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1 Introduction
Let p be a prime number. Let q := pr , with r a positive integer, and consider the finite field
Fq. Let A := Fq[θ ], K := Fq(θ). We write A+ for the set of monic polynomials in A.
For a ∈ A, we define |a| := qdeg a and extend this absolute value to K. The completion

of K with respect to this absolute value, denoted by K∞, is given by K∞ = K((θ−1)). Let
C∞ be the completion of a fixed algebraic closure of K∞. The field C∞ is complete and
algebraically closed. The rigid analytic spaceC∞ \K∞ is the function field analogue of the
complex upper half-plane, and we shall refer to it as the the Drinfeld upper half-plane.
LetMk,m denote the set of Drinfeld-Gossmodular forms of weight k, typem, forGL2(A)

over C∞ (see [3] or [2] §5). The typem is a residue class modulo q − 1, and typicallym is
chosen to be the canonical representative 0 ≤ m < q − 1. However, for this paper it will
be convenient to occasionally choose 2 ≤ m ≤ q (thus types 0 and 1 become viewed as
types q−1 and q, respectively). We shall clarify which convention is being used whenever
needed.
Next, we set

u(z) := 1
π̃

∑
a∈A

1
z + a

,

where π̃ is a fixed choice of a fundamental period of the Carlitz module. Note that
u = u(z) is the usual uniformizer at the ‘infinite’ cusp of the Drinfeld upper half-plane.
If f is an element of Mk,m, and z ∈ C∞ is an element for which |z|i := infa∈K∞ |z − a|
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is sufficiently large (|z|i is a function field analogue of the ‘imaginary distance’), then
we have

f (z) =
∞∑
n=0

anu(z)n, an ∈ C∞, (1)

and this expansion determines f uniquely. This expansion is called the u-expansion of f
at ‘infinity’. Such expansions, as well as the foundations of the theory of modular form in
the Drinfeld module setting, were introduced by Goss in the seventies (see [4] and [3] for
instance). If f ∈ Mk,m and a0 = 0, then f is called cuspidal, and if both a0 = 0 and a1 = 0
we call f double-cuspidal. We shall denote the subspace of cuspidal forms inside Mk,m
by Sk,m, and the space of double-cuspidal forms byM2

k,m.
Let ua := u(az). The function ua, for a ∈ A+, can be expanded into a u-series with

coefficients in A (see [2] (7.3)). Following standard notation we set

g := 1 − (θq − θ)
∑
a∈A+

uq−1
a ∈ Mq−1,0, h :=

∑
a∈A+

aqua ∈ Sq+1,1.

The forms g and h generate the algebra of modular forms of all weights and types.
Let p be a prime ideal of A. By a slight abuse of notation, we will also denote by p the

(unique) monic irreducible generator of the ideal p. Let f ∈ Mk,m and let Tp,k denote the
pth Hecke operator of weight k ([3] §1.8). The action of Tp,k on a u-expansion is given by
(see [2] (7.3)):

Tp,k

( ∞∑
n=0

anun
)

= pk
∞∑
n=0

anunp +
∞∑
n=0

anGn,p(pu), (2)

where Gn,p(X) is the n-th Goss polynomial of the finite lattice formed by the p-torsion
of the Carlitz module (see ([2] (3.4)) for the definition of Goss polynomials of a lattice).
As the form f determines the weight k, we will usually write Tp instead of Tp,k . As in the
classical case, bothMk,m and Sk,m are stable under the Hecke action. However, in contrast
with the classical case, Goss ([4] §3) observed that the space M2

k,m of double-cuspidal
forms is also preserved by all Tp.
A Drinfeld-Goss modular form f ∈ Mk,m is called an eigenform if it is an eigenvector

for all
{
Tp : pmonic irreducible

}
, i.e., Tpf = λpf for all p, with eigenvalues λp ∈ C∞.

The eigensystem of an eigenform f is the collection of eigenvalues
{
λp

}
. For example, g

is an eigenform with eigensystem
{
λp = pq−1} and h is an eigenform with eigensystem{

λp = p
}
([2] §7).

In the case of classical modular forms, it is well known that the eigenvalues completely
determine the coefficients at square-free indices of a normalized Hecke cusp form
f (z) = ∑∞

n=1 an(f )e2nπ iz in a rather simple way; namely the eigenvalue at a prime
p appears as the pth Fourier coefficient ap(f ) of that eigenform. Furthermore, if
n = ∏l

i=1 pi is a product of distinct prime, then an(f ) = ∏l
i=1 api(f ). These phenomena

don’t exactly carry over in the present setting, and there are in fact infinitely many
examples of Drinfeld-Goss eigenforms of different weights which all have the same eigen-
system, notably of the form

{
λp = pn

}
, which we shall designate as power eigensystems.

Nonetheless, our main result below gives (under the assumption that q is prime) a
precise description of an infinite family of coefficients which are determined by certain
eigenvalues in a way that is independent of the weight (cf. Theorem 2.3). This extends the
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level 1 case of an analogous result of Armana [1] for forms of types 0 and 1 on �0(n) for
n ∈ A, although the proof and the nature of the resulting formulas are rather different.
We shall recall the results of Armana and state our own in Section 2. In Section 3,

we study the combinatorial properties of certain natural successive difference operators
on spaces of functions over Fq whose properties play an important role in deriving our
results. In Section 4, we obtain a useful result on the vanishing of certain binomial coef-
ficients appearing in the Hecke action formula for degree 1. We then combine all those
ingredients in Section 5 to prove Theorem 2.3.
It is the authors’ pleasure to express their gratitude to David Goss for his constant sup-

port and encouragement, and to David Goss, Rudy Perkins, and the anonymous referee
for many useful comments on earlier versions of this manuscript. They are also grateful
to Gebhard Böckle, Cécile Armana and Ambrus Pal for several useful discussions.

2 Coefficients of Eigenforms
For the remainder of the paper, we shall always assume that q is a prime. We start by
recalling a theorem of Armana which provides an expression for certain coefficients of
doubly cuspidal Hecke eigenforms of type 0 or 1.

Theorem 2.1. ([1] Theorem 1.2) Assume q is prime, and let S be the set of natural
integers of the form c/(q − 1), where c is a positive integer whose sum of base q digits is
(q − 1). If f = ∑

bi(f )u1+i(q−1) is a type 1 double-cuspidal Hecke eigenform on �0(n)

for some n ∈ A, then for every n ∈ S there exists an element sn in the Hecke algebra on
M2

k,1(n) such that

bn(f ) = b1(snf ). (3)

Furthermore, an analogue of (3) is also true for a type 0 double-cuspidal eigenform
f = ∑

bi(f )ui(q−1) at coefficients bn for which n ∈ S0 := {n ∈ S : q � n}.

Furthermore, an explicit version of that theorem is provided in ([1] Theorem 7.2) where
formulas for the Hecke algebra elements sn are presented in terms of sums involving
operators Tp as p varies over monic irreducible primes of degree at least the length of the
base q expansion of c.

Remark 2.2. While the restriction on S0 isn’t present in [1], we have verified with
Armana that it is indeed needed in the type 0 case. However, that omission has only minor
and easily deducible consequences on the remainder of that paper. For example, the bound
on the weight in ([1] Theorem 7.7(1)) should be changed to k < q(q2 − 1).

In the following theorem, we present a result in the same vein of Theorem 2.1 which
applies to eigenforms in M2

k,m for any type m and any weight k. Furthermore, we obtain
that the coefficients in question are in fact all polynomial multiples of the initial one.
We also note that our statements and proofs rely only on Hecke operators at degree
1 primes.

Theorem 2.3. Let f = ∑
i≥2 aiui be a type m (with 2 ≤ m ≤ q) double-cuspidal form

satisfying Tθ f = θNf , where N is a positive integer of the formN = 1+ qN1+· · ·+ qNl , with
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1 ≤ l ≤ q − 1. Then for each length l multiset (i.e., elements may repeat) of non-negative
integers ν = {ν1, . . . , νl}, there exist polynomials A(ν; θ) ∈ Fq[θ ] such that

a1+qν1+···+qνl = A(ν; θ)a1+l. (4)

These polynomials depend only on N and ν, and they satisfy A(ν; θ + c) = A(ν; θ) for all
c ∈ Fq, and hence A(ν; θ) ∈ Fq[θq − θ ].

Remark 2.4. It is well known that for f = ∑
aiui ∈ Mk,m, we have ai = 0 unless

i ≡ m (mod q − 1). Since 1 + qν1 + · · · + qνl ≡ l + 1 (mod q − 1), a necessary condition
for not all A(ν; θ) to vanish is to have l + 1 = m and at least one multiset {ν1, . . . , νl}
for which a1+qν1+···+qνl �= 0. In particular, if a1+l �= 0, then the theorem asserts that
certain coefficients of the normalized form f /al+1 are given as polynomials depending on
the eigenvalues, which can be viewed a function field analogue to how the p-th coefficient
of a normalized eigenform is itself the eigenvalue of the p-th Hecke operator in the classical
case. Note that the choice 2 ≤ m ≤ q conveniently allows us to apply the condition l + 1 =
m uniformly to all types.

Example 2.5. When q = 3, the form f = h2g2 belongs to the one-dimensional space
of weight 12 and type 0 (equivalently, type 2) double-cuspidal forms, and hence is an
eigenform of all Hecke operators. A computation using [6] and (2) yields that Tθ f = θ4f .
(It should be noted however that this f doesn’t have an A-expansion in the sense of Petrov
[5]). The conditions of Theorem 2.3 are satisfied with l = 1 and N1 = 1. As a2(f ) = 1, our
result implies that for all i ≥ 0

a1+3i(f ) = A({i}; θ)

and by computing the first few coefficients of f we see that A({0}; θ) = 1, a4 = A({1}; θ) =
θ3 − θ , and a10 = A({2}; θ) = 0. In fact, applying formula (21) from the Section 5 below to
this example yields that a1+3i+1 is a multiple of a1+3i , and it thus follows that A({i}; θ) = 0
for all i ≥ 2. Furthermore, Theorem 2.3 also implies that a1+3i(F) = a1+3i(f ) for any
type 0 double-cuspidal normalized form F satisfying Tθ (F) = θ4F, regardless of its weight.
Indeed, this can be verified directly for F := h2g6 + (θ3 − θ)h4g2 ∈ M2

20,0.

Another way to state our theorem is that if the power N of the eigensystem is such that
N − 1 has exactly l ≤ q − 1 entries in its base q expansion (counting multiplicities), then
all the coefficients whose indices have the same property as N are polynomial multiples
of a1+l. The use of multisets to handle the entries of the base q expansion is thus natural
as repetitions are commonplace. For example, the multiset corresponding to the base 5
expansion of N − 1 = 7 is {0, 0, 1}, and thus the l corresponding to N = 8 is 3. We
hope that the (rather standard) usage of the same symbol for sets and multisets will not
cause confusion, and we will strive to make the distinction clear whenever needed. (For
instance, the symbol ν will always be associated with multisets.)

3 Combinatorial properties of successive difference operators
Define a sequence of difference operators acting on Fq(z) (where z is any indeterminate)
inductively as follows:D0(f ; z) := f (z),D1(f ; z) := f (z + 1) − f (z), and

DM+1(f ; z) := DM(f ; z + 1) − DM(f ; z) = D1(DM(f ; z); z)
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(We shall often drop the variable of the function when it is clear from the context). Note
that DM is linear in f, so to study its effect on polynomials or power series in z it suffices
to study its action on powers of z. Given a multiset ν = {ν1, . . . , νl} write

qν := qν1 + · · · + qνl .

We also declare q∅ := 0.
If I is any subset (in the usual sense) of I(l) := {1, 2, . . . , l}, then we let ν(I) denote the

multiset

ν(I) := {νi : i ∈ I}. (5)

Note that ν(I(l)) = ν, whereas ν(∅) = ∅. Using this notation, it is straightforward to
obtain the following formulas

D1(zq
ν
) = ∑

I1�I(l) zq
ν(I1) ,

D2(zq
ν
) = ∑

I1�I(l)
∑

I2�I1 z
qν(I2) ,

D3(zq
ν
) = ∑

I1�I(l)
∑

I2�I1
∑

I3�I2 z
qν(I3) ,

(6)

and a clear pattern emerges. We shall now introduce some notation and combinatorial
results that will give more explicit formulas for the quantity Dn(zq

ν
). Given sets (again in

the usual sense) A and B and an integer n ≥ 1, consider the set C(A;B; n) of chains of n
strict set-inclusions between B and A; namely

C(A;B; n) := {(I1, I2, . . . , In−1) : B � In−1 � · · · � I1 � A}.
Note that C(A;B; n) = ∅ unless B � A and their set difference satisfies |A \ B| ≥ n. (If

B � A and |A \ B| = 1 we have C(A;B; 1) = {∅}, corresponding to the only possible strict
set inclusion, namely B � A). As in (6) we have

Dn(zq
ν
) = ∑

In�I(l)

∑
c∈C(I(l);In;n)

zqν(In)

=
l∑

e=n

∑
B�I(l),|I(l)\B|=e

|C(I(l);B; n)|zqν(B) .
(7)

Example 3.1.

D2
(
zq{ν1,ν2,ν3,ν4}) =

4∑
e=2

∑
B�I(4),|I(4)\B|=e

|C(I(4);B; 2)|zqν(B)

= 2
(
zqν1+qν2 + zqν1+qν3 + zqν1+qν4 + zqν2+qν3 + zqν2+qν4 + zqν3+qν4 )

+ 6
(
zqν1 + zqν2 + zqν3 + zqν4 ) + 14.

Lemma 3.2. Consider the sequence of functions fn(x) defined by f1(x) = 1 and for n ≥ 2

fn(x) =
n−1∑
i=0

(−1)i
(
n
i

)
(n − i)x, (8)

then

1. For integers e the values fn(e) satisfy the recursion

hn+1(e) =
e−1∑
i=n

(
e
i

)
hn(i), (9)

with h1(e) = 1 for all e. Furthermore, (for n ≥ 2) fn(e) = 0 for 1 ≤ e ≤ n − 1.
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2. If B � A with |A \ B| = e, then

|C(A;B; n)| = fn(e). (10)

3. For n ≥ 1, fn(n) = n!.

Proof. 1. The proof shall proceed by induction. Note that a solution to (9) with an
initial condition is unique. By definition f1(e) = 1 = h1(e), giving the induction
base. For the induction step, assume hn(e) = fn(e) for all e and that hn(e) = 0 for
1 ≤ e ≤ n − 1 (this is satisfied trivially for n = 1). The recurrence implies that
hn+1(1) = · · · = hn+1(n) = 0. Also, the vanishing of those initial values enables us
to start the sum in (9) with i = 1. Using the induction hypothesis and binomial
theorem we compute

hn+1(e) =
e−1∑
i=1

(e
i
) n−1∑
j=0

(−1)j
(n
j
)
(n − j)i

=
n−1∑
j=0

(−1)j
(n
j
) e−1∑
i=1

(e
i
)
(n − j)i

=
n−1∑
j=0

(−1)j
(n
j
) (

(n + 1 − j)e − (n − j)e − 1
)

= (n + 1) +
n−1∑
j=1

(−1)j(n + 1 − j)e
((n

j
) + ( n

j − 1
))

+(−1)n
( n
n−1

) + (−1)n

=
n∑

j=0
(−1)j(n + 1 − j)e

(n+1
j

) = fn+1(e),

and the result follows.
2. We prove the formula by induction on n. When n = 1 then for all e ≥ 1,

|C(A;B; 1)| = 1 = f1(e) since C(A;B; 1) = {∅}. Assume the statement true for n,
and note that if e ≤ n then C(A;B; n + 1) = ∅ and also fn+1(e) = 0 by part (1);
which proves the formula in this case. Otherwise, if e > n then for all n ≤ i ≤ e − 1
there are

(e
i
)
choices for I1 such that B � I1 � A with |I1 \ B| = i. We also have

C(A;B; n + 1) =
⋃
I1�A

{(I1, I2, . . . , In) : (I2, . . . , In) ∈ C(I1;B; n)} .

Note that the union is clearly disjoint as the index I1 ‘colors’ all of the entries
corresponding to it. Thus the inductive hypothesis gives

|C(A;B; n + 1)| =
e−1∑
i=n

(
e
i

)
fn(i) = fn+1(e),

which proves the result.
3. By part (2), we can use any pair B � A with |A \ B| = n to compute fn(n) as

|C(A;B; n)|. The result now follows by realizing that the strict inclusion chains in
C({1, 2, . . . , n};∅; n) correspond bijectively to permutations of the elements of
{1, 2, . . . , n}.
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Example 3.3. The first few functions fn(x) are given by

f1(x) = 1,
f2(x) = 2x − 2,
f3(x) = 3x − 3 · 2x + 3,
f4(x) = 4x − 4 · 3x + 6 · 2x − 4.

Corollary 3.4. Let ν = {ν1, . . . , νl} be a multiset of length l ≤ q − 1, then

1. Dl
(
zqν ) = l!.

2. DM
(
zqν ) �= 0 for 0 ≤ M ≤ l. and DM

(
zqν ) = 0 forM ≥ l + 1.

3. The operatorsDM vanish identically forM ≥ q.

Proof. Using (7) and Lemma 3.2 (and its notation) we see that

Dn
(
zq

ν
)

=
l∑

e=n

∑
B�I(l),|I(l)\B|=e

fn(e)zq
ν(B)

. (11)

In particular, for l ≤ q − 1 we have Dl
(
zqν ) = fl(z)zν(∅) = l! �= 0 ∈ Fq. It also follows

that DM
(
zqν ) can’t be zero for any M < l as that would have forced it to be zero when

M = l, whereas we clearly get Dl+1
(
zqν ) = D1(l! ) = 0. Part (3) follows easily from the

vanishing of Dq, which can be seen by noticing that fq(x) ≡ 0 (mod q) as all the binomial
coefficients in (8) would vanish for that index.

4 Vanishing of certain binomial coefficients
In [2], Gekeler obtained from (2) an explicit formula for the action of Hecke operators at
degree one monic primes p as follows

an
(
Tpf

) = pk

( ∑
j,s≥0,jq+s(q−1)=n

(−1)s
(j+s−1

s
)
psaj

)
+

n−1∑
i=0

(n−1
i

)
pn−ian+i(q−1)

(12)

The main purpose of this section is to prove the vanishing of the first summand in
the above expression for a doubly cuspidal form f at the indices that we are studying.
Since for such f we have a0 = a1 = 0, we may restrict our attention to j ≥ 2 in that
summand. This provides the motivation for the conditions in the following proposition,
which nonetheless is ultimately a purely combinatorial statement.

Proposition 4.1. Let ν = {ν1, . . . , νl} be a multiset of nonnegative integers of length
l ≤ q − 1. If j ≥ 2 and s ≥ 0 are integers for which

jq + s(q − 1) = 1 + qν , (13)

then (
j + s − 1

s

)
≡ 0 (mod q).

In preparation for the proof, we introduce some additional notation that will help
streamline the discussion, and also make some useful remarks. First, for ν as in the state-
ment of the proposition, we define integers Vi := Vi(ν) := |{νj = i : 1 ≤ j ≤ l}| for
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0 ≤ i ≤ νl (equivalently, Vi is the ith digit of the base q expansion of qν). For convenience
we shall also assume, without loss of generality, that νi ≤ νj for i ≤ j. We thus have

1 + V0 + V1q + · · · + Vνl q
νl = 1 + qν1 + · · · + qνl ,

and
νl∑
i=0

Vi = l.

Reducing (13) modulo q and q − 1, we see that any pair (j, s) solving it must satisfy
s ≡ −1 − V0 (mod q) and j ≡ 1 + l (mod q − 1). Writing X := X(j, s) := j + s − 1, we
can solve for either s or j in jq + s(q − 1) = 1 + qν to obtain X as function solely of j or s.
This function is increasing in s and decreasing in j. Employing the above congruence for
s, it is plain to see that the smallest value for s ≥ 0 satisfying (13) is smin = q− 1−V0, and
the corresponding value of j, which is the largest value of j satisfying the same equation, is

jmax = 1
q

(
1 + V0 + V1q + · · · + Vνl qνl − (q − 1)(q − 1 − V0)

)
= (2 + V0 + V1) + (V2 − 1)q + ∑νl

i=3 Viqi−1.
(14)

It follows that the minimum value of X is

Xmin = jmax + smin − 1 = V1 + V2q + V3q2 + · · · + Vνl q
νl−1. (15)

As our focus is on j ≥ 2, we are thus only interested in the cases jmax ≥ 2, which by (14)
is satisfied if and only if Vi ≥ 1 for some i ≥ 2, or equivalently if νl ≥ 2 (remembering
that V0 + V1 ≤ ∑νl

i=0 Vi = l ≤ q − 1). We shall thus make the assumption νl ≥ 2 for the
remainder of this section. From that we get jmin = l + 1, and

smax = q− 1−V0 + (V2 + · · · +Vνl − 1)q+ (V3 + · · · +Vνl )q
2 + · · · +Vνl q

νl−1 ≥ 0.

Hence the maximum value of X is

Xmax = l − 1 − V0 + (V2 + · · · + Vνl )q + (V3 + · · · + Vνl )q
2 + · · · + Vνl q

νl−1.

A simple calculation shows that any such s (resp. X) between smin and smax (resp. Xmin
and Xmax) is of the form s = smin + αq (resp. X = Xmin + α) for some 0 ≤ α ≤ αmax, with
αmax given by

αmax := Xmax − Xmin = smax−smin
q

= (V2 + · · · + Vνl − 1) + (V3 + · · · + Vνl )q + · · · + Vνl qνl−2.
(16)

By our assumptions νl ≥ 2 and l ≤ q − 1, we see that (16) gives the base q expansion of
αmax. In addition, if 0 ≤ α ≤ αmax has base q expansion

α = α0 + α1q + · · · + ανl−2qνl−2,

and if 0 ≤ j ≤ νl − 3 is such that αi = (αmax)i for j + 1 ≤ i ≤ νl − 2 (where we use (n)i
to denote the ith digit in the base q expansion of n), then the maximality of αmax implies
αj ≤ (αmax)j.

Proof. By the above discussion, we need to show that for all 0 ≤ α ≤ αmax,
(Xmin+α
smin+qα

) ≡
0 (mod q). Recall that Lucas’ Theorem states that if 0 ≤ βi, δi ≤ q − 1 then(∑n

i=0 βiqi∑n
i=0 δiqi

)
≡

n∏
i=0

(
βi
δi

)
(mod q),
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with the customary convention
(n
j
) = 0 whenever n < j. Thus our assertion will follow if

we show that (Xmin+α)i < (smin+qα)i for at least one value of i. Note that (smin+qα)0 =
q − 1 − V0 and for 1 ≤ i ≤ νl − 1, (smin + qα)i = αi−1. If 0 ≤ α0 < q − 1 − V0 − V1 then
(Xmin + α)0 = α0 + V1 < q − 1 − V0. Also, if q − V1 ≤ α0 ≤ q − 1, then (Xmin + α)0 =
α0 + V1 − q ≤ V1 − 1 < q − 1 − V0. Thus (Xmin + α)0 < (smin + qα)0 unless

q − 1 − V0 − V1 ≤ α0 ≤ q − 1 − V1. (17)

By a similar argument, we get that

(Xmin + α)1 < (smin + qα)1 = α0 unless α0 − V2 ≤ α1 ≤ q − 1 − V2.

Assume (17) and let j be an index in the range 1 ≤ j ≤ νl − 3 for which the inequalities

αi−1 − Vi+1 ≤ αi ≤ q − 1 − Vi+1 (18)

are satisfied for 1 ≤ i ≤ j but not for i = j + 1. Under this condition we deduce that
(Xmin + α)j+1 < (smin + qα)j+1 = αj. To see this, note that (15), (17) and (18) imply
that (Xmin + α)i = (Xmin)i + αi for 0 ≤ i ≤ j (i.e. no “carries" between any of the first j
digits and the next one in the base q expansion of the sum). For i = j + 1 we either have
0 ≤ αj+1 < αj −Vj+2, from which it easily follows that (Xmin + α)j+1 = αj+1 +Vj+2 < αj,
or else q−Vj+2 ≤ αj+1 ≤ q−1, and hence (Xmin+α)j+1 = αj+1+Vj+2−q ≤ Vj+2−1 < αj.
The last inequality is equivalent to 1+αj−Vj+2 > 0, which follows from noticing that the
lower bounds in (17) and (18) give q−1−V0 −V1 −· · ·−Vi+1 ≤ αi for 0 ≤ i ≤ j ≤ νl −3
and hence

1 + αi − Vi+2 ≥ q − V0 − V1 − · · · − Vi+1 − Vi+2 ≥ q − l ≥ 1.

Thus, it only remains to show that assuming (17), we cannot have (18) for all 1 ≤ i ≤ νl−2.
Indeed, if we did then for all 0 ≤ i ≤ νl − 2

αi ≥ q−1−V0−V1−· · ·−Vi+1 = (q−1)− l+Vi+2+Vi+3+· · ·+Vνl−1+Vνl . (19)

In particular

ανl−2 ≥ (q − 1) − l + Vνl

but (αmax)νl−2 = Vνl , so we must thus have l = (q − 1) and ανl−2 = Vνl . substituting
those values in (19) then gives αi = (αmax)i for 1 ≤ i ≤ νl − 2 and α0 > (αmax)0 =
V2 + V3 + · · · + Vνl − 1, a contradiction.

5 Proof of Theorem 2.3
First, we introduce a couple more conventions and abbreviations to lighten the notation
of the formulas. Given a multiset ν = {ν1, . . . , νl} and a set I ⊂ {1, 2, . . . , l}, we write
ν̂(I) := {νj : j /∈ I} and

ν+(I) := {1 + νi : i ∈ I} ∪ ν̂(I).

(Both ν̂(I) and ν+(I) are multisets in general). Note that ν+(∅) = ν̂(∅) = ν, and that
|̂ν(I)| = l − |I| whereas |ν+(I)| = l always.
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Lemma 5.1. For f = ∑
aiui ∈ M2

k,m and ν = {ν1, . . . , νl} a multiset of nonnegative
integers of length l ≤ q − 1 we have

a1+qν (Tθ f ) =
qν∑
i=0

(qν

i
)
θ1+qν−ia1+qν+i(q−1)

= ∑
I⊂{1,...,l}

( qν

qν(I)
)
θ1+q̂ν(I)a1+qν+(I)

(20)

Proof. Applying Proposition 4.1 to (12) results in the first equality in (20), and the
second one follows by noticing that, by using Lucas’ Theorem as in the proof of
Proposition 4.1,

(qν

i
) ≡ 0 (mod q)whenever i is not of the form qν(I) for some I ⊂ I(l).

Proof. If f ∈ M2
k,m satisfies Tθ (f ) = θNf with N = 1 + qN1 + · · · + qNl then (20) gives

θq
N1+qN2+qN3+···+qNl a1+qν =

∑
I⊂{1,...,l}

(
qν

qν(I)

)
θ q̂

ν(I)
a1+qν+(I) . (21)

Note that the index of the coefficients in (4) is completely invariant under permutations
of elements of ν, so without loss of generality we shall assume throughout the proof that

0 ≤ ν1 ≤ · · · ≤ νl.

The proof will utilize induction on νl = max ν. The base case νl = 0 is immediate, and
we can take A({0, 0, . . . , 0}; θ) = 1. For the induction step, assume the theorem is true (i.e.
a1+qν = A(ν; θ)a1+l with A(ν; θ) ∈ Fq[θ ]) for all ν with νl = n, and let

C(n; ν) := |{i : 0 ≤ i ≤ l, νi = n}|.

(So being true for νl = n implies the theorem is true for all ν such that 1 ≤ C(n; ν) ≤ l.)
We proceed to show that the statement is true for all μ = {μ1, . . . ,μl} with μl = n+ 1 by
(another) induction on C(n+1;μ). If C(n+1;μ) = 1 then μ = ν+({l})where ν is defined
by νl = n and νi = μi ≤ n for all 1 ≤ i ≤ l − 1. Using Corollary 3.4 as well as Lemma 3.2
and its notation, we see that Dl−1 will annihilate θ q̂

ν(I) if and only if |I| ≥ 2. We also get

Dl−1
(
θ q̂

ν(∅)
)

= Dl−1
(
θq

ν
)

= (l − 1)!
(
θq

ν1 + · · · + θq
νl
)

+ fl−1(l),

Dl−1
(
θ q̂

ν({i})) = (l − 1)! ,

and
(qν

qνi

) = Vνi . Let E(ν) := {1 ≤ i ≤ l : νi = νl}. Obviously l ∈ E(ν) and we have (again
with the above choice of ν) |E(ν)| = Vn and μ = ν+({i}) for all i ∈ E(ν). Hence, applying
Dl−1 to (21) with that ν gives

V 2
n a1+qμ =

l∑
i=1

(
θq

Ni − θq
νi
)
a1+qν −

∑
i/∈E(ν)

Vνia1+qν+({i}) .

All of the multisets on the right hand side (namely ν and ν+({i}) for i /∈ E(ν)) have
maximal entry νl = n, and thus each of the coefficients on the right hand side is a
polynomial (in θ ) multiple of a1+l by the induction hypothesis; thus establishing the base
case for the induction on C(n + 1;μ).
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Next we consider C(n + 1;μ) = e. Write μ = ν+({l − e + 1, l − e + 2, . . . , l}) with
ν = {μ1, . . . ,μl−e, n, n, . . . , n} (0 ≤ νi = μi ≤ n for 1 ≤ i ≤ l − e). Note that ν+(I) = μ if
and only I ⊂ E(ν) and |I| = e. ApplyingDl−e to this ν and using (21) we get

Dl−e

(
θq

{N1,...,Nl} − θq
ν

)
a1+qν

= ∑
∅�=I⊂{1,...,l},|I|≤e,ν+(I) �=μ

( qν

qν(I)
)
Dl−e

(
θ q̂

ν(I)
)
a1+qν+(I)

+ ∑
I⊂E(ν),|I|=e

( qν

qν(I)
)
Dl−e

(
θ q̂

ν(I)
)
a1+qμ .

(22)

The number of subsets I ⊂ E(ν) with |I| = e is clearly
(Vn
e
)
, and for each such I we also

have
( qν

qν(I)
) ≡ (Vn

e
)
(mod q) by Lucas’ Theorem. Hence

(l − e)!
(Vn
e
)2 · a1+qμ = Dl−e

(
θq

{N1,...,Nl} − θq
ν

)
a1+qν

− ∑
∅�=I⊂{1,...,l},|I|≤e,ν+(I) �=μ

( qν

qν(I)
)
Dl−e

(
θ q̂

ν(I)
)
a1+qν+(I) .

(23)

All of the multisets ν+(I) on the right hand side either have νl = n (whenever I∩E(ν) =
∅), or else have C(n + 1; ν+(I)) ≤ e − 1 (for |I| ≤ e we have C(n + 1, ν+(I)) = e if and
only if ν+(I) = μ). Thus the expression on the right hand side is a polynomial in θ by the
inductions on C(n + 1;μ) and on n, which establishes (4) for any length l multiset ν and
with A(ν; θ) polynomial. Lastly, note that we could use any θ̃ = θ + c with c ∈ Fq as a
generator of A over Fq, and the corresponding parameter ũ at the cusp will be equal to u.
It also follows that if Tθ f = θNf then Tθ̃ f = θ̃Nf , and hence the coefficients of f must be
invariant under θ �→ θ̃ , which yields A(ν; θ) ∈ Fq[θq − θ ] and completes the proof.
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