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HOMOTOPY THEORY OF COFIBRATION CATEGORIES

KAROL SZUMI LO

Abstract
We construct a fibration category of cofibration categories

which constitutes a convenient framework for the homotopy the-
ory of cofibration categories.

Introduction

Categories of fibrant objects were introduced by K. Brown [Bro73] as a more flex-
ible alternative to Quillen’s model categories. In this paper we will consider fibration
categories, a slight variation of Brown’s notion, and their duals cofibration categories.
Our main result is the following (Theorem 2.8).

Theorem. The category of (small) cofibration categories carries a structure of a
fibration category.

In a manner similar to a model category, a cofibration category presents a homo-
topy theory and provides structure allowing for construction of homotopy colimits.
Cofibration and fibration categories never became nearly as popular as model cate-
gories, but a number of contributions has been made by, among the others, Anderson
[And78], Baues [Bau89, Bau99], Cisinski [Cis10a] and Rădulescu-Banu [RB06].
Moreover, Waldhausen [Wal85] introduced a closely related notion of a category
with cofibrations and weak equivalences (nowadays usually called a Waldhausen cat-
egory) for the purpose of developing a general framework for algebraic K-theory.
Subsequently, a close connection to abstract homotopy theory was made by Cisinski
[Cis10b].

The motivation behind cofibration and fibration categories is two-fold. Firstly, they
can be used to formalize certain homotopy theories that do not fit into the framework
of model categories. Examples include the fibration category of C∗-algebras [AG97]
and categorical models of homotopy type theory [AKL15, Theorem 3.2.5]. A few
more examples are briefly discussed in [Szu14a, Section 1.4]. Secondly, the structure
of a cofibration category is less rigid than that of a model category which makes it
possible to carry out certain constructions that might be impossible in the context
of model categories, e.g. the category of diagrams in a cofibration category over
a fixed indexing category always carries a structure of cofibration category itself
[RB06, Theorem 9.5.5 (1)].

In the present paper we take advantage of the flexibility of cofibration categories to
provide efficient tools for working with the homotopy theory of cofibration categories.
In Section 1 we introduce cofibration categories and briefly revisit the well known

2010 Mathematics Subject Classification: 55U35 (Primary), 18G55 (Secondary)
Key words and phrases: homotopy theory, cofibration category
Article available at http://dx.doi.org/10.4310/HHA.????.v??.n??.a?

Copyright c© ????, Karol Szumi lo. Permission to copy for private use granted.

http://intlpress.com/HHA/
http://intlpress.com/HHA/v??/
http://intlpress.com/HHA/v??/n??/


2 KAROL SZUMI LO

techniques of homotopical algebra that will be needed later. In Section 2 we define
fibrations of cofibration categories and prove our main theorem, i.e. that the category
of (small) cofibration categories is a fibration category.

This paper is the first in the series of three that summarize the results of the
author’s thesis [Szu14a]. (See also [Szu14b] for a slightly edited version.) The second
paper [Szu15a] introduces a new construction of a cocomplete quasicategory asso-
ciated with a cofibration category called the quasicategory of frames. The third one
[Szu15b] shows that it is possible to construct a cofibration category from a cocom-
plete quasicategory in a way that establishes an equivalence between the homotopy
theory of cofibration categories and the homotopy theory of cocomplete quasicate-
gories.
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Definitions and basic properties

Definitions of (co)fibration categories found throughout the literature vary in
details. The one stated here is almost the same as (the dual of) Brown’s original
definition [Bro73, p. 420]. Since we use [RB06] as our main source we point out
that in the terminology of this paper the definition above corresponds to “precofi-
bration categories with all objects cofibrant and the 2-out-of-6 property”. It should
be noted that the only (but essential) use of the 2-out-of-6 property in the present
paper takes place in the proof of Theorem 2.2. Comparisons to other definitions can
be found in [RB06, Chapter 2]. We do not commit much space to the discussion of
basic properties of cofibration categories, we refer the reader to [RB06] for these.

Definition 1.1. A cofibration category is a category C equipped with two subcate-
gories: the subcategory of weak equivalences (denoted by

∼→) and the subcategory of
cofibrations (denoted by �) such that the following axioms are satisfied. (Here, an
acyclic cofibration is a morphism that is both a weak equivalence and a cofibration.)

(C0) Weak equivalences satisfy the 2-out-of-6 property, i.e. if
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W X Y Z
f g h

are morphisms of C such that both gf and hg are weak equivalences, then so
are f , g and h (and thus also hgf).

(C1) Every isomorphism of C is an acyclic cofibration.

(C2) An initial object exists in C.
(C3) Every object X of C is cofibrant, i.e. if 0 is the initial object of C, then the

unique morphism 0→ X is a cofibration.

(C4) Cofibrations are stable under pushouts along arbitrary morphisms of C (in par-
ticular these pushouts exist in C). Acyclic cofibrations are stable under pushouts
along arbitrary morphisms of C.

(C5) Every morphism of C factors as a composite of a cofibration followed by a weak
equivalence.

Cofibration categories are, in a sense, more general than model categories. Namely,
ifM is a model category, then its full subcategory of cofibrant objectsMcof with weak
equivalences and cofibrations inherited fromM satisfies the above axioms. There are
examples of (co)fibration categories that do not come from model categories. Some
of those are presented in [Szu14a, Section 1.4].

Next, we introduce morphisms of cofibration categories and recall a standard
method of verifying homotopy invariance of functors between cofibration categories.

Definition 1.2. A functor F : C → D between cofibration categories is exact if it
preserves cofibrations, acyclic cofibrations, initial objects and pushouts along cofibra-
tions.

Lemma 1.3 (K. Brown’s Lemma). If a functor between cofibration categories sends
acyclic cofibrations to weak equivalences, then it preserves all weak equivalences. In
particular, exact functors preserve weak equivalences.

Proof. The proof of [Hov99, Lemma 1.1.12] works for cofibration categories. (See
also the proof of [Bro73, Lemma 4.1] where this result first appeared.)

The axioms formulated above describe finitely (homotopy) cocomplete cofibration
categories. The category of such (small) cofibration categories with exact functors as
morphisms will be denoted by CofCat.

We can use cofibration categories to describe homotopy theories with arbitrary
homotopy colimits using the following additional axioms.

(C6) Cofibrations are stable under sequential colimits, i.e. given a sequence of cofi-
brations

A0 A1 A2 . . .

its colimit A∞ exists and the induced morphism A0 → A∞ is a cofibration.
Acyclic cofibrations are stable under sequential colimits. This axiom is often
stated as “(acyclic) cofibrations are closed under transfinite composition of
length ω”.
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(C7-κ) Coproducts of κ-small families of objects exist. Cofibrations and acyclic cofibra-
tions are stable under κ-small coproducts.

Axiom (C7) is parametrized by a regular cardinal number κ. A set is κ-small if
it has fewer than κ elements and a κ-small coproduct is one indexed over a κ-small
set. We say that a cofibration category is (homotopy) κ-cocomplete for κ > ℵ0 if it
satisfies (C6) and (C7-κ). For κ = ℵ0 the name (homotopy) ℵ0-cocomplete cofibration
category will refer to a cofibration category satisfying the original axioms (C0–5). We
will write CofCatκ to denote the category of such (small) cofibration categories where
morphisms are κ-cocontinuous functors, i.e. exact functors that preserve colimits of
sequences of cofibrations (for κ > ℵ0) and κ-small coproducts.

We will say that a cofibration category is (homotopy) cocomplete if it satisfies (C6)
and (C7-κ) for all κ.

The results of the remaining sections apply to CofCatκ for arbitrary κ but we
will give proofs only for κ = ℵ0 since arguments involving axioms (C6) and (C7) are
straightforward analogues of the ones involving (C4).

Fibration category of cofibration categories

We are now ready to introduce the homotopy theory of cofibration categories. For
this it is sufficient to define a class of weak equivalences in the category of cofibration
categories which is what we will do next. Later, we will proceed to define fibrations of
cofibration categories and prove that they satisfy the axioms of a fibration category.

Definition 2.1. An exact functor F : C → D is a weak equivalence if it induces an
equivalence Ho C → HoD.

This notion is closely related to the Waldhausen approximation properties first
formulated by Waldhausen as criteria for an exact functor to induce an equivalence
of the algebraic K-theory spaces [Wal85, Section 1.6]. Later, Cisinski showed that an
exact functor satisfies (slightly reformulated) Waldhausen approximation properties
if and only if it is a weak equivalence in the sense of the definition above. This is
made precise in the following proposition.

Proposition 2.2 ([Cis10a, Théorème 3.19]). An exact functor F : C → D is a weak
equivalence if and only if it satisfies the following properties.

(App1) F reflects weak equivalences.

(App2) Given a morphism f : FA→ Y in D, there exists a morphism i : A→ B in C
and a commutative diagram

FA Y

FB Z

f

F i

∼

∼

in D.

We are now ready to define fibrations of cofibration categories.
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Definition 2.3. Let P : E → D be an exact functor of cofibration categories.

(1) P is an isofibration if for every object A ∈ E and an isomorphism g : PA→ Y
there is an isomorphism f : A→ B such that Pf = g.

(2) It is said to satisfy the lifting property for factorizations if for any morphism
f : A→ B of E and a factorization

PA PB

X

Pf

j t

∼

there exists a factorization

A B

C

f

i s

∼

such that Pi = j and Ps = t (in particular, PC = X).

(3) It has the lifting property for pseudofactorizations if for any morphism f : A→
B of E and a diagram

PA PB

X Y

Pf

j

t

∼

v∼

there exists a diagram

A B

C D

f

i

s

∼

u∼

such that Pi = j, Ps = t and Pu = v (in particular, PC = X and PD = Y ).

(4) We say that P is a fibration if it is an isofibration and satisfies the lifting
properties for factorizations and pseudofactorizations.

The first two conditions are motivated by Proposition 2.4 below which says that
pullbacks along fibrations exist in the category of cofibration categories. The isofibra-
tion property is used to show that the categorical pullback has all required colimits
while the lifting properties for factorizations is used to show that it has factoriza-
tions. The lifting property for pseudofactorizations is more technical and is only used
in Proposition 2.5 which implies that acyclic fibrations are stable under pullback.
Informally, a pseudofactorization is a “factorization into a cofibration and a zig-zag
of weak equivalences”. The need for such a notion arises because some morphisms



6 KAROL SZUMI LO

of the homotopy category of a cofibration category cannot be represented by single
morphisms of the underlying category.

While the notion of a fibration between cofibration categories seems abstract, such
functors are abundant. In [Szu15a, Section 1] we present a number of examples and
methods of constructing fibrations.

This definition can be restated in a more technical but convenient way. We define a
category CofCat containing the category of cofibration categories CofCatas a non-full
subcategory. Objects of CofCat are small categories equipped with two subcategories:
the subcategory of weak equivalences and the subcategory of cofibrations such that
all identity morphisms are acyclic cofibrations. Morphisms are functors that preserve
both weak equivalences and cofibrations.

An exact functor between cofibration categories is a fibration if and only if it has
the right lifting property, as a morphism of CofCat, with respect to the following
functors.

• The inclusion of [0] into E(1) (the groupoid freely generated by an isomorphism
0→ 1).

• The inclusion of [1] (with only identities as weak equivalences or cofibrations)
into

0 1.

•
∼

• The inclusion of [1]× [0] (with only identities as weak equivalences or cofibra-
tions) into

(0, 0) (1, 0)

(0, 1) (1, 1).∼

∼

Proposition 2.4. Let F : C → D and P : E → D be exact functors between cofibration
categories with P a fibration. Then a pullback of P along F exists CofCat.

Proof. Form a pullback of P along F in the category of categories.

P E

C D

G

Q

F

P

Define a morphism f of P to be a weak equivalence (respectively, a cofibration) if
both Gf and Qf are weak equivalences (respectively, cofibrations). Then the above
square becomes a pullback in CofCat.

Now we check that P is a cofibration category.
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(C0-1) In P weak equivalences satisfy 2-out-of-6 and all isomorphisms are acyclic cofi-
brations since this holds in both C and E .

(C2-3) Let 0C be an initial object of C. Since P is an isofibration there is an initial
object 0E of E such that P0E = F0C . Then (0C , 0E) is an initial object of P.
Moreover, every object of P is cofibrant since this holds in both C and E .

(C4) Let p denote the poset of proper subsets of {0, 1} and let X : p→ P be a span

with X∅ → X0 a cofibration. Let S be a colimit of QX in C, then FS is a
colimit of FQX = PGX in D since F is exact. Since P is an isofibration we
can choose a colimit T of GX in E so that PT = FS. Then (S, T ) is a colimit
of X = (QX,GX) in P. Thus pushouts along cofibrations exist in P and both
cofibrations and acyclic cofibrations are stable under pushouts since this holds
in both C and E .

(C5) Let f : A→ B be a morphism of P. Pick a factorization of Qf as

QA� C
∼→ QB

in C. Then FQf = PGf factors as

PGA = FQA� FC
∼→ FQB = PGB

and we can lift this factorization to a factorization of Gf as

GA� E
∼→ GB.

It follows that

A = (QA,GA)� (C,E)
∼→ (QB,GB) = B

is a factorization of f . This completes the verification that P is a cofibration
category.

It follows from the construction of P that Q and G are exact that given a square

F E

C D
F

P

of cofibration categories and exact functors, the induced functor F → P is also exact.
Hence the square we constructed is a pullback in the category of cofibration categories.

The next proposition will imply the stability of acyclic fibrations under pullbacks.
It also serves as a useful criterion for verifying that an exact functor is a weak equiv-
alence.

Proposition 2.5. An exact functor P : C → D is an acyclic fibration if and only if it
is a fibration, satisfies (App1) and the right lifting property (in CofCat) with respect
to the inclusion of [0] into

0 1.
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Proof. First assume that P satisfies the properties above. We need to check that it
satisfies (App2). Let f : PA→ Z be a morphism of D. Factor f as a composite of
j : PA� Y and Y

∼→ Z and apply the lifting property above to find a cofibration
i : A� B such that Pi = j. This yields a diagram

PA Z

PB Z.

f

P i

∼

idZ

Conversely, assume that P is an acyclic fibration. We need to check that it satisfies
the lifting property above. Consider a cofibration j : PA� Y and apply (App2) to
it to get f : A→ B and a diagram

PA Y

PB Z

j

Pf

t

s

with both s and t weak equivalences. We factor [t, s] : PB qPA Y → Z as a composite
of [t′, s′] : PB qPA Y �W and W

∼→ Z. So we obtain the square on the right

PA PB A B

Y W C D

Pf

j

s′

t′

f

i

u

v

with both s′ and t′ weak equivalences. We can now apply the lifting property for
pseudofactorizations to get the square on the left with u and v weak equivalences
such that Pu = s′, Pv = t′ and (most importantly) Pi = j.

Next, we proceed to the construction of factorizations. We will make use of homo-
topical categories which provide useful models of homotopy theories as discussed at
length in [DHKS04]. However, we need them only as a technical tool to keep track
of certain homotopical properties of diagrams in cofibration categories.

Definition 2.6. A homotopical category is a category equipped with a subcategory
whose morphisms are called weak equivalences such that every identity morphism is
a weak equivalence and the 2-out-of-6 property holds.

A functor I → J between homotopical categories is homotopical if it preserves weak
equivalences. In particular, for any cofibration category C and a homotopical category
J the homotopical functors J → C will be called homotopical diagrams. The notation
CJ will always refer to the category of all homotopical diagrams J → C. It is itself a
homotopical category with levelwise weak equivalences. If J is a plain category, then
it will be considered as a homotopical category with the trivial homotopical structure,
i.e. with only isomorphisms as weak equivalences. On the other hand, Ĵ will denote
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J equipped with the largest homotopical structure, i.e. the one where all morphisms
are weak equivalences.

Let C be a cofibration category and let ŷ denote the poset of non-empty subsets
of {0, 1}. Make it into a homotopical poset by declaring all morphisms to be weak
equivalences. Call a diagramX : ŷ→ C cofibrant if bothX0 → X01 andX1 → X01 are
cofibrations in C. Let PC denote the category of all homotopical cofibrant diagrams
ŷ→ C (i.e. X such that both X0 → X01 and X1 → X01 are acyclic cofibrations).
Define weak equivalences in PC as levelwise weak equivalences and define a morphism
A→ X to be a cofibration if all

A0 → X0,

A1 → X1,

A01 qA0 X0 → X01 and

A01 qA1 X1 → X01

are cofibrations in C. (Note that this implies that A01 → X01 is a cofibration too.)

The category PC will serve as a path object (i.e. a dual cylinder) in CofCat. The
cofibrations of PC are similar but not quite the same as Reedy cofibrations (which will
be briefly recalled in the next section). This modification is important since otherwise
the diagonal functor in the proof of Theorem 2.8 below would not be exact.

Proposition 2.7. If C is a cofibration category, then so is PC with the above weak
equivalences and cofibrations.

Proof.

(C0) Weak equivalences satisfy 2-out-of-6 since this holds in C.
(C1) A morphism A→ X is an acyclic cofibration if and only if all

A0 → X0,

A1 → X1,

A01 qA0
X0 → X01 and

A01 qA1
X1 → X01

are acyclic cofibrations in C. Hence every isomorphism is an acyclic cofibration.

(C2-3) The constant diagram of initial objects is cofibrant and initial in PC. Moreover,
the definition of a cofibrant object X is equivalent to 0→ X being a cofibration,
thus all objects of PC are cofibrant.

(C4) A cofibration in PC is in particular a levelwise cofibration and so pushouts along
cofibrations in PC exist and are constructed levelwise. Given a pushout square,

A B

X Y
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in PC we observe that B0 → Y0 and B1 → Y1 are pushouts of A0 → X0 and
A1 → X1 so they are cofibrations. The Pushout Lemma says that

B01 qB0
Y0 → Y01 and B01 qB1

Y1 → Y01

are pushouts of

A01 qA0
X0 → X01 and A01 qA1

X1 → X01

so they are cofibrations too. Consequently, B → Y is a cofibration in PC. Sta-
bility of acyclic cofibrations under pushouts is obtained by combining this argu-
ment with the characterization of acyclic cofibrations given in (C1) above.

(C5) Let X → Y be a morphism of PC. For i ∈ {0, 1} factor Xi → Yi as Xi� Zi
∼→

Yi in C and form pushouts

Xi Zi

X01 Wi.

Then we have the induced morphisms Wi → Y01 which make the square

X01 W0

W1 Y01.

commute and thus yield a morphism W0 qX01 W1 → Y01. We factor it in C as

W0 qX01 W1 � Z01
∼→ Y01.

Then Z becomes an object of PC and X � Z
∼→ Y is a factorization of the

original morphism.

We are ready to prove our main result.

Theorem 2.8. The category CofCat with weak equivalences and fibrations as above
is a complete fibration category.

In other words CofCat satisfies the duals of axioms (C0-6) and (C7-κ) for all κ.

Proof.

(C0)op Weak equivalences satisfy 2-out-of-6 since they are created from equivalences of
categories by Ho: CofCat→ Cat.

(C1)op Isomorphisms are acyclic fibrations by Proposition 2.5.

(C2-3)op The category [0] has a unique structure of a cofibration category and it is a
terminal cofibration category. Moreover, every cofibration category is fibrant
since every category is isofibrant while the lifting properties for factorizations
and pseudofactorizations follow from the factorization axiom.
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(C4)op Proposition 2.4 says that pullbacks along fibrations exist and by the construction
they are also pullbacks in CofCat. Since fibrations are defined by the right lifting
property in this category they are stable under pullbacks. This argument also
applies to acyclic fibrations by Proposition 2.5 since (App1) is equivalent to the

right lifting property with respect to the inclusion [1] ↪→ [̂1].

(C5)op To verify the factorization axiom it suffices to construct a path object for every
cofibration category C by [Bro73, Factorization lemma, p. 421]. Let diag : C →
PC be the diagonal functor. It preserves (acyclic) cofibrations since if X � Y is
an (acyclic) cofibration in C, then both (diagX)0 → (diag Y )0 and (diagX)1 →
(diag Y )1 coincide with X � Y while

(diagX)01 q(diagX)0 (diag Y )0 → (diag Y )01

and (diagX)01 q(diagX)1 (diag Y )1 → (diag Y )01

are isomorphisms. It also preserves the pushouts along cofibrations and hence
is exact. The evaluation functor

ev0,1 = (ev0, ev1) : PC → C × C

is also exact. Together they form a factorization of the diagonal functor C →
C × C. We need to show that diag is a weak equivalence and that ev0,1 is a
fibration.
Consider the evaluation functor ev01 : PC → C. It is a homotopical functor such
that ev01 diag = idC and there is a natural weak equivalence idPC → diag ev01

since all morphisms of ŷ are weak equivalences. It follows that Ho diag is an
equivalence.
It is easy to see that ev0,1 is an isofibration. The lifting property for factor-
izations is verified just like the factorization axiom in PC except that now
the factorizations Xi� Zi

∼→ Yi are given in advance. The lifting property for
pseudofactorizations is handled similarly: let X → Y be a morphism in PC and
let

Xi Yi

Wi Zi∼

∼

be pseudofactorizations of Xi → Yi for i ∈ {0, 1}. Form pushouts

Xi Wi Yi Zi

X01 Ui Y01 Vi.

∼

∼

There are induced morphisms Ui → Vi which fit into a commutative diagram
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U0 X01 U1

V0 Y01 V1

and thus induce a morphism U0 qX01
U1 → V0 qY01

V1 which we pseudofactorize
into

U0 qX01
U1 V0 qY01

V1

W01 Z01.∼

∼

Then W and Z form objects of PC which fit into a pseudofactorization

X Y

W Z.∼

∼

as required.

(C6)op The limit of a tower of fibrations between cofibration categories can be con-
structed as the limit of their underlying categories. The resulting category sat-
isfies the axioms of a cofibration category since the required colimits and fac-
torizations can be constructed by finding suitable lifts along the fibrations of
the tower in analogy to Proposition 2.4.

(C7)op The product of a family of cofibration categories can be constructed as the
product of their underlying categories. It inherits a structure of a cofibration
category by a direct verification.

A routine modification of this argument also yields the following.

Theorem 2.9. For every regular cardinal κ, the category CofCatκ with weak equiva-
lences and fibrations as above is a complete fibration category.
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