(D). In fact, it induces

a morphism B : E∗(N)→ E∗(N − 1)(D). From B we obtain a C-linear morphism

B̃ : p∗(E
∗(N))→ p∗(E

∗(N − 1)(D)).

Similarly, from ∇z ddz : E → E(D), we obtain

B̃′ : p∗(E
∗(N))→ p∗(E

∗(N)(D)).

Let Ψ0,Ψ1 : p∗(E
∗(N))∗ → p∗(E

∗(N − 1))∗ be the morphisms induced by the two
inclusions E∗(N − 1) ↪→ E∗(N) (corresponding to multiplication by the two global
sections 1 and −z of π∗(O(1))). Analogous to Section 5 in [7], ker(λ0iΨ0 +λ1iΨ1) '
E|T×{xi}. Therefore, Resxi∇ defines the maps

C̃i1 := (Resxi∇− ζi1 · Id) : ker(λ0iΨ0 + λ1iΨ1)→ Ei,1

Ĉij := (Resxi∇− ζij · Id)|Ei,j−1 : Ei,j−1 → Ei,j for 1 ≤ i ≤ k and 2 ≤ j ≤ wi − 1.

We can extend C̃i1 to p∗(E
∗(N))∗. Note that any two such extensions differ by a

morphism that sends ker(λ0iΨ0+λ1iΨ1) to 0. Therefore, it has the form Ai(λ0iΨ0+

λ1iΨ1) for some Ai : p∗(E
∗(N − 1))∗ → Ei,1. Fix such an extension Ĉi1 for
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each 1 ≤ i ≤ k. We can now define two morphisms of vector bundles: B̂0, B̂1 :
p∗(E

∗(N − 1))∗ → p∗(E
∗(N))∗ in the following way:

B̂∗0 = N · Id− B̃′ −
∑

1≤i≤k

xi
z − xi

(Ĉ∗i1C
∗
i1 + ζi1 · Id)

B̂∗1 = −B̃ −
∑

1≤i≤k

1

z − xi
(Ĉ∗i1C

∗
i1 + ζi1 · Id),

where Cij : Ei,j → Ei,j+1 are as defined in Theorem 5.1.1, and z is the standard

coordinate on P1. Note that B̂0, B̂1 are well-defined by the construction of Ĉij .

We can see that B̂1 (respectively B̂0) depends on the choice of extension in the

construction of Ĉi1. However, any two such choices differ by Ai(λ0iΨ0 +λ1iΨ1), so

any two B̂1 (respectively B̂0) obtained in this way differ by∑
1≤i≤k

Ci1Ai(λ0iΨ0 + λ1iΨ1).

By the Leibniz rule we have [B̃,Ψ∗0] = 0 and [B̃,Ψ∗1] = −Id. Also, note B̃′ = −Ψ∗1B̃
and C∗i1(xiΨ

∗
0 + Ψ∗1) = 0. Therefore, we have:

(Ψ0B̂0 + Ψ1B̂1)∗ = (N · Id− B̃′)Ψ∗0 − B̃Ψ∗1 −
∑

1≤i≤k

(
1

z − xi
Ĉ∗i1C

∗
i1)(xiΨ

∗
0 + Ψ∗1)

−
∑

1≤i≤k

xi
z − xi

ζi1 · Id +
∑

1≤i≤k

z

z − xi
ζi1 · Id

= (N + 1 +
∑

1≤i≤k

ζi1 · Id),

and∑
1≤i≤k

Ĉ∗i1C
∗
i1 − (B̂0Ψ0 + B̂1Ψ1)∗ =

∑
1≤i≤k

Ĉ∗i1C
∗
i1 −

∑
1≤i≤k

(Ĉ∗i1C
∗
i1 + ζi1 · Id)

−Ψ∗0(N · Id− B̃′) + Ψ∗1B̃ = (−N −
∑

1≤i≤k

ζi1) · Id.

Furthermore, we have:

Cij+1Ĉij+1 − ĈijCij = (ζij − ζij+1) · Id, where 1 ≤ i ≤ k and 1 ≤ j ≤ wi − 1.

Since B̂0, B̂1, Ĉij vary algebraically with the points of T , then the family Lζ(T )

defines a morphism f : T → µ−1
G(α)(θ

N ) by construction.

Conversely, given a morphism f : T → µ−1
G(α)(θ

N ), we get the corresponding

morphism T → KS(D,w, α). Therefore, from the proof of Theorem 5.1.1 (see

Section 5.1) we get a collection F̃ (T ) = (E,Ei,j , s, t, rij). Moreover, f defines
the family (V,W,Vij ,Ψ0,Ψ1, Cij) of elements of KS(D,w, α), as well as families

of morphisms B̂0, B̂1 : W → V and Ĉij : Vij → Vij+1. Note that we have that

V ' p∗(E∗(N))∗ andW ' p∗(E∗(N −1))∗. From the construction of B̂1 above, we
obtain:

B̃ : p∗(E
∗(N))→ p∗(E

∗(N − 1)(D)) ↪→ p∗(E
∗(N)(D)).

Since E∗(N) is generated by global sections, we can use the Leibniz rule to extend

B̃ to a C-linear morphism of vector bundles B : E∗(N) → E∗(N − 1)(D) that
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satisfies

B(fs) = s⊗ df

dz
+ f∇(s),

for s a section of E∗(N) and f a section of π∗(OP1). We can further obtain a
C-linear morphism ∇ d

dz
: E → E(D) that satisfies the Leibniz rule. This is the

same as defining the C-linear morphism

∇ : E → E ⊗ π∗Ω1
P1(log D),

which satisfies the Leibniz rule.
Note that we have Ĉi1|ker(λ0iΨ0+λ1iΨ1) = ∇|T×{xi} − ζi1 · Id. By Theorem 5.1.1

we have Vij = Ei,j . Therefore, Cij+1Ĉij+1 − ĈijCij = (ζij − ζij+1) · Id implies

that (Resxi∇− ζij · Id)(Ei,j−1) ⊂ Ei,j . Thus f : T → µ−1
G(α)(θ

N ) defines the family

Lζ(T ) = (E,Ei,j , s, t, rij ,∇).
The above constructions define a pair of natural transformations:

ηT : Lζ(T )→ Hom(T, µ−1
G(α)(θ

N ))

ρT : Hom(T, µ−1
G(α)(θ

N ))→ Lζ(T ),

between the functor Lζ and the functor of points µ−1
G(α)(θ

N ) corresponding to

µ−1
G(α)(θ

N ). It follows by construction and Theorem 5.1.1 that ηT and ρT are mutual

inverse. Therefore, the functors are isomorphic, and µ−1
G(α)(θ

N ) represents Lζ . �

Remark 6.1.2. We can follow the proof of Theorem 6.1.1 in order to obtain that
µ−1
G(α)(0) is a moduli space parameterizing parabolic Higgs bundles over P1 together

with rigidity. This is natural, as parabolic Higgs bundles constitute the cotangent
stack to the moduli stack of parabolic bundles, and ζ-parabolic connections consti-
tute the twisted cotangent stack to the moduli stack of parabolic bundles.

Assuming the conventions from Section 4.2, we have the following: the stack of
ζ-parabolic connections on parabolic bundles of weight type (D,w) and of dimen-
sion type α over X is a functor that associates to a test scheme T the groupoid
ConnD,w,α,ζ(T ) =

〈
(E,Ei,j ,∇)1≤i≤k

〉
, where

• E is a vector bundle on T ×X,
• E|T×{xi} ⊃ Ei,1 ⊃ · · · ⊃ Ei,wi−1 ⊃ Ei,wi = 0 is a filtration by vector

bundles,
• rk(E) = α0 and rk(Ei,j) = αij ,
• ∇ : E → E ⊗ π∗Ω1

P1(log D) is a C-linear morphism of sheaves,
• ∇(fs) = s⊗ df + f∇(s) for s a section of E and f a section of π∗(OP1) ⊂
OT×P1 ,
• (Resxi∇− ζij · Id)(Ei,j−1) ⊂ Ei,j , where Ei,0 = E|T×{xi}, and Resxi∇ :=
∇|T×{xi}.

Remark 6.1.3. Note that if a ζ-parabolic connection ∇ exists on a parabolic
bundle E of weight type (D,w) and dimension vector α over X, then

k∑
i=1

tr(Resxi∇) =

k∑
i=1

wi∑
j=1

ζij(αij−1 − αij) = −deg E.

Therefore, fixing ζ automatically fixes d = deg E.
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Set d = −α∞, αN = (α∞ + N,α∞ + α0 + N,αij), and θN as in Theorem

6.1.1. By Theorem 6.1.1, we have that U =
∐
N∈Z≥0

µ−1
G(α)(θ

N ) is a presentation

for the algebraic stack ConnD,w,α,ζ(X). In fact, there exists an N ∈ Z≥0 such that

µ−1
G(α)(θ

N ) is a presentation for ConnD,w,α,ζ(X). Indeed, if a ζ-parabolic connection

exists on parabolic bundle E, then the width (the difference between the maximal
and minimal line bundle degrees in the Grothedieck Theorem decomposition of E)
of E is bounded (this follows, for example, from Theorem 7.1 in [7] and Lemma 1
in [8]). Therefore, for a fixed ζ, there is a single N such that E∗(N) is generated
by global sections. This implies the statement we need.

Proof of Theorem 1.4.1. Let α∞ = −d =
∑k
i=1

∑wi
j=1 ζij(αij−1 − αij). Note that

the stack BundD,w,α(X) admits the presentation U =
∐
N∈Z≥0

KS(D,w, αN ), where

αN = (α∞+N,α∞+α0+N,αij). Since KS(D,w, αN ) is irreducible for each N and

the fibers are products of general linear groups, then BundD,w,α(X) is irreducible.

It follows that the irreducible components of BunD,w,α(X) are the BundD,w,α(X).

Let θN be as in Theorem 6.1.1. Fix N ≥ 0 such that µ−1
G(α)(θ

N ) is a presenta-

tion for ConnD,w,α,ζ(X). If BunD,w,α(X) is almost very good, then BundD,w,α(X)
is almost very good for each d. Consequently, we have that the quotient stack
G(αN )\KS(D,w, αN ) is very good.

By Corollary 2.3.3, we have that µ−1
G(α)(θ

N ) is nonempty, irreducible, complete

intersection of dimension

dim 2(G(α) + p(α))− dimG(α) = 2p(α) + dimG(α).

It follows that ConnD,w,α,ζ(X) is a nonempty, irreducible, locally complete inter-
section of dimension 2p(α)− 1. �

Proof of Corollary 1.4.2. This instantly follows from Theorems 1.3.1 and 1.4.1. �

Remark 6.1.4. Let C1, . . . , Ck be semisimple conjugacy classes of endomorphisms
of Ex1

, . . . , Exk , respectively. We may interpret ConnD,w,α,ζ(X) as the moduli
stack of solutions to the Deligne-Simpson problem.

Indeed, a solution of the Deligne-Simpson problem is a connection ∇ on a vector
bundle E over P1, with regular singularities in D such that Resxi∇ ∈ Ci for all xi ∈
D. This determines a dimension vector α = (α0, αij), where α0 = rk E and αij =
rk (Resxi∇−ζij ·Id) is the dimension of the direct sum of the first wi−j eigenspaces
of Ci ordered from least to greatest, and a vector of eigenvalues ζ (accounting for
multiplicity). Therefore, ∇ is a ζ-parabolic connection on a parabolic bundle with
underlying vector bundle E, weight type (D,w), and dimension type α.

Conversely, any parabolic ζ-connection in ConnD,w,α,ζ(X) has residues lying in
the conjugacy classes Ci with eigenvalues in ζ (accounting for multiplicity), and
eigenspaces ordered from least to greatest of dimensions αij .

Remark 6.1.5. Note that the above remark is a special case of Theorem 2.1 in
[7]. In general, this theorem implies that a regular singular connection ∇ on P1 is
a ζ-parabolic connection if and only if its residues lie in the closures of conjugacy
classes defined by ζ.
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Therefore, if we relax the conditions in the statement of the Deligne-Simpson
problem to allow solutions to lie in conjugacy class closures (rather than the con-
jugacy classes themselves), we may interpret ConnD,w,α,ζ(X) as the moduli stack
of solutions.

6.2. The very good property and the additive Deligne-Simpson prob-
lem. Recall from the Introduction that the additive Deligne-Simpson problem asks
whether there exist matrices A1, . . . , Ak in prescribed conjugacy classes C1, . . . , Ck
such that A1 + · · ·+Ak = 0.

Let C1, . . . , Ck be conjugacy classes of matrices in n(C). We denote by

ADS(C1, . . . , Ck) := {(A1, . . . , Ak) ∈ C1 × · · · × Ck|A1 + · · ·+Ak = 0}
the algebraic subvariety of solutions of the additive Deligne-Simpson problem in
C1 × · · · × Ck .

Recall from section 3.3 that Rep(QstD,w, α) is the space of star-shaped quiver

representations. Let RI(QstD,w, α) ⊂ Rep(QstD,w, α) consist of representations for

which the maps associated to cij are injective. The group G(α) acts on both
RI(QstD,w, α) in the usual way.

Lemma 6.2.1. The quotient stack G(α)\RI(QstD,w, α) is very good if and only if

PGL(α0,C)\Fl(α) is very good.

Proof. Note that there is an action of the subgroup H(α) =
∏
αi,j

GL(αi,j) ⊂ G(α)

on RI(QstD,w, α) induced by the action of G(α). Furthermore, the space Fl(α)

is obtained as a quotient of RI(QstD,w, α) by this action. Clearly PGL(α0,C) =

G(α)/H(α). The lemma statement follows. �

We are now ready to prove that the very good property for the quotient stack
PGL(α0,C)\Fl(α) implies that ADS(C1, · · · , Ck) is nonempty, irreducible, and a
complete intersection of dimension 2 dimFl(α)−α2

0+1, as long as tr(A1+· · ·+Ak) =
0 for Ai ∈ Ci.

Proof of Theorem 1.4.3. By Lemma 6.2.1, G(α)\RI(QstD,w, α) is very good. There-

fore, by Corollary 2.3.3, we have that µ−1
G(α)(θ

N ) is a nonempty, irreducible, com-

plete intersection of dimension 2 dimRI(QstD,w, α)− dimG(α).

From the proof of Lemma 6.2.1 we have that Fl(α) is the locally trivial quo-
tient of RI(QstD,w, α) by the group H(α). Moreover, by Theorem 6.1.1 we see that

the locally trivial quotient µ−1
G(α)(θ

N )/H(α) is isomorphic to ADS(C1, . . . , Ck). It

follows that ADS(C1, . . . , Ck) is a nonempty, irreducible, complete intersection of
dimension

2 dimRI(QstD,w, α)− dimG(α)−H(α) = 2p(α) + α2
0 − 1 = 2 dimFl(α)− α2

0 + 1.

�

Remark 6.2.2. Note that the dimension formula dimADS(C1, . . . , Ck) = 2p(α)+
α2

0 − 1 is similar to the formula given in Theorem 1.2 of [5].

If δ(α) > 0 and we assume that the eigenvalues of C1, . . . , Ck are ordered as in
Section 6.1, then we obtain that α is in the fundamental region.

Proof of Corollary 1.4.4. This follows from Theorem 1.3.2 and Theorem 1.4.3. �
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6.3. The very good property and the multiplicative Deligne-Simpson
problem. The multiplicative Deligne-Simpson asks whether there exist matrices
A1, . . . , Ak in prescribed conjugacy classes C1, . . . , Ck such that A1 · · ·Ak = Id.

Let C1, . . . , Ck be conjugacy classes of matrices in GL(n,C). We denote by

MDS(C1, . . . , Ck) := {(A1, . . . , Ak) ∈ C1 × · · · × Ck|A1 ·A2 · · ·Ak = Id}
the algebraic subvariety of solutions of the multiplicative Deligne-Simpson problem
in C1 × · · · × Ck .

Instead of using the moduli space of ζ-parabolic connections defined in Section
6.1, we will introduce a different moduli space, representing the following functor:

Let E be as in Section 6.1, and let y ∈ P1. Let us define a functor L̃ζ(T ), from

the category of schemes over C to the category of sets as L̃ζ(T ) =
〈
(E,Ei,j , r,∇)

〉
,

where

• E is a vector bundle on T × P1,
• E|T×{y} is a trivial vector bundles,
• r : E|T×{y} ' Oα0

T ,

• E|T×{xi} ⊃ Ei,1 ⊃ · · · ⊃ Ei,wi−1 ⊃ Ei,wi = 0 are filtrations by vector

subbundles of fixed ranks rk Ei,j = αij ,
• ∇ : E → E ⊗ π∗Ω1

P1(log D) is a C-linear morphism of sheaves,
• ∇(fs) = s⊗ df + f∇(s) for s a section of E and f a section of π∗(OP1) ⊂
OT×P1 ,
• (Resxi∇− ζij · Id)(Ei,j−1) ⊂ Ei,j , where Ei,0 = E|T×{xi}, and Resxi∇ :=
∇|T×{xi}.

Similar to Theorem 6.13 in [30] and Section 4 in [29], it follows that the functor

L̃ζ is representable by a quasiprojective scheme. We will denote this scheme by
RDR(D,w, y, α, ζ).

We need one more concept, in order for the Riemann-Hilbert correspondence to
establish a well-defined analytic isomorphism between RDR(D,w, y, α, ζ) and the
space MDS(C1, . . . , Ck). A transversal to Z in C is a subset T ⊂ C such that
t 7→ exp(−2π

√
−1t) bijectively maps T to C∗ (see e.g. [7]). We will henceforth

denote T = (T1, . . . , Tk) is a collection of transversals.
Assume that C1, . . . , Ck are semisimple. Let τ = (τij) be the vector of eigenvalues

(counting multiplicity) for the conjugacy classes C1, . . . , Ck. Fix a collection of
transversals T , and let ζ be defined by τij = exp(−2π

√
−1ζij) such that ζij ∈ Ti.

The multiplicities of the eigenvalues τ define a dimension vector α as in Remark
6.1.4. Fix some D = (x1, . . . , xk) and y ∈ P1 such that y /∈ D.

Theorem 6.3.1. The Riemann-Hilbert correspondence establishes an isomorphism
of analytic spaces between RDR(D,w, y, α, ζ) and MDS(C1, . . . , Ck).

Proof. Let (E, r,∇) ∈ RDR(D,w, y, α, ζ) be a triple consisting of a parabolic bundle
E, a ζ-parabolic connection on E, and a trivialization r of the fiber Ey. We have
the following map:

RH : RDR(D,w, y, α, ζ)→MDS(C1, . . . , Ck)

(E, r,∇) 7→ (ρy(a1), . . . , ρy(ak)),

where ρy : π1(P1 −D, y)→ Ey ' Cα0 is the monodromy representation defined by
the pair (E,∇) under the Riemann-Hilbert correspondence, and a1, . . . , ak are the
loops at base point y around the punctures xi. This map is well-defined.
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Indeed, π1(P1 − D, y) is the group freely generated by the loops ai, satisfying
the relation a1 · · · ak = 1. Therefore, for the corresponding monodromy operators
satisfy ρy(a1) · · · ρy(ak) = Id. Furthermore, it is a well-known fact (see e.g. Lemma

6.2 in [7]) that ρy(ai) is conjugate to exp(−2π
√
−1Resxi∇) if ∇ is a ζ-parabolic

connection with ζ as defined above. Therefore, by construction, ρy(ai) ∈ Ci. Since∑
ij ζij = −deg E is an integer, then

∏
ij τij = 1. If the pair (E,∇) is defined by

complex analytic parameters, then the local system corresponding to this pair, and
the monodromy operators ρai depend analytically on these parameters. It follows
that RH is analytic.

The Riemann-Hilbert correspondence provides the map RH with a well-defined
inverse, sending the k-tuple of monodromy operators (ρy(a1), . . . , ρy(ak)) to the
corresponding triple (E, r,∇). As above, we can see that the inverse is complex
analytic. Therefore, RH is an analytic isomorphism between RDR(D,w, y, α, ζ)
and MDS(C1, . . . , Ck). �

Proof of Theorem 1.4.5. There is a smooth, representable morphism

RDR(D,w, y, α, ζ)→ ConnD,w,α,ζ(X),

defined by forgetting the rigidity condition on RDR(D,w, y, α, ζ). It is therefore
easy to see that RDR(D,w, y, α, ζ) is an irreducible, complete intersection of dimen-
sion 2p(α) + α2

0 − 1. By Theorem 6.3.1 there is an analytic isomorphism between
RDR(D,w, y, α, ζ) and MDS(C1, . . . , Ck). It follows that MDS(C1, . . . , Ck) is a
complete intersection of dimension 2p(α) + α2

0 − 1. Since the smooth locus of
RDR(D,w, y, α, ζ) is irreducible, it is connected. Therefore, the smooth locus of
MDS(C1, . . . , Ck) is also connected. Thus, MDS(C1, . . . , Ck) is irreducible. �

As before, if we assume an appropriate ordering on the eigenvalues of C1, . . . , Ck,
then α is automatically in the fundamental region.

Proof of Corollary 1.4.6. This follows immediately from Theorems 1.3.1 and 1.4.5.
�
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