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HIGHER TODA BRACKETS AND MASSEY PRODUCTS

HANS-JOACHIM BAUES, DAVID BLANC, AND SHILPA GONDHALI

Abstract. We provide a uniform definition of higher order Toda brackets in a
general setting, covering the known cases of long Toda brackets for topological
spaces and Massey products for differential graded algebras, among others.

Introduction

Toda brackets and Massey products have played an important role in homotopy
theory ever since they were first defined in [Mas] and [To1, To2]: in applications, such
as [Ad2, BJM, MP], and in a more theoretical vein, as in [Ad1, Ba3, He, Kri, Mar, Sa,
Sp1]. There are a number of variants (see, e.g., [Al, HKM, Mi, PS] and [Ba1, §3.6.4]),
as well as higher order versions including [Kl, Kra, KM, Mau, Mo, P1, P2, Re, Sp2, W].
In recent years they have appeared in many other areas of mathematics, including
symplectic geometry, representation theory, deformation theory, topological robotics,
number theory, mathematical physics, and algebraic geometry (see [BT, BKS, FW,
G, Ki, La, LS, Ri]).

Toda brackets were originally defined for diagrams of the form

(0.1) Sn
f
−→ Sp

g
−→ Sk

h
−→ X ,

with g ◦ f and h ◦ g nullhomotopic.
If we choose nullhomotopies F : g ◦ f ∼ 0 and G : h ◦ g ∼ 0, they fit into a

diagram of cones as in Figure 0.2:
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Figure 0.2. The Toda bracket construction
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This yields an element 〈h, g, f〉 in [Sn+1, X ], called the Toda bracket. The value
we get depends on the choices of nullhomotopies F and G, so it is not uniquely
determined. The Toda bracket is thus more properly a certain double coset of
h#πn+1(S

k) + Σf#πp+1(X).
If we view [h] as an element in π∗X , while [g] is seen as a primary homotopy

operation acting trivially on [f ] and [h] ◦ [g] = 0 is a relation among primary
operations, we can think of the Toda bracket as a secondary homotopy operation.
Similarly, a diagram of the form

(0.3) X
f
−→ K(G, n)

g
−→ K(G′, p)

h
−→ K(G′′, k)

with g ◦ f ∼ 0 ∼ h ◦ g defines a secondary cohomology operation in the sense of
[Ad2].

On the other hand, the Massey product in cohomology – defined whenever we have
three classes α, β, γ ∈ H∗X with α ·β = 0 = β ·γ – is a different type of secondary
cohomology operation which does not fit into this paradigm.

All three examples have higher order versions, though the precise definitions are not
always self-evident or unique (cf. [W] and [Mau, Kl]). Nevertheless, these higher order
operations play an important role in homotopy theory – for instance, in enhancing
our theoretical understanding of spectral sequences (cf. [BB]) and in providing a
conceptual full invariant for homotopy types of spaces (see [Ta] and [BJT2]).

The main goal of this note is to explain that higher order Toda brackets and higher
Massey products have a uniform description, covering all cases known to the authors
(including both the homotopy and cohomology versions).

The setting for our general notion of higher Toda brackets is any category C enriched
in a suitable monoidal category M. In fact, the minimal context in which higher Toda
brackets can be defined is just an enrichment in a monoidal category equipped with
a certain structure of “null cubes”, encoded by the existence of an augmented path
space functor PX → X satisfying certain properties (abstracted from those enjoyed
by the usual path fibration of topological spaces). We call such an M a monoidal path
category – see Section 1.

In this context we can define the notion of a higher order chain complex: that is,
one in which the identity ∂∂ = 0 holds only up to a sequence of coherent homotopies
(see Section 2). This suffices to allow us to define the values of the corresponding
higher order Toda bracket (see Section 3, where higher Massey products are also
discussed).

However, in order for these Toda brackets to enjoy the expected properties, such
as homotopy invariance, M must be also be a simplicial model category. In this case
there is a model category structure on the category M-Cat of categories enriched
in M, due to Lurie, Berger and Moerdijk, and others, in which the weak equivalences
are Dwyer-Kan equivalences (see §4.10). This is explained in Section 4, where we
prove:

Theorem A. Higher Toda brackets are preserved under Dwyer-Kan equivalences.

[See Theorem 4.21 below].
We also show that the usual higher Massey products in a differential graded algebra

correspond to our definition (see Proposition 4.35).
In Section 5 we study the case of ordinary Toda brackets for chain complexes, and

show their interpretation as secondary Ext-operations.
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0.4. Notation. The category of sets will be denoted by Set, that of compactly
generated topological spaces by Top (cf. [St], and compare [V]), and that of pointed
compactly generated spaces by Top∗.

If R is a commutative ring with unit, the category of R-modules will be denoted
by ModR (though that of abelian groups will be denoted simply by AbGp). The
category of non-negatively graded R-modules will be denoted by grMod>0

R , with
objects E∗ = {En}n≥0, and so on.

The category of Z-graded chain complexes over ModR will be denoted by ChR,
with objects A∗, B∗, and so on, where

A∗ := (. . . An
∂n−→ An−1

∂n−1
−−−→ An−2

∂n−2
−−−→ An−3 . . .) .

The category of nonnegatively graded chain complexes over ModR will be denoted
by Ch>0

R . A chain map f : A∗ → B∗ inducing an isomorphism f∗ : HnA∗ −→ HnB∗

for all n is called a quasi-isomorphism.
Finally, the category of simplicial sets will be denoted by S, and that of pointed

simplicial sets by S∗.

0.5. Acknowledgements. We wish to thank Stefan Schwede for a helpful pointer on
symmetric spectra.

1. Path functors in monoidal categories

Higher order homotopy operations in a pointed model category C, such as Top∗,
S∗, or ChR, are usually described in terms of higher order homotopies, which can
be defined in turn in terms of an enrichment of C in an appropriate monoidal model
category M (see, e.g., [BJT1]). We here abstract the minimal properties of such an
M needed for the construction of higher operations.

1.1. Definition. A monoidal path category is a functorially complete and cocomplete
pointed monoidal category 〈M,⊗, 1〉, equipped with an path endofunctor P : M →
M and natural transformations pX : PX → X , θL : PX ⊗ Y → P (X ⊗ Y ), and
θR : X ⊗ PY → P (X ⊗ Y ).

We require that the following diagrams commute:

(a) Constant path combinations:

(1.2)

PX ⊗ Y
θL //

pX⊗IdY
��

P (X ⊗ Y )

pX⊗Y

��

X ⊗ PY
θR //

IdX ⊗pY

��

P (X ⊗ Y )

pX⊗Y

��

X ⊗ Y
= // X ⊗ Y X ⊗ Y

= // X ⊗ Y

(b) Coalgebra structure:

(1.3)

P (PX)
P (pX)

//

pPX

��

PX

pX

��

PX
pX // X.
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(c) Left and right constants:

(1.4)

PX ⊗ PY
θR //

θL

��

P (PX ⊗ Y )

PθL

��

P (X ⊗ PY )
PθR

// P 2(X ⊗ Y )

(d) From (1.4) we see that there are natural transformations

θ(i,j) : P iX ⊗ P jY → P i+j(X ⊗ Y )

for any i, j ≥ 0, defined

θ(i,j) := P i+j−1(θL) ◦ · · · ◦ P j(θL) ◦ P j−1(θR) ◦ · · · ◦ θR .

These are required to be associative, in the obvious sense.
(e) If we let P nX denote the result of applying the functor P : M → M to X

n times (with P 0 := IdM), we have n+1 different natural transformations
∂ni : P n+1X → P nX (i = 0, . . . , n), defined

(1.5) ∂i = ∂ni := P i(pPn−iX) .

The natural transformations θ(i,j) are required to satisfy the identities:

(1.6) ∂n−1
k ◦ θ(i,j) =

{
θ(i−1,j) ◦ (∂i−1

k ⊗ Id) if 0 ≤ k < i

θ(i,j−1) ◦ (Id⊗∂j−1
k−i ) if i ≤ k < n

for every 0 ≤ k < i+ j = n.

1.7. Remark. The commutativity of (1.3) implies that the natural transformations
of (1.5) satisfy the usual simplicial identities

(1.8) ∂n−1
i ◦ ∂nj = ∂n−1

j−1 ◦ ∂ni

for all 0 ≤ i < j ≤ n.

1.9. Paths and cubes. The natural setting where such path categories arise is when
a monoidal category M is also simplicial, in the sense of [Q, II, §1]. More specifically,
we require the existence of an unpointed path functor (−)I : M → M which behaves
like a mapping space from the interval [0, 1], so we have natural transformations

(a) e0, e1 : XI → X (evaluation at the two endpoints),
(b) s : X → XI with e0s = e1s = Id (the constant path), and

(c) θ̃L : XI ⊗ Y → (X ⊗ Y )I and θ̃R : X ⊗ Y I → (X ⊗ Y )I (paths in a
product).

These make the following diagrams commute:

(1.10)

XI ⊗ Y
θ̃L //

ei
X
⊗IdY

��

(X ⊗ Y )I

eiX⊗Y

��

X ⊗ Y I θ̃R //

IdX ⊗ei
Y

��

(X ⊗ Y )I

eiX⊗Y

��

X ⊗ Y

s⊗Id

DD

= // X ⊗ Y

s

YY

X ⊗ Y
= //

Id⊗s

CC

X ⊗ Y

s

YY
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for i = 0, 1, as well as

(1.11)

XI2
(ei

X
)I

//

e
j

XI

��

XI

e
j
X

and

��

XI ⊗ Y I θ̃R //

θ̃L

��

(XI ⊗ Y )I

(θ̃L)I

��

XI

ei
X

// X (X ⊗ Y I)I
(θ̃R)I

// (X ⊗ Y )I
2

for i, j ∈ {0, 1}.
We may then define the required (pointed) path functor P : M → M by the

functorial pullback diagram:

(1.12)

PX
PB

//

��

XI

e0

��

∗ // X .

The commutativity of the right hand square in (1.11) allows us to define either

composite to be the natural transformation θ̂(1,1) : XI ⊗ Y I → (X ⊗ Y )I
2
.

We see that θ̃L induces a natural transformation θL : PX ⊗ Y → P (X ⊗ Y ),
and similarly θR : X ⊗ PY → P (X ⊗ Y ), making (1.2) commute.

Moreover, from (1.10) we see that (1.4) commutes, and that the natural
transformations θ(i,j) are associative and satisfy (1.6).

1.13. Example. The motivating example is provided by M = Top∗, with the
monoidal structure given by the smash product ⊗ := ∧, and XI := map∗(I,X)
the mapping space out of the interval I := ∆[1]+. Thus PX is the usual pointed
path space. Here map∗(X, Y ) denotes the set HomTop

∗

(X, Y ) equipped with

the compact-open topology.

1.14. Example. Similarly for S∗, again with the smash product ⊗ := ∧ and
XI := map∗(∆[1]+, X), where map∗(X, Y ) ∈ S∗ denotes the simplicial mapping
space with map∗(X, Y )n := HomS∗(X ×∆[n]+, Y ).

When X is a Kan complex, we can use Kan’s model for PX , where (PX)n :=
Ker(d1d2 . . . dn+1 : Xn+1 → X0), and pX : PX → X is di0 in simplicial dimension
i.

1.15. Example. Another variant is provided by a suitable category Sp of spectra
with strictly associative smash product ∧, such as the S-modules of [EKMM], the
symmetric spectra of [HSS], and the orthogonal spectra of [MMSS]. One again has
function spectra mapSp(X, Y ), which can be used to define XI and PX . The

unit is the sphere spectrum S0.

1.16. Example. For chain complexes of R-modules we have a monoidal structure
with the tensor product (A∗ ⊗B∗)n :=

⊕
i+j=n Ai ⊗ Bj .

Recall that the function complex Hom(A∗,B∗) is given by

(1.17) Hom(A∗,B∗)n :=
∏

i∈Z

Hom(Ai, Bi+n) ,

with ∂n((fi)i∈Z) := (∂Bi+nfi − (−1)nfi−1∂
A
i )i∈Z for (fi : Ai → Bi+n)i∈Z.



6 H.-J. BAUES, D. BLANC, AND S. GONDHALI

Thus for M = ChR we may set XI := Hom(C∗(∆[1];R), X), and see that PA∗

has

(1.18) (PA)n = An ⊕An+1 with ∂(a, a′) = (∂a, ∂a′ + (−1)n+1a) ,

and pA∗
the projection.

1.19. Cores and elements. In any monoidal path category 〈M,⊗, 1, (−)I〉 and
for any X ∈ M, we can think of HomM(1, X) as the ‘underlying set’ of X , and
think of a map f : 1 → X in M as an ‘element’ of X .

More generally, we may have a suitable monoidal subcategory I of M, which we
call a core, and define a generalized element of X to be any map f : α → X in M

with α ∈ I.

1.20. Example. We may always choose I = {1} to consist of the unit of M alone.
However, in some cases other natural choices are possible:

(a) In the three examples of §1.13, §1.14, and §1.15, we can let IS := {Sn}∞n=0

consist of all (non-negative dimensional) spheres – this is evidently closed
under ⊗ = ∧.

(b) In the category of chain complexes over a ring R (§1.16), we let IR :=

{M̃(R, n)∗}n∈Z, where M̃(R, n)∗ is the Moore chain complex with M̃(R, n)i =

R for i = n, and 0 otherwise. Again we see that M̃(R, p)∗ ⊗ M̃(R, q)∗ =

M̃(R, p+ q)∗, so IR is indeed a monoidal subcategory of (ChR,⊗R, M̃(R, 0)∗).

We see that a generalized element in a chain complex A∗ is now a map

f : M̃(R, n)∗ → A∗ in ChR – that is, an n-cycle in A∗.
(c) Other examples are also possible – for example, if I ′ := {M(Z/p, n)}∞n=1 is

the collection of mod p Moore spaces, representing mod p homotopy groups
(see [N]), then it is not itself a monoidal subcategory of (Top∗,∧, S

0), since
it is not closed under smash products. However, when p is odd, the collection
of finite wedges of such Moore spaces is monoidal, by [N, Corollary 6.6].

2. Higher order chain complexes

The structure defined in the previous section suffices to define higher order chain
complexes, as in [BB]:

2.1. Categories enriched in monoidal path categories. Let C be a category
enriched in a monoidal path category 〈M,⊗, 1, P 〉, so that for any a, b ∈ Obj C
we have a mapping object map

C
(a, b) in M, and for any a, b, c ∈ Obj C we have

a composition map

µ = µa,b,c : map
C
(b, c) ⊗ map

C
(a, b) −→ map

C
(a, c)

(written in the usual order for a composite), satisfying the standard associativity
rules.

As in §1.19, we can think of a morphism f : 1 → map
C
(a, b) in M as an ‘element’

of map
C
(a, b), or simply a map f : a → b. In particular, we have ‘identity maps’

Ida in mapC(a, a) for each a ∈ Obj C, satisfying the usual unit rules.
In addition, a morphism F : 1 → PmapC(a, b) is called a nullhomotopy of

f := pmap
C
(a,b) ◦ F . Higher order nullhomotopies are defined by maps F : 1 →

P imapC(a, b).
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The functoriality of P implies that we can also compose (higher order) nullhomo-
topies by means of the composite of

P imap
C
(b, c)⊗ P jmap

C
(a, b)

θ(i,j)

−−−→ P i+j[map
C
(b, c)⊗map

C
(a, b)]

P i+jµ
−−−→ P i+jmapC(a, c) ,

(2.2)

which we denote by µi,j : P imapC(b, c)⊗ P jmapC(a, b) → P i+jmapC(a, c). Again,
the maps µ(−,−) are associative.

For a general core I ⊆ M (cf. §1.19), we have generalized elements given by maps
f : α → map

C
(a, b) for α ∈ I. We use the fact that I is a monoidal subcategory

to define the composite of f : α→ mapC(a, b) with g : β → mapC(b, c) (β ∈ I)
to be the composite in M of

(2.3) β ⊗ α
g⊗f
−−→ mapC(b, c)⊗mapC(a, b)

µ
−→ mapC(a, c) ,

and similarly for generalized (higher order) nullhomotopies.
From (1.6) we see that:

(2.4) ∂n−1
k ◦ µi,j =

{
µi−1,j ◦ (∂i−1

k ⊗ Id) if 0 ≤ k < i

µi,j−1 ◦ (Id⊗∂j−1
k−i ) if i ≤ k < i+ j

for every 0 ≤ k < i+ j = n.

2.5. Remark. If the path structure P comes from a unpointed path structure (−)I

as in §1.9, a morphism F : 1 → map
C
(a, b)I in M is called a homotopy F : f0 ∼ f1

between f0 := e0map
C

◦ F and f1 := e1map
C

◦ F .

Higher order homotopies are defined by maps F : 1 → mapC

Ii(a, b), and the
functoriality of (−)I implies that we can compose (higher order) homotopies by
means of the composite of

mapC(b, c)
Ii ⊗mapC(a, b)

Ij θ̂(i,j)// [mapC(b, c)⊗mapC(a, b)]
Ii+j µI

i+j

// mapC(a, c)
Ii+j

,

which we denote by µ̃ i,j : map
C
(b, c)I

i

⊗ map
C
(a, b)I

j

→ (map
C
(a, c))I

i+j

. These
induce the maps µi,j, as in §1.9.

2.6. Definition. Assume given a monoidal path category 〈M,⊗, 1, P 〉 with core I
in M (cf. §1.19), and choose an ordered set Γ = (γ1, . . . , γN) of N core elements.

An n-th order chain complex K = 〈K, {{F k
(i)}

N
i=k+1}

n
k=0〉 over M (for Γ) of length

N ≥ n + 2 consists of:

(a) A category K enriched over M, with Obj (K) = {a0, . . . , aN} and

(2.7) mapK(ai, aj) =

{
1∐ ∗ if i = j

∗ if i < j .

K will be called the underlying category of the n-th order chain complex K.
(b) For each 0 ≤ k ≤ n and i = k + 1, . . .N , generalized elements

F k
(i) : γi−k ⊗ . . .⊗ γi → P kmapK(ai, ai−k−1)

such that

(2.8) ∂t ◦ F
k
(i) = µk−t−1,t(F k−t−1

(i−t−1) ⊗ F t
(i))

for all 0 ≤ t < k.
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When N = n + 2, we simply call K an n-th order chain complex.

2.9. Remark. Typically we are given a fixed category C enriched in a monoidal path
category 〈M,⊗, 1, P 〉, and the underlying category K for a higher order chain
complex K will simply be a finite subcategory of C (usually not full, because of
condition (2.7)). Such a K will be called an n-th order chain complex in C.

2.10. Definition. Given an n-th order chain complex K = 〈K, {{F k
(i)}

N
i=k+1}

n
k=0〉

over M (for Γ) of length N , and an enriched functor φ : K → L over M (which we
may assume to be the identity on objects, with L also satisfying (2.7)), the induced
n-th order chain complex L = 〈L, {{Gk

(i)}
N
i=k+1}

n
k=0〉 over M (for the same Γ) is

defined by setting

Gk
(i) := φ(F k

(i)) : γi−k ⊗ . . .⊗ γi → P kmapL(ai, ai−k−1)

for all 0 ≤ k ≤ n and k < i ≤ N .

2.11. Remark. Note that we do not assume that we have n-th order nullhomotopies
F n
(i) ∈ P nmapK(ai, ai−n−1) (for i > n) satisfying (2.8).

However, from (2.8) and (2.4) we see that:

∂s ◦ ∂t ◦ F
k
(i) = µk−t−2,t(µk−s−t−2,s(F k−s−t−2

(i−s−t−2) ⊗ F s
(i−t−1))⊗ F t

(i))

if s+ t < k − 1, and

∂s ◦ ∂t ◦ F
k
(i) = µk−t−1,t−1(F k−t−1

(i−t−1) ⊗ µk−s−2,s+t−k+1(F k−s−2
(i−s−t+k−2) ⊗ F s+t−k+1

(i) ))

if k− 1 ≤ s+ t. Thus from the simplicial identity ∂s ◦ ∂t = ∂t−1 ◦ ∂s for 0 ≤ s < t
we deduce that the maps {F k

(i)} must satisfy:

(2.12)

µ(F r
(i−s−t−2) ⊗ F s

(i−t−1) ⊗ F t
(i))





µ(F r+1
(i−s−t−3) ⊗ F t−1

(i−s−1) ⊗ F s
(i)) if s < t

µ(F t
(i−r−s−2) ⊗ F s

(i−r−1) ⊗ F r
(i)) if s ≥ r and t = 0

µ(F s+1
(i−r−t−3) ⊗ F r

(i−t−2) ⊗ F t−1
(i) ) if s ≥ r and t > 0 ,

where we have simplified the notation using the associativity of µ.

2.13. A cubical description. Higher order chain complexes were originally defined
in [BB, §4] in terms of a cubical enrichment, which is well suited to describing higher
homotopies. In general, for an (n− 1)-st order chain complex

(2.14) an+1

F 0
(n+1)

−−−−→ an
F 0
(n)

−−→ an−2 → . . . → a1
F 0
(1)

−−→ a0 ,

we may describe the choices of higher homotopies F k
(i) succinctly by arranging

them as the collection of all the cubical faces in the boundary of In+2 containing a
fixed vertex (which is indexed by F 0

(1) ⊗ F 0
(2) ⊗ . . . F 0

(n) ⊗ F 0
(n+1)).

The k-faces are indexed by

(2.15) F k1
(i1)

⊗ . . .⊗ F kr
(ir)

∈ P k1mapK(ai1 , a0)⊗ . . .⊗ P krmapK(an+1, an−kr) ,

with
∑r

j=1 kj = k, ij =
∑j−1

t=1 (kt + 1), and r = n− k + 1 (so i1 = k1 + 1 and

ir = n + 1).
By intersecting the corner of ∂In+2 with a transverse hyperplane in Rn+1 we

obtain an (n + 1)-simplex σ, whose n-faces correspond to the (n + 1)-facets of the
corner, and so on. More precisely, the cone on this simplex (with cone point the
chosen vertex v of In+2) is homeomorphic to In+2, with each (n + 1)-face of
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the cone obtained from an (n + 1)-facet τ of the corner by identifying the n-corner
opposite v in τ to a single n-simplex in the base of the cone. See Figure 2.16.

r♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ r♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣r t♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣
r r

✑
✑
✑
✑
✑
✑

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣ ♣

r♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣

❅
❅
❅
❅✁

✁
✁
✁
✁
✁

Figure 2.16. Corner of 3-cube and transverse 2-simplex

This explains why the maps ∂ni : P n+1X → P nX of §1.1, which relate the various
⊗-composites appearing as facets of ∂In+1, satisfy simplicial, rather than cubical,
identities.

2.17. Example. Consider a second order chain complex

(2.18)

∗

∗ ∗

a
k //

!! ��

b
h //

h◦k

KS

DD<<c

g◦h◦k

KS

g
//

!!

g◦h

��

d

f◦g◦h

��

f◦g

KS

f
// e

∗

∗

in Top∗, say, in which we have n+1 = 4 composable maps: F 0
(1) = f , F 0

(2) = g,
and so on, with all adjacent composites nullhomotopic.

In this case we may choose nullhomotopies as indicated, namely: F 1
(2) = f ◦ g in

map∗(c, e)
I1 (with e0(f ◦g) = ∗ and e1(f ◦g) = fg), F 1

(3) = g◦h in map∗(b, d)
I1,

and F 1
(4) = h ◦ k in map∗(a, c)

I1 – so that in fact f ◦ g is in the pointed path

space P map∗(c, e). Similarly, F 2
(4) = f ◦ g ◦ h is a homotopy of nullhomotopies

between h∗(f ◦ g) and f ∗(g ◦ h).
The more suggestive notation f ◦ g, and so on, is motivated by the cubical

Boardman-Vogt W -construction of [BV, §3], as explained in [BB, §5]: we think a
k-th order homotopy as a k-cube in the appropriate mapping spaces.

If we apply the usual composition map

µ : map∗(c, d) ⊗ map∗(a, c)
I1 → map∗(a, d)

I1
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to g ⊗ h ◦ k, we obtain a nullhomotopy of ghk, and similarly for g ◦ h ⊗ k
in map∗(b, d)

I1 ⊗ map∗(a, b). Thus we may ask if these two nullhomotopies are
themselves homotopic (relative to ghk): if so, we have a 2-cube g ◦ h ◦ k in

map∗(a, d)
I2, which in fact lies in P 2map∗(a, d). The “formal” post-composition

with f ∈ map∗(d, e) yields f ⊗ g ◦ h ◦ k in map∗(d, e)⊗P 2map∗(a, d). Together
with the other two formal composites f ◦ g ◦ h ⊗ k in P 2map∗(b, e) ⊗map∗(a, b)
and f ◦g⊗h◦k in P map∗(c, e)⊗P map∗(a, c), it fits into the corner of the 3-cube
described in Figure 2.19 (where we use both notations F 2

(2) = f ◦ g, and so on, to

label facets).

r♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

F 0
(1) ⊗ F 0

(2) ⊗ F 1
(4) = f ⊗ g ⊗ h ◦ k

t
f ⊗ g ⊗ h⊗ k

f ⊗ g ◦ h⊗ k = F 0
(1) ⊗ F 1

(3) ⊗ F 0
(4)

✟✟✙

r♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣r

f ⊗ g ◦ h ◦ k

=✎
✍

☞
✌F 0

(1) ⊗ F 2
(4)

r♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

r♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣ ✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟

F 1
(2) ⊗ F 0

(3) ⊗ F 0
(4)

= f ◦ g ⊗ h⊗ k

❅❘
f ◦ g ⊗ h ◦ k

=✎
✍

☞
✌F 1

(2) ⊗ F 1
(4)

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣r♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

f ◦ g ◦ h⊗ k

=✎
✍

☞
✌F 2

(3) ⊗ F 0
(4)

Figure 2.19. The cubical corner

All vertices but the central one represent the zero map, and the dotted edges repre-
sent the trivial nullhomotopy of the zero map (and similarly for the invisible facets of
the cube, representing the trivial second-order homotopy of the trivial nullhomotopy).

2.20. Remark. The cubical formalism may be used to describe the iterated path com-
plex P nA∗ in the category of chain complexes (see §1.16):

We may use the conventions of §2.13 to identify the k-faces of the corner of an n-
cube In (adjacent to a fixed vertex v), for 0 ≤ k ≤ n, with the (k−1)-dimensional
faces σk(i) of the standard (n − 1)-simplex ∆[n − 1] for 0 ≤ i ≤

(
n

k

)
− 1 (see

Figure 2.16). Thus In itself is labelled σn(0) (corresponding to ∆[n−1]), with the

n (n−1)-facets of In adjacent to v labelled σn−1
(0) = d0σ

n
(0), σn−1

(1) = d1σ
n
(0), and so

on. The vertex v is labelled σ0
(0) (not corresponding to any real face of ∆[n− 1]).

Then

(2.21) (P nA)j =
⊕

0≤k≤n

⊕

0≤i<(nk)

A
[σk

(i)
]

j+k ,

with the differential ∂P
nA : (P nA)j → (P nA)j−1 sending a ∈ A

[σk
(i)

]

j+k to ∂A(a) in

the summand A
[σk

(i)
]

j+k−1 of (P nA)j−1, and to (−1)n+k+ta in the summand A
[dtσk(i)]

j+k−1.

The structure maps ∂ni : P nA∗ → P n−1A∗ are given by the projections onto the
summands labelled by the i-th simplicial facet of ∆[n] and its simplicial faces, for
0 ≤ i ≤ n− 1.
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2.22. Example. The double path complex P 2A∗ is given by

(2.23) (P 2A)j = Aj ⊕ Aj+1 ⊕Aj+1 ⊕ Aj+2 ,

with

(2.24) ∂(x, a, a′, y) = (∂x, ∂a + (−1)j+1x, ∂a′ + (−1)j+1x, ∂y + (−1)j(a− a′)) .

2.25. Example. Similarly, (P 3A)j is given by

A
[σ0

(0)
]

j ⊕A
[σ1

(0)
]

j+1 ⊕ A
[σ1

(1)
]

j+1 ⊕ A
[σ1

(2)
]

j+1 ⊕ A
[σ2

(0)
]

j+2 ⊕ A
[σ2

(1)
]

j+2 ⊕A
[σ1

(2)
]

j+2 ⊕A
[σ3

(0)
]

j+3

and

∂(a, b0, b1, b2, c0, c1, c2, d) = (∂a, ∂b0 − τx, ∂b1 − τx, ∂b2 − τx,

∂c0 + τ(b1 − b0), ∂c1 + τ(b2 − b0), ∂c2 + τ(b2 − b1), ∂d− τ(c2 − c1 + c1))

for τ = (−1)j .

3. Higher Toda brackets

We now show how one may define the higher Toda bracket corresponding to a
higher order chain complex. First, we need to define the object housing it:

3.1. Definition. In any monoidal path category 〈M,⊗, 1, (−)I〉 we define the

(modified) n-fold loop functor Ω̃n : M → M to be the limit:

(3.2) Ω̃nX := lim
1≤k≤n

P kX

where the limit is taken all the natural maps ∂ki : P kX → P k−1X of §1.1. By §2.13,
we may think of this as a diagram indexed by the dual of the standard n-simplex.

The simplicial identities (1.8) imply that there is a natural map

(3.3) σ̃nX : P n+1X → Ω̃nX ,

which composes with the structure maps πt : Ω̃
nX → P nX for the limit to yield

the face maps ∂t : P
n+1X → P nX (i = 0, . . . , n), since Ω̃nX is the n-th matching

object for the restricted augmented simplicial object P •X (cf. [Hi, §16.3.7]).

For n = 0 we set Ω̃0X := X .

3.4. Example. By §2.13, we may think of (3.2) as the limit of a diagram indexed

by the dual of the standard n-simplex. Thus Ω̃1X is the pullback in:

(3.5)

Ω̃1X
PB

//

��

PX

pX

��

PX
pX // X,
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indexed by the inclusion of the two vertices into ∆[1], while Ω̃2X is the limit of
the diagram:

(3.6)

X

PXPX PX

P 2XP 2X P 2X

∂10=pX

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖

∂10=pX

��

∂10=pX

ww♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦

∂20

��

∂21

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

∂20

��

∂21

ww♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦

♦♦
♦♦
♦♦
♦♦
♦

∂20ww♦♦
♦♦
♦♦
♦♦
♦

❖❖
❖❖

❖❖
❖❖

❖

∂21 ''❖
❖❖

❖❖
❖❖

❖❖

3.7. Definition. Let K be an (n − 1)-st order chain complex (of length n + 1)
enriched in a monoidal path category 〈M,⊗, 1, (−)I〉 (for a set Γ = (γ1, . . . , γn+1)
of core elements), as in §2.6. If we apply the iterated composition map to each k-face
of the form (2.15), we obtain an ‘element’

(3.8) µ(F k1
(i1)

⊗ . . .⊗ F kr
(ir)

) : γ1 ⊗ . . .⊗ γn+1 → P kmapK(an+1, a0)

(using the associativity of µ),
From (2.8) and (2.4) we see that these elements (3.8) are compatible under

the face maps ∂t : P kmapK(an+1, a0) → P k−1mapK(an+1, a0), so that they fit
together to define an element

(3.9) 〈K〉 : γ1 ⊗ . . .⊗ γn+1 → Ω̃n−1mapK(an+1, a0)

which we call the value of the n-th order Toda bracket associated to the chain complex
K.

If 〈K〉 lifts along the map σ̃n−1
X : P nX → Ω̃n−1X of (3.3), we say that this

value of the Toda bracket vanishes.

3.10. Remark. Given an (n − 1)-st order chain complex K = 〈K, {{F k
(i)}

n+1
i=k+1}

n−1
k=0〉

over M (for Γ), any enriched functor φ : K → L over M as in §2.10 takes 〈K〉 to

〈L〉 : γ1 ⊗ . . .⊗ γn+1 → Ω̃n−1mapL(an+1, a0)

where L is the (n− 1)-st order chain complex induced by φ, by functoriality of the
limits in M.

3.11. Massey products. Massey products (and their higher order versions) also
fit into our setting, although they cannot be defined as ordinary Toda brackets in a
model category. This is because a (unital associative) differential graded algebra A∗

over a commutative ground ring R can be thought of as a category C with a single

object ξ enriched in (ChR,⊗R, M̃(R, 0)∗), with HomC(ξ, ξ) := A∗.
In this context we choose the core of ChR to be IR as in §1.20(b). Thus an

(n− 1)-st order chain complex in A∗ consists of:

(a) The sequence of objects – necessarily ai = ξ for all i.

(b) A sequence of generalized maps F 0
(i) : M̃(R,mi)∗ → HomC(ξ, ξ) for i =

1, . . . , n + 1, which may be identified with an mi-cycle H0
i ∈ Zmi

A∗ (see
§1.20(b)).
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(c) A sequence of generalized nullhomotopies F 1
(i) ∈ PA∗ (i = 2, . . . , n + 1),

with pA∗
(F 1

(i)) = µ(fi−1 ⊗ fi). From the description in §1.16 we see that

F 1
(i) is completely determined by an element H1

i ∈ Ami+mi−1+1 with

d(H1
i ) = H0

i−1 ·H
0
i (where d is the differential and · is the multiplication in

A∗).
(d) From §2.22 we see that a ‘second-order nullhomotopy’ F 2

(i) ∈ P 2A∗ (i =

3, . . . , n+1), which is a (j+2)-cycle for j := mi+mi−1+mi−2, is determined
uniquely by the element H2

i ∈ Aj (the last summand in (2.23)). From the
last term in (2.24) we see that F 2

(i) being a cycle means that

d(H2
i ) = (−1)j+1 (H0

i−2 ·H
1
i −H1

i−1 ·H
0
i ) .

(e) In general, for each 1 ≤ k < n and i = k + 1, . . . n + 1, we have a

(generalized) F k
(i) ∈ P kA∗ which is a (j + k)-cycle for j :=

∑i

t=i−k mt,
with

(3.12) ∂t ◦ F
k
(i) = F k−t−1

(i−t−1) · F
t
(i) ,

and from the description in §2.20 we see that again F k
(i) is completely

determined by the component Hk
i in the summand A

[σk
(i)

]

j+k , with

d(Hk
i ) = (−1)k+j+1

k−1∑

t=0

(−1)tH t
i−k+t ·H

k−t−1
i .

Thus by Definition 3.7 we see that the value of the (n + 1)-st order Toda bracket

associated to this (n−1)-st order chain complex in A∗ is the element in Ω̃n−1A∗ =
lim1≤k<n P kA∗ determined by the coherent choice of elements

(3.13) H t
i−k+t ·H

n−t
i ∈ Aj+n for t = 1, . . . , n ,

where j :=
∑n

t=1 mt.

4. Higher Toda brackets in model categories

In order to define the values of higher Toda brackets, all we need is a category
enriched in a monoidal path category M. However, in applications we want to use
such Toda brackets, either as obstructions to rectifying diagrams, or as invariants
used in computations (e.g., of differentials in spectral sequence). For this we need to
make an additional

4.1.Definition. A path model category is a pointed monoidal model category 〈M,⊗, 1〉
in the sense of [Ho, Ch. 4] which satisfies the conditions of either of [BM, Theorem
1.9,Theorem 1.10], and which is also a simplicial model category as in [Q, II, §2],
equipped with a core I (cf. §1.19) consisting of cofibrant objects, and a natural trans-
formation

(4.2) ζX,Y,K : XK ⊗ Y K → (X ⊗ Y )K

(natural in X, Y ∈ M and K ∈ S).

4.3. Remark. By [Ho, Proposition 4.2.19], a path model category actually has a S∗-
model category structure – that is, we have functors (−)K : M → M and (−)⊗K :
M → M for every pointed simplicial set K ∈ S∗, satisfying the usual axioms.
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4.4. Examples. In practice we shall be interested only in the following examples:

(a) The monoidal structure on Top is cartesian, so we actually have a natural

homeomorphism ζ̃ : XK ×Y K
∼=
−→ (X×Y )K . It is readily verified that in the

pointed version 〈Top∗,∧, S
0〉 of §1.13, the map ζ̃ induces ζ : XK ∧ Y K →

(X ∧ Y )K .
(b) The monoidal structure on S is also cartesian, so in the pointed version

〈S∗,∧, S
0〉 of §1.14 we also have an induced map as in (4.2).

(c) If we use symmetric spectra as our model for Sp (cf. §1.15) we see that the
spectrum XK is defined levelwise, so we have (4.2) as for Top∗.

(d) In the category 〈ChR,⊗, M̃(R, 0)∗〉 of chain complexes of R-modules (§1.16),
the monoidal structure is not cartesian, but the simplicial structure is defined
by setting A∗

K := Hom(C∗K,A∗) (where C∗K is the simplicial chain
complex of K ∈ S). The natural transformation (4.2) is induced by the
diagonal ∆ : K → K ×K in S.

Note that all of these satisfy the hypotheses of one of [BM, Theorem 1.9,Theorem
1.10], by [BM, §1.8] and [Lu, Proposition A.3.2.4-A.3.2.24], so they are in fact path
model categories.

4.5. Remark. In this case the simplicial structure defines the functor (−)I : M → M,
with XI := X∆[1] (cf. [Q, II, §1]), and PX →֒ X∆[1] is defined by the pullback
(1.12). We can therefore identify P kX for each k ≥ 0 with the subobject of

X [0,1]k consisting of all maps of the k-cube sending the corner opposite a fixed vertex
to the basepoint (see Figure 2.19).

Thus Ω̃nX is a subobject of limk map∗([0, 1]
k, X), which by adjunction may be

identified with Xcolimk [0,1]k . Thus Ω̃nX itself is just map∗(colim [̃0, 1]k, X), where
the colimit is now taken over all proper faces of [0, 1]n+1, and we identify the corner
opposite our chosen vertex of [0, 1]n+1 to a point. This colimit is homeomorphic

to an n-sphere, so Ω̃nX is homotopy equivalent to the n-fold loop space ΩnX ,
defined as usual by iterating the functor Ω : M → M given by the pullback

(4.6)

ΩX
PB

//

��

PX

pX

��

∗ // X.

4.7. Remark. In any path model category M, for any fibrant object X we have an
equivalence relation ∼ on the set of morphisms HomM(1, X) (cf. §1.19), given by:

f ∼ g ⇔ ∃F : 1 → XI such that e0 ◦ F = f and e1 ◦ F = g .

We then define the (pointed) set of components π0X to be the set of equivalence
classes in HomM(1, X) under ∼.

Now let C be a category enriched inM, and assume the mapping objects map
C
(a, b)

are fibrant (e.g., if all objects inM are fibrant, as in Top∗), If we denote π0map
C
(a, b)

simply by [a, b], from §2.1 we see that µ induces an associative composition on [−,−],
so that this serves as the set of morphisms in the homotopy category hoC of the
M-enriched category C (with the same objects as C).

4.8. Definition. More generally, if I is the core of a path model category M, for any
core element γ (which is cofibrant by Definition 4.1) the simplicial enrichment map

M

in M allows us to identify [γ,X ] with π0mapM(γ,X) (see [Q, II, 2.6]).



HIGHER TODA BRACKETS AND MASSEY PRODUCTS 15

Thus if C is enriched in M, we may set

[a, b]γ := π0map
M
(γ,map

C
(a, b)) .

for any a, b ∈ C and γ ∈ I.
Note that for any γ, δ ∈ I and i ≥ 0, the bifunctor ⊗, the map ζX,Y,∆[i] of (4.2)

for X := mapC(b, c) and Y := mapC(a, b), and the composition µ : X ⊗ Y → Z
(for Z := mapC(a, c)) induce natural maps of sets

(map
M
(γ,X)×map

M
(δ, Y ))i = HomM(γ,X

∆[i])× HomM(δ, Y
∆[i])

⊗∗−→

HomM(γ ⊗ δ,X∆[i] ⊗ Y ∆[i])
ζ
−→ HomM(γ ⊗ δ, (X ⊗ Y )∆[i])

(µ∆[i])∗
−−−−→

HomM(γ ⊗ δ, Z∆[i]) = (mapM(γ ⊗ δ, Z))i

and thus a composition map ν : map
M
(γ,X)× map

M
(δ, Y ) → map

M
(γ ⊗ δ, Z) in

S. Thus induces an associative composition map

(4.9) ν∗ : [b, c]γ × [a, b]δ → [a, c]γ⊗δ .

Thus we have an I-graded category denoted by hoI C, called the I-homotopy
category of C.

4.10. Definition. Assume given a path model category M with core I. We say that a
category K enriched in M is fibrant if mapK(a, b) is fibrant in M for any a, b ∈ K.
Note that since each γ ∈ I is cofibrant, this implies that mapM(γ,mapK(a, b)) is
a fibrant simplicial set, by SM7.

An enriched functor φ : K → L between categories K and L enriched in M is a
Dwyer-Kan equivalence if

(a) For all a, b ∈ C, φ : mapK(a, b) → mapL(φ(a), φ(b)) is a weak equivalence
in M.

(b) The induced functor φ∗ : hoI K → hoI L is an equivalence of I-graded
categories.

See [SS], and compare [BM].
We say that such a Dwyer-Kan equivalence is a trivial fibration if each φ :

mapK(a, b) → mapL(φ(a), φ(b)) is a fibration in M.

By Definition 4.1 and [BM, Theorem 1.9-1.10] we have:

4.11.Theorem. There is a canonical model category structure on the category M-Cat
of small categories enriched in any path model category M, in which the trivial fibra-
tions and fibrant categories are defined object-wise, and the weak equivalences are the
Dwyer-Kan equivalences.

4.12. Definition. Let M be a path model category with core I, and let K(0) =
〈K, {F 0

(i)}
n+1
i=1 }〉 be a fixed fibrant 0-th order chain complex of length n+1 over M

for Γ ⊆ I. We define LK(0) to be the collection of all possible fibrant (n − 1)-st
order chain complexes K (of length n+ 1) extending K(0).

Each K ∈ LK(0) has a value 〈K〉 : γ1 ⊗ . . .⊗ γn+1 → Ω̃n−1mapK(an+1, a0), as
in (3.9), which we may identify with a 0-simplex in the corresponding simplicial
mapping space

(4.13) 〈K〉 ∈ mapM(γ1 ⊗ . . .⊗ γn+1, Ω̃
n−1mapK(an+1, a0))0 .
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By Remark 4.5 Ω̃n−1mapK(an+1, a0) is weakly equivalent to the (n− 1)-fold loop
space on the mapping space mapC(an+1, a0) in M (cf. [Q, I, §2]). Moreover, we
have a natural isomorphism

(4.14) map
M
(Y,XL)

≃
−→ map

S
(L,map

M
(Y,X))

for any X, Y ∈ M and L ∈ S any finite simplicial set, by [Q, II, §1]), so we
may identify the path component [〈K〉] of this 0-simplex with the corresponding
element in

π0 mapM(γ1 ⊗ . . .⊗ γn+1, Ω
n−1mapK(an+1, a0))

∼= π0Ω
n−1 mapM(γ1 ⊗ . . .⊗ γn+1, mapK(an+1, a0))

∼= πn−1mapM(γ1 ⊗ . . .⊗ γn+1, mapK(an+1, a0))

We call the set

〈〈K(0)〉〉 := {[〈K〉] ∈ πn−1map
M
(γ1 ⊗ . . .⊗ γn+1, mapK(an+1, a0)) : K ∈ LK(0)

the n-th order Toda bracket for K(0). We say that it vanishes if 0 ∈ 〈〈K(0)〉〉.
Of course, 〈〈K(0)〉〉 may be empty (if there are no (n−1)-st order chain complexes

K extending K(0)). It vanishes if and only if there is an n-th order chain complex
extending K(0).

4.15. Remark. When K is a higher chain complex in C = M in a monoidal path
category enriched over itself (e.g., for M = Top∗ or S∗), the homotopy class [〈K〉]
may be thought of as an element in the group

[Σn−1γ1 ⊗ . . .⊗ γn+1 ⊗ an+1, a0]∗

Moreover, [〈K〉] vanishes if and only if it represents the zero element in this group.

4.16. Lemma. If M is a simplicial model category and f : X → Y is a (trivial)
fibration between fibrant objects in M, then the induced maps P kf : P kX → P kY

and Ω̃kf : Ω̃kX → Ω̃kY are (trivial) fibrations for all k ≥ 1. Furthermore, if
f : X → Y is a weak equivalence between fibrant and cofibrant objects in M, so are

P kf : P kX → P kY and Ω̃kf : Ω̃kX → Ω̃kY .

Proof. Using Axiom SM7 for the simplicial model category M, the natural isomor-
phism (4.14), and SM7 for S itself (cf. [Q, II, §1-3]), we see that

(a) Any (trivial) cofibration i : K →֒ L in S induces a (trivial) fibration
i∗ : XL →→ XK , as long as X ∈ M is fibrant.

(b) Any (trivial) fibration f : X → Y in M induces a (trivial) fibration f∗ :
XK →→ Y K for any (necessarily cofibrant) K ∈ S.

In particular, let Cn
+ denote the sub-simplicial set of the cube boundary ∂In

consisting of all facets adjacent to a fixed corner v (i.e., the cubical star of v in ∂In),
with ∂Cn its boundary (the cubical link of v). The cofibration i : ∂Cn

+ →֒ Cn
+

makes i# : XCn
+ → X∂Cn

+ a fibration in M, by (a).
In particular, the pullback square

(4.17)

Ω̃n−1X
PB

//

��

XCn
+

i#

����

∗ // X∂Cn
+
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defining Ω̃n−1X (see §3.1 and compare §2.13) is a homotopy pullback (see [Mat]).

Thus if f : X → Y is a (trivial) fibration in M, then the induced map Ω̃n−1f :

Ω̃n−1X → Ω̃n−1Y is a (trivial) fibration, by (b).
Similarly, if we consider the (pointed) cofibration sequence in S∗:

S0 = {0, ∗} →֒ ∆[1]+ = [0, 1] ∪ {∗} →→ ∆[1] = [0, 1]

(with ∗ as basepoint in the first two, and 0 as the basepoint in the cofiber), we see
from the corresponding fibration sequence in M:

PX = X∆[1] →֒ XI →→ XS0

= X

that if f : X → Y is a (trivial) fibration in M, so is Pf : PX → PY , by (b) again
(see §4.3 above). �

4.18. Lemma. If X is a fibrant object in a simplicial model category M, then for each

n ≥ 0 the map σ̃nX : P n+1X → Ω̃nX of (3.3) is a fibration.

Note that for n = 0, Ω̃0X = X and σ̃0
X is simply pX : PX → X .

Proof. If we consider the map of cofibration sequences (pushouts to ∗) in S:

(4.19)

∂Cn
+
� � //

� _

��

Cn
+

//
� _

��

Cn
+/∂C

n
+� _

��

Cn
−
� � // In // In/∂Cn

−

we see that the natural map Cn
+/∂C

n
+ → In/∂Cn

− is an inclusion (cofibration) in

S∗, so the natural map it induces – namely, σ̃nX :: P n+1X → Ω̃nX – is a fibration
by (b) above.

For n = 0 this follows directly because pX is a pullback in the following
diagram:

(4.20)

PX
PB

//

pX

��

XI

e0⊤e1

��

X
Id⊤∗ // X ×X

where e0⊤e1 is a fibration since it is induced by the cofibration {0, 1} →֒ ∆[1] in
S. �

4.21. Theorem. Let M be a path model category with core I, and let K(0) =
〈K, {F 0

(i)}
n+1
i=1 }〉 and L(0) = 〈L, {G0

(i)}
n+1
i=1 }〉 be 0-th order chain complexes of length

n+1 over M (for the same Γ ⊆ I) with K and L fibrant, and let φ(0) : K(0) → L(0)

be a map of 0-th order chain complexes which is a Dwyer-Kan equivalence. Then the
resulting equivalence of categories φ∗ : ho

I K → hoI L induces a bijection between
〈〈K(0)〉〉 and 〈〈L(0)〉〉.

Proof. We assume for simplicity that φ is the identity on objects, so we may identify
both π0 map

M
(γ,mapK(a, a

′)) and π0map
M
(γ,mapL(a, a

′)) as [a, a′]γ . Similarly
we may identify the groups π∗mapM(γ,mapK(a, a

′)) and π∗mapM(γ,mapL(a, a
′)).
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Given an (n−1)-st order chain complex K extending K(0), φ induces an (n−1)-
st order chain complex L extending L(0), as in §2.10, and takes the value 〈K〉 ⊂
[an+1, a0]γ1⊗...⊗γn+1 to 〈L〉.

(a) First assume that φ(0) : K(0) → L(0) is a trivial fibration.
To show that the above correspondence is a bijection, let L be an (n− 1)-st order

chain complex extending L(0). We show by induction on k ≥ 0 that we have an
k-th order chain complex K(k) extending K(0), where φ∗K

(k) agrees with L to
k-th order (by assumption this holds for k = 0).

In the induction step, we have a (k−1)-st order chain complex K(k−1) such that
φ∗K

(k−1) agrees with L to (k−1)-st order, which we wish to extend to K(k). Thus
we have a commuting diagram

(4.22)

γi−k ⊗ . . .⊗ γi P kmapK(ai, ai−k−1)

Qi

PB
P kmapL(ai, ai−k−1)

Ω̃k−1mapK(ai, ai−k−1) Ω̃k−1mapL(ai, ai−k−1)

Gk
(i)

##

αK

))

ψ
**❚

❚
❚

❚
❚

❚
❚

❚
❚

❚

≃ ξ

��
✤

✤

✤

P kφ

++ ++❱❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱

σ̃k−1
K

����

p2

≃
// //

p1

����

σ̃k−1
L

����
Ω̃k−1φ

≃
//

in which Qi is the pullback as indicated, and αK : γi−k⊗. . .⊗γi → Ω̃k−1mapK(ai, ai−k−1)
into the limit is induced by the maps F k−1

(t) (t = 0, . . . , k − 1).

Here p2 is a trivial fibration and p1 is a fibration by base change (using Lemmas
4.16 and 4.18). The maps ψ : γi−1 ⊗ γi → Qi and ξ : P kmapK(ai, ai−k−1) → Qi

exist by the universal property, and ξ is a weak equivalence by the 2 out of 3 property.
Factor ξ as

P kmapK(ai, ai−k−1)
j
−→ ̂P kmapK(ai, ai−k−1)

ξ̂
−→ Qi ,

where j a trivial cofibration and ξ̂ is a trivial fibration. Since γi−k ⊗ . . .⊗ γi ∈ I
is cofibrant, we have a lifting as indicated in the solid commuting square:

(4.23)

∗ //
� _

��

̂P kmapK(ai, ai−k−1)

ξ̂≃

����

γi−k ⊗ . . .⊗ γi
ψ

//

ψ̂
44❤

❤
❤

❤
❤

❤
❤

❤
❤

❤

Qi

Since j is a trivial cofibration and σ̃kX is a fibration (for X := Ω̃k−1mapK(ai, ai−k−1))
by Lemma 4.18, we have a lift ζ as indicated in:

(4.24)

P kmapK(ai, ai−k−1)� _

j≃
��

P kmapK(ai, ai−k−1)

σ̃k−1
K����

̂P kmapK(ai, ai−k−1)
σ̂

// //

ζ
33❣

❣
❣

❣
❣

❣
❣

❣
❣

Ω̃k−1mapK(ai, ai−k−1),
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for σ̂ := p1 ◦ ξ̂. Thus if we set F k
(i) : γi−k ⊗ . . .⊗ γi → P kmapK(ai, ai−k−1) equal

to ζ ◦ ψ̂, we see that

πt ◦ σ̃
k−1
K ◦ F k

(i) = ∂t ◦ F
k
(i) = µk−t−1,t(F k−t−1

(i−t−1) ⊗ F t
(i))

(see §3.1 and (2.8)) for all 0 ≤ t < k, and φ ◦ F k
(i) = Gk

(i).

Thus by induction we see that any (n−1)-st order chain complex L(n−1) extending
L(0) lifts along φ to K(n−1), so that φ∗ is surjective.

On the other hand, since φ is a trivial fibration in mapM, in particular Ω̃n−1φ :

Ω̃n−1mapK(an+1, a0) → Ω̃n−1mapL(an+1, a0) is a trivial fibration in M, so it induces
an isomorphism

πn−1mapM(γ1 . . . γn+1,mapK(an+1, a0))
∼=
−→ πn−1mapM(γ1 . . . γn+1,mapL(an+1, a0))

by SM7. Thus if [〈φ∗K〉] = [〈φ∗K
′〉] in πn−1 mapM(γ1 . . . γn+1, mapL(an+1, a0)),

then [〈K〉] = [〈K′〉] in πn−1map
M
(γ1 . . . γn+1, mapK(an+1, a0)).

We can see directly that 〈L(n−1)〉 vanishes if and only if it lifts to F n
(n+1) :

γ0⊗ . . .⊗γn+1 → P n+1mapK(an+1, a0), this happens if and only if the corresponding
value 〈K(n−1)〉 vanishes, too.

(b) Now assume that φ(0) : K(0) → L(0) is an arbitrary weak equivalence, but
that K(0) and L(0) are both fibrant and cofibrant. Factoring φ(0) as a trivial
cofibration followed by a trivial fibration, by (a) it suffices to assume that φ(0) is a
trivial cofibration. This implies that we have a lifting as indicated in the diagram of
M-categories

(4.25)

K(0)
� _

φ≃
��

K(0)

����
L(0) //

ρ
77♦

♦
♦

♦
♦

♦
♦

∗

using Theorem 4.11. Thus by [Ho, Proposition 1.2.8], φ is a homotopy equivalence
(with strict left inverse ρ). Therefore, if H : L(0) → (L(0))I is a right homotopy
φ ◦ ρ ∼ Id into a path object for L(0) in M-Cat (cf. [Q, I, §1]), the two trivial
fibrations d0, d1 : (L

(0))I →→ L(0) induce the required bijection by (a).

(c) Finally, if φ : K(0) → L(0) is any Dwyer-Kan equivalence, with cofibrant

replacements ψ : K̂(0) →→ K(0) and ξ : L̂(0) →→ L(0) in M-Cat (so both ψ and ξ
are trivial fibrations), we have a lifting

(4.26)

∗� _

��

L̂(0)

ξ≃
����

K̂(0) ψ

≃
// //

ρ

≃

33❣
❣❣

❣❣❣
❣❣

❣❣❣
❣❣❣

❣

K(0) φ

≃
// L(0)

where ρ is a Dwyer-Kan equivalence between fibrant and cofibrant M-categories, so it
induces a bijection as required by (b), while ψ and ξ are trivial fibrations in M-Cat,
so they induce the required bijections by (a). Since the lower right quadrangle in
(4.26) commutes, φ also induces a bijection as required. �

4.27. Definition. Given a path model category M with core I, let C be a (small)
subcategory of M-Cat consisting of fibrant 0-th order chain complexes of length
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N = n+1 for Γ ⊆ I. If ∼ is the equivalence relation on C generated by Dwyer-Kan
equivalences, let HoΓ C := C/ ∼. An equivalence class in HoΓ C will be called a
homotopy chain complex for Γ.

4.28. Example. Our motivating example is when C is an M-subcategory of a model
category C

′, whose weak equivalences f : X → Y between fibrant objects are maps
inducing an isomorphism in f∗ : π∗ mapM(γ,mapC′(Z,X)) → π∗ mapM(γ,mapC′(Z, Y ))
for every cofibrant Z ∈ C

′ and every γ ∈ I. Examples include those of §§1.13-1.16
with I as in §1.20.

In this case a homotopy chain complex Λ of length n+1 in HoΓ C is represented
by a sequence of elements

(4.29) ϕi ∈ [ai, ai−1]γi
∼= π0 map

M
(γi, map

C
(ai, ai−1)) (i = 1, . . . , n+ 1)

such that

ν∗(ϕi−1, ϕi) = 0 in [ai, ai−2]γi−1⊗γi (i = 2, . . . n+ 1) ,

in the notation of §4.8.
In particular, when I = {1}, Λ may be described by a diagram:

(4.30) an+1
ϕn+1
−−−→ an

ϕn
−→ an−2 → . . . → a1

ϕ1
−→ a0 ,

in hoC′ such that ϕi−1 ◦ ϕi = 0 for i = 2, . . . n+ 1.

However, in the context of Massey products (cf. §3.11), we do not have such a
model category C

′ available. In this case, we let C be a set of DGAs over R with a
given homology algebra, Γ = IR as in §1.20(b), and a homotopy chain complex Λ
in HoΓ C is a quasi-isomorphism class of DGAs in C.

4.31. Definition. Given a path model category M with core I, a category C as
in §4.27 for Γ ⊆ I, and a homotopy chain complex Λ of length n + 1 for
Γ, the corresponding n-th order Toda bracket 〈〈Λ〉〉 is defined to be 〈〈K(0)〉〉 ⊆
πn−1map

M
(γ1 ⊗ . . .⊗ γn+1, mapK(an+1, a0)) for some representative K(0) of Λ.

4.32. Remark. By Theorem 4.21, 〈〈Λ〉〉 is well-defined.

4.33. Massey products in DGAs. Since ChR is a model category, we can
consider higher Toda brackets for a differential graded algebra A∗, as in §3.11 (we
think of A∗ as a chain complex, rather than a cochain complex, but since we allow
arbitrary Z-grading, this is no restriction).

A chain complex Λ of length n+1 in hoA∗ consists of a sequence (γi)
n+1
i=1 of

homology classes in H∗A∗, with γi · γi+1 = 0 for i = 1, . . . , n. If we choose an
n-th order chain complex (that is, a DGA A∗) realizing Λ, as above, we obtain the

element given by (3.13) in Ω̃n−1A∗. However, because we are working over ModR

we can define the identification Ω̃n−1A∗
∼= Ωn−1A∗ using the Dold-Kan equivalence

(essentially, by the homotopy addition theorem – cf. [Mu]), and thus obtain the value

(4.34)

n∑

t=1

(−1)t H t
i−k+t ·H

n−t
i ∈ Aj+n

in Ωn−1A∗, which is readily seen to be a (j + n− 1)–cycle for j :=
∑n

t=1 mt.
By comparing this formula with the classical definition of the higher Massey product

(see, e.g., [Ta, (V.4)]), we find:
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4.35. Proposition. The higher Toda brackets in a differential graded algebra A∗ are
identical with the usual higher Massey products.

5. Toda brackets for chain complexes

We now study Toda brackets in the category Ch>0
R of non-negatively graded chain

complexes over a hereditary ring R, such as Z. It turns out that in this case even
ordinary Toda brackets have a finer “homological” structure, which we describe.

5.1. Chain complexes over hereditary rings. Since R is hereditary, if Q0(G)
is a functorial free cover of an R-module G, we have a projective presentation

0 → Q1(G)
αG

−→ Q0(G)
r
−→ G→ 0 ,

where Q1(G) := Ker(r).
We then define the n-th Moore complex M(G, n)∗ for an R-module G to be

the chain complex with (M(G, n))n+1 := Q1(G), (M(G, n))n := Q0(G), and 0

otherwise, with ∂n+1 = αG. This yields a functor Ĉ∗ : grMod>0
R → Ch>0

R with

(5.2) Ĉ∗(E∗) :=
⊕

n≥0

M(En, n)∗ .

Recall that Ch>0
R has a model structure in which quasi-isomorphisms are the

weak equivalences, and a chain complexes is cofibrant if and only if it is projective
in each dimension (see [Ho, §2.3]). Because R is hereditary, any A∗ ∈ Ch>0

R is
uniquely determined up to weak equivalence by the graded R-module H∗A∗ (cf.
[D1, Theorem 3.4]).

Therefore, if we enrich grMod>0
R over ChR by setting

Hom(E∗,F∗) := Hom(Ĉ∗(E∗), Ĉ∗(F∗))

(see §1.16), Ĉ∗ becomes an enriched embedding, and in fact:

5.3. Lemma. The functor Ĉ∗ : grMod>0
R → Ch>0

R is a Dwyer-Kan equivalence over
ChR.

Since the right-hand side of (5.2) is a coproduct, we see that Hom(E∗,F∗)
naturally splits as a product

(5.4)
∏

n≥0

(
Hom(M(En, n)∗, M(Fn, n)∗)× Hom(M(En, n)∗, M(Fn+1, n + 1)∗)

)
× P,

where P is a product of similar terms, but with H0P = 0. Moreover, since
(5.5)
[M(E, n)∗, M(F, n)∗] ∼= HomR(E, F ) and [M(E, n)∗, M(F, n+ 1)∗] ∼= ExtR(E, F ),

we see that (5.4) is an enriched version of the Universal Coefficient Theorem for
chain complexes, stating that for chain complexes over a hereditary ring R there is a
(split) short exact sequence:

0 →
∏

n>0

ExtR(Hn−1A∗, HnB∗) → [A∗, B∗] →
∏

n≥0

HomR(HnA∗, HnB∗) → 0

(cf. [D2, Corollary 10.13]). Note that in our version for grMod>0
R , the splitting is

natural!
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5.6. Notation. From (5.4) we see that there are two kinds of indecomposable maps
of chain complexes (and their nullhomotopies) (see (5.7)):

(a) ‘Hom-type’ maps H(f) : M(E, n)∗ → M(F, n)∗, determined by

f 10
n : Q0(E) → Q0(F ) and f 11

n : Q1(E) → Q1(F ) .

A nullhomotopy H(S) : H(f) ∼ 0 is given by S01
n : Q0(E) → Q1(F ), the

factorization of f 00
n through Q1(F ) →֒ Q0(F ). If it exists, it is unique.

(b) ‘Ext-type’ maps

E(f) : M(E, n)∗ → M(F ′, n+ 1)∗ ,

determined by f 01
n : Q1(E) → Q0(F

′). A nullhomotopy E(S) : E(f) ∼ 0 is
given by S00

n : Q0(E) → Q0(F
′) and S11

n : Q1(E) → Q1(F
′).

(5.7)

Q1(Fn+1)� _

��

H(f) : Q1(En)� _

��

f11n // Q1(Fn)� _

��

E(f) : Q1(En)� _

��

f01n //

S11
n

88

Q0(Fn+1)

Q0(En)

S01
n

99

f00n

// Q0(Fn) Q0(En)
S00
n

88

5.8. Secondary chain complexes in grMod>0
R . In light of the above discussion,

we see that any secondary chain complex

(5.9) Ĉ∗(E∗)
f
−→ Ĉ∗(F∗)

g
−→ Ĉ∗(G∗)

h
−→ Ĉ∗(H∗)

in the ChR-enriched category grMod>0
R is a direct sum of secondary chain complexes

of one of the following four elementary forms:

M(En, n)∗
H(f)⊤E(f)
−−−−−−→ M(Fn, n)∗ ⊕M(Fn+1, n+ 1)∗

H(g)⊥E(g)
−−−−−−→

M(Gn+1, n + 1)∗
H(h)
−−−→ M(Hn+1, n+ 1)∗ ,

(5.10)

M(En, n)∗
H(f)⊤E(f)
−−−−−−→ M(Fn, n)∗ ⊕M(Fn+1, n+ 1)∗

H(g)⊥E(g)
−−−−−−→

M(Gn+1, n + 1)∗
E(h)
−−→ M(Hn+2, n+ 2)∗ ,

(5.11)

M(En, n)∗
H(f)
−−−→ M(Fn, n)∗

H(g)⊤E(g)
−−−−−−→

M(Gn, n)∗ ⊕M(Gn+1, n+ 1)∗
H(h)⊥E(h)
−−−−−−→ M(Hn+1, n+ 1)∗

(5.12)

M(En, n)∗
E(f)
−−→ M(Fn+1, n+ 1)∗

H(g)⊤E(g)
−−−−−−→

M(Gn+1, n+ 1)∗ ⊕M(Gn+2, n+ 2)∗
H(h)⊥E(h)
−−−−−−→ M(Hn+2, n+ 2)∗

(5.13)

Two additional hypothetical forms, namely:
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(i) M(En, n)∗
H(f)
−−−→ M(Fn, n)∗

H(g)
−−→ M(Gn, n)∗

H(h)
−−−→ M(Hn, n)∗

(ii) M(En, n)∗
E(f)
−−→ M(Fn+1, n+ 1)∗

E(g)
−−→ M(Gn+2, n+ 2)∗

E(h)
−−→ M(Hn+3, n+ 3)∗

in fact are irrelevant to Toda brackets, for dimensional reasons.
Moreover, the four elementary secondary chain complexes may or may not split

further into one of the following six atomic forms:

(a) M(En, n)∗
H(f)
−−−→ M(Fn, n)∗

H(g)
−−→ M(Gn, n)∗

E(h)
−−→ M(Hn+1, n+ 1)∗ and

two similar cases with a single E-term;

(b) M(En, n)∗
H(f)
−−−→ M(Fn, n)∗

E(g)
−−→ M(Gn+1, n+ 1)∗

E(h)
−−→ M(Hn+2, n+ 2)∗

and two similar cases with a single H-term.

5.14. Secondary Toda brackets in grMod>0
R . By Definition 4.31, a secondary

Toda bracket in the ChR-enriched category grMod>0
R is associated to a homotopy

chain complex Λ of length 3 in ho grMod>0
R as in (4.30). This means that we replace

the actual chain maps in each of the twelve examples of §5.8 by their homotopy classes:
that is, elements in HomR(E, F ) or ExtR(E, F

′), respectively.
The compositions Hom(E, F )⊗Ext(F,G) → Ext(E,G) Ext(E, F )⊗Hom(F,G) →

Ext(E,G) simply define the functoriality of Ext, while Ext(E, F )⊗Ext(F,G) →
Ext(E,G) vanishes for dimension reasons. Nevertheless, the associated Toda bracket
may be non-trivial.

Note that in this case, as in the original construction of Toda in [To2] (see also
[Sp1]), the subset 〈〈Λ〉〉 of [ΣE∗, H∗] is actually a double coset of the group

(Σf)♯[ΣF∗, H∗] + h♯[ΣE∗, G∗] ,

so we can think of 〈〈Λ〉〉, which we usually denote simply by 〈h, g, f〉, as taking
value in the quotient abelian group

(5.15) 〈h, g, f〉 ∈ (Σf)♯[ΣF∗, H∗] \ [ΣE∗, H∗] / h♯[ΣE∗, G∗] .

Thus the elementary examples of §5.8 may be interpreted as secondary operations
in ExtR, defined under certain vanishing assumptions, and with an explicit indeter-
minacy (which may be less than that indicated in (5.15) in any specific case).

For example, in (5.11) (case (e) above), the operation is defined for elements in
the pullback of

Hom(En, Fn)⊗ Ext(Fn, Gn+1)⊗ Ext(Gn+1, Hn+2)

Ext(En, Gn+1)⊗ Ext(Gn+1, Hn+2)

Ext(En, Fn+1)⊗ Hom(Fn+1, Gn+1)⊗ Ext(Gn+1, Hn+2)

comp⊗ Id

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

comp⊗ Id

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

and takes value in the quotient group Ext(En, Hn+1) / h♯Hom(En, Gn), where
h♯Hom(En, Gn) refers to the image of the given element h ∈ Ext(Gn, Hn+1) under
precomposition with all elements of Hom(En, Gn).
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It turns out that cases (a) and (d) are trivial for dimension reasons, but we shall
now provide examples of non-triviality for four of the remaining cases.

5.16. Example. Consider the homotopy chain complex Λ in ho grMod>0
R given by

E0 = Z/2, F0 = Z/4, G0 = Z/2, and H1 = Z/2, with the corresponding maps

f = 2 ∈ Z/2 = Hom(E0, F0) = Hom(Z/2, Z/4)

g = 1 ∈ Z/2 = Hom(F0, G0) = Hom(Z/4,Z/2)

h = 2 ∈ Z/2 = Ext(F0, H1) = Ext(Z/2,Z/2) .

By Remark 4.32, we may choose any cofibrant chain complexes in ChZ to realize

Λ, not necessarily the functorial versions Ĉ∗(E∗), and so on. In our case we shall use
the following minimal secondary chain complex:

D2 = Z

D1 = Z

� _

α
D∗
1 =2

��

C1 = Z

C0 = Z

� _

α
C∗
0 =2

��

h100 =1
//B1 = Z

B0 = Z

� _

α
B∗
0 =4

��

g000 =1

//

g110 =2
//❴❴❴❴❴❴❴

T 11
0 =1

33

A1 = Z

A0 = Z

� _

α
A∗
0 =2

��

f000 =2

//

f110 =1
//❴❴❴❴❴❴❴

S01
0 =1

33

The Toda bracket is given by:

(ΣA)2 = Z
1 //❴❴❴❴❴❴❴❴❴❴❴❴

� _

−2
��

D2 = Z
� _

2

��

(ΣA)1 = Z
−1

// D1 = Z

The indeterminacy is given by

(Σf)♯[ΣF∗, H∗] + h♯[ΣE∗, G∗]

= Σf ♯Hom(F0, H1) + h♯Hom(E0, G1) = 2 · (Z/2) + 0 = 0 .

Hence the Toda bracket 〈h, g, f〉 does not vanish.

5.17. Example. Consider the homotopy chain complex in ho grMod>0
R given by

E0 = Z/2, F1 = Z/4, G1 = Z/4, and H2 = Z, with the corresponding
maps f = 1 ∈ Z/2 = Ext(Z/2,Z/4), g = 2 ∈ Z/4 = Hom(Z/4,Z/4), and
h = 2 ∈ Z/4 = Ext(Z/4,Z).
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We choose the following associated secondary chain complex:

D2 = ZC2 = Z

C1 = Z

� _

α
C∗
1 =4

��

h101 =2
//B2 = Z

B1 = Z

� _

α
B∗
1 =4

��

g000 =2

//

g110 =2
//❴❴❴❴❴❴❴

T 00
1 =1

33

A1 = Z

A0 = Z

� _

α
A∗
0 =2

��

f100 =1

//

S00
0 =1

33

The Toda bracket is represented as follows:

(ΣA)2 = Z
1 //

� _

−2
��

D2 = Z

(ΣA)1 = Z

which is a generator of Ext(Z/2,Z) = Z/2. The indeterminacy is

(Σf)♯[ΣF∗, H∗] + h♯[ΣE∗, G∗]

= Σf ♯Hom(F0, H1) + h♯Hom(E0, G1) = 1 · 0 + 2 · (Z/2) = 0 .

Hence the Toda bracket 〈h, g, f〉 does not vanish.

5.18. Example. Consider the homotopy chain complex in ho grMod>0
R given by

E0 = Z/8, F1 = Z/4, G1 = Z/4, and H2 = Z, with the corresponding
maps f = 1 ∈ Z/4 = Hom(Z/8,Z/4), g = 2 ∈ Z/4 = Ext(Z/4,Z/4), and
h = 1 ∈ Z/4 = Ext(Z/4,Z).

We may choose the following associated secondary chain complex:

D2 = ZC2 = Z

C1 = Z

� _

α
C∗
1 =4

��

h101 =1
//

B1 = Z

B0 = Z

� _

α
B∗
0 =4

��

g100 =2
//A1 = Z

A0 = Z

� _

α
A∗
0 =8

��

f000 =1

//

f110 =2

//❴❴❴❴❴❴❴

S11
0 =1

33

The Toda bracket is given by:

(ΣA)2 = Z
1 //

� _

−8
��

D2 = Z

(ΣA)1 = Z

which is a generator of Ext(Z/8,Z) = Z/8. The indeterminacy is

(Σf)♯[ΣF∗, H∗] + h♯[ΣE∗, G∗] = f ♯ Ext(F0, H2) + h♯Hom(E0, G1) .
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A generator of f ♯ Ext(F0, H2) = 1 ·Ext(Z/4,Z) = Z/4 in Ext(E0, H2) is given by

(ΣA)2 = Z
2 //❴❴❴❴❴❴❴❴

� _

−8
��

(ΣB)2 = Z
1 //

� _

−4
��

D2 = Z

(ΣA)1 = Z
1 // (ΣB)1 = Z

while a generator of h♯Hom(E0, G1) = 1 · Hom(Z/8,Z/4) = Z/4 in Ext(E0, H2)
is given by

(ΣA)2 = Z
2 //

� _

−8
��

D2 = Z

(ΣA)1 = Z

so the total indeterminacy is the subgroup Z/4 ⊆ Z/8 = Ext(Z/8,Z) = Ext(E0, H2).
Since the Toda bracket 〈h, g, f〉 is represented by a generator of this Z/8, it does
not vanish.

5.19. Example. Consider the homotopy chain complex in ho grMod>0
R given by

E0 = Z/16, F0 = Z/8, F1 = Z/16, G1 = Z/16, and H2 = Z/16, with
the corresponding maps f = 1 ∈ Z/8 = Hom(E0, F0), f ′ ∈ Z/16 = Ext(E0, F1),
g = 4 ∈ Z/8 = Ext(F0, G1), g′ ∈ Z/16 = Hom(F1, G1) and h = 2 ∈ Z/16 =
Hom(G1, H1).

We may choose the following associated secondary chain complex:

D2 = Z

D1 = Z

� _

α
D∗
1 =16

��

C2 = Z

C1 = Z

� _

α
C∗
1 =16

��

h111 =2
//❴❴❴❴❴❴❴

h001 =2
//

B′
2 = Z

B′
1 = Z

⊕
B1 = Z

B0 = Z

� _

α
B∗
1 =16

�� (g′)001 =8
//

(g′)111 =8
//❴❴❴❴❴❴❴❴❴

� _

α
B∗
0 =8

��

g100 =4

33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

T 01
1 =1

44

T 00
0 =1

55

A1 = Z

A0 = Z

� _

α
A∗
0 =16

��

f000 =1

//

f110 =2

//❴❴❴❴❴❴❴❴❴

(f ′)100 =1 33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

S11
0 =1

22

The Toda bracket is given by:

(ΣA)2 = Z
h111 ◦S11

0 −T 01
1 ◦(f ′)100 =1

//❴❴❴❴❴❴❴❴❴❴❴❴❴

� _

−16
��

D2 = Z
� _

16

��

(ΣA)1 = Z
−f000 ◦T 00

0 =−1
// D1 = Z

which is a generator of Hom(Z/16,Z/16) = Z/16. The indeterminacy is

(Σf)♯[ΣF∗, H∗] + h♯[ΣE∗, G∗] = f ♯Hom(F0, H1) + h♯Hom(E0, G1) .
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A generator of f ♯Hom(F0, H1) = 1 · Hom(Z/8,Z/16) = Z/8 in Hom(E0, H1) is
given by

(ΣA)2 = Z
f110 =2

//❴❴❴❴❴❴❴❴

� _

−16
��

(ΣB)2 = Z
−1

//❴❴❴❴❴❴❴❴

� _

−8
��

D2 = Z
� _

16

��

(ΣA)1 = Z
f000 =1

// (ΣB)1 = Z
2 // D1 = Z

while a generator of h♯Hom(E0, G1) = 2 ·Hom(Z/16,Z/16) = Z/8 in Hom(E0, H1)
is given by

(ΣA)2 = Z
−2

//❴❴❴❴❴❴❴❴❴

� _

−16
��

D2 = Z
� _

16

��

(ΣA)1 = Z
2 // D1 = Z

so the Toda bracket 〈h, g, f〉 does not vanish.

5.20. Remark. See [Ba2, §6.12] for a calculation relating Toda brackets in topology
with a certain operation in homological algebra.
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