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REFLECTION GROUPS IN NON-NEGATIVE CURVATURE

FUQUAN FANG AND KARSTEN GROVE

Abstract. We provide an equivariant description/ classification of all complete (compact or
not) non-negatively curved manifoldsM together with a co-compact action by a reflection group
W, and moreover, classify suchW. In particular, we show that the building blocks consist of
the classical constant curvature models and generalized open books with non negatively curved
bundle pages, and derive a corresponding splitting theoremfor the universal cover.

The theory of discrete groups of motions generated by reflections has a long history (cf., e.g.,
[4]) going back to the study of planar regular polygons and space polyhedra. It’s impact on
the modern development of Lie theory, and symmetric spaces going back to E. Cartan and W.
Killing is well known.

Much of the work on reflection groups has been focussed on constant curvature spaces. Here,
the euclidean and spherical cases are well understood ultimately due to the works of H. S. M.
Coxeter [7]. In the hyperbolic case the situation is very different. A complete classification of
reflection groups in the hyperbolic plane was achieved by Poincaré [15] (cf. also von Dyck [9]),
and in the hyperbolic 3-space by Andreev [2], whereas hyperbolic reflection groups in higher
dimensions are very rich and far from being classified. A surprising theorem of Vinberg [19]
asserts there are no co-compact hyperbolic reflection groupin dimensions≥ 30.

Here we deal with general Riemannian manifolds with variable, but non-negative (sectional)
curvature equipped with a co-compact proper action by a discrete reflection group. Our results
provide an essentially complete understanding of these objects.

In contrast to the classical framework discussed above, butmotivated by applications to polar
actions (like the one in [10]), areflectionis nothing but an isometric involution whose fixed
point set has a component of codimension one, called amirror. Most subtleties caused by this
generality evaporate when passing to a canonical finite cover (see Proposition 1.3).

The following simple example is at the core of our work: Consider a reflectionr : M → M
whose mirrorΛ separatesM. From the Cheeger-Gromoll soul construction it follows that M
is the double of a disc bundleD(ν). Note that this double can also be described as the sphere
bundleS(ν ⊕ ε) (ε is the trivial line bundle), as well as anopen bookwith two pagesD(ν), i.e.,
parametrized byS0, having common boundary, thebindingΛ.

It turns out that a natural generalization of the aboveopen booktype of manifold, together
with theclassical space formsconstitute thebuilding blocksneeded in general. To explain the
appearance of building blocks, we say that the actionW × M → M is decomposableif the
orbitspaceM/W metrically is a finite quotient of a product, andindecomposableotherwise.
With this terminology one of our main results is the following Rigidity Theorem
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2 FUQUAN FANG AND KARSTEN GROVE

Theorem A. A nonnegatively curved manifold Mn with an indecomposable cocompact ac-
tion by a reflection groupW is isometric to eitherRn, or Tn, or equivariantly diffeomorphic to
eitherSn, or RPn with a linear action, unless all mirrors in M meet.

Here the spherical case relies on showing that the orbitspace is a simplex (cf. section 2),
whereas the part where the universal cover ofM is non-compact also relies on Cheeger- Gromoll
splitting results for cocompact actions and for compact manifolds with infinite fundamental
group, as well as on Bieberbach’s celebrated Theorem (cf. section 4). Recall, that by the latter,
any compact flat manifold is finitely covered by a flat torus, i.e.,M = Tn/G, whereG ⊂ O(n) is
the holonomy. In particular, Theorem A shows that the holonomy groupG must be trivial when
the action is indecomposible. We will prove, moreover, thatif the orbit space splits as a metric
product of eucledian simplices, thenTn/G must be an iterated torus bundle, with holonomy
groupG a very special elementary abelian 2-group inGL(Z, n) (see Corollary 4.6). The Klein
bottle serves as the simplest example.

To describe the structure that arises when all mirrors meet consider the following generaliza-
tions of the open book with two pages discussed above:

Model Examples. Let ρ be a linear representation of a finite Coxeter groupW on Rk, and
ν a smooth vector bundle with base spaceS. The obvious action byW on the bundleν ⊕ εk,
whereε is a trivial line bundle, induces an action byW on the total space of the sphere bundle
Mρ,ν = S(ν ⊕ εk) =: S(ν, ρ). Note that, this action hask mirrors, whose intersection isB :=
S(ν) ⊂ S(ν ⊕ εk), and “normal” toB the action isρ. Note also that the equivariant projection
ν⊕εk→ Rk induces an equivariant mapL : S(ν⊕εk)→ Dk, with L−1(0) = BandL−1([0, 1]x) = P
diffeomorphic toD(ν) for anyx ∈ ∂Dk = Sk−1. For this reason we callMρ,ν ak− 1 dimensional
open bookwith bindingB andpages P, parametrized bySk−1.

In general, givenℓ linear representationsρi of finite Coxeter groupsWi onRki , andℓ smooth
vector bundlesνi with baseS. The obviousW = W1 × . . . ×Wℓ action on the product of the
bundlesνi ⊕ εki induces aW action on thefiber product, Mρ̄,ν̄ := S(ν̄, ρ̄) of the sphere bundles
S(νi⊕εki ), i.e., the pull back by the diagonal map∆ : S→ S×. . .×S of the product of the sphere
bundlesS(νi ⊕ εki ). As in the case of a single representation and bundle, thereis a canonically
associatedW equivariant mapL : Mρ̄,ν̄ → Dk1 × · · · × Dkℓ whereB = L−1(0, . . . , 0) is the
intersection of all mirrors forW, andP = L−1([0, 1]x1, . . . , [0, 1]xℓ) for any x̄ ∈ Sk1−1× . . .×Skℓ−1

is a manifold with corners diffeomorphic to the fiber productD(ν̄) of the disc bundlesD(νi). We
say thatMρ̄,ν̄ is aniterated open bookwith pivot binding Bandpages P.

Using this terminology we have the following generalStructure Theoremwhen all mirrors
meet.

Theorem B. A compact nonnegatively curved manifold M with reflection group W, all of
whose mirrors meet admits a finite cover M′ which is equivariantly equivalent to an (iterated)
open book M̄ρ,ν̄, with pages a non negatively curved (fiber product) disc bundleD(ν̄).

For more details including further restrictions on the metric on the pages, we refer to section
3, in particular Theorems 3.3 and 3.7 and the description about additional geometric structure
in the form of the presence ofspherical heavensof souls in the spirit of Yim’s work [23]. Also,
conversely, using a construction due to Guijarro [13], it follows that an (iterated) open book
with the given data has an invariant metric with nonnegativecurvature.
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When passing to the universal cover, the above results in particular lead to the following
generalSplitting Theorem

Theorem C. Let M be a complete non negatively curved manifold with co-compact reflection
groupW. Then the lifted reflection group̂W on the universal cover̃M is a product of Coxeter
groups,

Ŵ = Ŵ0 ×

ℓ−1∏

i=1

Ŵi × Ŵℓ,

whereŴ0 is affine, and the remaining factors are spherical. Correspondingly, M̃ admits aŴ
invariant metric splitting,

M̃ = Rk ×

ℓ−1∏

i=1

S
ki × Θℓ × N,

where N can be any simply connected compact manifold of nonnegative curvature on which all
Ŵi act trivially, Ski is a non negatively curved standard sphere with a linearŴi action, andΘℓ
is a compact simply connected non-negatively curved(iterated) open book.

As a consequence we derive the followingGroup Structure Theorem,

Corollary. A groupW is a co-compact reflection group of a complete non negativelycurved
manifold if and only if

W � Ŵ0 × · · · × Ŵℓ/N,

whereŴ0 is an affine Coxeter group,̂Wi, 1 ≤ i ≤ ℓ, is a spherical Coxeter group, andN ⊳ Ŵ
a normal subgroup isomorphic to a product of a torsion free lattice and an elementary abelian
2-group.

As indicated earlier, aside from obviously being of interest on its own, understanding reflec-
tions groups in nonnegative curvature provides the first step in understanding so-called polar
actions on such manifolds (cf. [10], where a complete classification of polar actions in positive
curvature, of cohomogeneity at least two, was carried out).The reason is that so-called sections
of a polar action are non-negatively curved manifolds with areflection group. Basic examples
of such actions are provided by compact Lie groups with adjoint actions, where the sections are
the maximal tori. Note, that in this context, it is potentially important to include non compact
reflection manifolds, since a priory it is not known if sections are compact even when the polar
manifold is.

In general, there will be no classification like in [10] because of the presence of open books as
sections. In fact, potentially one might be able to construct new non-negatively curved (polar)
manifolds as in the case of cohomogeneity one actions considered in [12], when sections are
open books.

Note also, however, that a polar action with open books as sections, should be considered as
reducible, since the associated reflection group of a section has aninvariant subspace(a totally
geodesic submanifold). Thus, Theorem A, is the key startingpoint in an analysis ofirreducible
polar actions on compact simply connected manifolds of nonnegative curvature, for which the
following was proposed in [10]:
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Conjecture. An irreducible polar action on a simply connected nonnegatively curved com-
pact manifold is equivariantly diffeomorphic to a quotient of a polar action on a symmetric
space.

We point out that in the above sense, in fact any polar action on a simply connected compact
symmetric space of nonnegative curvature is the quotient ofa polar action on a compact Lie
group with a biinvariant metric.

The general structure/ classification of compact simply connected non negatively curved
polar manifolds will be addressed in forthcoming papers.

We conclude the introduction with a short outline of the paper.
In the first section we provide the necessary background for reflection groups in our gener-

ality, including the notion of aCoxeter action, where the orbit spaceM/W is isometric to the
closureC of any open chamberc, i.e., of a connected component of the set of all mirrors. We
analyze the lift to the universal cover and establish the existence of a canonical lift, theCoxeter
cover, where the action byW is Coxeter (Proposition 1.3).

The overall strategy in our approach is based on the fact thatfollows from the work of Wörner
[20] that the chamberC for a Coxeter action is a productC = C0×C1×C2× . . .×Cℓ whereC0 is
a manifold without boundary (typically a point), and eachCi, i ≥ 1 is a smooth non negatively
curved convex manifold with corners, and either (1)Ci has more thanni = dimCi faces, but
anyni faces ofCi meet, or (2)Ci haski ≤ ni faces and they all meet. In section 2, we show that
if there is only one factor and it is of type (1) thenC is a simplex. This is then used to prove
the spherical part of theorem A (cf. 2.5 and 2.6). The case where there is only one factor in the
splitting, but it has type (2) is then handled in section 3. This is where the open book structures
appear, from which Theorem B follows.

The starting point in section 4 is the observation that a co-compact action on a noncompact
manifold of nonnegative curvature is decomposable unless the manifold is euclidean space, and
similarly an action is decomposable on a compact manifold with infinite fundamental group
unless it is flat (cf. 4.2 and 4.3). Consequently, the rest of the section deals with reflection
groups on flat manifolds, and in particular the flat part of Theorem A follows from 4.5.

Finally, in section 5 we give proofs of Theorem C and Corollary D.

It is our pleasure to thank Burkhard Wilking for pointing outthe Cheeger-Gromoll Isometry
Splitting Theorem (Corollary 6.2 in [5]) to us. Our originalproof of Theorem 4.1 for a co-
compact reflection group was based on the work of Yim [23] on the heaven of pseudo souls,
and Gromov’s theorem about groups of polynomial growth.

1. Preliminaries and the Coxeter cover.

Although our focus in this paper is to analyse and describe complete nonnegatively curved
manifolds with co-compact reflection groups, we begin with abrief review and discussion of
general (co-compact)reflection groups, establish notation and derive important facts about cov-
ers. See also [10] and [12], where examples are discussed, aswell as [1].

For us, areflectionr on a Riemannian manifoldM is an isometric involution, whose fixed
point setMr contains a componentΛ of codimension 1. Any such componentΛ, is called a
mirror for r. It is sometimes advantageous to label reflections by mirrors,Λr, keeping in mind
that different mirrors may be mirrors for the same reflection. It is essential for us not to require
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that mirrors separateM into different components interchanged by the reflection! Note that the
latter, however, is the case for reflections on a simply connected manifold [8].

Let W ⊂ Isom(M) be a discrete closed subgroup of isometries ofM generated by all reflec-
tions contained inW. We will call any such groupW a reflection groupof M. An open chamber
c ⊂ M is by definition a connected component of the complement of the union of all mirrorsM
for all reflections inW. Clearly,W acts transitively on the set of all open chambers. However,
thestabilizer groupWc may be non-trivial in general.

We say that

• TheactionW × M → M is Coxeterif Wc is trivial.

It is well known that the action is Coxeter whenM is simply connected [8] (and in this case
W is a Coxeter group), or whenM is asectionof a polar action on a simply connected manifold
([3, 12]). We will see below in Proposition 1.3 thatM admits a natural equivariantWc cover,
M′ with a Coxeter action byW. We will refer to this cover as theCoxeter coverof (M,W), or
simply of M.

The closureC = cl(c) is called aclosed chamberor simply achamber, and clearlyM/W =
C/Wc. In particular,M/W = C when the action is Coxeter. Moreover, any pointp in the
boundary∂C = C − c of C is in one or more mirrors (at most dimM). SinceW is discrete, it
follows that the isotropy groupWp for any suchp ∈ ∂C is a finite Coxeter group, and locallyC
is a finite union of strongly convex sets. Achamber faceof C is by definition a component of the
intersectionC ∩Λ, Λ ∈ M, which contains an open subset ofΛ. We can provide each chamber
face with a labeli ∈ I and will denote the face byFi and the corresponding reflection byr i. As
mentioned above, note though that different faces can correspond to the same reflection, i.e.,
possiblyr i = r j. Obviously,Wc takes chamber faces to chamber faces, the image of which
under the projection mapC → C/Wc = M/W constitute thefacesof the orbit spaceM/W.
By construction we note that the boundaries∂C and∂(M/W) are the union of chamber faces,
respectively of faces. Note that in general,C is not an Alexandrov space, whereasC/Wc = M/W
is.

We now proceed to investigate natural reflection groups induced fromW to covers ofM
beginning with the universal cover.

Consider the universal covering mapπ : M̃ → M, and letW̃ be the group acting oñM
consisting of all lifts of all elements ofW. ClearlyW̃ fits into an exact sequence

1→ π1 → W̃→ W→ 1,

whereπ1 := π1(M). Note that in general̃W is not a reflection group, and it may not be finitely
generated (even whenW is).

Now let Ŵ ⊳ W̃ be the normal subgroup generated by all reflections inW̃. Note that a
mirror for any such reflection ofM̃ is a connected component of the lift of a mirror inM.
SinceM̃ is simply connected,̂W is a Coxeter group which acts Coxeter onM̃ with chamberC̃.
Furthermore,C̃ = M̃/Ŵ is simply connected (see, e.g., Prop. 2.14 in [1] ).

Since bothπ1 andŴ are normal subgroups of̃W, so isŴ ∩ π1. Moreover, it follows that
Ŵ ∩ π1⊳ Ŵ andŴ ∩ π1⊳π1, with quotientsW andΓ := π1/Ŵ ∩ π1 respectively. We now claim
thatW̃/(Ŵ ∩ π1) is isomorphic to the direct productW × Γ, i.e., we have an exact sequence
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1→ Ŵ ∩ π1→ W̃→ W × Γ→ 1.

Indeed, this is an immediate consequence of the following algebraic lemma applied to the quo-
tient W̃/Ŵ ∩ π1.

Lemma 1.1. AssumêN contains two normal subgroupsN⊳N̂ andG⊳N̂ such thatN̂ = 〈N,G〉.
ThenN̂ = N × G, the direct product, ifN ∩ G = {1}.

Proof. By the assumption, conjugation by elements ofG defines a homomorphismρ : G →
Aut(N). Similarly, conjugation by elements ofN defines a homomorphismτ : N → Aut(G).
Note that, for anyx ∈ N andg ∈ G, we have

gxg−1 = ρ(g)(x), andx−1gx= τ(x)(g)

Thusgx= ρ(g)(x)g andgx= xτ(x)(g), and it follows thatρ(g)(x)g = xτ(x)(g). Hence

x−1ρ(g)(x) = τ(x)(g)g−1

where the left side belongs toN, and right side belongs toG. From the assumption,N∩G = {1},
it follows that both are trivial, in other words bothρ andτ are trivial, i.e,N andG commute. �

Thus, for the induced action byW = Ŵ/Ŵ ∩ π1 on M̂ := M̃/Ŵ ∩ π1, a covering space ofM
with deck transformation groupΓ = π1/(π1 ∩ Ŵ) we have

Corollary 1.2. The action byW on M̂ is Coxeter, it commutes with theΓ-action, and its
chambersĈ are isometric toC̃, in particular they are simply connected.

Proof. By construction, it is obvious that chambers ofŴ in M̃ are projected isometrically onto
chambers forW on M̂ and thatW acts simply transitive on its set of chambers inM̂, i.e., the
action is Coxeter. �

Note that in general the stabilizerΓĈ of a W chamber inM̂ is non-trivial and acts freely on
the chamber. Since the actions commute, this stabilizer is independent of the chamber and is
the kernelΓ0 of the inducedΓ action on the set of chambers in̂M. This now leads to our desired
“resolution” M′ = M̂/Γ0 of M, the Γ′ := Γ/Γ0 � Wc Coxeter coverof M, with chambers
C′ := Ĉ/Γ0:

Proposition 1.3 (Coxeter cover).Any manifold M with reflection groupW, admits a com-
muting lift to a regularΓ′ cover M′ of M with Coxeter action byW andΓ′ � Wc.

Proof. Again it is clear from the construction that the chambers of the inducedW action onM′

areC′, and thatW acts simply transitive on its set of chambers. Moreover,W commutes with
the induced action byΓ′ := Γ/Γ0 andW ∩ Γ′ is trivial.

To see thatΓ′ is isomorphic toWc, note that for anyγ′ ∈ Γ′ and any chamberC′ there is a
uniquew(γ′) ∈ W with γ′(C′) = w(γ′)(C′). It follows thatw(γ′) ∈ Wc and the mapΓ′ → Wc is
clearly a homomorphism. Conversely, given anyw ∈ Wc and chamberC′ projecting toC there
is a uniqueγ′ ∈ Γ′ such thatw(C′) = γ′(C′). �

Remark1.4. We remark thatW may not be a Coxeter group. However,Ŵ is a Coxeter group.
HenceW is a quotient group of̂W by a normal subgroup. Notice that if̂W is an irreducible
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spherical Coxeter group of rank at least 3, then the normal subgroup is in the center, which is
either trivial orZ2. Similarly, if Ŵ is an irreducible affine Coxeter group of rank at least 3, then
Ŵ = Zn

⋊ W0, whereW0 is an irreducible spherical Coxeter group. A normal subgroup is a
sublattice ofZn or an extension of such a sublattice by a centerZ2 in W0.

Remark1.5. From the structure of fundamental groups of manifolds with nonnegative cur-
vature, we know that bothπ1(M) as well asπ1(M̂) = π1 ∩ Ŵ ⊳ π1 are finitely generated, so all
groups in the discussion above are finitely generated in our context of nonnegative curvature.

Note also, that ifC′ is a simplex (or a product of simplices), which in nonnegative curvature
is often the case (cf. the subsequent sections), thenC′ = C̃ = Ĉ, i.e, Γ0 = {1} and M̂ is the
Coxeter cover ofM. It follows that W = Ŵ/π1(M̂) andWc = π1(M)/π1(M̂). In particular,
π1(M) ⊳ Ŵ if the action is Coxeter.

Motivated by 1.3 and the fact that sections of polar actions on simply connected manifolds
are always Coxeter,

• We will focus our attention to co-compact Coxeter actions throughout,

with the exceptions of 2.7, 4.5, and 4.6.

It is important to us that for Coxeter actions, the chambersC = M/W have a particularly nice
structure:

Remark1.6 (Coxeter chamber structure). By definition,C ⊂ M is convex, and assumingW
is finitely generated, its boundary∂C =

⋃
i∈I Fi is the union of its facesFi, i ∈ I := {1, . . . , k},

giving rise to a natural stratification ofC. To describe the stratification, it is convenient to use
the following notation: For any subsetJ ⊂ I setF̂J :=

⋂
i∈I−J Fi, andFJ :=

⋃
i∈J Fi, i.e., F̂J is

the intersection of faces opposite ofFJ. Note that forJ1 ⊂ J2 obviouslyFJ1 ⊂ FJ2, F̂J2 ⊂ F̂J1,
andFI = ∂C. By convention we set̂FI = C andF∅ = ∅.

With this notation all stratâFJ arelocally totally geodesic. At interior points, the fibers of the
normal bundle toF̂J is the orbit space of the normal slice representation of its isotropy group
WF̂J

= WI−J. SinceF̂J has codimension 1 in̂FJ− j for any j ∈ J it follows that thisnormal
bundle is flat and trivial, in fact it is “spanned” by parallel fields. In particular,C also has the
structure of asmooth manifold with corners, i.e., locally diffeomorphic to open balls ofRn

+. We
also point out that since the angle between any two faces is atmostπ/2, any of the stratâFJ are
extremal subsetsof the Alexandrov spaceC, see, e.g., the survey [14].

There are other natural and useful convex domains associated to C, namely the so-called
residuesof C. Here theJ-residue ofC, J ⊂ I is the setWJC, whose boundary isWJFI−J.

The above general structure forC is especially useful in the context of nonnegative curvature,
since it enables us to employ numerousstrong convexity argumentsthroughout. For example
the distance function onC to any faceFi ⊂ C or union of facesFJ (in particular the whole
boundary) isconcave. One is thus in position to apply correspondingSharafutdinov retractions
from C to the associatedsoulof C as in the original approaches to open manifolds in [5] and
[17] (This procedure even applies to super level sets of these concave functions as long as they
have maximal dimension).
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In the context described above, the general work of Wörner [20] about the structure of com-
pact Alexandrov spaces with nonnegative curvature and non-empty boundary, as well as Yim’s
work [22, 23] on theheavenof pseudo-soulsin a complete open manifoldM of nonnegative
curvature is very useful for us. Here by definition a subsetS ⊂ M is called apseudo-soulif it is
isometric to a soulS0 ⊂ M, and homologous toS0 in M.

2. Equivariant smooth rigidity: Not all faces meet

Unless otherwise stated we assume throughout thatM is a non negatively curved compact
or complete Riemanniann manifold with a co-compact reflection groupW acting in a Coxeter
fashion onM with chamberC.

We first point out that the maximal number of facesFi of C having non-empty intersection is
n. In fact, at a pointp of intersection the corresponding faces of the chamber in the unit tangent
sphere has at mostn faces, and in the latter case this is a spherical (n − 1) simplex, actually a
fundamental domain for the isotropy groupWp of W at p [10] (for a more general result we
refer to [21]). Also note, that ifn faces ofC have non-empty intersection, then the intersection
consists of isolated points. It follows that, either:

• All faces intersect, in which caseC has at most 1≤ k ≤ n faces, or
• There is a minimal 0≤ k ≤ n such that: There existk+ 1 faces with empty intersection.

The above discussion applies to general Alexandrov spaces with nonnegative curvature, for
which Wörner [20] proved the followingSplitting Theorem:

Theorem 2.1 (Wörner). A compact n-dimensional Alexandrov space A, with non-emptybound-
ary, not all of whose faces meet is isometric to a product Xn−k × Yk of non negatively curved
Alexandrov spaces, where X is isometric to the intersectionof k faces of C, with k chosen as
above.

Remark2.2. It also follows (cf. [20]) that the maximal number of faces ofA is 2n, in
which caseA is a product of intervals. When applied toC, we conclude in particular thatW is
generated byk ≤ 2n elements.

Repeated applications of 2.1 above yields a metric splitting of the Coxeter chamberC of the
form

(2.3) C = ∆1 × . . . × ∆r × V × N

whereN is a closed non negatively curved manifold (typically a point), and each of the remain-
ing factors is a smooth non negatively curved convex manifold with corners, and boundary face
structure given by

(1) ∆i has more thanni = dim∆i faces, but anyni faces of∆i meet,
(2)V hask ≤ dimV faces and they all meet.

The presence of a non-trivialN occurs when taking products with a trivial action onN (cf. 5.2).

Our objective in this section is to begin an analysis of the case whereC has only one factor,
and this factor is of the first kind∆. We will refer to this as themaximal indecomposiblecase.
The following is crucial
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Lemma 2.4 (Simplex). When the action is maximal indecomposible, C is an n-simplex.

Proof. Consider (any)n+1 facesF1, . . . , Fn+1. First note that anyn of them intersect in exactly
one point. If say, e.g.,F1∩ . . .∩Fn contains at least two points, then (each component of) the 1-
dimensional strata, e.g.,F1∩. . .∩Fn−1 is a geodesic joining two points ofF1∩. . .∩Fn. NowFn+1

must intersect at least one of these geodesics at an interiorpoint, which is clearly impossible.
Thuspi = F1∩ . . .∩ F̂i ∩ . . .∩ Fn+1, i = 1, . . . , n+ 1 aren+ 1 vertices ofC. Now suppose there
is another faceFn+2. Using the same reasoning it follows that then + 1 intersections of anyn
amongFn+2, F1, . . . , Fn coincide with the verticespi , i = 1, . . . , n+ 1. This on the other hand is
impossible unlessFn+2 = Fn+1, i.e.,C has exactlyn+ 1 faces.

Now consider a vertex, saypn+1 and its opposite faceFn+1. From Lemma 5.1 in [20] we
immediately get thatpn+1 is the set at maximal distance toFn+1, in particular it is the soul of
C constructed from dist(Fn+1, ·). Using that all non-maximal super level sets of dist(Fn+1, ·) are
convex we construct (applying a standard partitian of unityargument starting inductively at the
most singular strata involvingF1, . . . , Fn and thenFn+1) a smooth gradient like vector field on
C−{pn+1}which is tangent to all strataF1, . . . , Fn, radial nearpn+1 and transverse toFn+1. Since
a small ball aroundpn+1 in C is clearly a simplex, this competes the proof. �

Remark2.5. An alternative proof of the above claim using only Riemannian geometry, i.e.,
not appealing to [20] can be carried out by considering the convexJ = {1, . . . , n} residueApn+1 :=
Wpn+1C = ∪w∈Wpn+1

wC of C in M, whereWpn+1 = WJ is the isotropy group ofpn+1. Note, that
∂Apn+1 is the union of faces oppositepn+1, and thatApn+1 has smooth totally geodesic interior,
with pn+1 an interior point. Now one applies Riemannian convexity arguments as in the soul
theorem in aWpn+1 equivariant fashion, which eventually leads to the conclusion that the soul
of Apn+1 is {pn+1}.

Note that if all mirrors meet in the Coxeter coverM′ of M, they certainly meet inM as well.
So the assumptions in Theorem A in particular imply that its Coxeter chamber by the above
lemma is a simplex. Thus the following Theorem and its Corollary will complete the proof of
half of Theorem A in the introduction.

Theorem 2.6 (Spherical space form).Let(M,W) be a compact nonnegatively curved Coxeter
manifold with finite fundamental group and chamber C a simplex. Then M admits aW invariant
metric of constant curvature1.

Proof. By 1.5, π1(M) is a normal subgroup of the Coxeter groupŴ acting on the universal
cover M̃. By assumptionM̃ is compact and hencêW is a finite Coxeter group, acting simply
transitively on its set of chambers. In this case all tangentcones at any point of a boundary strata
of a chamberC̃ = M̃/Ŵ (= C) is isometric to a corresponding tangent cone for the linearaction
by the Coxeter group̂W on Sn. From the above lemma and arguing as in Corollary 2.10 of
[10] we see that̃C admits a metric of constant curvature 1, which extends viaŴ to an invariant
metric onM̃. Sinceπ1(M) ⊳ Ŵ one gets an induced constant curvature metric onM invariant
underW. �

In the above theorem it is well known thatπ1(M) ⊳ Ŵ is either trivial orZ2 acting as the
antipodal map on the sphere. This has the following somewhatsurprising consequence:
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Corollary 2.7. Let M be compact non negatively curved manifold with finite fundamen-
tal group. Then any reflection groupW, whose Coxeter lift has simplex chambers admits an
invariant metric of constant curvature.

Proof. From 2.6 and 1.5, we know that the Coxeter coverM′ = M̂ is eitherSn or RPn with an
invariant metric of nonnegative curvature. Recall that by construction of the Coxeter cover in
1.3 the action byΓ′ � Wc on M′ commutes with theW action. In particular, any mirror as well
as its complement is preserved byΓ′. If M′ isRPn such a complement is a (convex) open disc,
whose soul must be a point preserved byWc. But since the action is free,Wc must be trivial.

If M′ is Sn, it follows thatΓ′ = π1(M) commutes withŴ = W. Arguing as in the projective
space case, it follows thatWc � Γ

′ is either trivial orZ2 = 〈a〉. In the latter case note thata
induces an automorphism ofW which is reflected also in the induced action, by sayA on the
orbit space simplexSn/W. Now A fixes the soul point of the simplexSn/W and maps vertices
according to the induced automorphism of the diagram forW. Now using convexity and critical
point theory arguments〈A〉-equivariantly, we conclude that̂C = Sn/W admits anA-invariant
metric of constant curvature, analogous to the proof of Corollary 2.10 of [10], just like its linear
model. It follows, thatM admits an invariant constant curvature metric, i.e.,M = RPn and
Wc � Γ

′ = π1(M) acts onSn as the antipodal map. �

Remark2.8. We will see that whenM has non-compact universal cover, and the action is
indecomposable, then sections are flat. In particular,C′ is a flat simplex when the action is
maximal indecomposable. This will lead to a proof of the sencond half of Theorem A in the
introduction (cf. the Torus Theorem 4.5).

3. Open book structures: All faces meet

In this section we will develop complete structure results for Coxeter manifolds of nonneg-
ative curvature, where all mirrors meet, equivalently the chamberC = V in the splitting 2.3.
These Theorems will have Theorem B of the introduction as an immediate consequence.

As in the case of maximal indecomposible Coxeter actions it is crucial to understand the
structure of a chamberC. Note that in the case under consideration, there arek ≤ n mirrors inM
and their intersection coincides with the fixed point setMW, which inC is also the intersection
B := F1 ∩ . . .∩ Fk of all its faces, i.e.,̂F∅ recalling our notation from 1.6 to be used throughout
below. Moreover, for each ofp ∈ B, W acts effectively on the normal sphereS⊥ = Sk−1 ⊂ Rk to
B at p, andW is a finite Coxeter group.

For each faceFi we let Si ⊂ C be the soul inC associated to the distance functiondi :=
dist(Fi , ·) to Fi. Recall that by construction,Si is the image,S hi(C) of the associated Sharafut-
dinov deformations retraction,S hi : C → C of C. Since, this retraction is a concatenation of
gradient pushes, and gradient pushes preserve extremal sets [14] it followsimmediately that

• For eachi ∈ I , the soulSi meets every component ofF̂i.

In particular, ifSi ⊂ F̂i it follows that F̂i is connected. Moreover,

Lemma 3.1 (Reduction). If Si is not a subset of̂Fi, it is perpendicular to it, and the normal
slice representation ofW along B is reducible.
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Proof. Consider theI−i residueWF̂i
C of C with boundaryWF̂i

Fi. Clearly, the usual Riemannian
construction of the soul ofWF̂i

C is WF̂i
invariant and equivalent to working onC. In particular,

its soul isWF̂i
Si, a totally geodesic sub manifold ofWF̂i

C. Pick a pointp ∈ Si ∩ F̂i ⊂ WF̂i
Si.

Obviously, the tangent space to the soulWF̂i
Si of WF̂i

C at p is WF̂i
invariant. If this is not a sub-

space of the tangent space toF̂i, its complement is perpendicular to it, i.e.,Si is perpendicular
to F̂i.

If Si − F̂i , ∅, there is a smallest strataD = F̂J containingSi and meeting it at interior points
of D. Suppose first thatD = C and letpq be a minimal geodesic fromp ∈ c ∩ Si to Si ∩ F̂i,
andpqi a minimal geodesic fromp to Fi. Clearly, pqi is perpendicular topq as well as toFi.
It follows that pqi and pq are adjacent edges in an isometrically embedded flat rectangle in C
with opposite edges inFi, respectively a minimal geodesicγ from Si ∩ F̂i to Fi. Sinceqp is not
on the boundary of the normal space of directions toF̂i in C atq, it follows thatγ is a geodesic
in F̂i, and in particular we see that theW normal slice representation is reducible.

In general, ifSi is not contained inF̂i, let D = F̂J be the smallest strata containingSi and
meeting it at interior points. In the residue,WF̂i

C consider the corresponding totally geodesic
subsetMWI−J ∩ WF̂i

C, i.e., the intersection of the residue with the mirrors determined byF̂J.
Clearly the soul of the residue is contained in this subset. Moreover, the Sharafutdinov retraction
of the residue preserves the subset, and since it is totally geodesic, this restricted deformation
retraction is also distance non-increasing with respect tothe intrinsic metric on the set. From
these properties, it follows as in the original approach by Sharafutdinov (cf. also [22]) that the
intrinsic soul of the subset is isometric to “extrinsic” soul, i.e., the soul of the residue. Again by
invariance, it follows that the intrinsic soul of the strataD is isometric toSi, and in particular
intersectsD at interior points. The proof is now completed as above. �

We are now ready to describe the structure ofC, when the actionρ of W on the normal spaces
R

k to B is irreducible.
Note that for eachi, the strataF̂i is a connected, compact non negatively curved manifold

with boundaryB. Moreover, whenSi is contained inF̂i it follows (as in the proof above) that
F̂i has the structure of a disc bundle of a non negatively curved vector bundleνi overSi.

Using the description in the model examples of the introduction, we will show that for each
i, M is equivariantly equivalent to the open bookMρ,νi = S(νi ⊕ ε

k) =: S(νi , ρ)→ Dk. To do this,
we will show thatC = M/W is S(νi ⊕ εk)/W → Dk/W = cone(∆k−1

s ), where∆k−1
s = Sk−1/W.

Due to this description, we also say thatC = S(νi ⊕ εk)/W is a book with bindingB and
pagesD(νi) = F̂i parametrized by∆k−1

s . Indeed, with∆k−2
s being the space of directions in∆k−1

s

opposite its face labelledi, we have:

Lemma 3.2 (Book chamber).If the action byW on normal spaces to B is irreducible, andW
has rank k≤ n, then C has the structure of the ball bundle ofνi × cone(∆k−2

s ).
Alternatively, C has the structure of a book with binding B and pagesF̂i parametrized by

∆k−1, the normal space of directions in C along B.

Proof. Since by the reduction lemma 3.1, the soulSi ⊂ F̂i for di := dist(Fi , ·) is a totally
geodesic sub manifold, and also a soul forF̂i, the first claim is an immediate consequence of
the soul construction forC (or alternatively for itsI − i residue), recalling that the normal bundle
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of C to F̂i along interior points (includingSi), is spanned byk − 2 parallel fields (see remark
1.6).

For the same reason,Fi is the “sphere bundle ” boundary of this bundle, i.e., the normal space
of directions bundle ofSi in C. Note, that each fiber of this bundle is the join of a normal sphere
to Si in F̂i with ∆k−2

s . Moreover, the bundle orthogonal tôFi is trivial.
Viewing the joinSm ∗ Sk−2 → Dk−1 = cone(Sk−2) as ak − 2 dimensionalopen bookwith

bindingSm and pagesDm+1 (following the flow lines for the gradient of the distance function
to either sphere), provides the desired induced structure on Sm ∗ ∆k−2 ⊂ Sm ∗ Sk−2. This in turn
yields the book structure onFi and then for all ofC, using that the simplex bundle overSi is
trivial. Specifically, one constructs (much like in [11]) a smooth vector field onC which is
radial nearB, tangent to all strata and transverse to the sub manifold with corners,Si × ∆

k−1,
that emerged from the soul construction. Using that all normal bundles to all strata are trivial as
observed in 1.6, one can also arrange thatSi × ∆

k−1 ⊂ C is perpendicular to all strata. �

The following is now a simple consequence of the fact that allconstructions above can be
carried over toM equivariantly, and noting the same structure on the sphere bundleS(νi ⊕ εk)
of νi × Rk equipped with the obvious action byW.

Theorem 3.3 (Open Book).Let (M,W) be a non negatively curved Coxeter n-manifold with
rank k ≤ n, where all mirrors meet in B= MW. If the normal representationρ along B is
irreducible, then M is equivariantly diffeomorphic toS(ν ⊕ εk), whereν is a non negatively
curved vector bundle with sphere bundle B.

Alternatively, M is an open book with binding B and non negatively curved pagesD(ν)
parametrized bySk−1.

Remark3.4 (Converse). We point out that conversely we can construct aW invariant metric
with nonnegative curvature on a manifold with these data. Todo this we use the open book
description ofS(ν⊕εk) = S(ν)×Dk∪∂D(ν)×Sk−1, whereS(ν)×Dk is a small tubular neighborhood
of B = S(ν) ⊂ S(ν ⊕ εk), and theW-action can be written as the gluing of the linear actions on
each piece. By [13] we can modify the metric onν so that it is product near infinity. We take
product metrics onD(ν) × Sk−1 and onS(ν) × Dk, where the metric onDk is also a product near
the boundary. The desired claim follows.

Remark3.5. Note thatM is a sphere, if the soulSi is a point, and in this case the action is a
suspension or iterated suspension of the irreducible normal sphere action byW.

Also, B can have at most two components, and if it does,ν is a trivial line bundle,Si is
isometric toB, andM = Si ×S

k. If in this case,Si is not a point,M is actually metrically a
product, and the action on the second factor is the suspension of the normal sphere action by
W, and the metric is invariant with nonnegative curvature (cf. remark about heavens below).
In particular, the orbit spaceM/W = B× (Sk/W) splits, but this is the only decomposable case
wheren faces meet and the normal action to the binding is irreducible.

Remark3.6 (Spherical heavens). In the situation of the open book theorem any two souls
Si andS j obviously have the same homotopy type, namely that ofC. In fact, since the corre-
sponding Sharafutdinov maps are distance non-increasing deformation retractions ofC and the
souls are closed manifolds, it in fact follows as in [22] thatthey are isometric.
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When the souls are not points, it turns out that in fact much more structure compatible with
the open book description is present. This is because there is a large family of choices for
”Sharafutdinov retractions”. To explain this, note that for any J-tuple of nonnegative numbers
aJ = {ai ≥ 0}i∈J the subset

CaJ = {p ∈ C | dist(p, Fi) ≥ ai , i ∈ J}

is convex when non-empty. Clearly, this set can be obtained fromC by applying various ”partial
Sharafutdinov retractions”. Moreover, when non-collapsed, i.e., dimCaJ = n one can consider
any union or intersection of itsk faces as in the case ofC whereaJ is the trivial J tuple. For
such non-collapsed convex setsCaJ we can utilize further Sharafutdinov retractions associated
to any face or union of faces of it. It follows, that all souls obtained in this fashion are isometric.
Even more, the arguments of [23] carry over to our case verbatim since they pivot only around
distance non increasing deformation retractions on convexsubsets of a Riemannian manifold.
As a result,M contains a totally geodesicspherical heaven, H of pseudo souls isometric to
the product ofS with a non negatively curved metric on anℓ-sphere, whereℓ ≥ k − 1 is the
dimension of the flat trivial sub bundle of the normal bundleS⊥ to S in M spanned by all
parallel fields. Hereℓ = k−1 whenν has a unique soul, in which case, the heavenH = S×Sk−1

provides a canonicalW-invariant “edge” of the open book opposite its binding. When ℓ > k−1,
ν = ν0 ⊕ ε

ℓ−k+1 and the heaven intersects the binding in a product ofS with a nonnegativey
curved metric on anℓ − k sphere, and in this caseM = S(ν0 ⊕ εℓ−k+1 ⊕ εk) = S(ν0 ⊕ εℓ+1) of
course also has an open book structure with binding the sphere bundle ofν0, and pages the disc
bundle ofν0 parametrized by anℓ-sphere. In the latter description, however we do not know if
ν0 supports a non negatively curved metric.

It remains to consider, the situation where the action byW on the normal spaces toB is
reducible. In this case,W = W1 × · · · ×Wℓ, acts in a component-wise fashion on the normal
sphereS⊥ = S(Rk1)∗· · ·∗S(Rkℓ ). We point out here that in our formulation below, the component
of theWi action is not necessarily required to be irreducible.

Although we are primarily interested in the indecomposablecase, we point out that the prod-
uct (M1 × . . . × Mℓ,W1 × . . . ×Wℓ) of anyℓ irreducible non maximal indecomposable actions
(Mi ,Wi), i = 1, . . . , ℓ provides a decomposable example where all mirrors meet. Ourdescription
below will include this.

Before, formulating our result, we elaborate further on thenotion of aniterated open book,
which is based on having leaves being manifolds with corners:
Suppose for example,P is a manifold with corners, the most “singular” having localtypeRn−k×

R
k
+. An ℓ1 dimensional open book with pagesP and binding a manifold with corners of type
R

n−k × Rk−1
+ will then be a manifold with corners of typeRn−k+ℓ1 × Rk−1

+ , i.e., having decreased
the corner type by one. This way,k open book iterations results in a manifold without corners.
Note that ak-fold iterated open bookN has apage map L= (L1, . . . , Lk) : N → Dm1 × . . .×Dmk

with k coordinates, where a page is of the formL−1(I k), where each factorI is a radial line in
the corresponding disc. We will refer toL−1(0, . . . , 0) as thepivot bindingof the iterated book.

A special case of this arises as described in the model examples of the introduction:
Given ℓ linear representationsρi of finite Coxeter groupsWi on Rki , andℓ smooth vector

bundlesνi with baseS. The obviousW = W1 × . . . ×Wℓ action on the product of the bundles
νi ⊕ ε

ki induces aW action on thefiber product, Mρ̄,ν̄ := S(ν̄, ρ̄) of the sphere bundlesS(νi ⊕ εki ),
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i.e., the pull back by the diagonal map∆ : S→ S× . . .×S of the product of the sphere bundles
S(νi ⊕ εki ). As in the case of a single representation and bundle as above, there is a canonically
associatedW equivariant page mapL : Mρ̄,ν̄ → Dk1 × · · · × Dkℓ whereB = L−1(0, . . . , 0) is the
intersection of all mirrors forW, andP = L−1([0, 1]x1, . . . , [0, 1]xℓ) for any x̄ ∈ Sk1−1× . . .×Skℓ−1

is a manifold with corners diffeomorphic to the fiber productD(ν̄) of the disc bundlesD(νi).

Theorem 3.7 (Iterated open book).Let M be a compact nonnegatively curved CoxeterW-
manifold where all mirrors meet. Then there is a splitting (allowing one factor) of the normal
slice representation splits as̄ρ = ρ1 × . . . × ρℓ onS⊥ = S(Rk1) ∗ · · · ∗ S(Rkℓ ), such that M isW-
equivariantly diffeomorphic to a fiber product, M̄ρ,ν̄ := S(ν̄, ρ̄). Moreover, the fiber product of
any ofν1, · · · , νℓ mutually orthogonal sub bundles, is a totally geodesic subbundle of the sum of
all of them, a vector bundle with non-negative sectional curvature over a soul S of the chamber
C.

Alternatively, M is an iterated open book with pivot bindingB and page a non negatively
curved fiber productD(ν̄) with ortogonal totally geodesic subbundlesD(νJ), J ⊂ {1, . . . , ℓ} with
right angles at all corners along its totally geodesic boundary strata.

Proof. For aW-invariant decomposition ofS⊥, we apply Theorem 3.3 to theW1-action onM. It
follows thatM is W1-equivariantly diffeomorphic to a sphere bundleS(ν1 ⊕ εk1) overS1, where
S1 is the soul of a chamber,C1 for theW1-action onM. As seen in the proof of Lemma 3.2,
D(ν1) can be taken to be any of the strataF̂1

i in C1, and the fixed point set of theW1 action, i.e.,
the intersection of allW1 mirrorsΛ1

i , is the subbundleS(ν1) =: B1 =
⋂

i Λ
1
i . Note that, sinceW j,

j , 1 fixes the normal spaces toB1 alongB = MW, the totally geodesic sub manifold̂Λ1
i ⊂ M

(the double ofF̂1
i ) is invariant underW2× . . .×Wℓ for anyi. In addition, sincêΛ1

i = S(ν1⊕ ε
1),

we are in position to complete the proof by induction.
Specifically, we note thatW2 acts onM = S(ν1 ⊕ εk1) ց S1 in a fiber preserving fashion

commuting with theW1-action. If W2 acts trivially on the base, thenW2 acts linearly along
the fiber, henceν1 = εk2 ⊕ ν′1 and M = S(ν′1 ⊕ ε

k1 ⊕ εk2) ց S1 with its W1 × W2 action.
Therefore, we may assume that, the action of each factorWi, i ≥ 2, is nontrivial onS1, hence
S(ν1 ⊕ εk1)ց S1 is an equivariantW2 × · · · ×Wℓ bundle. By induction we may assume that the
soulS1 is W2×· · ·×Wℓ equivariantly diffeomorphic to a fiber productS(ν̂1, ρ̂1) of Sphere bundles
S(νi⊕εki ), i , 1 over a totally geodesic submanifoldS ⊂ S1, whereS is the soul of a chamber of
theW2×· · ·×Wℓ action onS1. In particular, the orbit space of theW2×· · ·×Wℓ action onS1 is the
fiber product of the chambers in the disk bundlesD(ν2⊕εk2−1), · · · ,D(νℓ⊕εkℓ−1). Therefore, the
orbit space of theW-action onM is the fiber product of chambers ofD(ν1⊕εk1−1),D(ν2⊕εk2−1),
· · · ,D(νℓ ⊕ εkℓ−1), where the double ofD(ν1 ⊕ εk1−1) is the restriction of the sphere bundle
S(ν1 ⊕ εk1) to S. It follows thatM is W equivariantly diffeomorphic to the fiber productS(ν̄, ρ̄)
of S(νi ⊕ εki ) overS. �

Remark3.8. We leave the details of the proof of the (equivalent) iterated open book state-
ment to the reader. Here, rather than using the induction hypothesis on the soulS1, one uses it
on the wholeW2 × · · · ×Wℓ invariant pageD(ν1). We also point out that each irreducible sub
action gives rise to a coordinate page map for an open book decomposition as in Theorem 3.3.
All together one gets aW equivariant page mapF : M → Dk1 × . . .×Dkℓ with pages as claimed.
As in the case of the open book description, one gets even moregeometric structure when the
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normalW action is reducible. For example, one gets several heavensHi corresponding to the
Wi sub-actions, and their (orthogonal) intersections as totally geodesic submanifolds ofM.

We note that
• The chamberC is a bundle over the soulS with fiber the productSi1 ∗ ∆1 × · · · × S

iℓ ∗ ∆ℓ.

Remark3.9 (Reconstruction). As in the remark 3.4, the non-negatively curved metric onM
can be constructed from aW2×· · ·×Wℓ-invariant complete metric of non-negative curvature on
the vector bundleν1 overS1, by modifying the metric near infinity (cf. [13]) in aW2 × · · · ×Wℓ
invariant fashion.

Alternatively one can use the iterated open book description to achieve this as soon as the
nonnegatively curved page metrics have been modified so as tobe product metrics along the
boundary and its corners. This again is done inductively using [13] combined with the informa-
tion that say the disc bundlesD(ν1) and the fiber product of the remaining disc bundlesD(ν̂1)
are orthogonal totally geodesic sub bundles of theD(ν̄), so that either one of these manifolds
with corners can be used a soul of the page.

Prompted by the structure emerged in this section, we raise the following questions:

Problem 3.10. Are there obstructions for the sum/ quotient of two non negatively curved
bundles with common soul to have nonnegative curvature?

4. Metric rigidity: Non compact universal cover

Our main goal in this section is to derive rigidity properties for nonnegatively curved man-
ifolds M having noncompact universal cover and supporting a cocompact reflection group. In
particular, we will see that the action is indecomposable ifand only if M is flat with Coxeter
chamberC′ a euclidean simplex. Moreover, in this caseM is either a flat torus or flat eucidean
space.

We begin with the case whereM itself is non-compact (and complete).
By the Cheeger - Gromoll soul theorem such a manifold contains a metrically embedded,

totally convex compact submanifoldS (a soul ofM) whose normal bundle is diffeomorphic
to M. Moreover, by Corollary 6.2 in [5],M splits uniquely as a product̄M × Rk, where the
isometry groupI (M̄) of M̄ is compact andI (M) = I (M̄) × I (Rk). Thus in the presence of a
cocompact isometric action their work immediate yields

Theorem 4.1 (Strong Splitting).Assume M is a complete open manifold of nonnegative cur-
vature with a cocompact isometric group action. Then M is isometric to a metric productRk×S ,
where S is a soul of M.

In particular,

Corollary 4.2 (Noncompact Indecomposible).A complete open manifold M with nonnega-
tive curvature and cocompact reflection groupW is indecomposable if and only if M is isometric
to flat euclideanRn andW is an affine Coxeter group with chamber C= M/W a euclidean n-
simplex.
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Here the last claim follows from the fact, that the factors in2.3 all must be euclidean simplices
for any cocompact Coxeter action onRk, and that a co-compact Affine Coxeter group has orbit
space a simplex if it is indecomposable, or in this case equivalently irreducible.

Also, for M compact with infinite fundamental group we get

Proposition 4.3. Let M be a compact non negatively curved manifold with infinite funda-
mental group and reflection groupW. Then, the action is decomposable unless M is flat.

Proof. From the Cheeger-Gromoll-Toponogov splitting theorem [18, 6] we know that the uni-
versal cover ofMn splits isometrically asRk×N, whereRk is flat euclideank-space,k ≥ 1 andN
is a compact simply connected nonnegatively curved manifold. Since mirrors for the lifted re-
flection groupŴ contain either anRk factor or anN factor we have that̂W = ŴRk×ŴN, yielding
a nontrivial splitting for theŴ chamber unlessN is a point. The desired result follows. �

Throughout the remaining part of this sectionM is a compact flat manifold. We start with
the following simple observation, concerning actions where the Coxeter chamberC′ does not
contain any simplex factors in 2.3:

Lemma 4.4 (Flat open book).Assume M is a compact flat manifold with a Coxeter action by
a reflection groupW. If all mirrors meet, thenW � Zk+ℓ

2 and M is isometric to N×Zℓ2 T
ℓ × Tk,

whereZℓ2 acts freely on a compact flat manifold N,Zℓ2×W ⊂ I (S1)ℓ+k acting componentwise on
T

k+ℓ = S1 × · · · × S1 by reflecions.

Proof. It is clear that the intersection of mirrors is a flat manifold. Let N denote a fixed point
connected component. From 3.3, respectively 3.7 we know that M is a bundle with fiber a
sphere respectively a product of spheres over a soul. Being flat, the soulS must be flat, and the
fiber must be a product of circles. Therefore,M is the fiber product ofS1-bundlesS(νi ⊕ ε),
whereνi, 1 ≤ i ≤ k + ℓ, are all real line bundles overS. Assume the firstℓ bundles are
nontrivial, and respectively the lastk bundles are trivial. In particular,N is a freeZℓ2 bundle
overS. It is clearW � Zk+ℓ

2 acting onTk+ℓ by componentwise reflections, commuting with the
componentwiseZℓ2 action on the firstℓ factors (different from theW action on the component,
note thatZ2 × Z2 ⊂ I (S1).) The desired result follows. �

It follows in particular that the action is indecomposable if and only if the chamber of its
associated Coxeter action is a euclidean simplex. Moreover, by 1.5 we know that if the Cox-
eter coverM′ of M has chamber a simplex, thenπ1(M′) ⊂ Ŵ, and theŴ chamber inM̃ is a
simplex as well. However, as pointed out above, it then follows that the affine Coxeter group is
irreducible.

Recall that, an irreducible affine Coxeter groupW of rankmmust be one of types̃Am, B̃m, C̃m,

D̃m, Ẽ6, Ẽ7, Ẽ8, F̃4, G̃2 (cf., e.g., [4]), andW = Zm
⋊ W0, whereW0 is an irreducible spherical

Coxeter group, of typeAm, Bm = Cm, Dm,E6,E7,E8,F4,G2. We say that a reflection group
W acting on a flat manifoldM is irreducible if the Ŵ action onRm is irreducible. With this
terminology, we now know that theW action is indecomposable if and only if it is irreducible,
if and only if its Coxeter chamber is a simplex.

Before proving our main result below about irreducible actions, recall that by Bieberbach’s
celebrated theorem, a finite cover ofM is isometric to a flat torusTm = Rm/Zm. Note that
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every isometry ofTm lifts to a lattice preserving isometry ofRm, whose isometry group is
I (Rm) � Rm

⋊ O(m), and vice-versa. Therefore,I (Tm) containsTm as a normal subgroup with
quotient a finite subgroup ofO(m).

In view of lemma 4.4 and subsequent comments above, the following in particular completes
the proof of Theorem A in the introduction:

Theorem 4.5 (Torus Theorem).Let M be a compact flat manfiold with an irreducible/ inde-
composable reflection group action byW. Then

(1) M is a flat torusTm.
(2) TheW action is Coxeter.
(3) W � A⋊W0, whereA is a finite abelian group of rank at most m, andW0 is a finite

irreducible spherical Coxeter group.

Proof. By Bieberbach’s theorem,M = Tm/G whereG ⊂ O(m) is the holonomy. Note thatG
preserves the latticeZm ⊂ Rm, henceG is also a finite subgroup ofGL(Z,m).

By section 1,W lifts to a reflection groupŴ ⊂ W̃ ⊂ I (Rm) = Rm
⋊ O(m) such thatW̃/π1 =

Ŵ/(π1 ∩ Ŵ) = W. Recall thatŴ = Zm
⋊ W0, whereW0 is a maximal finite subgroup of̂W,

a spherical Coxeter group. Sinceπ1 is a torsion free group,π1 ∩ Ŵ is a torsion free normal
subgroup ofŴ, and henceπ1 ∩ Ŵ ⊂ Zm is a sublattice. In particular, the split epimorphism
Ŵ→ W0 induces a split epimorphismW = Ŵ/(π1∩ Ŵ)→ W0 with kernel,A, a quotient of the
sublattice inZm. Hence (3) follows.

Now we prove (1), i.e.,G is trivial. Recall thatπ1 is a normal extension ofZm by G. Hence
the holonomy homomorphism gives an epimorphism fromΓ = π1/π1 ∩ Ŵ onto G ⊂ O(m).
By Corollary 1.2,Γ ×W acts on a flat covering spacêM of M, henceG commutes withW0,
the image ofŴ in O(m). In particular, everyg ∈ G commutes with everyw ∈ W0 ⊂ O(m).
Therefore, the linear irreducible CoxeterW0 action commutes with the linearG-action onSm−1.
It follows thatG ⊂ Z2 = 〈±I〉, generated by the antipodal map. IfG = Z2, thenπ1 is a normal
extension ofZm by Z2 with monodromy−I. Such an extension always splits, contradicting the
fact thatπ1 is torsion free.

Given (1),W̃ is an extension ofW byZm, hence, by (3), a split extension overW0 with kernel
a subgroup of translations ofRm. If theW action is not Coxeter, thenWc is isomorphic to a finite
subgroup ofW̃ (in fact, isomorphic to a chamber isotropy group ofW̃ onRm), hence a subgroup
of a conjugate ofW0 in W̃. Therefore,Wc is trivial, since theW0 action onRm is Coxeter. The
desired result follows. �

The proof above, in fact also yields the somewhat surprisingstatement, that if the Coxeter
chamberC′ only contains simplex factors in its decomposition 2.3, then in particular it is Cox-
eter (cf. 5.3). Precisely we have:

Corollary 4.6. Let M be a compact flat manifold with a reducible reflection groupW, where
Ŵ = Ŵ1×· · ·×Ŵk such thatŴi is irreducible. If the chamber C′ is a direct product of euclidean
simplices∆1×· · ·×∆k, then M= Tm/G, where the holonomy groupG ⊂ Z2×· · ·×Z2 a subgroup
of GL(Z,m) consists of block matrices with i-th block±I. Moreover, theW action is Coxeter.

It is easy to see that, ifM is as in the above corollary, then it is an iterated torus bundles with
structure groupZ2.
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The Klein bottle is the simplest example of the above type. Specifically, we have:

Remark4.7. Any reflection groupW on a Klein bottleK is reducible. Moreover, ifC′ is a
product of intervals, thenW � D2k×Z2, or D2k×Z

2
2 for k odd, orD2k×Z2Z

2
2 for k even, where

D2k is the dihedral group of order 2k, Z2 is the center ofD2k in the balanced product.

The first assertion follows immediately from 4.5. Note thatK is the quotientT2/〈γ〉, where
the involutionγ is given by (x, y) 7→ (−x, ȳ), with x, y ∈ S1 ⊂ C unit complex numbers. From
4.6 we know thatW is the quotient of the product of reflection groups onR1, hence, from 4.5 (3),
the quotient of the product of two dihedral groupsD2k×D2l acting componentwise onS1 × S1,
for somek, l ≥ 1. Moreover, the reflection groupD2k×D2l commutes with the deck involution
γ, i.e.,wγw−1 = γ for anyw ∈ D2k×D2l. Therefore,l = 1 or 2. If k is even, the center ofD2k

is Z2 generated by the antipodal map onS1, henceγ ∈ D2k×D4. By the assumption onC′ we
know that, ifl = 1, thenD2 is not the complex conjugation onS1. From the fact that the quotient
of a dihedral group is again a dihedral group the second assertion follows.

5. Universal cover and group decomposition

Our objective in this section is to prove Theorem C and Corollary D in the introduction.
To do this assume without loss of generality that the co-compactW action onM is Coxeter

with chambers,C = M/W. Based on the previous sections and 2.3 we have a metric decompo-
sition of the form

(5.1) C =
r∏

i=1

∆e
i ×

ℓ−1∏

j=1

∆s
j × Vℓ × N

whereN is a closed non-negatively curved manifold without boundary (possibly a point), the
∆e

i are euclidean simplexes (including intervals),∆s
j are spherical simplices, andV is a (iterated)

book chamber.
We start with a simple observation

Lemma 5.2 (Trivial factor). The above M is isometric tōM ×N whereW acts trivially on N,
andM̄ is a non-negatively curved CoxeterW-manifold with orbit space as above without the N
factor.

Proof. Consider the composition of submetriesp : M → M/W → N. This yields a horizontal
and vertical splitting of the tangent bundle ofM, both of which are integrable and totally geo-

desic. Clearly the fiber̄M supports an inducedW-action, with chamber̄C =
r∏

i=1

∆e
i ×

ℓ−1∏

j=1

∆s
j×Vℓ.

Using the decomposition (5.1) we can define an equivariant map f : M → M̄×N by identifying
a chamberC with C̄× N, a chamber for the productW-action onM̄ ×N, whereW acts trivially
onN. It is clear thatf is a diffeomorphism which restricts to an isometry on every chamberwC,
for anyw ∈ W. The desired result follows. �

The following shows that (5.2) does not hold unless the action is Coxeter.
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Example5.3. Consider the product action onSm×Sn of a linear irreducible CoxeterW action
onSm and the trivial action onSn. LetSm×Z2 S

n be the orbit space of the free diagonal antipodal
involution. Then the inducesW-action onSm ×Z2 S

nis not Coxeter. A chamberC is isometric
to ∆ × Sn, but the chamber isotropy groupWc = Z2 acts freely on the product with orbit space
∆ × Pn.

Note, that this example may be modified by replacing the antipodal map on theSn factor by
any isometric involutiona. In particular, if we taken = m = 1, W = A2 anda = r a reflection,
we get a non-Coxter action on the Klein bottle, with chamber,S

1×∆1 and orbit space, an “open
envelope”, i.e, the double of a flat rectangle, leaving one side open (cf. 4.6).

By Lemma 5.2 we now assumeN is a point. Note, that faces ofC are products of all factors
but one, with faces of the remaining factor. Moreover, each such seti of such faces, generate a
reflection groupWi any two of which commute.

Proof of Theorem C.Let us first consider the case whereπ1(M) is infinite. Then by the Cheeger-
Gromoll splitting theorem, the universal coverM̃ is isometric to the productRk × N, whereN
is a compact simply connected manifold. Clearly, the chamber C̃ for the lifted Ŵ action is a
product of euclidean simplices with a chamberCN in N, andŴ = Ŵ0 × ŴN, whereŴ0 is an
affine Coxeter group, and̂WN is a finite Coxeter group.

In particular, it remains to prove the claim whenπ1(M) is finite. Thus it suffices to con-
sider that case whereM is compact and simply connected. In this case, there are no euclidean
simplices in the splitting ofC̃, and an open book chamber is simply connected as well. The
splitting of the tiles, by equivariance, obviously gives rise to a local hence global splitting ofM
into factors consisting of spheres and an open (iterated) book as claimed, with corresponding
actions of Coxeter groups. �

Proof of Corollary D. By Theorem C, passing to the universal cover,M̃, the lifted reflection
groupŴ is a productŴ0 × Ŵ1 × · · · × Ŵℓ, whereŴ0 is an affine Coxeter group,̂W j, 1 ≤ j ≤ ℓ,
are finite spherical Coxeter groups. Note thatW = Ŵ/N, whereN is a normal subgroup in̂W
acting freely onM̃, as a subgroup of the deck transformations. It suffices to prove thatN is
abelian. Note, thatN clearly projects to a normal subgroupp j(N) ⊂ Ŵ j, and moreover,N is
contained in the product ofp0(N) × · · · × pℓ(N). Hence it remains only to show thatp j(N) is
abelian.

Note thatp j(N) acts freely on thej-th factor. Therefore,p0(N) ⊂ Ŵ0 � Z
m
⋊W0 is contained

in the torsion free lattice (cf. Theorem 4.5). A spherical factor Ŵ j of rank 2, must come from
either an open book factor or a factor acting linearly on a sphere of dimension at least 2. In either
caseŴ j has a fixed point, and hence,p j(N) must be trivial. Finally, from the well-known fact
that a normal subgroup of an irreducible spherical Coxeter group of rank at least 3 is contained
in its center (trivial orZ2) the desired result follows.

Conversely, for an abelian normal subgroupN � Zp × Z
q
2 ⊳ Ŵ0 × Ŵ1 × · · · × Ŵℓ, whereZq

2
is in the center of the product of spherical Coxeter groups, which acts freely on the product of
spheresSk1 × · · · × Skℓ , as a sub-action of the product of the antipodal maps. ThereforeN acts
freely on the productRk × Sk1 × · · · × Skℓ , andW acts as reflection groups on the quotient space,
a manifold with non-negative curvature. The proof is now complete. �
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