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REFLECTION GROUPS IN NON-NEGATIVE CURVATURE

FUQUAN FANG AND KARSTEN GROVE

AsstracT. We provide an equivariant descriptigrtiassification of all complete (compact or
not) non-negatively curved manifoldi$ together with a co-compact action by a reflection group
W, and moreover, classify sudhl. In particular, we show that the building blocks consist of
the classical constant curvature models and generalizex lopoks with non negatively curved
bundle pages, and derive a corresponding splitting theéwethe universal cover.

The theory of discrete groups of motions generated by réfleshas a long history (cf., e.g.,
[4]) going back to the study of planar regular polygons anacsppolyhedra. It's impact on
the modern development of Lie theory, and symmetric spacegdack to E. Cartan and W.
Killing is well known.

Much of the work on reflection groups has been focussed onaoinsurvature spaces. Here,
the euclidean and spherical cases are well understoodadtiyndue to the works of H. S. M.
Coxeter|[[7]. In the hyperbolic case the situation is vetffiedlent. A complete classification of
reflection groups in the hyperbolic plane was achieved bgdoe [15] (cf. also von Dyck [9]),
and in the hyperbolic 3-space by Andregv [2], whereas hygierbeflection groups in higher
dimensions are very rich and far from being classified. A ssimy theorem of Vinberd [19]
asserts there are no co-compact hyperbolic reflection grodimensions> 30.

Here we deal with general Riemannian manifolds with vagabuit non-negative (sectional)
curvature equipped with a co-compact proper action by aelisceflection group. Our results
provide an essentially complete understanding of thesectdj

In contrast to the classical framework discussed abovambtivated by applications to polar
actions (like the one in_[10]), eeflectionis nothing but an isometric involution whose fixed
point set has a component of codimension one, calledr@r. Most subtleties caused by this
generality evaporate when passing to a canonical finiterqgee Proposition_1.3).

The following simple example is at the core of our work: Cdesia reflectiom: M - M
whose mirrorA separate. From the Cheeger-Gromoll soul construction it followsttha

is the double of a disc bundlg(v). Note that this double can also be described as the sphere

bundleS(v & ¢) (¢ is the trivial line bundle), as well as apen bookwith two pagesD(v), i.e.,
parametrized by°, having common boundary, théndingA.

It turns out that a natural generalization of the abopen bookype of manifold, together
with the classical space formsonstitute théouilding blocksneeded in general. To explain the
appearance of building blocks, we say that the achbx M — M is decomposablé the
orbitspaceM/W metrically is a finite quotient of a product, amtdecomposabletherwise.
With this terminology one of our main results is the follogiRigidity Theorem
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Tueorem A. A nonnegatively curved manifold™vith an indecomposable cocompact ac-
tion by a reflection groupV is isometric to eitheR", or T", or equivariantly difeomorphic to
eitherS", or RP" with a linear action, unless all mirrors in M meet.

Here the spherical case relies on showing that the orbisizaa simplex (cf. section 2),
whereas the part where the universal covevlias non-compact also relies on Cheeger- Gromoll
splitting results for cocompact actions and for compact ifols with infinite fundamental
group, as well as on Bieberbach’s celebrated Theorem (cfiosed). Recall, that by the latter,
any compact flat manifold is finitely covered by a flat torus.,,iM = T"/ G, whereG c O(n) is
the holonomy. In particular, Theorem A shows that the holoypgroupG must be trivial when
the action is indecomposible. We will prove, moreover, thtte orbit space splits as a metric
product of eucledian simplices, thé&f/ G must be an iterated torus bundle, with holonomy
groupG a very special elementary abelian 2-groufsi(Z, n) (see Corollary 4]6). The Klein
bottle serves as the simplest example.

To describe the structure that arises when all mirrors nm®tider the following generaliza-
tions of the open book with two pages discussed above:

MopeL ExampLEs. Let p be a linear representation of a finite Coxeter grovipn R¥, and
v a smooth vector bundle with base sp&eThe obvious action by on the bundler @ &,
wheree is a trivial line bundle, induces an action Iy on the total space of the sphere bundle
M,, = S(v@ &) =: S(v,p). Note that, this action hasmirrors, whose intersection B :=
S(v) c S(v @ &), and “normal” toB the action iso. Note also that the equivariant projection
v@ek — RKinduces an equivariant map: S(v@&) — DX, with L~1(0) = BandL%([0, 1]X) = P
diffeomorphic tdD(v) for anyx € 4D* = Sk-1. For this reason we caM,, ak — 1 dimensional
open bookwith binding B andpages P parametrized bg<?.

In general, giverf linear representations of finite Coxeter groupsVv; onRY, and¢ smooth
vector bundles; with baseS. The obviousV = W; x ... x W, action on the product of the
bundlesy; ® 5 induces aw action on theiber product M55 := S(v, p) of the sphere bundles
S(vi®e"), i.e., the pull back by the diagonal map S — Sx...xS of the product of the sphere
bundlesS(v; ® £4). As in the case of a single representation and bundle, taereanonically
associatedV equivariant mafL : M;; — DX x --. x D* whereB = L}(0,...,0) is the
intersection of all mirrors fow, andP = L™([0, 1]X4, . .., [0, 1]x,) for anyx e Sfa~1x. .. xSkt
is a manifold with corners eieomorphic to the fiber produgt(v) of the disc bundle®(v;). We
say thatM; is aniterated open boolith pivot binding Bandpages P

Using this terminology we have the following geneg&itucture Theoremvhen all mirrors
meet.

Tueorem B. A compact nonnegatively curved manifold M with reflectioougrW, all of
whose mirrors meet admits a finite cover Which is equivariantly equivalent to an (iterated)
open book My, with pages a non negatively curved (fiber product) disc teibdy).

For more details including further restrictions on the nesdn the pages, we refer to section
3, in particular Theoremis 3.3 ahd 3.7 and the descriptiontaddditional geometric structure
in the form of the presence gpherical heavensf souls in the spirit of Yim’s work([23]. Also,
converselyusing a construction due to Guijario [13], it follows that @erated) open book
with the given data has an invariant metric with nonnegatiwwature.



REFLECTION GROUPS IN NON-NEGATIVE CURVATURE 3

When passing to the universal cover, the above results iicpkar lead to the following
generalSplitting Theorem

Tueorem C. Let M be a complete non negatively curved manifold with aoyzact reflection
groupW. Then the lifted reflection grouyy on the universal covek is a product of Coxeter
groups,

W= Wo x [ [Wix W,
i=1

whereW, is affine, and the remaining factors are spherical. Corresponlyinigl admits aw
invariant metric splitting,

-1

M :R"xl_[SIQ X @, x N,

i=1
where N can be any simply connected compact manifold of igatime curvature on which all
W; act trivially, S is a non negatively curved standard sphere with a liné&action, ando®,
is a compact simply connected non-negatively cuitedated) open boak

As a consequence we derive the followi@gup Structure Theorem

CoroLLARY. A groupW is a co-compact reflection group of a complete non negatiuaiyed
manifold if and only if

WEWOX"'XW[/N,
whereW, is an gfine Coxeter group\V;, 1 < i < ¢, is a spherical Coxeter group, ard < W

a normal subgroup isomorphic to a product of a torsion frettid@ and an elementary abelian
2-group.

As indicated earlier, aside from obviously being of inté@sits own, understanding reflec-
tions groups in nonnegative curvature provides the firgs steunderstanding so-called polar
actions on such manifolds (cf. [10], where a complete digssion of polar actions in positive
curvature, of cohomogeneity at least two, was carried diig reason is that so-called sections
of a polar action are non-negatively curved manifolds witlefeection group. Basic examples
of such actions are provided by compact Lie groups with atlgitions, where the sections are
the maximal tori. Note, that in this context, it is poterlgamportant to include non compact
reflection manifolds, since a priory it is not known if secisoare compact even when the polar
manifold is.

In general, there will be no classification like in [10] besawf the presence of open books as
sections. In fact, potentially one might be able to constngsv non-negatively curved (polar)
manifolds as in the case of cohomogeneity one actions cerexldn [12], when sections are
open books.

Note also, however, that a polar action with open books atose¢ should be considered as
reducible since the associated reflection group of a section hasvariant subspacéa totally
geodesic submanifold). Thus, Theorem A, is the key stagaigt in an analysis afreducible
polar actions on compact simply connected manifolds of egative curvature, for which the
following was proposed in [10]:
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ConiecTure. An irreducible polar action on a simply connected nonnegayi curved com-
pact manifold is equivariantly gieomorphic to a quotient of a polar action on a symmetric
space.

We point out that in the above sense, in fact any polar actioa simply connected compact
symmetric space of nonnegative curvature is the quotieat pdlar action on a compact Lie
group with a biinvariant metric.

The general structurgclassification of compact simply connected non negativelyed
polar manifolds will be addressed in forthcoming papers.

We conclude the introduction with a short outline of the pape

In the first section we provide the necessary backgroundefteation groups in our gener-
ality, including the notion of &oxeter actionwhere the orbit spackl/W is isometric to the
closureC of any open chambag, i.e., of a connected component of the set of all mirrors. We
analyze the lift to the universal cover and establish thsterce of a canonical lift, th@oxeter
cover, where the action by is Coxeter (Propositidn_11.3).

The overall strategy in our approach is based on the factdhaivs from the work of Worner
[20] that the chambeC for a Coxeter action is a produCt= CoxC; xCy x...x C, whereCy is
a manifold without boundary (typically a point), and ed&hi > 1 is a smooth non negatively
curved convex manifold with corners, and either Cl)has more tham, = dimC; faces, but
anyn; faces ofC; meet, or (2)C; hask; < n; faces and they all meet. In section 2, we show that
if there is only one factor and it is of type (1) théhis a simplex. This is then used to prove
the spherical part of theorem A (cf. 2.5 and 2.6). The casaeviiiere is only one factor in the
splitting, but it has type (2) is then handled in section 3isTewhere the open book structures
appear, from which Theorem B follows.

The starting point in section 4 is the observation that aaoygact action on a noncompact
manifold of nonnegative curvature is decomposable unkessianifold is euclidean space, and
similarly an action is decomposable on a compact manifolth wifinite fundamental group
unless it is flat (cf. 4.2 and 4.3). Consequently, the reshefdection deals with reflection
groups on flat manifolds, and in particular the flat part of drieen A follows fronT4.5.

Finally, in section 5 we give proofs of Theorem C and Corgllar

It is our pleasure to thank Burkhard Wilking for pointing dbe Cheeger-Gromoll Isometry
Splitting Theorem (Corollary 6.2 iri [5]) to us. Our originafoof of Theorem_4]1 for a co-
compact reflection group was based on the work of Yim [23] @nhbaven of pseudo souls,
and Gromov'’s theorem about groups of polynomial growth.

1. PRELIMINARIES AND THE COXETER COVER.

Although our focus in this paper is to analyse and descrilmeptete nonnegatively curved
manifolds with co-compact reflection groups, we begin withrief review and discussion of
general (co-compactgflection groupsestablish notation and derive important facts about cov-
ers. See also [10] and [12], where examples are discussea|lees [1].

For us, areflectionr on a Riemannian manifolt¥ is an isometric involution, whose fixed
point setM" contains a componert of codimension 1. Any such componeft is called a
mirror for r. It is sometimes advantageous to label reflections by nsiyrar keeping in mind
that diferent mirrors may be mirrors for the same reflection. It i€esal for us not to require
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that mirrors separat®! into different components interchanged by the reflection! Note hieat t
latter, however, is the case for reflections on a simply cotatemanifold|[8].

Let W c Isom(M) be a discrete closed subgroup of isometrieMofenerated by all reflec-
tions contained iW. We will call any such groupV areflection groupf M. An open chamber
c c M is by definition a connected component of the complementefitiion of all mirrorgt
for all reflections inw. Clearly, W acts transitively on the set of all open chambers. However,
thestabilizer groupwW, may be non-trivial in general.

We say that

e TheactionW x M — M is Coxeterif W, is trivial.

It is well known that the action is Coxeter whéhis simply connected [8] (and in this case
W is a Coxeter group), or whe is asectionof a polar action on a simply connected manifold
(3, 12]). We will see below in Propositidn 1.3 thist admits a natural equivariakit, cover,

M’ with a Coxeter action by. We will refer to this cover as th€oxeter covenf (M, W), or
simply of M.

The closureC = cl(c) is called aclosed chambeor simply achamber and clearlyM/W =
C/We. In particular, M/W = C when the action is Coxeter. Moreover, any pomnin the
boundaryoC = C — c of C is in one or more mirrors (at most dim). SinceW is discrete, it
follows that the isotropy group/,, for any suchp € dC is a finite Coxeter group, and localy
is a finite union of strongly convex sets.chamber fac®f C is by definition a component of the
intersectiorC N A, A € 9, which contains an open subset/ofWe can provide each chamber
face with a label € | and will denote the face bly; and the corresponding reflection hy As
mentioned above, note though thafféient faces can correspond to the same reflection, i.e.,
possiblyr; = r;. Obviously, W, takes chamber faces to chamber faces, the image of which
under the projection mag — C/W, = M/W constitute theacesof the orbit spaceM/W.

By construction we note that the boundaré€sandd(M/W) are the union of chamber faces,
respectively of faces. Note that in genef@ls not an Alexandrov space, wheréagn, = M/W
is.

We now proceed to investigate natural reflection groupsdaduromW to covers ofM
beginning with the universal cover.

Consider the universal covering map: M — M, and letW be the group acting oM
consisting of all lifts of all elements af/. ClearlyW fits into an exact sequence

1—>7r1—>\7V—>W—>1,

wherer; := m,(M). Note that in generalV is not a reflection group, and it may not be finitely
generated (even wWhe is). N

Now let W < W be the normal subgroup generated by all reflectionsvin Note that a
mirror for any such reflection oM is a connected component of the lift of a mirror lim.
SinceM is simply connectedN is a Coxeter group which acts Coxeter nwith chambelC.
Furthermorefs = M/W is simply connected (see, e.g., Prop. 2.14in [1]).

Since both7r1 andW are normal subgroups of/, so |sW N m1. Moreover, it follows that
W N 8! <W andW N my <y, With quotientsV andI” ;= 7r1/W Ny respectively. We now claim
thatW/(W N 1) iIs isomorphic to the direct produd x T, i.e., we have an exact sequence
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1—)\;V07T1—>V~V—>WXF—>1.

Indeed, this is an immediate consequence of the followigglakic lemma applied to the quo-
tientW/W N my.

Lemma 1.1. AssumeN contains two normal subgroups<N andG <N such thatN = (N, G).
ThenN = N x G, the direct product, iN N G = {1}.

Proof. By the assumption, conjugation by elementsGotiefines a homomorphispn: G —
Aut(N). Similarly, conjugation by elements dof defines a homomorphism: N — Aut(G).
Note that, for any € N andg € G, we have

gxg ™ = p(9)(¥), andx"*gx = 7(x)(9)
Thusgx = p(9)(X)g andgx = xr(X)(g), and it follows thajp(g)(X)g = xr(X)(g). Hence

xp(@)(¥) = 7((g)g ™
where the left side belongs ik and right side belongs 6. From the assumptioNNG = {1},
it follows that both are trivial, in other words bothandr are trivial, i.e,N andG commute. O

Thus, for the induced action BY = W/W nz; on M := M/W N 71, a covering space o¥l
with deck transformation group = 71 /(r, N W) we have

CoroLLaRy 1.2. The action byw on M is Coxeter, it commutes with tHeaction, and its
chambersC are isometric taC, in particular they are simply connected.

Proof. By construction, it is obvious that chambersvsfin M are projected isometrically onto
chambers foW on M and thatw acts simply transitive on its set of chambersMn i.e., the
action is Coxeter. O

Note that in general the stabilizEg of aW chamber inM is non-trivial and acts freely on
the chamber. Since the actions commute, this stabilizerdsgendent of the chamber and is
the kernel of the induced™ action on the set of chambershh This now leads to our desired
‘resolution” M” = M/T, of M, thel” := I'/Ty = W, Coxeter covemf M, with chambers
C =C/Ty:

ProprosiTion 1.3 (Coxeter cover).Any manifold M with reflection groug/, admits a com-
muting lift to a regulad™ cover M of M with Coxeter action by andI” = W..

Proof. Again it is clear from the construction that the chambersefinducedV action onM’
areC’, and thatlw acts simply transitive on its set of chambers. MoreoWwecommutes with
the induced action by’ :=T'/T’o andW NI is trivial.

To see thal” is isomorphic toW,, note that for any’ € I and any chambet’ there is a
uniquew(y’) € W with y'(C’) = w(y’)(C’). It follows thatw(y’) € W, and the mag” — W, is
clearly a homomorphism. Conversely, given ang W, and chambe€’ projecting toC there
is a uniquey’ € I'” such thaw(C’) = y'(C’). O

Remarkl.4. We remark that’ may not be a Coxeter group. Howevé/ris a Coxeter group.
HenceW is a quotient group ofV by a normal subgroup. Notice that\i¥ is an irreducible
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spherical Coxeter group of rank at least 3, then the normtaewp is in the center, which is
either trivial orZ,. Similarly, if W is an irreducible fiine Coxeter group of rank at least 3, then
W = Z" = Wy, whereW is an irreducible spherical Coxeter group. A normal subgrisua
sublattice ofz" or an extension of such a sublattice by a ceftein W,.

Remarkl.5. From the structure of fundamental groups of manifolds withmegative cur-
vature, we know that bothy (M) as well ast;(M) = 7, N W < 7, are finitely generated, so all
groups in the discussion above are finitely generated in aotegt of nonnegative curvature.

Note also, that iz’ is a simplex (or a product of simplices), which in nonnegaturvature
is often the case (cf. the subsequent sections), @len C=0C, el = {1 andM is the
Coxeter cover oM. It follows thatW = W/x;(M) andW, = my(M)/z(M). In particular,
m1(M) < W if the action is Coxeter.

Motivated by 1.B and the fact that sections of polar actiamsimply connected manifolds
are always Coxeter,

e We will focus our attention to co-compact Coxeter actionsuighout,
with the exceptions df 217, 4.5, ahd #.6.

It is important to us that for Coxeter actions, the chamBeesM/W have a particularly nice
structure:

Remarkl.6 (Coxeter chamber structureBy definition,C c M is convex, and assuming
is finitely generated, its bounda®C = | i, Fi is the union of its face§, i € | :={1,...,k]},
giving rise to a natural stratification @. To describe the stratification, it is convenient to use
the following notation: For any subsétc | setF; := Ny Fi, andF; = Ui, Fi, i.e., Fyis
the intersection of faces oppositef®f. Note that ford; c J, obviouslyF, c F;,, F;, C Fy,,
andF, = dC. By convention we sdf, = C andF, = 0.

With this notation all strat& , arelocally totally geodesicAt interior points, the fibers of the
normal bundle td-; is the orbit space of the normal slice representation ofit&ropy group
We, = W_,. SinceF; has codimension 1 if; j forany j € J it follows that thisnormal
bundle is flat and triviglin fact it is “spanned” by parallel fields. In particul&,also has the
structure of amooth manifold with cornerse., locally dtteomorphic to open balls & . We
also point out that since the angle between any two facesmestr/2, any of the strat&; are
extremal subsetsf the Alexandrov spacg, see, e.g., the survey [14].

There are other natural and useful convex domains assddiat€, namely the so-called
residuesof C. Here theJ-residue ofC, J c | is the seW;C, whose boundary i#/;F,_;.

The above general structure f0iis especially useful in the context of nonnegative cunatur
since it enables us to employ humera@ing convexity argumentaroughout. For example
the distance function o€ to any faceF; c C or union of faced~; (in particular the whole
boundary) iconcave One is thus in position to apply correspondBigarafutdinov retractions
from C to the associatedoul of C as in the original approaches to open manifolds in [5] and
[17] (This procedure even applies to super level sets oktheacave functions as long as they
have maximal dimension).
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In the context described above, the general work of Woid@y §bout the structure of com-
pact Alexandrov spaces with nonnegative curvature andemgpty boundary, as well as Yim’s
work [22,123] on theheavenof pseudo-soulén a complete open manifoli of nonnegative
curvature is very useful for us. Here by definition a sul&et M is called gpseudo-souf it is
isometric to a sousy ¢ M, and homologous t8q in M.

2. BEQUIVARIANT sSMOOTH RIGIDITY. NOT ALL FACES MEET

Unless otherwise stated we assume throughoutNhé& a non negatively curved compact
or complete Riemanniammanifold with a co-compact reflection grouip acting in a Coxeter
fashion onM with chambelC.

We first point out that the maximal number of fadgf C having non-empty intersection is
n. In fact, at a poinp of intersection the corresponding faces of the chambemttit tangent
sphere has at mostfaces, and in the latter case this is a spherigal () simplex, actually a
fundamental domain for the isotropy grouy, of W at p [10] (for a more general result we
refer to [21]). Also note, that ifi faces ofC have non-empty intersection, then the intersection
consists of isolated points. It follows that, either:

e All faces intersect, in which cage has at most k k < nfaces, or
e There is a minimal & k < nsuch that: There exi&t+ 1 faces with empty intersection.

The above discussion applies to general Alexandrov spaitksiannegative curvature, for
which Worner [20] proved the followin§plitting Theorem

Tueorem 2.1 (Worner). A compact n-dimensional Alexandrov space A, with non-ebaqaipd-
ary, not all of whose faces meet is isometric to a produtt % Y of non negatively curved
Alexandrov spaces, where X is isometric to the interseafdnfaces of C, with k chosen as
above.

Remark2.2 It also follows (cf. [20]) that the maximal number of faces Afis 2n, in
which caseA is a product of intervals. When applied@ we conclude in particular thaV is
generated bk < 2n elements.

Repeated applicationsof 2.1 above yields a metric sgittithe Coxeter chamb& of the
form

(2.3) C=A;1xX...xA xVxN

whereN is a closed non negatively curved manifold (typically a ppiand each of the remain-
ing factors is a smooth non negatively curved convex mashifoth corners, and boundary face
structure given by

(1) Ai has more than; = dim A faces, but any, faces ofA; meet,

(2) V hask < dimV faces and they all meet.
The presence of a non-trivitl occurs when taking products with a trivial actionr{cf. 5.2).

Our objective in this section is to begin an analysis of theecahereC has only one factor,
and this factor is of the first kind. We will refer to this as thenaximal indecomposiblease.
The following is crucial
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Lemma 2.4 (Simplex). When the action is maximal indecomposible, C is an n-simplex

Proof. Consider (anyh + 1 facesF, ..., F,.1. First note that any of them intersect in exactly
one point. If say, e.gk1N...NF, contains at least two points, then (each component of) the 1-
dimensional strata, e.d=3N...NF,_1 is a geodesic joining two points &i,N...NF,. NowF,;
must intersect at least one of these geodesics at an inpamiot, which is clearly impossible.
Thusp,=Fyn...N Fin...NnFn4,i=1...,n+1aren+ 1 vertices ofC. Now suppose there
is another facé-,,,. Using the same reasoning it follows that tihe 1 intersections of ang
amongF,.,, F1, ..., F, coincide with the verticep;,i = 1,...,n+ 1. This on the other hand is
impossible unlesB,,» = F.1, i.€.,C has exactlyn + 1 faces.

Now consider a vertex, sag,.1 and its opposite fac€,,;. From Lemma 5.1 in [20] we
immediately get thap,,; is the set at maximal distance kg1, in particular it is the soul of
C constructed from disK,.1, -). Using that all non-maximal super level sets of distg, -) are
convex we construct (applying a standard partitian of uaigument starting inductively at the
most singular strata involving,, ..., F, and thenF,,,) a smooth gradient like vector field on
C—{pn:1} Which is tangent to all strafa,, ... ., F,, radial neap,,; and transverse t6,,,. Since
a small ball aroungb,,; in C is clearly a simplex, this competes the proof. m|

Remark2.5. An alternative proof of the above claim using only Riemanrgaometry, i.e.,
not appealing td [20] can be carried out by considering tmvexJ = {1,. .., n}residueA, , :=
Wp,,C = Unew,  WC of Cin M, whereW,, , = Wj is the isotropy group opn.:. Note, that
0A,,., is the union of faces opposifg.1, and thatA, ., has smooth totally geodesic interior,
with p,;1 an interior point. Now one applies Riemannian convexityuargnts as in the soul
theorem in aw,, ., equivariant fashion, which eventually leads to the coriolushat the soul

of Ap,.. 1S {Pns1).

Note that if all mirrors meet in the Coxeter covdr of M, they certainly meet it as well.
So the assumptions in Theorem A in particular imply that itx€er chamber by the above
lemma is a simplex. Thus the following Theorem and its Carglwill complete the proof of
half of Theorem A in the introduction.

Tueorem 2.6 (Spherical space form)Let(M, W) be a compact nonnegatively curved Coxeter
manifold with finite fundamental group and chamber C a simpldien M admits &V invariant
metric of constant curvaturg

Proof. By [1.5, m;(M) is a normal subgroup of the Coxeter gro\[lpacting on the universal
coverM. By assumptiorM is compact and hend# is a finite Coxeter group, acting simply
transitively on its set of chambers. In this case all tangenes at any point of a boundary strata
of a chambe€ = M/W (= C) is isometric to a corresponding tangent cone for the liae&ion

by the Coxeter groupV on S". From the above lemma and arguing as in Corollary 2.10 of
[10] we see tha€ admits a metric of constant curvature 1, which extend$\ia an invariant
metric onM. Sincer;(M) < W one gets an induced constant curvature metrid/oimvariant
underw. O

In the above theorem it is well known that(M) < W is either trivial orZ, acting as the
antipodal map on the sphere. This has the following somesuratrising consequence:
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CoroLLARY 2.7. Let M be compact non negatively curved manifold with finitedimen-
tal group. Then any reflection grolyy, whose Coxeter lift has simplex chambers admits an
invariant metric of constant curvature.

Proof. From[Z.6 and 115, we know that the Coxeter coMEr= M is eitherS" or RP" with an
invariant metric of nonnegative curvature. Recall that bgstruction of the Coxeter cover in
[1.3 the action by’ = W, on M’ commutes with th&V action. In particular, any mirror as well
as its complement is preserved By If M’ is RP" such a complement is a (convex) open disc,
whose soul must be a point preservediy But since the action is fre®y. must be trivial.

If M”isS", it follows thatl” = 7;(M) commutes withV = W. Arguing as in the projective
space case, it follows thaV, = I" is either trivial orZ, = (a). In the latter case note that
induces an automorphism @ which is reflected also in the induced action, by gagn the
orbit space simple€"/W. Now A fixes the soul point of the simple&'/W and maps vertices
according to the induced automorphism of the diagranWfoNow using convexity and critical
point theory argument&A)-equivariantly, we conclude th& = S"/W admits anA-invariant
metric of constant curvature, analogous to the proof of Camp2.10 of [10], just like its linear
model. It follows, thatM admits an invariant constant curvature metric, iM.= RP" and
W, = I" = my(M) acts onS" as the antipodal map. O

Remark2.8. We will see that wherM has non-compact universal cover, and the action is
indecomposable, then sections are flat. In partic@ais a flat simplex when the action is
maximal indecomposable. This will lead to a proof of the senchalf of Theorem A in the
introduction (cf. the Torus Theorem 4.5).

3. OPEN BOOK STRUCTURES: ALL FACES MEET

In this section we will develop complete structure resutsGoxeter manifolds of nonneg-
ative curvature, where all mirrors meet, equivalently tharoberC = V in the splitting 2.8.
These Theorems will have Theorem B of the introduction agranediate consequence.

As in the case of maximal indecomposible Coxeter actions drucial to understand the
structure of a chamb&. Note that in the case under consideration, theré& a@ mirrors inM
and their intersection coincides with the fixed pointB€Y, which inC is also the intersection
B:=Fin...nFofallits faces, i.e.F, recalling our notation frorh 116 to be used throughout
below. Moreover, for each qf € B, W acts défectively on the normal sphefg = S c R*to
B at p, andW is a finite Coxeter group.

For each facd=; we letS; c C be the soul inC associated to the distance functidn:=
dist(F;, -) to F;. Recall that by constructiorg; is the imageS h(C) of the associated Sharafut-
dinov deformations retractiorgh : C — C of C. Since, this retraction is a concatenation of
gradient pushesand gradient pushes preserve extremal 5ets [14] it foliowsediately that

e For each ¢ I, the soulS; meets every component Bf.

In particular, ifS; c F, it follows thatF, is connected. Moreover,

Lemma 3.1 (Reduction). If S; is not a subset df;, it is perpendicular to it, and the normal
slice representation oV along B is reducible.
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Proof. Consider the—i residueéWg C of C with boundarywe F;. Clearly, the usual Riemannian
construction of the soul oV C is We, invariant and equivalent to working @ In particular,
its soul isWg S;, a totally geodesic sub manifold &g C. Pick a pointp € §; N Fi c WEeS;.
Obviously, the tangent space to the satd S; of Wi, C at pis We, invariant. If this is not a sub-
space of the tangent spaceftg its complement is perpendicular to it, i.8;,is perpendicular
to F;.

If S; — F; # 0, there is a smallest strafa= F, containingS; and meeting it at interior points
of D. Suppose first thad = C and letpq be a minimal geodesic frome cnS; to S; N F;,
and pg a minimal geodesic fronp to F;. Clearly, pg is perpendicular tgpqg as well as td-;.

It follows that pg and pq are adjacent edges in an isometrically embedded flat rdetam@
with opposite edges iR;, respectively a minimal geodesidrom S; N F; to Fi. Sinceqpis not
on the boundary of the normal space of directiong;ttn C atq, it follows thaty is a geodesic
in F;, and in particular we see that ti¢normal slice representation is reducible.

In general, ifS; is not contained ir;, let D = F; be the smallest strata containiBgand
meeting it at interior points. In the residu&,: C consider the corresponding totally geodesic
subsetMWi-3 N WEeC, i.e., the intersection of the residue with the mirrors detaed bylfJ.
Clearly the soul of the residue is contained in this subset.edver, the Sharafutdinov retraction
of the residue preserves the subset, and since it is totadigesic, this restricted deformation
retraction is also distance non-increasing with respettéantrinsic metric on the set. From
these properties, it follows as in the original approach bgr&futdinov (cf. alsd [22]) that the
intrinsic soul of the subset is isometric to “extrinsic” §dte., the soul of the residue. Again by
invariance, it follows that the intrinsic soul of the strédas isometric toS;, and in particular
intersectd at interior points. The proof is now completed as above. O

We are now ready to describe the structur€pivhen the actiop of W on the normal spaces
RX to B is irreducible. A

Note that for each, the strataF; is a connected, compact non negatively curved manifold
with boundaryB. Moreover, whers; is contained inF; it follows (as in the proof above) that
F; has the structure of a disc bundle of a non negatively cureetby bundle/; overs;.

Using the description in the model examples of the introdactwe will show that for each
i, M is equivariantly equivalent to the open bollk ,, = S(vi ® &) =: S(v;, p) — D*. To do this,
we will show thatC = M/W is S(v; ® )/W — DX/W = conek™?), whereAk? = sk-1/w,
Due to this description, we also say that= S(v; ® £)/W is a book with bindingB and
pagesD(v;) = F; parametrized by\-1. Indeed, withA%-2 being the space of directions i
opposite its face labelledwe have:

Lemma 3.2 (Book chamber).If the action byw on normal spaces to B is irreducible, akid
has rank k< n, then C has the structure of the ball bundle/ok coneAX2).

Alternatively, C has the structure of a book with binding BlgragesF; parametrized by
A¥1, the normal space of directions in C along B.

Proof. Since by the reduction lemnia 8.1, the s&lc F, for d; := dist(F;,-) is a totally
geodesic sub manifold, and also a soul Fgrthe first claim is an immediate consequence of
the soul construction faC (or alternatively for itd —i residue), recalling that the normal bundle
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of C to F; along interior points (including), is spanned bk — 2 parallel fields (see remark
[1.6).

For the same reasoR; is the “sphere bundle ” boundary of this bundle, i.e., themairspace
of directions bundle o8; in C. Note, that each fiber of this bundle is the join of a normaksph
to S in F; with A%2. Moreover, the bundle orthogonal kg is trivial.

Viewing the joinS™ « Sk2 — D! = conef*?) as ak — 2 dimensionabpen bookwith
binding S™ and page®™* (following the flow lines for the gradient of the distance étion
to either sphere), provides the desired induced structuf®e A2 c S™x Sk2, This in turn
yields the book structure oR; and then for all ofC, using that the simplex bundle ov8r is
trivial. Specifically, one constructs (much like in [11]) engoth vector field orC which is
radial nearB, tangent to all strata and transverse to the sub manifold @dgtnersS; x A1,
that emerged from the soul construction. Using that all radtmandles to all strata are trivial as
observed i 116, one can also arrange 8jat A< c C is perpendicular to all strata. |

The following is now a simple consequence of the fact thataifistructions above can be
carried over toVl equivariantly, and noting the same structure on the sphandlbS(v; @ £X)
of v; x R¥ equipped with the obvious action by.

Tueorem 3.3 (Open Book). Let (M, W) be a non negatively curved Coxeter n-manifold with
rank k < n, where all mirrors meet in B= MW, If the normal representatiop along B is
irreducible, then M is equivariantly gieomorphic toS(v @ £X), wherev is a non negatively
curved vector bundle with sphere bundle B.

Alternatively, M is an open book with binding B and non negdi curved page®(v)
parametrized byg<.

Remark3.4 (Converse) We point out that conversely we can construg¥ anvariant metric
with nonnegative curvature on a manifold with these data.dddhis we use the open book
description o (v@e") = S(v)xD¥U,;D(v)xSk 1, whereS(v)xDX is a small tubular neighborhood
of B = S(v) c S(v @ &), and thew-action can be written as the gluing of the linear actions on
each piece. By [13] we can modify the metric oo that it is product near infinity. We take
product metrics o (v) x Sk and onS(v) x DX, where the metric o is also a product near
the boundary. The desired claim follows.

Remark3.5. Note thatM is a sphere, if the so8; is a point, and in this case the action is a
suspension or iterated suspension of the irreducible ricapheere action byv.

Also, B can have at most two components, and if it doeg a trivial line bundle,S; is
isometric toB, andM = S; xSK. If in this case,S; is not a point,M is actually metrically a
product, and the action on the second factor is the suspep$ithe normal sphere action by
W, and the metric is invariant with nonnegative curvature ¢eimark about heavens below).
In particular, the orbit spacel/W = B x (Sk/W) splits, but this is the only decomposable case
wheren faces meet and the normal action to the binding is irredacibl

Remark3.6 (Spherical heavens)n the situation of the open book theorem any two souls
S; andS; obviously have the same homotopy type, namely th&.oln fact, since the corre-
sponding Sharafutdinov maps are distance non-increasifogrdation retractions df and the
souls are closed manifolds, it in fact follows as(in|[22] ttiety are isometric.
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When the souls are not points, it turns out that in fact muchenstructure compatible with
the open book description is present. This is because teeadarge family of choices for
"Sharafutdinov retractions”. To explain this, note that &my J-tuple of nonnegative numbers
a; = {& > O}icy the subset

Co ={peC|dist(p,F) > &,i € J}

is convex when non-empty. Clearly, this set can be obtaireed € by applying various "partial
Sharafutdinov retractions”. Moreover, when non-collapse., dimfC® = n one can consider
any union or intersection of itis faces as in the case @f wherea, is the trivial J tuple. For
such non-collapsed convex s€¥ we can utilize further Sharafutdinov retractions assedat
to any face or union of faces of it. It follows, that all soulst@ined in this fashion are isometric.
Even more, the arguments 0f [23] carry over to our case vientsnce they pivot only around
distance non increasing deformation retractions on cosubsets of a Riemannian manifold.
As a result,M contains a totally geodesgpherical heavenH of pseudo souls isometric to
the product ofS with a non negatively curved metric on &sphere, wheré > k — 1 is the
dimension of the flat trivial sub bundle of the normal bun8keto S in M spanned by all
parallel fields. Heré = k—1 wheny has a unique soul, in which case, the heaier S x Sk!
provides a canonical/-invariant “edge” of the open book opposite its binding. Wlie- k—1,

v = v ® &1 and the heaven intersects the binding in a produc @fith a nonnegativey
curved metric on aif — k sphere, and in this cadéd = S(vp @ ™! @ &) = S(vo @ 1) of
course also has an open book structure with binding the sgiugrdle ofvy, and pages the disc
bundle ofvy parametrized by afisphere. In the latter description, however we do not know if
Vo Supports a non negatively curved metric.

It remains to consider, the situation where the actionNbyn the normal spaces #® is
reducible. In this casay = Wy x --- x W,, acts in a component-wise fashion on the normal
spheres* = S(R%)x- - -xS(R¥). We point out here that in our formulation below, the comgran
of theW; action is not necessarily required to be irreducible.

Although we are primarily interested in the indecomposabke, we point out that the prod-
uct My x ... x M, Wy x ... x W,) of any¢ irreducible non maximal indecomposable actions
(Mi,W)),i =1,...,¢provides a decomposable example where all mirrors meetd€aaription
below will include this.

Before, formulating our result, we elaborate further onrib&on of aniterated open bogk
which is based on having leaves being manifolds with corners
Suppose for exampl®,is a manifold with corners, the most “singular” having lotggleR™ x
RX. An ¢; dimensional open book with pag@sand binding a manifold with corners of type
Rk x R¥1 will then be a manifold with corners of tyge" i x R¥-1, i.e., having decreased
the corner type by one. This wayopen book iterations results in a manifold without corners.
Note that &-fold iterated open book has gpage map L= (Ly,...,Lx) : N - D™ x ... x D"
with k coordinates, where a page is of the fokmt (%), where each factar is a radial line in
the corresponding disc. We will refer to1(0, .. ., 0) as thepivot bindingof the iterated book.

A special case of this arises as described in the model exsmopthe introduction:

Given ¢ linear representations of finite Coxeter group®V; on R¥, and¢ smooth vector
bundlesy; with baseS. The obviousV = Wy x ... x W, action on the product of the bundles
vi ® £ induces aw action on thdiber product M;; := S(v, p) of the sphere bundleXy; & &),
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i.e., the pull back by the diagonal mapg S — S x...x S of the product of the sphere bundles
S(vi ® €9). As in the case of a single representation and bundle asatimre is a canonically
associatedV equivariant page mabp : M;; — DX x --- x D* whereB = L™(0, ..., 0) is the
intersection of all mirrors fow, andP = L™([0, 1]X4, . .., [0, 1]x,) for anyx e Sfa~1x. .. xSkt

is a manifold with corners eieomorphic to the fiber produgt(v) of the disc bundle®(v).

Tueorem 3.7 (Iterated open book)Let M be a compact nonnegatively curved Cox&ter
manifold where all mirrors meet. Then there is a splittindqaing one factor) of the normal
slice representation splits @s= p; X ... X p, onS*+ = S(R4) - - - « S(RX), such that M isV-
equivariantly dffeomorphic to a fiber product, M := S(v, p). Moreover, the fiber product of
any ofvy, - - - , v, mutually orthogonal sub bundles, is a totally geodesic suidlte of the sum of
all of them, a vector bundle with non-negative sectionalatuire over a soul S of the chamber
C.

Alternatively, M is an iterated open book with pivot bindiBgand page a non negatively
curved fiber producd(v) with ortogonal totally geodesic subbundieé/;), J c {1,..., £} with
right angles at all corners along its totally geodesic boangdstrata.

Proof. For aw-invariant decomposition &+, we apply Theorern 3.3 to th&,-action onM. It
follows thatM is Wy-equivariantly difeomorphic to a sphere bundi¢v; @ £) overS,, where
S, is the soul of a chambeg; for the W;-action onM. As seen in the proof of Lemma 3.2,
D(v,) can be taken to be any of the strﬁqlain C,, and the fixed point set of th#/; action, i.e.,
the intersection of alV; mirrorsAil, is the subbundI&(v,) =: By = N); Ail. Note that, sinc&Vj,

j # 1 fixes the normal spaces By alongB = MW, the totally geodesic sub manifo.fc[l cM
(the double of ) is invariant undew, x . .. x W, for anyi. In addition, sincé\! = S(v; & &%),
we are in position to complete the proof by induction.

Specifically, we note thatv, acts onM = S(v; ® k) N\, S; in a fiber preserving fashion
commuting with thew;-action. If W, acts trivially on the base, thew, acts linearly along
the fiber, hence;, = &2 @ v, andM = S(v, ® & @ &) \, S; with its W; x W, action.
Therefore, we may assume that, the action of each fa&tor > 2, is nontrivial onS,, hence
Sty ® ) \, S; is an equivariantV, x - - - x W, bundle. By induction we may assume that the
soulS; isW,x- - -xW, equivariantly difeomorphic to a fiber produg{(y1, p,) of Sphere bundles
S(vi@e"),i # 1 over a totally geodesic submanif@dc S;, whereS is the soul of a chamber of
theW,x- - -xW, action onS;. In particular, the orbit space of thé,x- - -xW, action onS; is the
fiber product of the chambers in the disk bundigs, k1), - - -, D(v, @ &% 1). Therefore, the
orbit space of th&V-action onM is the fiber product of chambers b{v, @ £471), D(v, @ £'271),
-, D(v; ® £471), where the double ab(v, ® €47 is the restriction of the sphere bundle
S(v1 ® €4) to S. It follows thatM is W equivariantly difeomorphic to the fiber produg(v, p)
of S(v; ® ) overS. O

Remark3.8. We leave the details of the proof of the (equivalent) itedaipen book state-
ment to the reader. Here, rather than using the inductionthwgsis on the sou8,, one uses it
on the wholew, x - -- x W, invariant pageD(v;). We also point out that each irreducible sub
action gives rise to a coordinate page map for an open boakngasition as in Theorem 3.3.
All together one gets W equivariant page map : M — DX x ... x D¥ with pages as claimed.
As in the case of the open book description, one gets even gaamr@etric structure when the
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normalW action is reducible. For example, one gets several heagtgesrresponding to the
W; sub-actions, and their (orthogonal) intersections aflyaaodesic submanifolds dl.

We note that _ _
e The chambeC€ is a bundle over the sod with fiber the producg' = A; x --- x S" % A,.

Remark3.9 (Reconstruction) As in the remark 314, the non-negatively curved metridwbn
can be constructed fromvél, x - - - Xx W, -invariant complete metric of non-negative curvature on
the vector bundle; overS;, by modifying the metric near infinity (cfl [13]) in@&/, x - - - x W,
invariant fashion.

Alternatively one can use the iterated open book descrigticachieve this as soon as the
nonnegatively curved page metrics have been modified so las product metrics along the
boundary and its corners. This again is done inductivelygigi3] combined with the informa-
tion that say the disc bundl&Xv,) and the fiber product of the remaining disc bundég,)
are orthogonal totally geodesic sub bundles oflitfe), so that either one of these manifolds
with corners can be used a soul of the page.

Prompted by the structure emerged in this section, we raes#tlowing questions:

ProsLEm 3.10. Are there obstructions for the suhguotient of two non negatively curved
bundles with common soul to have nonnegative curvature?

4. METRIC RIGIDITY. NON COMPACT UNIVERSAL COVER

Our main goal in this section is to derive rigidity propestfer nonnegatively curved man-
ifolds M having noncompact universal cover and supporting a cocotmp#iection group. In
particular, we will see that the action is indecomposabbni only if M is flat with Coxeter
chambelC’ a euclidean simplex. Moreover, in this cadds either a flat torus or flat eucidean
space.

We begin with the case whehM itself is non-compact (and complete).

By the Cheeger - Gromoll soul theorem such a manifold costaimetrically embedded,
totally convex compact submanifolsl (a soul of M) whose normal bundle is fieomorphic
to M. Moreover, by Corollary 6.2 in[5]M splits uniquely as a produdfl x R, where the
isometry groupl (M) of M is compact and(M) = I(M) x I(R¥). Thus in the presence of a
cocompact isometric action their work immediate yields

Tueorem 4.1 (Strong Splitting). Assume M is a complete open manifold of nonnegative cur-
vature with a cocompact isometric group action. Then M isistric to a metric produdR*x S,
where S is a soul of M.

In particular,

CoroLLARY 4.2 (Noncompact IndecomposiblepA complete open manifold M with nonnega-
tive curvature and cocompact reflection grotds indecomposable if and only if M is isometric
to flat euclidearR"™ andW is an gfine Coxeter group with chamber € M/W a euclidean n-
simplex.



16 FUQUAN FANG AND KARSTEN GROVE

Here the last claim follows from the fact, that the facto. B all must be euclidean simplices
for any cocompact Coxeter action B4, and that a co-compactfBne Coxeter group has orbit
space a simplex if it is indecomposable, or in this case edgmily irreducible.

Also, for M compact with infinite fundamental group we get

ProposiTion 4.3. Let M be a compact non negatively curved manifold with irdifuinda-
mental group and reflection grolpy. Then, the action is decomposable unless M is flat.

Proof. From the Cheeger-Gromoll-Toponogov splitting theorem [B]8ve know that the uni-
versal cover oM" splits isometrically a&*x N, whereR is flat euclideark-spacek > 1 andN
is a compact simply connected nonnegatively curved mahif8ince mirrors for the lifted re-
flection groupW contain either ai* factor or anN factor we have thalv = Wz« x Wy, yielding
a nontrivial splitting for the\V chamber unleshl is a point. The desired result follows. O

Throughout the remaining part of this sectibhis a compact flat manifold. We start with
the following simple observation, concerning actions vehitre Coxeter chamb&’ does not
contain any simplex factors in 2.3:

Lemma 4.4 (Flat open book).Assume M is a compact flat manifold with a Coxeter action by
a reflection groupV. If all mirrors meet, therw = Zg”’ and M is isometric to I\kzg T¢ x T,

whereZ} acts freely on a compact flat manifold & x W c | (SH* acting componentwise on
T = Sl - x St by reflecions.

Proof. It is clear that the intersection of mirrors is a flat manifolaet N denote a fixed point
connected component. Frdm 3.3, respectively 3.7 we knotvNh& a bundle with fiber a
sphere respectively a product of spheres over a soul. Baifygtfe sous must be flat, and the
fiber must be a product of circles. Therefold,is the fiber product of!-bundlesS(v; @ &),
wherev;, 1 < i < k+ ¢, are all real line bundles ove8. Assume the first bundles are
nontrivial, and respectively the laktbundles are trivial. In particulal\ is a freeZ;, bundle
overS. Itis clearW = Z‘y" acting onT**‘ by componentwise reflections, commuting with the
componentwis&} action on the first factors (diferent from thew action on the component,

note thatz, x Z, c 1(S*).) The desired result follows. O

It follows in particular that the action is indecomposalfland only if the chamber of its
associated Coxeter action is a euclidean simplex. Morebyéf.5 we know that if the Cox-
eter coverM’ of M has chamber a simplex, thea(M’) ¢ W, and thew chamber inM is a
simplex as well. However, as pointed out above, it then vadlthat the &ine Coxeter group is
irreducible.

Recall that, an irreduciblefi@ne Coxeter grouv of rankmmust be one of type&y, B, Cms
Dy, Es, E7, Es, F4, G» (cf., e.qg., [4]) andV = Z™ = Wy, whereW, is an irreducible spherical
Coxeter group, of typén,, Bm = Cpmn, Dm, Ee, E7, Eg, Fa, G2. We say that a reflection group
W acting on a flat manifoldM is irreducible if the W action onR™ is irreducible. With this
terminology, we now know that th&/ action is indecomposable if and only if it is irreducible,
if and only if its Coxeter chamber is a simplex.

Before proving our main result below about irreducible @usi, recall that by Bieberbach’s
celebrated theorem, a finite cover i is isometric to a flat torug§™ = R™/Z™. Note that
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every isometry ofl™ lifts to a lattice preserving isometry &™, whose isometry group is
[(R™ = R™ =< O(m), and vice-versa. Thereforg(T™) containsT™ as a normal subgroup with
guotient a finite subgroup @(m).

In view of lemmd 4.4 and subsequent comments above, theviolipin particular completes
the proof of Theorem A in the introduction:

Tueorem 4.5 (Torus Theorem).Let M be a compact flat manfiold with an irreduciiade-
composable reflection group action By, Then

(1) M is a flat torusT™.

(2) TheW action is Coxeter.

(3) W = AxW,, whereA is a finite abelian group of rank at most m, aNd, is a finite
irreducible spherical Coxeter group.

Proof. By Bieberbach’s theoremil = T™/ G whereG c O(m) is the holonomy. Note thas
preserves the lattice™ c R™, henceG is also a finite subgroup @L(Z, m).

By section 1W lifts to a reflection groupN c W c I(R™) = R™x O(m) such thatW/r; =
W/(r N W) = W. Recall thatW = Z™ =< Wo, whereW, is a maximal finite subgroup ol
a spherical Coxeter group. Singe is a torsion free groupr; N W is a torsion free normal
subgroup oW, and hencer, N W c Z™ is a sublattice. In particular, the split epimorphism
W — W, induces a split epimorphisk¥ = W/ (1 1 W) — W, with kernel, A, a quotient of the
sublattice inZ™. Hence (3) follows.

Now we prove (1), i.e.G is trivial. Recall thatr; is a normal extension &™ by G. Hence
the holonomy homomorphism gives an epimorphism fiore 71/7; N W onto G ¢ O(m).
By Corollary 1.2,I" x W acts on a flat covering spadé¢ of M, henceG commutes withw,
the image ofW in O(m). In particular, eveng € G commutes with every € Wy ¢ O(m).
Therefore, the linear irreducible Coxet#g action commutes with the line@-action onS™ 1.

It follows thatG c Z, = (£I), generated by the antipodal map.Qf= Z,, thenn; is a normal
extension ofZ™ by Z, with monodromy-I. Such an extension always splits, contradicting the
fact thatr, is torsion free.

Given (1),W is an extension olV by Z™, hence, by (3), a split extension oW with kernel
a subgroup of translations Bf". If the W action is not Coxeter, thew, is isomorphic to a finite
subgroup ofV (in fact, isomorphic to a chamber isotropy group®bnR™), hence a subgroup
of a conjugate oW, in W. ThereforeW, is trivial, since thew, action onR™ is Coxeter. The
desired result follows. O

The proof above, in fact also yields the somewhat surpristagement, that if the Coxeter
chambelC’ only contains simplex factors in its decomposition 2.3ntheparticular it is Cox-
eter (cf[5.8). Precisely we have:

CororLLary 4.6. Let M be a compact flat manifold with a reducible reflectionugr@v, where
W = W, x- - -x W, such thatV; is irreducible. If the chamber Qs a direct product of euclidean
simplicesA; x- - - XAy, then M= T™/ G, where the holonomy group c Z, x- - - XZ, a subgroup
of GL(Z, m) consists of block matrices with i-th bloek. Moreover, theV action is Coxeter.

It is easy to see that, M is as in the above corollary, then it is an iterated torus swith
structure grougz,.
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The Klein bottle is the simplest example of the above type&c8Bigally, we have:

Remark4.7. Any reflection groupV on a Klein bottleK is reducible. Moreover, i€’ is a
product of intervals, thelV = Dy XZ,, or Dy ng for k odd, orDy szzg for k even, where
Dy is the dihedral group of ordek2Z, is the center oD, in the balanced product.

The first assertion follows immediately from 4.5. Note tlais the quotientl?/(y), where
the involutiony is given by &, y) — (-=x,y), with x,y € St ¢ C unit complex numbers. From
4.6 we know thaw is the quotient of the product of reflection groupsitdnhence, from 4.5 (3),
the quotient of the product of two dihedral groupg x D, acting componentwise ot x S?,
for somek,| > 1. Moreover, the reflection group, x D commutes with the deck involution
v, i.e.,wyw! = v for anyw € Dy x Dy. Therefore] = 1 or 2. Ifkis even, the center dby,
is Z, generated by the antipodal map h hencey € Dy x D4. By the assumption 06’ we
know that, ifl = 1, thenD, is not the complex conjugation @&i. From the fact that the quotient
of a dihedral group is again a dihedral group the secondtamséollows.

5. UNIVERSAL COVER AND GROUP DECOMPOSITION

Our objective in this section is to prove Theorem C and CarglID in the introduction.

To do this assume without loss of generality that the co-amt\y action onM is Coxeter
with chambersC = M/W. Based on the previous sections 2.3 we have a metric g@com
sition of the form

r (-1
(5.1) C=[[asx[[asxVexN
i=1 j=1
whereN is a closed non-negatively curved manifold without bougdaossibly a point), the
A? are euclidean simplexes (including interva}?sipare spherical simplices, afis a (iterated)
book chamber
We start with a simple observation

Lemma 5.2 (Trivial factor). The above M is isometric o x N wherew acts trivially on N,
andM is a non-negatively curved Coxeté-manifold with orbit space as above without the N
factor.

Proof. Consider the composition of submetrigs M — M/W — N. This yields a horizontal

and vertical splitting of the tangent bundle Idf, both of which are integrable and totally geo-
r (-1

desic. Clearly the fibeW supports an induced/-action, with chambe€ = 1_[ Aiexl_[ ATX V.
i=1 j=1

Using the decomposition (5.1) we can define an equivariaptinavl — M x N by identifying

a chambe€ with C x N, a chamber for the produ@-action onM x N, whereW acts trivially

onN. Itis clear thatf is a difeomorphism which restricts to an isometry on every chami@r

for anyw € W. The desired result follows. O

The following shows that (5.2) does not hold unless the agSdCoxeter.
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Examples.3. Consider the product action §1'xS" of a linear irreducible Coxet&¥ action
onS™ and the trivial action o8". LetS™xz, S" be the orbit space of the free diagonal antipodal
involution. Then the induceg/-action onS™ xz, S"is not Coxeter. A chambeT is isometric
to A x S", but the chamber isotropy growg, = Z, acts freely on the product with orbit space
A X P".

Note, that this example may be modified by replacing the adapmap on th&" factor by
any isometric involutiora. In particular, if we taken = m= 1, W = A, anda = r a reflection,
we get a non-Coxter action on the Klein bottle, with chambex A and orbit space, an “open
envelope”, i.e, the double of a flat rectangle, leaving ode spen (cf_4]6).

By Lemma 5.2 we now assunieis a point. Note, that faces @f are products of all factors
but one, with faces of the remaining factor. Moreover, eaathset of such faces, generate a
reflection groupw; any two of which commute.

Proof of Theorem CLet us first consider the case wher€M) is infinite. Then by the Cheeger-
Gromoll splitting theorem, the universal cowdris isometric to the produdt® x N, whereN

is a compact simply connected manifold. Clearly, the chgrﬁbﬁ;r theAllftedW action is a
product of euclidean simplices with a chami@r in N, andW = Wq X Wy, whereW is an
affine Coxeter group, and/y is a finite Coxeter group.

In particular, it remains to prove the claim whegp(M) is finite. Thus it sifices to con-
sider that case whemd is compact and simply connected. In this case, there are cimlean
simplices in the splitting o€, and an open book chamber is simply connected as well. The
splitting of the tiles, by equivariance, obviously givesarto a local hence global splitting bf
into factors consisting of spheres and an open (iteratedlk bs claimed, with corresponding
actions of Coxeter groups. O

Proof of Corollary D. By Theorem C, passing to the universal covdr, the lifted reflection
groupW isa productNo X Wy X - x Wy, WhereWO Is an dfine Coxeter groupN,, 1<j<y,
are finite spherical Coxeter groups. Note that W/N, whereN is a normal subgroup iV
acting freely onM, as a subgroup of the deck transformations. ftisess to prove thal is
abelian. Note, thal clearly projects to a normal subgropp(N) c W;, and moreover\ is
contained in the product gip(N) x --- x p,(N). Hence it remains only to show thaf(N) is
abelian. A

Note thatp;(N) acts freely on thg-th factor. Thereforepy(N) c Wy = Z™ = W is contained
in the torsion free lattice (cf. Theordm 4.5). A sphericaﬂtdm\fvj of rank 2, must come from
either an open book factor or a factor acting linearly on @spbf dimension at least 2. In either
caseW; has a fixed point, and hencg;(N) must be trivial. Finally, from the well-known fact
that a normal subgroup of an irreducible spherical Coxeatengof rank at least 3 is contained
in its center (trivial orZ) the desired result follows. A A )

Conversely, for an abelian normal subgrduipz ZP x Z3 < Wo X Wy X - - - x W,, whereZ;
is in the center of the product of spherical Coxeter grougsclvacts freely on the product of
spheres® x --- x S¥, as a sub-action of the product of the antipodal maps. Toex#f acts
freely on the produdk* x S x - - - x ¥, andw acts as reflection groups on the quotient space,
a manifold with non-negative curvature. The proof is now ptete. |
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