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Cedex, France.

E-mail : fanny.kassel@math.univ-lille1.fr

Toshiyuki Kobayashi

Kavli IPMU and Graduate School of Mathematical Sciences, The University of
Tokyo, 3-8-1 Komaba, Meguro, 153-8914 Tokyo, Japan.

E-mail : toshi@ms.u-tokyo.ac.jp

2000 Mathematics Subject Classification. — 22E40, 22E46, 58J50 (primary);
11F72, 53C35 (secondary).

Key words and phrases. — Laplacian, invariant differential operator, discrete
spectrum, pseudo-Riemannian manifold, reductive symmetric space, Clifford–Klein
form, locally symmetric space, properly discontinuous action, discrete series represen-
tation.

T.K. was partially supported by Grant-in-Aid for Scientific Research (B) (22340026)
of the JSPS.



POINCARÉ SERIES FOR NON-RIEMANNIAN LOCALLY

SYMMETRIC SPACES

Fanny Kassel, Toshiyuki Kobayashi

Abstract. — The discrete spectrum of the Laplacian has been extensively studied
on reductive symmetric spaces and on Riemannian locally symmetric spaces. Here
we examine it for the first time in the general setting of non-Riemannian, reductive,
locally symmetric spaces.

For any non-Riemannian, reductive symmetric space X on which the discrete spec-
trum of the Laplacian is nonempty, and for any discrete group of isometries Γ whose
action on X is sufficiently proper, we construct L2-eigenfunctions of the Laplacian
on XΓ := Γ\X for an infinite set of eigenvalues. These eigenfunctions are obtained
as generalized Poincaré series, i.e. as projections to XΓ of sums, over the Γ-orbits, of
eigenfunctions of the Laplacian on X .

We prove that the Poincaré series we construct still converge, and define nonzero
L2-functions, after any small deformation of Γ, for a large class of groups Γ. In other
words, the infinite set of eigenvalues we construct is stable under small deformations.
This contrasts with the classical setting where the nonzero discrete spectrum varies
on the Teichmüller space of a compact Riemann surface.

We actually construct joint L2-eigenfunctions for the whole commutative algebra
of invariant differential operators on XΓ.
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Résumé (Séries de Poincaré pour les espaces localement symétriques non
riemanniens)

Le spectre discret du laplacien a été beaucoup étudié sur les espaces symétriques
réductifs, ainsi que sur les espaces localement symétriques riemanniens. Dans cet ar-
ticle, nous l’étudions pour la première fois dans le cadre général des espaces localement
symétriques réductifs non riemanniens.

Pour tout espace symétrique réductif X dont le spectre discret du laplacien est non
vide, et pour tout groupe discret d’isométries Γ dont l’action sur X est suffisamment
propre, nous construisons des fonctions propres L2 du laplacien sur XΓ := Γ\X pour
une infinité de valeurs propres. Ces fonctions propres sont obtenues comme séries
de Poincaré généralisées, c’est-à-dire comme projections sur XΓ de sommes, sur les
Γ-orbites, de fonctions propres du laplacien sur X .

Nous montrons que ces séries de Poincaré continuent à converger et à définir des
fonctions L2 non nulles après n’importe quelle petite déformation de Γ, pour une classe
importante de groupes Γ. En d’autres termes, l’ensemble infini de valeurs propres
que nous construisons est stable par petites déformations de Γ. Ceci contraste avec
la situation riemannienne classique où le spectre discret non nul d’une surface de
Riemann compacte varie de manière non constante sur son espace de Teichmüller.

Les fonctions propres que nous construisons sont en fait communes à toute l’algèbre
commutative des opérateurs différentiels invariants sur XΓ.
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CHAPTER 1

INTRODUCTION

The spectral properties of the Laplacian have been much investigated both on Rie-

mannian locally symmetric spaces Γ\G/K and on reductive symmetric spaces G/H .

These are all special cases of pseudo-Riemannian locally symmetric spaces Γ\G/H ,

for which the Laplacian continues to exist and be worthy of study. The aim of this

paper is to set up a framework for spectral theory in this general setting and to prove

the first results on the discrete spectrum of such spaces under a rank condition on

G/H (which makes them non-Riemannian if G is noncompact). In particular, we

construct L2-eigenfunctions for an infinite set of eigenvalues on a large class of spaces

(not necessarily compact or of finite volume) and prove some deformation results that

have no analogue in the classical Riemannian setting. More precisely, we work not

only with the Laplacian, but with the whole commutative algebra of “intrinsic” dif-

ferential operators on Γ\G/H , which includes the Laplacian. Before describing our

results in more detail, we first recall the definitions of the main objects.

1.1. The main objects

A pseudo-Riemannian metric on a manifold M is a smooth, nondegenerate, sym-

metric bilinear tensor g of signature (p, q) for some p, q ∈ N. As in the Riemannian

case (i.e. q = 0), the metric g induces a second-order differential operator

(1.1) �M = div grad

called the Laplacian or Laplace–Beltrami operator. For instance, for

(M, g) = Rp,q :=
(
Rp+q, dx21 + · · ·+ dx2p − dx2p+1 − · · · − dx2p+q

)

the Laplacian is

�Rp,q =
∂2

∂x21
+ · · ·+ ∂2

∂x2p
− ∂2

∂x2p+1

− · · · − ∂2

∂x2p+q

.
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In general, �M is elliptic if g is Riemannian, hyperbolic if g is Lorentzian (i.e. q = 1),

and none of these otherwise. The discrete spectrum of �M is its set of eigenvalues

corresponding to L2-eigenfunctions:

(1.2) Specd(�M ) :=
{
t ∈ C : ∃f ∈ L2(M), f 6= 0, �Mf = tf

}
,

where L2(M) is the Hilbert space of square-integrable functions on M with respect

to the Radon measure induced by the pseudo-Riemannian structure.

A reductive symmetric space is a homogeneous space X = G/H where G is a

real reductive Lie group and H an open subgroup of the group of fixed points of G

under some involutive automorphism σ. The manifold X naturally carries a pseudo-

Riemannian metric, induced by the Killing form of the Lie algebra g of G when G is

semisimple; therefore, X has a Laplacian �X . Alternatively, �X is induced by the

Casimir element of the enveloping algebra U(g), acting on C∞(X) by differentiation

(see Section 3.2). Let D(X) be the C-algebra of differential operators on X that are

invariant under the natural G-action

g ·D = ℓ∗g ◦D ◦ (ℓ∗g)−1 =
(
f 7−→ D

(
fg−1)g)

,

where we set ℓ∗g(f) = fg := f(g ·). The Laplacian �X belongs to D(X) and, since

X is a symmetric space, D(X) is commutative (see Section 3.1); we shall consider

eigenfunctions for �X that are in fact joint eigenfunctions for D(X).

A locally symmetric space is a quotient XΓ = Γ\X of a reductive symmetric space

X = G/H by a discrete subgroup Γ of G acting properly discontinuously and freely.

Such a quotient is also called a Clifford–Klein form of X . The proper discontinuity

of the action of Γ ensures that XΓ is Hausdorff, and it is in fact a manifold since the

action is free. It is locally modeled on X (it is a complete (G,X)-manifold in the sense

of Ehresmann and Thurston), hence inherits a pseudo-Riemannian structure from X

and has a Laplacian �XΓ . Any operator D ∈ D(X) induces a differential operator DΓ

on XΓ such that the following diagram commutes, where pΓ : X → XΓ is the natural

projection.

C∞(X)
D // C∞(X)

C∞(XΓ)

p∗
Γ

OO

DΓ // C∞(XΓ)

p∗
Γ

OO

In particular, note that

�XΓ = (�X)
Γ
.

The discrete spectrum Specd(XΓ) of XΓ is defined to be the set of C-algebra ho-

momorphisms χλ : D(X) → C such that the space L2(XΓ,Mλ) of weak solutions

f ∈ L2(XΓ) to the system

DΓf = χλ(D)f for all D ∈ D(X) (Mλ)
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is nonzero. (The notation χλ will be explained in Section 3.1.) It is the set of

joint eigenvalues for the commutative algebra D(XΓ) := {DΓ : D ∈ D(X)}, which
we think of as the algebra of “intrinsic” differential operators on XΓ. The discrete

spectrum Specd(XΓ) refines the discrete spectrum of the Laplacian �XΓ from (1.2)

(see Remark 3.3).

1.2. The main problems

Let XΓ = Γ\X be a locally symmetric space. We consider the following problems

(see [KK1]):

Problem A: To construct joint L2-eigenfunctions onXΓ corresponding to Specd(XΓ).

Problem B: To understand the behavior of Specd(XΓ) under small deformations

of Γ inside G.

By a small deformation we mean a homomorphism close enough to the natural

inclusion in the compact-open topology on Hom(Γ, G).

Problems A and B have been studied extensively in the following two cases.

– Assume that H is compact. Then X is Riemannian and the Laplacian �X is

elliptic. If XΓ is compact, then the discrete spectrum of �XΓ is infinite. If

furthermore Γ is irreducible, then Weil’s local rigidity theorem [We1] states

that nontrivial deformations exist only when X is the hyperbolic plane H2 =

SL2(R)/SO(2), in which case compact Clifford–Klein forms have an interesting

deformation space modulo conjugation, namely their Teichmüller space. Viewed

as a “function” on the Teichmüller space, the discrete spectrum varies ana-

lytically [BC] and nonconstantly (Fact 1.2 below). On the other hand, for

noncompact XΓ the discrete spectrum Specd(XΓ) may be considerably different

depending on whether Γ is arithmetic or not (see Selberg [Se1], Phillips–Sarnak

[PS1, PS2], Wolpert [Wp], etc.).

– Assume that Γ is trivial. Then the group G naturally acts on L2(XΓ) = L2(X)

and so representation-theoretic methods may be used. Spectral analysis on the

reductive symmetric space X with respect to D(X) is essentially equivalent to

finding a Plancherel-type theorem for the irreducible decomposition of the regu-

lar representation of G on L2(X): see van den Ban–Schlichtkrull [BS], Delorme

[D], and Oshima [Os1], as a far-reaching generalization of Harish-Chandra’s ear-

lier work [Ha] on the regular representationL2(G) for groupmanifolds. Flensted-

Jensen [Fl] and Matsuki–Oshima [MO] showed that Specd(X) 6= ∅ if and only if

the condition rankG/H = rankK/K ∩H is satisfied (see Section 3.3), in which

case they gave an explicit description of Specd(X) (Fact 5.5). The rest of the

spectrum (tempered representations for X , see [Br]) is constructed from the

discrete spectrum of smaller symmetric spaces by induction.
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On the other hand, Problems A and B have not been much studied when H is

noncompact, Γ is nontrivial, and Γ acts properly discontinuously on X = G/H ,

except in the group manifold case when XΓ identifies with 8Γ\8G for some reductive

Lie group 8G and some discrete subgroup 8Γ. Here we give the first results that do

not restrict to this case. The fact that H is noncompact and Γ nontrivial implies new

difficulties from several perspectives:

1. Analysis: the Laplacian on XΓ is not an elliptic operator anymore;

2. Geometry: an arbitrary discrete subgroup Γ of G does not necessarily act prop-

erly discontinuously on X ;

3. Representation theory: a discrete subgroup Γ of G acting properly discontin-

uously on X always has infinite covolume in G; moreover, G does not act on

L2(XΓ) and L
2(XΓ) 6= L2(Γ\G)H since H is noncompact.

In particular, point (1) makes Problem A nontrivial: we do not know a priori whether

or not Specd(XΓ) 6= ∅, even for compact XΓ.

Point (2) creates some underlying difficulty to Problem B: we need to consider

Clifford–Klein forms XΓ for which the proper discontinuity of the action of Γ on X

is preserved under small deformations of Γ in G. Not all Clifford–Klein forms XΓ

have this property (see Example 4.16), but a large class does (see Example 4.13 and

subsequent comments). The study of small deformations of Clifford–Klein forms in

the general setting of reductive homogeneous spaces was initiated in [Ko5]; we refer

to [Cn] for a recent survey in the case of compact Clifford–Klein forms. An interesting

aspect of the case of noncompact H is that there are more examples where nontrivial

deformations of compact Clifford–Klein forms exist than for compact H (see Sections

2.3 and 2.4).

1.3. One approach: constructing generalized Poincaré series

In this paper we investigate Problems A and B under the assumption (3.3) that

X admits a maximal compact subsymmetric space of full rank. This case is somehow

orthogonal to the case of Riemannian symmetric spaces of the noncompact type, where

compact subsymmetric spaces are reduced to points. Assuming that G is noncompact,

the group H is thus noncompact and X non-Riemannian.

By [Fl, MO], the assumption (3.3) is equivalent to the fact that Specd(X) is

nonempty. Our idea is then to construct joint eigenfunctions on XΓ as generalized

Poincaré series

(1.3) ϕΓ : Γx 7−→
∑

γ∈Γ

ϕ(γ ·x),

where the ϕ are well-behaved joint eigenfunctions on X . The convergence and non-

vanishing of the series are nontrivial since the behavior of ϕ needs to be controlled in

relation to the distribution of Γ-orbits in the non-Riemannian space X , for which not
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much is known since Γ is not a lattice in G (see Remark 4.8). From a representation-

theoretic viewpoint, we build on Flensted-Jensen’s discrete series representations [Fl]

for X , whose underlying (g,K)-modules are isomorphic to certain Zuckerman–Vogan

derived functor modules Aq(λ). The summation process (1.3) is different from that

of [TW]: see Remark 6.2.

Our approach enables us to address Problem A for a large class of Clifford–Klein

forms XΓ of X , constructing eigenfunctions on XΓ for an explicit, infinite set of

joint eigenvalues contained in Specd(X). In particular, this proves that the discrete

spectrum Specd(XΓ) is nonempty.

We also address Problem B for a large class of Clifford–Klein forms XΓ. We prove

that the infinite subset of Specd(XΓ) that we construct is stable under any small

deformation of Γ in G, by establishing that the generalized Poincaré series (1.3) still

converges after such a small deformation. This is achieved by carefully controlling

the analytic parameters and using recent results in the deformation theory of proper

actions on homogeneous spaces.

One special example to which our results apply is the aforementioned classical

quotients Γ\G, regarded as Γ×{e}\(G×G)/Diag(G) where Diag(G) is the diagonal

of G × G. Our geometric and analytic estimates in this case imply that all discrete

series representations of G with sufficiently regular parameter appear in the regular

representation L2(Γ\G), without replacing Γ by a deep enough finite-index subgroup

(Proposition 10.5). When Γ is arithmetic, this improves the non-vanishing results of

the classical Poincaré series that were known earlier from the asymptotic multiplicity

formulas of DeGeorge–Wallach [DW], Clozel [Cl], and Rohlfs–Speh [RS] or the theta-

lifting (see Kazhdan [Kz], Borel–Wallach [BW], Li [Li]) in automorphic forms; these

results required passing to a congruence subgroup that depended on the discrete series

representation. Our approach does not depend on the Arthur–Selberg trace formula

or the theta-lifting. We refer to Remark 10.6 for more details.

We introduce three main ingredients:

1. Uniform analytic estimates for eigenfunctions on X , including their asymptotic

behavior at infinity (Proposition 5.1) and the local behavior near the origin of

specific eigenfunctions (Proposition 7.1);

2. A quantitative understanding of proper actions on reductive homogeneous

spaces (notion of sharpness — Definition 4.2);

3. Counting estimates for points of a given Γ-orbit in X , both in large “pseudo-

balls” (Lemma 4.6) and near the origin (Proposition 8.9).

In (1), our estimates are uniform in the spectral parameter and refine results of

Flensted-Jensen [Fl] and Matsuki–Oshima [MO]. In (2), the quantitative approach

to properness that we develop builds on the qualitative interpretation of Benoist [Bn]

and Kobayashi [Ko1, Ko4] in terms of a Cartan decomposition G = KAK. In (3), we

relate the natural “pseudo-distance from the origin” in the non-Riemannian space X
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to the distance from the origin in the Riemannian symmetric space G/K of G in

order to use the growth rate of Γ, the Kazhdan–Margulis lemma, and the sharpness

constants of (2). Our counting results may be compared to those obtained by Eskin–

McMullen [EM] in a different setting, where Γ is a lattice in G (see Remark 4.8).

We now state precise results, not on our construction of joint eigenfunctions (for

this we refer to Propositions 6.1 and 8.1), but on the corresponding eigenvalues, i.e.

on the discrete spectrum of our locally symmetric spaces. These results were partially

announced in [KK1]. Before we state them in full generality, we illustrate them with

two simple examples of rank one (see Chapters 9 and 10 for more details); in these

two examples, the commutative C-algebra D(X) is generated by the Laplacian �X

and therefore Specd(XΓ) identifies with Specd(�XΓ) for any Clifford–Klein form XΓ.

1.4. Two examples

Our first example is the 3-dimensional anti-de Sitter space X = AdS3 =

SO(2, 2)0/SO(1, 2)0, which can be realized as the quadric of R4 of equation Q = 1,

endowed with the Lorentzian metric induced by −Q, where

Q(x) := x21 + x22 − x23 − x24.
It is a Lorentzian analogue of the real hyperbolic space H3, being a model space

for all Lorentzian 3-manifolds of constant sectional curvature −1 (or anti-de Sitter

3-manifolds). The Laplacian �AdS3 is a hyperbolic operator of signature (+ +−); it
is given explicitly by

�AdS3f = �R2,2

(
x 7−→ f

(
x√
Q(x)

))

for all f ∈ C∞(AdS3), where f(x/
√
Q(x)) is defined on the neighborhood {Q(x) > 0}

of the quadric AdS3 in R4. It is equal to 4 times the Casimir operator of g = so(2, 2)

with respect to the Killing form. We construct eigenfunctions of the Laplacian on all

compact anti-de Sitter 3-manifolds, for an infinite set of eigenvalues, and prove that

this infinite set of eigenvalues is stable under any small deformation of the anti-de

Sitter structure.

Theorem 1.1. — The discrete spectrum of any compact anti-de Sitter 3-manifold is

infinite. Explicitly, if M = Γ\AdS3 with −I /∈ Γ, then

(1.4) Specd(�M ) ⊃
{
ℓ(ℓ− 2) : ℓ ∈ N, ℓ ≥ ℓ0

}

for some integer ℓ0; moreover, (1.4) still holds (with the same ℓ0) after any small

deformation of the anti-de Sitter structure on M .

Here −I ∈ SO(2, 2)0 is the nontrivial element of the center of SO(2, 2)0, acting on

AdS3 = {x ∈ R4 : Q(x) = 1} by the antipodal map x 7→ −x. If −I ∈ Γ, then half of
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the spectrum survives:

Specd(�M ) ⊃
{
ℓ(ℓ− 2) : ℓ ∈ 2N, ℓ ≥ ℓ0

}

for some ℓ0. We actually prove that (1.4) holds (for some explicit ℓ0) for any complete

anti-de Sitter 3-manifold M = Γ\AdS3 with Γ finitely generated (Theorem 9.9). The

stability of eigenvalues under small deformations in Theorem 1.1 contrasts with the

situation in the Riemannian case:

Fact 1.2 (see [Wp, Th. 5.14]). — No nonzero eigenvalue of the Laplacian on a com-

pact Riemann surface is constant on its Teichmüller space.

As we shall recall in Chapter 9, any compact anti-de Sitter 3-manifold M is a circle

bundle over some closed hyperbolic surface S (up to a finite covering); the deformation

space of M contains the Teichmüller space of S, and its dimension is actually twice

as large. We shall also prove the existence of an infinite stable spectrum for a large

class of noncompact complete anti-de Sitter 3-manifolds (Corollary 9.10).

Our second example is the 3-dimensional complex manifold

X = SU(2, 2)/U(1, 2) ≃ SO(2, 4)0/U(1, 2),

which can be realized as the open subset of P3C of equation h > 0, where

h(z) := |z1|2 + |z2|2 − |z3|2 − |z4|2

on C4. The space X is naturally endowed with an indefinite Hermitian structure of

signature (2, 1) induced by−h. The imaginary part of −h endowsX with a symplectic

structure, making X into an indefinite Kähler manifold. The real part of −h gives rise

to a pseudo-Riemannian metric of signature (4, 2). The Laplacian �X has signature

(+ + ++−−) and is given by the following commutative diagram:

C∞(C4
h>0

)

2h�C2,2

��

C∞(X)
π∗

oo

�X

��

C∞(C4
h>0

) C∞(X),
π∗

oo

where

C4
h>0

:= {z ∈ C4 : h(z) > 0},
where π : C4

h>0
→ X is the natural projection, and where

�C2,2 := − ∂2

∂z1∂z1
− ∂2

∂z2∂z2
+

∂2

∂z3∂z3
+

∂2

∂z4∂z4

on C4. It is 8 times the Casimir operator of g = su(2, 2) with respect to the Killing

form. A natural way to construct Clifford–Klein forms of X is to notice that X fibers
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over the quaternionic hyperbolic space H1
H

= Sp(1, 1)/Sp(1) × Sp(1), with compact

fiber:

{z ∈ C4 : h(z) = 1} π−−−−→
fiber U(1)

X =
{
[z] ∈ P3C : h(z) > 0

}

≃ yfiber Sp(1)/U(1)

{
u ∈ H2 : |u1|2 − |u2|2 = 1

}
−−−−→
fiber Sp(1)

H1
H

=
{
[u] ∈ P1H : |u1|2 − |u2|2 > 0

}
,

where H is the ring of quaternions and P1H the quotient of H2 r {0} by the diago-

nal action of H r {0} on the right. The isometry group Sp(1, 1) of the Riemannian

symmetric space H1
H

acts transitively on X , and this action is proper since the fiber

Sp(1)/U(1) ≃ S2 is compact. Any torsion-free discrete subgroup Γ of Sp(1, 1) there-

fore acts properly discontinuously and freely on X ; we say that the corresponding

Clifford–Klein form XΓ is standard (see Definition 1.4).

Theorem 1.3. — The discrete spectrum of any standard Clifford–Klein form XΓ of

X = SU(2, 2)/U(1, 2) is infinite. Explicitly, for Γ ⊂ Sp(1, 1) there is an integer ℓ0,

independent of Γ, such that

(1.5) Specd(�XΓ) ⊃
{
2(ℓ− 2)(ℓ + 1) : ℓ ∈ N, ℓ ≥ ℓ0

}
;

moreover, (1.5) still holds after any small deformation of Γ in SU(2, 2).

We will see in Section 10.3 that there exist interesting small deformations of standard

Clifford–Klein forms of X = SU(2, 2)/U(1, 2), both compact and noncompact. We

will compute explicit eigenfunctions. We refer to [Ko6] for further global analysis

on X in connection with branching laws of unitary representations with respect to

the restriction SU(2, 2) ↓ Sp(1, 1).

1.5. General results for standard Clifford–Klein forms

We now state our results in the general setting of reductive symmetric spaces

X = G/H , as defined in Section 1.1. For simplicity we shall assume G to be linear

throughout the paper.

An important class of Clifford–Klein formsXΓ ofX that we consider is the standard

ones.

Definition 1.4. — A Clifford–Klein form XΓ of X is standard if Γ is contained in

some reductive subgroup L of G acting properly on X .

This generalizes the notion introduced above for X = SU(2, 2)/U(1, 2). When

L acts cocompactly on X , we can obtain compact (resp. finite-volume noncompact)

standard Clifford–Klein forms XΓ by taking Γ to be a uniform (resp. nonuniform)
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lattice in L. An open conjecture [KY, Conj. 3.3.10] states that any reductive homo-

geneous space G/H admitting compact Clifford–Klein forms should admit standard

ones.

Our first main result in this general setting is the existence of an infinite discrete

spectrum for all standard Clifford–Klein forms of X when Specd(X) 6= ∅.

Theorem 1.5. — Let X = G/H be a reductive symmetric space with Specd(X) 6= ∅,
and L a reductive subgroup of G acting properly on X. Then #Specd(XΓ) = +∞
for any standard Clifford–Klein form XΓ with Γ ⊂ L. Moreover, if L is simple

(resp. semisimple), then there is an infinite subset of Specd(X) that is contained in

Specd(XΓ) for any (resp. any torsion-free) Γ ⊂ L.

We wish to emphasize that when L is semisimple, the infinite subset of the discrete

spectrum that we find is universal, in the sense that it does not depend on Γ ⊂ L. A
universal spectrum does not exist in the Riemannian case (see Fact 1.2). Our proof is

constructive; we shall explicitly describe an infinite subset of Specd(XΓ) ∩ Specd(X),

independent of Γ ⊂ L, in terms of the geometry of X and of some quantitative

estimate of the proper discontinuity of L acting on X (see Theorem 3.8).

For Γ = {e}, the existence of an infinite discrete spectrum was established by

Flensted-Jensen [Fl]. As mentioned above, by [Fl, MO], the condition Specd(X) 6= ∅
is equivalent to the condition rankG/H = rankK/K∩H (see Section 3.3), or in other

words to the existence of a maximal compact subsymmetric space of X of full rank.

Our second main result concerns the stability of the discrete spectrum of standard

compact Clifford–Klein forms XΓ of X under small deformations of Γ in G. The set

Hom(Γ, G) of group homomorphisms from Γ to G is endowed with the compact-open

topology. In the following definition, we assume that the group ϕ(Γ) acts properly

discontinuously and freely on X for all ϕ ∈ Hom(Γ, G) in some neighborhood U0
of the natural inclusion of Γ in G (we shall call this property “stability for proper

discontinuity”). Under this assumption, Xϕ(Γ) = ϕ(Γ)\X is a manifold for all ϕ ∈ U0
and we can consider the discrete spectrum Specd(Xϕ(Γ)); recall that it is contained

in the set of C-algebra homomorphisms from D(X) to C.

Definition 1.6. — We say that λ ∈ Specd(XΓ) is stable under small deformations

if there exists a neighborhood U ⊂ U0 ⊂ Hom(Γ, G) of the natural inclusion such that

λ ∈ Specd(Xϕ(Γ)) for all ϕ ∈ U .
We say that XΓ has an infinite stable discrete spectrum if there exists an infinite

subset of Specd(XΓ) that is contained in Specd(Xϕ(Γ)) for all ϕ in some neighborhood

U ⊂ U0 ⊂ Hom(Γ, G) of the natural inclusion.

We address the existence of an infinite stable discrete spectrum for standard com-

pact Clifford–Klein forms XΓ, where Γ is a uniform lattice in some reductive sub-

group L of G. First observe that if L has real rank ≥ 2 and Γ is irreducible,

then Γ is locally rigid in G by Margulis’s superrigidity theorem [Mr2, Cor. IX.5.9],
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i.e. all small deformations of Γ in G are obtained by conjugation; consequently

Specd(Xϕ(Γ)) = Specd(XΓ) for all small deformations ϕ, and thus XΓ has an infi-

nite stable discrete spectrum by Theorem 1.5. Consider the more interesting case

when L has real rank 1. Then nontrivial deformations of Γ inside G may exist (see

Section 2.3). By [Ka2], all compact Clifford–Klein forms XΓ with Γ ⊂ L have the

stability property for proper discontinuity; more generally, so do all Clifford–Klein

forms XΓ with Γ convex cocompact in L. We prove the existence of an infinite stable

discrete spectrum when Specd(X) 6= ∅.

Theorem 1.7. — Let X = G/H be a reductive symmetric space with Specd(X) 6= ∅,
and L a reductive subgroup of G of real rank 1 acting properly on X. Then XΓ has

an infinite stable discrete spectrum for any uniform lattice Γ of L, and more generally

for any convex cocompact subgroup Γ of L.

We recall that a discrete subgroup Γ of L is said to be convex cocompact if it acts

cocompactly on some nonempty convex subset of the Riemannian symmetric space

of L. Convex cocompact groups include uniform lattices, but also discrete groups of

infinite covolume such as Schottky groups, or for instance quasi-Fuchsian embeddings

of surface groups for L = PSL2(C).

Let us emphasize that the small deformations of Γ that we consider in Theorem 1.7

are arbitrary inside G; in particular, in the interesting cases Γ does not remain inside a

conjugate of L. A description of an infinite stable discrete spectrum as in Theorem 1.7

will be given in Theorem 3.11.

In addition to this infinite stable discrete spectrum, standard Clifford–Klein

forms XΓ may also have infinitely many eigenvalues that vary under small defor-

mations (see Remark 9.11). Note that an explicit description of the full discrete

spectrum is not known even in the Riemannian case.

1.6. General results for sharp Clifford–Klein forms

The class of standard Clifford–Klein forms that we have just considered is itself

contained in a larger class of Clifford–Klein forms, namely those that we call sharp.

Let us define this notion (see Sections 4.2 and 4.4 for more details and examples).

Let G = KA+K be a Cartan decomposition of G, where K is a maximal compact

subgroup of G and A+ a closed Weyl chamber in a maximal split abelian subgroup

of G. Any element g ∈ G may be written as g = k1ak2 for some k1, k2 ∈ K and

a unique a ∈ A+; setting µ(g) = log a defines a continuous, proper, and surjective

map µ : G→ logA+ ⊂ a := Lie(A), called the Cartan projection associated with the

Cartan decomposition G = KA+K (see Example 4.1 for G = SLn(R)). Let ‖ · ‖ be a

norm on a. We say that a discrete subgroup Γ of G is sharp for X = G/H if there
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are constants c > 0 and C ≥ 0 such that

(1.6) da(µ(γ), µ(H)) ≥ c ‖µ(γ)‖ − C
for all γ ∈ Γ, where da is the metric on a induced by the norm ‖ · ‖. This means

that the set µ(Γ) “goes away linearly from µ(H) at infinity”. This notion does not

depend on the choice of the Cartan decomposition G = KA+K nor of the norm ‖ · ‖.
By the properness criterion of Benoist [Bn] and Kobayashi [Ko4], any sharp discrete

subgroup Γ of G acts properly discontinuously on X (see Section 4.4); sharpness

should be thought of as a form of strong proper discontinuity. When Γ is sharp, we

say that the corresponding Clifford–Klein form XΓ is sharp too.

Examples of sharp Clifford–Klein forms are plentiful, as explained in Section 4.4.

For instance, all standard Clifford–Klein forms are sharp. Also, all known examples

of compact Clifford–Klein forms of reductive homogeneous spaces are sharp, even

when they are nonstandard. We conjecture that all compact Clifford–Klein forms of

reductive homogeneous spaces should be sharp (Conjecture 4.12).

We generalize Theorem 1.5 from the standard to the sharp case and prove the

following.

Theorem 1.8. — Let X = G/H be a reductive symmetric space with Specd(X) 6= ∅.
Then Specd(XΓ) is infinite for any sharp Clifford–Klein form XΓ of X.

We give an explicit infinite subset of Specd(XΓ) contained in Specd(X) (see Theo-

rem 3.8), in terms of the geometry of X , of the “sharpness constants” c, C from (1.6),

and of a “pseudo-distance” from the origin x0 = eH of X = G/H to the other points

of its Γ-orbit in X .

Recall that on a Riemannian symmetric space all eigenfunctions of the Laplacian

are analytic by the elliptic regularity theorem (see [KKK, Th. 3.4.4] for instance).

Here X is non-Riemannian, hence eigenfunctions are not automatically analytic. We

still obtain some regularity result (see Section 3.5).

1.7. Another approach in certain standard cases

The approach described in this paper is based on the existence of discrete series

representation for the reductive symmetric space X — a phenomenon specific to the

non-Riemannian case, and equivalent to the condition (3.3). It is not the only possible

approach for constructing joint eigenfunctions on Clifford–Klein forms XΓ. When Γ

is contained in some reductive subgroup L of G acting properly and transitively on X ,

it is possible to construct other eigenfunctions by using the spectral analysis of the

Riemannian symmetric space of L and the restriction to L of irreducible unitary

representations of G (branching laws for G ↓ L). More precisely, if X is irreducible

and spherical as an L-homogeneous space (but does not necessarily satisfy (3.3)), then

it is possible to show that Specd(XΓ) r Specd(X) is infinite for any uniform lattice



12 CHAPTER 1. INTRODUCTION

Γ of L: details will be given in [KK2]. The following issues are also treated there in

some standard cases:

– Extension of the Laplacian �XΓ to a self-adjoint operator on L2(XΓ);

– Inclusion of analytic functions as a dense subspace of L2(XΓ,Mλ);

– Infinite multiplicity of joint eigenvalues for D(XΓ);

– Relations with branching laws of unitary representations.

1.8. Organization of the paper

The paper is divided into four parts.

Part I is a complement to the introduction. In Chapter 2 we give an overview of

various types of examples that our main theorems cover. In Chapter 3 we introduce

some basic notation and give more precise statements of the theorems by means of

the Harish-Chandra isomorphism for the ring of invariant differential operators; in

particular, we describe an explicit infinite set of eigenvalues, which in the standard

case of Theorem 1.7 is both universal and stable under small deformations.

Part II is devoted to the proof that for all K-finite L2-eigenfunctions ϕ on X with

sufficiently regular spectral parameter, the generalized Poincaré series (1.3) converges

and yields an L2-eigenfunction on XΓ. The proof is carried out in Chapter 6, based

on both geometric and analytic estimates. The geometric estimates are established in

Chapter 4, where we quantify proper discontinuity through the notion of sharpness

and count points of Γ-orbits in the non-Riemannian symmetric space X when Γ is a

sharp discrete subgroup of G. The analytic estimates are given in Chapter 5, where

we reinterpret some asymptotic estimates of Oshima in terms of the regularity of the

spectral parameter and of a “pseudo-distance from the origin” in X .

Part III establishes that, as soon as the spectral parameter λ is regular enough and

satisfies some integrality and positivity condition, the generalized Poincaré series (1.3)

is nonzero for some good choice of ϕ; this completes the proof of the results stated in

Chapters 1 to 3. The functions ϕ that we consider are G-translates of some K-finite

L2-eigenfunctions ψλ on X introduced by Flensted-Jensen. The proof is given in

Chapter 8, and prepared in Chapter 7, where we give a finer analytic estimate for ψλ

that controls its behavior, not only at infinity, but also near the origin x0 := eH

of X = G/H . To deduce the nonvanishing of the series (1.3), it is then enough to

control how the Γ-orbit through x0 approaches x0: this is done in Chapter 8, after

conjugating Γ by some appropriate element of G; for uniformity for standard Γ, we

use the Kazhdan–Margulis theorem. We complete the proof of the main theorems in

Section 8.6.

Finally, Part IV provides a detailed discussion of some examples, designed to illus-

trate the general theory in a more concrete way.
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Notation

In the whole paper, we use the notation R+ = (0,+∞) and R≥0 = [0,+∞), as well

as N+ = Z ∩ R+ and N = Z ∩ R≥0.





PART I

PRECISE DESCRIPTION OF THE

RESULTS





CHAPTER 2

LISTS OF EXAMPLES TO WHICH THE RESULTS

APPLY

There is a variety of locally symmetric spaces XΓ = Γ\G/H to which Theorems

1.5, 1.7, and 1.8 can be applied. The aim of this chapter is to provide a brief overview,

with an emphasis on compact XΓ in the first three sections. Some of the examples

mentioned here will be analyzed in more detail in Chapters 9 and 10.

2.1. Symmetric spaces with standard compact Clifford–Klein forms

We recall the following general construction from [Ko1]. Assume that there exists

a reductive subgroup L of G acting properly and cocompactly on X . Then standard

compact Clifford–Klein forms XΓ = Γ\X can be obtained by taking Γ to be any

torsion-free uniform lattice in L. Likewise, standard Clifford–Klein forms XΓ that are

noncompact but of finite volume can be obtained by taking Γ to be any torsion-free

nonuniform lattice in L. Uniform lattices of L always exist and nonuniform lattices

exist for semisimple L, by work of Borel–Harish-Chandra, Mostow–Tamagawa, and

Borel [Bo2]; they all admit torsion-free subgroups of finite index by the Selberg lemma

[Se2, Lem. 8].

Here is a list, taken from [KY, Cor. 3.3.7], of some triples (G,H,L) where G is

a simple Lie group, X = G/H is a reductive symmetric space, and L is a reductive

subgroup of G acting properly and cocompactly on X , with the additional assumption

here that Specd(X) 6= ∅ (so that Theorem 1.5 applies). We denote by m and n any

integers ≥ 1 with m even.

G H L

(i) SO(2, 2n) SO(1, 2n) U(1, n)

(ii) SO(2, 2m) U(1,m) SO(1, 2m)

(iii) SO(4, 4n) SO(3, 4n) Sp(1, n)

(iv) SU(2, 2n) U(1, 2n) Sp(1, n)

(v) SO(8, 8) SO(7, 8) Spin(1, 8)
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Table 2.1

2.2. Group manifolds with interesting standard compact Clifford–Klein

forms

Any reductive group 8G may be regarded as a homogeneous space under the action

of 8G×8G by left and right multiplication; in this way, it identifies with the symmetric

space X = (8G × 8G)/Diag(8G), where Diag(8G) denotes the diagonal of 8G × 8G.

The condition Specd(X) 6= ∅, or in other words rankG/H = rankK/K ∩ H (see

Section 3.3), is equivalent to the condition

(2.1) rank 8G = rank 8K,

where 8K is any maximal compact subgroup of 8G; for 8G simple, this condition is

satisfied if and only if the Lie algebra of 8G belongs to the following list, where n, p,

and q are any integers ≥ 1:

so(p, 2q), su(p, q), sp(p, q), sp(n,R), so∗(2n),(2.2)

e6(2), e6(−14), e7(7), e7(−5), e7(−25), e8(−24), f4(4), f4(−20), g2(2).

Standard Clifford–Klein forms XΓ of X = (8G×8G)/Diag(8G) can always be obtained

by taking Γ of the form 8Γ × {e} or {e} × 8Γ, where 8Γ is a discrete subgroup of 8G.

Then XΓ identifies with a usual quotient 8Γ\8G or 8G/8Γ of 8G by a discrete subgroup

on one side; in particular, XΓ has finite volume (resp. is compact) if and only if 8Γ is

a lattice (resp. a uniform lattice) in 8G. Theorem 1.5 applies to such XΓ.

It is worth noting that for certain specific groups 8G of real rank ≥ 2, there is

another (more general) type of standard compact Clifford–Klein forms of X , namely

double quotients 8Γ1\8G/8Γ2 where 8Γ1 and 8Γ2 are discrete subgroups of 8G [Ko2].

This happens when there exist two reductive subgroups 8G1 and 8G2 of 8G such that
8G1 acts properly and cocompactly on 8G/8G2. In this case, the group L := 8G1× 8G2

acts properly and cocompactly on X = (8G × 8G)/Diag(8G), and standard Clifford–

Klein forms XΓ can be obtained by taking Γ of the form Γ = 8Γ1× 8Γ2 ⊂ L, where 8Γi

is a discrete subgroup of 8Gi. Such a Clifford–Klein form XΓ identifies with the double

quotient 8Γ1\8G/8Γ2; it has finite volume (resp. is compact) if and only if 8Γi is a lattice

(resp. a uniform lattice) in 8Gi for all i ∈ {1, 2}. We would like to emphasize that this

“exotic” XΓ is locally modeled on the group manifold 8G and not on the homogeneous

space 8G/8G2. The following table, obtained from [KY, Cor. 3.3.7], gives some triples

(8G, 8G1,
8G2) such that 8G satisfies the rank condition (2.1) and 8G1 acts properly and

cocompactly on 8G/8G2; Theorem 1.5 applies to the corresponding double quotients
8Γ1\8G/8Γ2. Here n is any integer ≥ 1; it does not need to be even in Example (ii), in

contrast with Example (ii) of Table 2.1. We note that neither (8G, 8G1) nor (
8G, 8G2)

has to be a symmetric pair, and that 8G1 and 8G2 play symmetric roles.
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8G 8G1
8G2

(i) 8G with Lie algebra in (2.2) 8G {e}
(ii) SO(2, 2n) SO(1, 2n) U(1, n)

(iii) SO(4, 4n) SO(3, 4n) Sp(1, n)

(iv) SU(2, 2n) U(1, 2n) Sp(1, n)

(v) SO(8, 8) SO(7, 8) Spin(1, 8)

(vi) SO(4, 4) SO(4, 3) Spin(4, 1)

(vii) SO(4, 4) Spin(4, 3) SO(4, 1)× SO(3)

(viii) SO(4, 3) G2(2) SO(4, 1)× SO(2)

(ix) SO∗(8) U(3, 1) Spin(1, 6)

(x) SO∗(8) SO∗(6)× SO∗(2) Spin(1, 6)

Table 2.2

2.3. Symmetric spaces with nontrivial deformations of standard compact

Clifford–Klein forms

Theorem 1.7 applies to all the examples in Table 2.1. However, this theorem is

relevant only for standard Clifford–Klein forms XΓ such that Γ admits nontrivial

small deformations inside G, i.e. deformations that are not obtained by conjugation.

Such deformations do not always exist when XΓ is compact. We now point out a few

examples where they do exist.

Consider Example (i) of Table 2.1, where X = SO(2, 2n)/SO(1, 2n) is the (2n+1)-

dimensional anti-de Sitter space AdS2n+1. The group L = U(1, n) has a nontrivial

center Z(L), isomorphic to U(1). For certain uniform lattices Γ of L, small nontriv-

ial deformations of Γ inside G = SO(2, 2n) can be obtained by considering homo-

morphisms of the form γ 7→ γψ(γ) with ψ ∈ Hom(Γ, Z(L)) (see [Ko5]). By [Ra1]

and [We2], any small deformation of Γ inside G is actually of this form, up to conjuga-

tion. The Clifford–Klein forms corresponding to these nontrivial deformations remain

standard, but the existence of a stable discrete spectrum given by Theorem 1.7 is not

obvious even in this case. We examine this example in more detail in Section 10.1.

Consider Example (ii) of Table 2.1, where X = SO(2, 2m)/U(1,m) has the addi-

tional structure of an indefinite Kähler manifold (see Section 10.3). Here it is actually

possible to deform certain standard compact Clifford–Klein forms of X into nonstan-

dard ones. Indeed, using a bending construction due to Johnson–Millson [JM], one

can obtain small Zariski-dense deformations inside G = SO(2, 2m) of certain arith-

metic uniform lattices Γ of L = SO(1, 2m) (see [Ka2, § 6]): this yields a continuous

family of compact Clifford–Klein forms XΓ with Γ Zariski-dense in G. (Recall that

a group is said to be Zariski-dense in G if it is not contained in any proper algebraic

subgroup of G.) Here the C-algebra D(X) is a polynomial ring in [m+1
2 ] generators;

we discuss the discrete spectrum of XΓ in Section 10.3.
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Finally, consider the “exotic” standard compact Clifford–Klein forms
8Γ1\8G/8Γ2 discussed in Section 2.2, for which some examples are given in Ta-

ble 2.2. Here is an analog of Theorem 1.7 in this setting (see Proposition 2.2 below

for noncompact Clifford–Klein forms): the novelty is the stability of the discrete

spectrum, whereas the fact that the quotient remains a manifold under small defor-

mations (i.e. stability for proper discontinuity, in the sense of Section 1.5) is a direct

consequence of [Ka2]. We refer to Section 8.6 for a proof.

Proposition 2.1. — Let 8G be a reductive linear Lie group and let 8G1 and 8G2 be

two reductive subgroups of 8G such that 8G1 acts properly on 8G/8G2. Any standard

Clifford–Klein form

8Γ1\8G/ 8Γ2 ≃ (8Γ1×8Γ2)\(8G×8G)/Diag(8G),

where 8Γi is an irreducible uniform lattice of 8Gi for all i ∈ {1, 2}, remains a manifold

after any small deformation of 8Γ1× 8Γ2 inside 8G × 8G, and it has an infinite stable

discrete spectrum if (2.1) is satisfied.

In Examples (ii), (vii), and (viii) of Table 2.2, certain standard compact Clifford–

Klein forms 8Γ1\8G/8Γ2 admit small nonstandard deformations obtained by bending,

similarly to Example (ii) of Table 2.1 above. In Example (i) of Table 2.2, there exist

standard compact Clifford–Klein forms 8Γ1\8G with nonstandard small deformations

if and only if 8G has a simple factor that is locally isomorphic to SO(1, 2n) or SU(1, n)

[Ko5, Th.A].

2.4. Clifford–Klein forms of infinite volume

Most examples of Clifford–Klein forms that we have given in Sections 2.1 to 2.3

were compact. However, Theorems 1.5, 1.7, and 1.8 do not require any compactness

assumption. In particular, in Theorems 1.5 and 1.7 on the existence of an infinite

(universal or stable) spectrum for standard Clifford–Klein forms, we remark that

– the reductive group L does not need to act cocompactly on X (it could be quite

“small”, for instance locally isomorphic to SL2(R)),

– the discrete group Γ does not need to be cocompact (nor of finite covolume) in L.

Also, in Theorem 1.8, the sharp Clifford–Klein form XΓ does not need to be compact

(nor of finite volume). Therefore, our theorems apply to much wider settings than

those of Tables 2.1 and 2.2; we now discuss some examples.

Firstly, as soon as rankRH < rankRG, there exist infinite cyclic discrete sub-

groups Γ of G that are sharp for X = G/H [Ko1]; Theorem 1.8 applies to the

corresponding Clifford–Klein forms XΓ. Even in this case, the existence of an infinite

discrete spectrum for XΓ is new.

Secondly, for many X there exist discrete subgroups Γ of G that are nonvirtually

abelian (i.e. with no abelian subgroup of finite index) and sharp for X ; we can again
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apply Theorem 1.8. This is for instance the case for X = SO(p + 1, q)/SO(p, q)

whenever 0 < p < q − 1 or p = q − 1 is odd [Bn]. Recently, Okuda [Ok] gave a

complete list of reductive symmetric spaces X = G/H with G simple that admit

Clifford–Klein forms XΓ with Γ nonvirtually abelian. For such symmetric spaces,

there always exist interesting sharp examples:

1. on the one hand, sharp Clifford–Klein forms XΓ such that Γ is a free group,

Zariski-dense in G [Bn, Th. 1.1];

2. on the other hand, standard Clifford–Klein forms XΓ with Γ ⊂ L for some

subgroup L of G isomorphic to SL2(R) or PSL2(R) [Ok].

In case (1), the group Γ is in some sense “as large as possible”, in contrast with

case (2), where it is contained in a proper algebraic subgroup L of G. In case (2),

we can take Γ to be a surface group embedded in L, therefore admitting nontrivial

deformations inside L. Theorem 1.8 applies to case (1) and Theorems 1.5 and 1.7 to

case (2).

Thirdly, for group manifolds X = (8G×8G)/Diag(8G) there are many examples of

standard Clifford–Klein forms of infinite volume that admit nontrivial deformations.

As in Section 2.2, we can take a pair of reductive subgroups 8G1,
8G2 of 8G such that

8G1 acts properly on 8G/8G2, but now we do not require anymore that this action be

cocompact. We consider XΓ = 8Γ1\8G/8Γ2 where 8Γi is a discrete subgroup of 8Gi

(not necessarily cocompact) and we deform 8Γ inside 8G × 8G. Here is an analog of

Theorem 1.7 that applies in this setting; we refer to Section 8.6 for a proof.

Proposition 2.2. — Let 8G be a reductive linear Lie group satisfying (2.1) and let
8G1 and 8G2 be two reductive subgroups of 8G such that 8G1 acts properly on 8G/8G2.

Consider a standard Clifford–Klein form

8Γ1\8G/8Γ2 ≃ (8Γ1×8Γ2)\(8G×8G)/Diag(8G),

where 8Γi is a discrete subgroup of 8Gi for all i.

1. If 8G1 has real rank 1 and 8Γ1 is convex cocompact in 8G1, then there exists an

infinite subset I of Specd(
8Γ1\8G/8Γ2) and a neighborhood 8U ⊂ Hom(8Γ1,

8G ×
Z8G(

8Γ2)) of the natural inclusion such that 8ϕ(8Γ1)\8G/8Γ2 is a manifold and

I ⊂ Specd(
8ϕ(8Γ1)\8G/8Γ2) for all 8ϕ ∈ 8U .

2. If 8Gi has real rank 1 and 8Γi is convex cocompact in 8Gi for all i ∈ {1, 2},
then the standard Clifford–Klein form 8Γ1\8G/8Γ2 remains a manifold after any

small deformation of 8Γ1× 8Γ2 inside 8G×8G and it has an infinite stable discrete

spectrum in the sense of Definition 1.6.





CHAPTER 3

QUANTITATIVE VERSIONS OF THE RESULTS

In this chapter, we give some quantitative estimates of Theorems 1.5, 1.7, and

1.8 (Section 3.4) and discuss the regularity of our eigenfunctions (Section 3.5). We

first fix some notation that will be used throughout the paper and recall some useful

classical facts (Sections 3.1 to 3.3).

3.1. Invariant differential operators

In the whole paper, G denotes a real reductive linear Lie group and H an open

subgroup of the group of fixed points of G under some involutive automorphism σ.

We denote their respective Lie algebras by g and h. Without loss of generality, we

may and will assume that G is connected; indeed, we only need to consider the discrete

spectrum of one connected component of X = G/H .

In this paragraph, we recall some classical results on the structure of the algebra

D(X) of G-invariant differential operators on X . We refer the reader to [He1, Ch. II]

for proofs and more details.

Let U(gC) be the enveloping algebra of the complexified Lie algebra gC := g⊗R C

and U(gC)
H the subalgebra of AdG(H)-invariant elements (it contains in particular

the center Z(gC) of U(gC)). Recall that U(gC) acts on C∞(G) by differentiation on

the right, with

(
(Y1 · · ·Ym) · f

)
(g) =

d

dt1

∣∣∣
t1=0

· · · d

dtm

∣∣∣
tm=0

f
(
g exp(t1Y1) · · · exp(tmYm)

)

for all Y1, . . . , Ym ∈ g, all f ∈ C∞(G), and all g ∈ G. This gives an isomorphism

between U(gC) and the ring of left-invariant differential operators onG. By identifying

the set of smooth functions on X with the set of right-H-invariant smooth functions

on G, we obtain a C-algebra homomorphism

p : U(gC)
H −→ D(X).
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This homomorphism is surjective, with kernel U(gC)hC ∩ U(gC)
H [He1, Ch. II,

Th. 4.6], hence it induces an algebra isomorphism

(3.1) U(gC)
H/U(gC)hC ∩ U(gC)

H ∼−→ D(X).

Let g = h + q be the decomposition of g into eigenspaces of dσ, with respective

eigenvalues +1 and −1. In the whole paper, we fix a maximal semisimple abelian

subspace j of
√
−1 q. The integer

(3.2) rankG/H := dimR j

does not depend on the choice of j. Geometrically, if x0 denotes the image of H in

X = G/H , then exp(
√
−1 j) · x0 is a maximal flat totally geodesic submanifold of X ,

where “flat” means that the induced pseudo-Riemannian metric is nondegenerate

and that the curvature tensor vanishes (see [KN69, Ch.XI, § 4]). Let W be the

Weyl group of the restricted root system Σ(gC, jC) of jC in gC, and let S(jC)
W be

the subalgebra of W -invariant elements in the symmetric algebra S(jC) of jC. The

important fact that we will use is the following.

Fact 3.1. — The algebra D(X) of G-invariant differential operators on X is a poly-

nomial algebra in r := rankG/H generators. It naturally identifies with S(jC)
W , and

the set of C-algebra homomorphisms from D(X) to C identifies with j∗
C
/W , where j∗

C

is the dual vector space of jC.

Let us explicit these identifications. Let Σ+(gC, jC) be a system of positive roots

in Σ(gC, jC) and let

nC =
⊕

α∈Σ+(gC,jC)

(gC)α

be the sum of the corresponding root spaces, where

(gC)α := {Y ∈ gC, [T, Y ] = α(T )Y ∀T ∈ j}.
The complexified Iwasawa decomposition gC = hC+jC+nC holds, implying that U(gC)

is the direct sum of U(jC) ≃ S(jC) and hCU(gC)+U(gC)nC. Let p
′ : U(gC)→ S(jC) be

the projection onto S(jC) with respect to this direct sum and let p′′ : U(gC)→ S(jC)

be the “shifted projection” given by

〈p′′(u), λ〉 = 〈p′(u), λ− ρ〉
for all λ ∈ j∗

C
, where

ρ :=
1

2

∑

α∈Σ+(gC,jC)

dimC(gC)α α ∈ j∗C

is half the sum of the elements of Σ+(gC, jC), counted with root multiplicities. The

restriction of p′′ to U(gC)
H is independent of the choice of Σ+(gC, jC) and induces an

isomorphism

U(gC)
hC/U(gC)hC ∩ U(gC)

hC
∼−→ S(jC)

W
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[He1, Ch. II, Th. 5.17]. If H is connected, then U(gC)
hC = U(gC)

H and, using (3.1)

above, we obtain the following commutative diagram.

D(X) U(gC)
Hpoo

��

p′′

// S(jC)W

U(gC)
H/U(gC)hC ∩ U(gC)

H

∼
ff▼▼▼▼▼▼▼▼▼▼▼

∼
88♣♣♣♣♣♣♣♣♣♣♣

Thus we have a C-algebra isomorphism Ψ : D(X)
∼→ S(jC)

W (Harish-Chandra iso-

morphism). In the general case when H is not necessarily connected, we still have an

isomorphism Ψ : D(X)
∼→ S(jC)

W by the following remark.

Remark 3.2. — The C-algebra D(X) is isomorphic to D(G/H0), where H0 denotes

the identity component of H .

Proof. — There is a natural injective algebra homomorphism D(X) →֒ D(G/H0)

induced by the natural projection G/H0 → X . To see that this homomorphism is

surjective, it is sufficient to see that H acts trivially on D(G/H0). This follows from

the fact that the quotient field of D(G/H0) is isomorphic to that of p(Z(gC)) [He1,

Ch. III, Th. 3.16] (where p : U(gC)
H0 → D(G/H0) is given by the diagram above

for H0) and from the fact that H acts trivially on Z(gC) and p is H-equivariant.

By the Harish-Chandra isomorphism Ψ : D(X)
∼→ S(jC)

W , the C-algebra D(X)

is a commutative algebra generated by r := dimR j = rankG/H homogeneous, alge-

braically independent differential operators D1, . . . , Dr. If we identify S(jC) with the

ring of polynomial functions on j∗
C
, then any homomorphism from D(X) to C is of the

form

χλ : D 7−→ 〈Ψ(D), λ〉
for some λ ∈ j∗

C
, and χλ = χλ′ if and only if λ′ ∈ W ·λ. By construction, anyD ∈ D(X)

acts on the constant functions on X by multiplication by the scalar χρ(D). From now

on, we identify the set of C-algebra homomorphisms from D(X) to C with j∗
C
/W ; in

particular, we see Specd(X) (or Specd(XΓ) for any Clifford–Klein form XΓ) as a

subset of j∗
C
/W :

Specd(XΓ) =
{
λ ∈ j∗C/W : L2(XΓ,Mλ) 6= {0}

}
,

where L2(XΓ,Mλ) is the space of weak solutions f ∈ L2(XΓ) to the system

DΓf = χλ(D)f for all D ∈ D(X) (Mλ).

Remark 3.3. — When r = rankG/H > 1, the space L2(XΓ,Mλ) is in general

strictly contained in the space of L2-eigenfunctions of the Laplacian �XΓ (details will

be given in [KK2]).
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3.2. The Laplacian

In the whole paper, we fix a Cartan involution θ of G commuting with σ and let

K = Gθ be the corresponding maximal compact subgroup of G, with Lie algebra k.

Let g = k+ p be the corresponding Cartan decomposition, i.e. the decomposition of g

into eigenspaces of dθ with respective eigenvalues +1 and −1. We fix a G-invariant

nondegenerate symmetric bilinear form B on g with the following properties: B is

positive definite on p, negative definite on k, and p and k are orthogonal for B. If G

is semisimple, we can take B to be the Killing form κ of g.

On the one hand, since the involution σ commutes with the Cartan involution θ,

the form B is nondegenerate on h × h, and induces an H-invariant nondegenerate

symmetric bilinear form on g/h. By identifying the tangent space Tx0(G/H) at x0 =

eH ∈ G/H with g/h and using left translations, we obtain a G-invariant pseudo-

Riemannian structure on X = G/H . We then define the Laplacian �X as in (1.1)

with respect to this pseudo-Riemannian structure.

On the other hand, the form B defines an isomorphism g∗ ≃ g, yielding a canonical

element in (g⊗ g)G corresponding to the identity under the isomorphism (g∗⊗ g)G ≃
HomG(g, g). This element projects to the Casimir element of U(gC), which lies in the

center Z(gC). It gives a differential operator of order two on X , the Casimir operator,

whose actions by differentiation on the left and on the right coincide. Since X is a

symmetric space, the Casimir operator on X coincides with �X . (We refer to [He1,

Ch. II, Exer.A.4] for the case when H is a maximal compact subgroup of G; a proof

for the general case goes similarly.)

We now explicit the eigenvalues of �X . For this we note that B is nondegenerate

on any θ-stable subspace of g. In particular, if j is θ-stable (which will always be the

case below), then B induces a nondegenerate W -invariant bilinear form (·, ·) on j∗,

which we extend to a complex bilinear form (·, ·) on j∗
C
.

Fact 3.4. — If f ∈ C∞(X) satisfies (Mλ) for some λ ∈ j∗
C
, then

�Xf =
(
(λ, λ) − (ρ, ρ)

)
f.

Indeed, this follows from the above description of the Harish-Chandra isomorphism;

one can also use [He1, Ch. II, Cor. 5.20] and the fact that D(X) ≃ D(Xd), where Xd

is a Riemannian symmetric space of the noncompact type with the same complexifi-

cation as X (see Section 5.2).

3.3. Some further basic notation

We now fix some additional notation that will be used throughout the paper.

We first recall that the connected reductive group G is the almost product of its

connected center Z(G)0 and of its commutator subgroupGs, which is semisimple. The

group Gs itself is the almost product of finitely many (nontrivial) connected simple
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normal subgroups, called the simple factors of G. The connected center Z(G)0 is

isomorphic to Ra × (S1)b for some integers a, b ∈ N. Recall that G admits a unique

maximal compact normal subgroup Gc, which is generated by the compact simple

factors of G, by the center Z(Gs) of Gs, and by the compact part of Z(G)0. The

group G is said to have no compact factor if Gc = Z(Gs).

Flensted-Jensen [Fl] and Matsuki–Oshima [MO] proved that Specd(X) is

nonempty if and only if

(3.3) rankG/H = rankK/H ∩K,
where the rank is defined as in (3.2). This is equivalent to the fact that X admits

a maximal compact subsymmetric space of full rank, namely K/H ∩K. Under the

rank condition (3.3), we may and do assume that the maximal abelian subspace j

of Section 3.1 is contained in
√
−1(k ∩ q). Then j is θ-stable, all restricted roots

α ∈ Σ(gC, jC) take real values on j, and the W -invariant bilinear form (·, ·) on j∗ from

Section 3.2 is positive definite.

We fix once and for all a positive system Σ+(kC, jC) of restricted roots of jC in kC,

which we will keep until the end of the paper; we denote by ρc half the sum of the

elements of Σ+(kC, jC), counted with root multiplicities. We now introduce some

notation Λ+, Λ, and ΛJ that will be used throughout the paper. We start by extending

j to a maximal abelian subspace j̃ of
√
−1 k. Let ∆+(kC, j̃C) be a positive system

of roots of j̃C in kC such that the restriction map α 7→ α|jC sends ∆+(kC, j̃C) to

Σ+(kC, jC) ∪ {0}. We identify the set of irreducible finite-dimensional representations

of kC with the set of dominant integral weights with respect to the positive system

∆+(kC, j̃C). As a subset, we denote by

(3.4) Λ+ ≡ Λ+(K/H ∩K)

the set of irreducible representations of K with nonzero (H∩K)-fixed vectors; it is the

support of the regular representation of K on L2(K/H ∩K) by Frobenius reciprocity.

Remark 3.5. — By definition, Λ+ is a set of dominant integral elements in the dual

of j̃ = j+(̃j∩hC). However, we can regard it as a subset of j∗ by the Cartan–Helgason

theorem [Wa, Th. 3.3.1.1].

We set

(3.5) Λ := Z-span(Λ+) ⊂ j∗.

For any finite subgroup J of the center Z(K) of K, let K̂/J be the set of (highest

weights of) irreducible representations of K that factor through K/J and let

(3.6) ΛJ := Z-span
(
Λ+ ∩ K̂/J

)
.

We note that the Z-module ΛJ has finite index in Λ. Indeed, if J has cardinal m,

then ΛJ contains mΛ = {mλ : λ ∈ Λ} since (mλ)(z) = λ(zm) = 1 for all λ ∈ Λ+ and
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z ∈ J . If J ⊂ J ′, then ΛJ ⊃ ΛJ′

; in particular, for any discrete subgroup Γ of G we

have

(3.7) Λ ⊃ ΛΓ∩Z(Gs) ⊃ ΛZ(Gs),

where, as before, Z(Gs) is the center of the commutator subgroup Gs of G.

Remark 3.6. — If J ⊂ H , then Λ = ΛJ . In particular, if Z(Gs) ⊂ H , then

ΛΓ∩Z(Gs) = Λ for any subgroup Γ of G.

Indeed, if J ⊂ H , then J acts trivially on K/H ∩K, hence the regular representation

of K on L2(K/H ∩K) factors through K/J .

Any choice of a positive system Σ+(gC, jC) of restricted roots of jC in gC containing

Σ+(kC, jC) will determine:

1. a basis {α1, . . . , αr} of Σ(gC, jC),
2. a positive Weyl chamber

j∗+ :=
{
λ ∈ HomR(j,R) : (λ, α) > 0 for all α ∈ Σ+(gC, jC)

}
,

with closure j∗+ in j∗,

3. an element ρ ∈ j∗+, defined as half the sum of the elements of Σ+(gC, jC), counted

with root multiplicities,

4. a function d : j∗+ → R+ measuring the “weighted distance” from λ to the walls

of j∗+, given by

d(λ) := min
1≤i≤r

(λ, αi)

(αi, αi)
≥ 0.

The function d does not depend on the choice of the W -invariant inner product (·, ·)
that we made in Section 3.2; we extend it as a W -invariant function on j∗. We note

that any element of j∗ enters the positive Weyl chamber j∗+ if we add tρ for some

sufficiently large t > 0; conversely, d(λ) measures to which extent λ− tρ remains in j∗+
for λ ∈ j∗+:

Observation 3.7. — For all λ ∈ j∗+,

λ− d(λ)

mρ
ρ ∈ j∗+,

where we set

(3.8) mρ := max
1≤i≤r

(ρ, αi)

(αi, αi)
.

Proof. — For any simple root αi (1 ≤ i ≤ r),
(
λ− d(λ)

mρ
ρ, αi

)

(αi, αi)
≥ d(λ)− d(λ)

mρ
mρ = 0.

We note that if jC is a Cartan subalgebra of gC, then d(ρ) = mρ = 1/2.
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3.4. Precise statements of the main theorems

With the above notation, here is a more precise statement of Theorems 1.5 and 1.8

on the existence of an infinite discrete spectrum, which is “universal” for standard

Clifford–Klein forms. We choose a positive system Σ+(gC, jC) containing the fixed

positive system Σ+(kC, jC) of Section 3.3; this determines a positive Weyl chamber j∗+
and an element ρ ∈ j∗+.

Theorem 3.8. — Suppose that G is connected, that H does not contain any simple

factor of G, and that the rank condition (3.3) holds.

1. For any sharp Clifford–Klein form XΓ with Γ∩Gc ⊂ Z(Gs), there is a constant

R ≥ 0 such that{
λ ∈ j∗+ ∩

(
2ρc − ρ+ ΛΓ∩Z(Gs)

)
: d(λ) > R

}
⊂ Specd(XΓ).

2. The constant R can be taken uniformly for standard Clifford–Klein forms: given

any reductive subgroup L of G, with a compact center and acting properly on X,

there is a constant R > 0 such that{
λ ∈ j∗+ ∩

(
2ρc − ρ+ ΛΓ∩Z(Gs)

)
: d(λ) > R

}
⊂ Specd(XΓ)

for all discrete subgroups Γ of L with Γ∩Lc ⊂ Z(Gs) (this includes all torsion-

free discrete subgroups Γ of L); in particular, by (3.7),
{
λ ∈ j∗+ ∩

(
2ρc − ρ+ ΛZ(Gs)

)
: d(λ) > R

}
⊂ Specd(XΓ)

for all such Γ.

As in Section 3.3, we denote by Gc (resp. by Lc) the maximal compact normal

subgroup of G (resp. of L), and by Z(Gs) the center of the semisimple part of G. The

Z-modules ΛΓ∩Z(Gs) and ΛZ(Gs) have been defined in (3.6) and the term “sharp” in

Section 1.6.

We note that the technical assumptions of Theorem 3.8 are not very restrictive:

Remarks 3.9. — (a) The assumption Γ ∩ Gc ⊂ Z(Gs) is automatically satisfied

if G has no compact factor (i.e. if Gc = Z(Gs)) or if Γ is torsion-free. This

assumption will be removed in Section 8.6 in order to prove the theorems and

propositions of Chapters 1 and 2.

(b) The assumption Γ ∩ Lc ⊂ Z(Gs) is automatically satisfied if Γ is torsion-free,

or if L has no compact factor and Z(L) ⊂ Z(Gs). We note that for Γ ⊂ L, the
condition Γ ∩ Lc ⊂ Z(Gs) is stronger than Γ ∩Gc ⊂ Z(Gs).

Constants R as in Theorem 3.8.(1) and (2) can be expressed in terms of the ge-

ometry of X , of the sharpness constants (c, C) of Γ, and of a “pseudo-distance” from

the origin x0 = eH of X = G/H to the other points of its Γ-orbit in X : see (8.9),

(8.10), and (8.11).
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We note that our choice of a positive system Σ+(gC, jC) containing Σ+(kC, jC) could

affect the lattice condition λ ∈ 2ρc−ρ+ΛΓ∩Z(Gs), since ρ depends on this choice. All

elements λ satisfying one of these lattice conditions appear in the discrete spectrum.

We refer to (5.6) for a geometric meaning of the choice of Σ+(gC, jC).

Remark 3.10. — In Theorem 3.8.(1), we can take R = 0 if Γ = {e}. This is

the “C = 0” conjecture of [Fl] on the precise condition of the parameter λ for the

square integrability of certain joint eigenfunctions on X ; this conjecture was proved

affirmatively in [MO], and the main ingredient is Fact 5.7 that we also use below.

The following theorem gives a description of an infinite stable discrete spectrum

as in Theorem 1.7: it states that the constant R of Theorem 3.8.(2) is stable under

small deformations.

Theorem 3.11. — Assume that G is connected, that H does not contain any simple

factor of G, and that the rank condition (3.3) holds. For any reductive subgroup L

of G of real rank 1 and any convex cocompact subgroup Γ of L (in particular, any

uniform lattice Γ of L) with Γ ∩ Gc ⊂ Z(Gs), there are a constant R > 0 and a

neighborhood U ⊂ Hom(Γ, G) of the natural inclusion such that Xϕ(Γ) = ϕ(Γ)\X is a

Clifford–Klein form of X for all ϕ ∈ U and

{λ ∈ j∗+ ∩
(
2ρc − ρ+ ΛΓ∩Z(Gs)

)
: d(λ) > R

}
⊂ Specd(Xϕ(Γ)).

In particular, for all ϕ ∈ U ,

{λ ∈ j∗+ ∩
(
2ρc − ρ+ ΛZ(Gs)

)
: d(λ) > R

}
⊂ Specd(Xϕ(Γ)).

If Γ ∩ Lc ⊂ Z(Gs) (for instance if Γ is torsion-free or if L is simple with Z(L) ⊂
Z(Gs)), then we may take the same R (independent of Γ) as in Theorem 3.8.(2), up

to replacing U by some smaller neighborhood.

Theorems 3.8 and 3.11 will be proved in Chapter 8.

Remark 3.12. — Our proofs depend on the rank condition (3.3). It is plausible that

for a general locally symmetric space, no nonzero eigenvalue is stable under nontrivial

small deformations unless (3.3) is satisfied. This is corroborated by Fact 1.2 (in the

Riemannian case, (3.3) is not satisfied). It is also plausible that there should be no

“universal spectrum” as in Theorems 1.5 and 3.8 unless (3.3) is satisfied.

3.5. Regularity of the generalized Poincaré series

As explained in the introduction, Theorems 3.8 and 3.11 are proved by constructing

generalized Poincaré series. Consider the action of G on L2(X,Mλ) by left translation

(3.9) g · ϕ := ϕ(g−1 · )
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and let L2(X,Mλ)K be the subspace of K-finite functions in L2(X,Mλ). We prove

that for any λ ∈ j∗+ with d(λ) large enough, the operator

SΓ : L2(X,Mλ)K −→ L2(XΓ,Mλ)

mapping ϕ to

ϕΓ :=
(
Γx 7−→

∑

γ∈Γ

(γ · ϕ)(x)
)

is well-defined (Proposition 6.1.(1)). We actually prove that SΓ is well-defined on

g ·L2(X,Mλ)K for any g ∈ G and λ ∈ j∗+ with d(λ) large enough, and that there

exists g ∈ G such that for any λ ∈ j∗+ ∩ (2ρc − ρ+ΛΓ∩Z(Gs)) with d(λ) large enough,

SΓ is nonzero on g ·L2(X,Mλ)K (Proposition 8.1 and Remark 8.2).

By using the fact that L2(X,Mλ)K is stable under the action of g by differentiation,

we obtain the following regularity result for the image of SΓ (Proposition 6.1.(2)).

Theorem 3.13. — Assume that G is connected and that the rank condition (3.3)

holds. Let XΓ be a sharp Clifford–Klein form with Γ ∩ Gc ⊂ Z(Gs) and let R > 0

be the corresponding constant given by Theorem 3.8. For any λ ∈ j∗+ with d(λ) > R

and any g ∈ G, the image of g ·L2(X,Mλ)K under the summation operator SΓ is

contained in Lp(XΓ) for all 1 ≤ p ≤ ∞, and in Cm(XΓ) whenever d(λ) > (m+ 1)R.

In particular, if we take m to be the maximum degree of the generators D1, . . . , Dr

of the C-algebra D(X), then for f ∈ SΓ(g ·L2(X,Mλ)K) we have

(Dj)Γ f = χλ(Dj)f

for all 1 ≤ j ≤ r in the sense of functions, not only in the sense of distributions.

For certain standard Clifford–Klein forms XΓ, it is actually possible to prove that the

image of L2(X,Mλ)K under the summation operator SΓ consists of analytic functions

(see [KK2]).
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CONSTRUCTION OF GENERALIZED

POINCARÉ SERIES





CHAPTER 4

SHARPNESS AND COUNTING IN NON-RIEMANNIAN

SYMMETRIC SPACES

In this chapter we examine in detail the new notion of sharpness, which we have in-

troduced in Section 1.6. We then establish some counting results for the orbits of sharp

discrete groups Γ in the non-Riemannian symmetric space X = G/H (Lemma 4.6 and

Corollary 4.7). We note that these groups Γ can never be lattices of G: they have to

be much “smaller” (Remark 4.8).

Counting is developed here in the perspective of spectral theory: our results will be

useful, together with the analytic estimates of Chapter 5, to prove the convergence of

the generalized Poincaré series (1.3). However, the counting results we obtain might

also have some interest of their own.

We first introduce some notation and briefly recall the notions of Cartan and polar

projections for noncompact, reductive G.

4.1. Preliminaries: Cartan and polar projections

We keep the notation of Chapter 3. In particular, θ is the Cartan involution and

g = k + p the Cartan decomposition introduced in Section 3.2. Let a be a maximal

abelian subspace of p and let A = exp a be the corresponding connected subgroup

of G. We consider the logarithm log : A
∼→ a, which is the inverse of exp : a

∼→ A.

We choose a system Σ+(g, a) of positive restricted roots and let a+ and A+ = exp a+
denote the corresponding closed positive Weyl chambers in a and A, respectively.

The Cartan decomposition G = KA+K holds [He2]: any g ∈ G may be written as

g = kgagk
′
g for some kg, k

′
g ∈ K and a unique ag ∈ A+. Setting µ(g) = log ag defines

a map

µ : G −→ a+ := logA+,

called the Cartan projection associated with the Cartan decomposition G = KA+K.

This map is continuous, proper, surjective, and bi-K-invariant; we will still denote

by µ the induced map on the Riemannian symmetric space G/K of G.
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Example 4.1. — For G = SLn(R) and θ = (g 7→ tg−1), we have K = SO(n). We

can take A to be the group of diagonal matrices in SLn(R) with positive entries and its

subset A+ to consist of matrices with entries in nonincreasing order; then the Cartan

decomposition G = KA+K follows from the polar decomposition in SLn(R) and from

the reduction of symmetric matrices. We have µ(g) = (12 log ti)1≤i≤n where ti is the

i-th eigenvalue of tgg.

The G-invariant symmetric bilinear form B of Section 3.2 restricts to a K-invariant

inner product on p, which defines a Euclidean norm ‖ · ‖ on a and a G-invariant

Riemannian metric dG/K on G/K. The norm of the Cartan projection µ admits the

following geometric interpretation in terms of distances in the Riemannian symmetric

space G/K:

(4.1) ‖µ(g)‖ = dG/K(y0, g · y0)
for all g ∈ G, where y0 denotes the image ofK inG/K. Using the triangular inequality

and the fact that G acts by isometries on G/K, we obtain that

(4.2) ‖µ(gg′)‖ ≤ ‖µ(g)‖+ ‖µ(g′)‖
for all g, g′ ∈ G. In fact, the following stronger inequalities hold, which can be proved

in a geometric way (see [Ka1, Lem. 2.3]):

‖µ(gg′)− µ(g)‖ ≤ ‖µ(g′)‖,(4.3)

‖µ(gg′)− µ(g′)‖ ≤ ‖µ(g)‖.(4.4)

On the other hand, recall that the group H is an open subgroup of the set of

fixed points of G under the involution σ. Let g = h + q be the decomposition of g

into eigenspaces of dσ as in Section 3.1. Since θ commutes with σ, the following

decomposition holds:

g = (k ∩ h) + (k ∩ q) + (p ∩ h) + (p ∩ q).

Let b be a maximal abelian subspace of p ∩ q and let B := exp(b). We choose a

system Σ+(gσθ, b) of positive restricted roots of b in the subspace gσθ of fixed points

of g under d(σθ), and let b+ be the corresponding closed positive Weyl chamber and

B+ := exp b+. Then the polar decomposition (or generalized Cartan decomposition)

G = KB+H holds [Sc1, Prop. 7.1.3]: any g ∈ G may be written as g = kgbghg for

some kg ∈ K, hg ∈ H , and a unique bg ∈ B+. We refer to Chapters 9 and 10 for

examples. Since all maximal abelian subspaces of p are conjugate under the adjoint

action of K, we may (and will) assume that a contains b. As above, we define a

projection

(4.5) ν : G −→ b+ ⊂ a

corresponding to the polar decomposition G = KB+H . It is continuous, surjective,

and right-H-invariant; we will still denote by ν the induced map on X . Geometrically,

‖ν(x)‖ can be interpreted as some kind of “pseudo-distance” from the origin x0 = eH
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of X = G/H to x ∈ X : in order to go from x0 to x in X , one can first travel along

the flat sector B+ ·x0, then along some (compact) K-orbit; ‖ν(x)‖ measures how far

one must go in B+ ·x0. The set of points x ∈ X such that ν(x) = 0 is the maximal

compact subsymmetric space Xc := K ·x0 ≃ K/H ∩K.

We note that for any b ∈ B there is some w ∈ W (G,A) such that µ(b) = w · ν(b),
hence

(4.6) ‖µ(b)‖ = ‖ν(b)‖.

4.2. Sharpness

We now turn to the new notion of sharpness, which quantifies proper discontinuity.

We first recall that not all discrete subgroups Γ of G can act properly discontinuously

on X = G/H since H is noncompact. A criterion for proper discontinuity was estab-

lished by Benoist [Bn, Cor. 5.2] and Kobayashi [Ko4, Th. 1.1], in terms of the Cartan

projection µ. This criterion states that a closed subgroup Γ of G acts properly on

X = G/H if and only if the set µ(Γ)∩(µ(H)+C) is bounded for any compact subset C
of a; equivalently, if and only if µ(Γ) “goes away from µ(H) at infinity”.

In this paper, we introduce the following stronger condition.

Definition 4.2. — A subgroup Γ of G is said to be sharp for X if there are constants

c ∈ (0, 1] and C ≥ 0 such that

(4.7) da(µ(γ), µ(H)) ≥ c ‖µ(γ)‖ − C

for all γ ∈ Γ, where da is the metric on a induced by the Euclidean norm ‖ ·‖. If (4.7)
is satisfied, we say that Γ is (c, C)-sharp.

We note that this definition makes sense in the more general context of a homo-

geneous space X = G/H where G is a reductive group and H a closed subgroup

of G.

If Γ is sharp for X , then µ(Γ) “goes away from µ(H) at infinity” with a speed that

is at least linear. Indeed, consider the open cone

C(c) :=
{
Y ∈ a+ : da(Y, µ(H)) < c ‖Y ‖

}

of angle arcsin(c) around µ(H). If Γ is (c, C)-sharp with c ∈ (0, 1), then the set µ(Γ)

is contained in the C√
1−c2

-neighborhood of a+rC(c); in other words, it does not meet

the shaded region in Figure 1.

In particular, if Γ is sharp for X and closed in G, then the action of Γ on X is

proper by the properness criterion. The bigger c is, the “more proper” the action is;

the critical case is therefore when c gets close to 0. For Γ discrete and sharp, we will

equivalently say that the Clifford–Klein form XΓ = Γ\X is sharp.

The following two properties will be useful.
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Figure 1. The Cartan projection of a (c, C)-sharp group Γ

Proposition 4.3. — 1. If a subgroup Γ of G is (c, C)-sharp for X, then any

conjugate of Γ is (c, C′)-sharp for some C′ ≥ 0.

2. Any reductive subgroup L of G acting properly on X admits a conjugate that is

(c, 0)-sharp for some c > 0.

Proposition 4.3.(1) is an immediate consequence of the following inequality, which

will be used several times in the paper.

Lemma 4.4. — For any g, g′, g′′ ∈ G,
da (µ(g

′gg′′), µ(H)) ≥ da(µ(g), µ(H)) − ‖µ(g′)‖ − ‖µ(g′′)‖.

Proof. — For all h ∈ H , by (4.3) and (4.4) we have

da(µ(g), µ(H)) ≤ ‖µ(g)− µ(h)‖
≤ ‖µ(g)− µ(g′gg′′)‖+ ‖µ(g′gg′′)− µ(h)‖
≤ ‖µ(g′)‖+ ‖µ(g′′)‖+ ‖µ(g′gg′′)− µ(h)‖.

We will explain why Proposition 4.3.(2) is true in Section 4.4. We refer to Sec-

tion 4.4 for a list of examples of sharp Clifford–Klein forms and to Section 4.7 for a

discussion of how sharpness behaves under small deformations.

We note that da(µ(γ), µ(H)) ≤ ‖µ(γ)‖ always holds, since da(µ(γ), µ(H)) is the

norm of the projection of µ(γ) to the orthogonal of µ(H) in a; this is why we restrict

to c ≤ 1 in Definition 4.2.
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4.3. Counting in the reductive symmetric space X

In order to prove the convergence of the generalized Poincaré series (1.3), we will

need to understand the growth rate of Γ with respect to the norm of ν. Given the

above geometric interpretation of ‖ν‖ as a “pseudo-distance from the origin” in the

reductive symmetric space X , this means estimating the number of points of any

given Γ-orbit in the “pseudo-ball”

(4.8) BX(R) := {x ∈ X : ‖ν(x)‖ < R}

as R tends to infinity. We note that the closure of BX(R) is compact for all R > 0,

which implies the following (by definition of proper discontinuity).

Remark 4.5. — Let Γ be a discrete subgroup of G acting properly discontinuously

on X . For any x ∈ X , the set of elements γ ∈ Γ with γ · x ∈ BX(R) is finite.

In the case when Γ is sharp for X , we establish exponential bounds for the growth of

Γ-orbits in X : here are the precise estimates that we will need for our theorems (a

proof will be given in Section 4.6).

Lemma 4.6. — Let c ∈ (0, 1] and C ≥ 0.

1. For any discrete subgroup Γ of G that is (c, C)-sharp for X and any ε > 0, there

is a constant cε(Γ) > 0 such that for any R > 0 and any x = g · x0 ∈ X (where

g ∈ G),

#
{
γ ∈ Γ : ‖ν(γ ·x)‖ < R

}
≤ cε(Γ) e(δΓ+ε)(R+‖µ(g)‖)/c.

2. (Removing the dependence in x)

For any discrete subgroup Γ of G that is (c, C)-sharp for X and any ε > 0, there

is a constant c′ε(Γ) > 0 such that for any R > 0 and any x ∈ X,

#
{
γ ∈ Γ : ‖ν(γ ·x)‖ < R

}
≤ c′ε(Γ) e2(δΓ+ε)R/c.

3. (Controlling the dependence in Γ, allowing for dependence in x)

There is a constant cG > 0 depending only on G such that for any discrete

subgroup Γ of G that is (c, C)-sharp for X, any R > 0, and any x = g · x0 ∈ X
(where g ∈ G),

#
{
γ ∈ Γ : ‖ν(γ ·x)‖ < R

}
≤ #(Γ ∩K) · cG e2‖ρa‖(R+C+‖µ(g)‖)/c.

4. (Controlling the dependence in Γ and removing the dependence in x)

There is a constant cG > 0 depending only on G such that for any discrete

subgroup Γ of G that is (c, C)-sharp for X, any R > 0, and any x ∈ X,

#
{
γ ∈ Γ : ‖ν(γ ·x)‖ < R

}
≤ #(Γ ∩K) · cG e4‖ρa‖(R+C)/c.
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As before, x0 is the image of H in X = G/H and ρa ∈ a is half the sum of the

elements of Σ+(g, a), counted with root multiplicities. We denote by

(4.9) δΓ := lim sup
R→+∞

(
1

R
log#

(
Γ·y0 ∩BG/K(R)

))

the critical exponent of Γ, which measures the growth rate of the Γ-orbits in the

Riemannian symmetric space G/K of G. Here

BG/K(R) := {y ∈ G/K : ‖µ(y)‖ < R}
is the ball of radius R centered at y0 = eK ∈ G/K for the Riemannian metric dG/K

(see (4.1)). Recall that the classical Poincaré series
∑

γ∈Γ e
−s‖µ(γ)‖ converges for

s > δΓ and diverges for s < δΓ, and that if G has real rank 1, then δΓ is the Hausdorff

dimension of the limit set of Γ in the boundary at infinity of G/K [Pa, Su, Cr].

In X , consider the “pseudo-ball” BX(R) of radius R centered at x0, as in (4.8).

For all x = g · x0 ∈ X (where g ∈ G), the stabilizer of x in Γ is Γ ∩ gHg−1, hence

(4.10) #
{
γ ∈ Γ : ‖ν(γ ·x)‖ < R

}
= #(Γ ∩ gHg−1) ·#

(
Γ·x ∩BX(R)

)
.

Therefore, Lemma 4.6 gives the following counting result for Γ-orbits in X .

Corollary 4.7. — For any discrete subgroup Γ of G that is (c, C)-sharp for X and

any x ∈ X,

lim sup
R→+∞

(
1

R
log#

(
Γ·x ∩BX(R)

))
≤ δΓ

c
;

if moreover Γ ∩K = {e} (for instance if Γ is torsion-free), then

#
(
Γ·x0 ∩BX(R)

)
≤ cG e2‖ρa‖(R+C)/c

and for all x ∈ X,

#
(
Γ·x ∩BX(R)

)
≤ cG e4‖ρa‖(R+C)/c.

Remark 4.8. — In our setting Γ can never be a lattice in G because it acts properly

discontinuously onX = G/H andH is noncompact. (In fact Γ has to be quite “small”:

the cohomological dimension of any torsion-free finite-index subgroup of Γ has to be

≤ dim(G/K)− dim(H/H ∩K), see [Ko1].) Corollary 4.7 can be compared with the

following results on lattices of G.

(a) Let Γ be an irreducible lattice of G such that Γ ∩ H is a lattice of H . Here is

a precise counting result, due to Eskin–McMullen [EM], for the Γ-orbit through

the origin x0: for any sequence (Bn)n∈N of “well-rounded” subsets of X ,

#
(
Γ·x0 ∩Bn

)
∼

n→+∞

vol((Γ ∩H)\H)

vol(Γ\G) · volX(Bn).

In particular (see Lemma 4.18 and (5.16), (5.17) below), there is a constant C > 0,

independent of Γ, such that

#
(
Γ·x0 ∩BX(R)

)
∼

R→+∞
C · vol((Γ ∩H)\H)

vol(Γ\G) · e2‖ρb‖R.
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(b) Let Γ be a lattice of G. The Γ-orbit through an arbitrary point x ∈ X can

be dense in X , in which case #(Γ ·x ∩ BX(R)) is infinite. For instance, this is

generically the case for X = SL3(R)/SO(2, 1) and Γ = SL3(Z): see Margulis’s

proof [Mr1] of the Oppenheim conjecture.

Here we denote by ‖ρb‖ the norm of half the sum of the elements of a positive

system Σ+(g, b) of restricted roots of b in g; this norm does not depend on the choice

of Σ+(g, b). We note that ‖ρb‖ ≤ ‖ρa‖ (see Remark 6.8).

It would be interesting to obtain a precise counting result in our setting, in terms

of the sharpness constants and of the critical exponent of Γ. We observe that the

following lower bound holds.

Remark 4.9. — Let Γ be a discrete subgroup of G whose Zariski closure in G is

semisimple or contained in a semisimple group of real rank 1. For any ε > 0 there

is a constant cε(Γ) ∈ (0, 1] such that for any x = g ·x0 ∈ X (where g ∈ G) and any

R > 0,

#
(
Γ·x ∩BX(R)

)
≥ cε(Γ)

#(Γ ∩ gHg−1)
e(δΓ−ε)(R−‖µ(g)‖)

(with the convention 1/+∞ = 0). If Γ is (c, C)-sharp, then

#(Γ ∩ gHg−1) ≤ cε(Γ)−1 e(δΓ+ε)
2 ‖µ(g)‖+C

c < +∞.

Indeed, the first formula is a consequence of (4.10), of the inequality ‖ν‖ ≤ ‖µ‖
(Lemma 4.17), and of the fact that the critical exponent, defined as a limsup, is

in fact a limit [Ro, Q]. The bound on #(Γ ∩ gHg−1) for sharp Γ comes from the

fact that if γ ∈ gHg−1, then da(µ(γ), µ(H)) ≤ 2 ‖µ(g)‖ by (4.3) and (4.4), hence

‖µ(γ)‖ ≤ 2 ‖µ(g)‖+C
c by (c, C)-sharpness.

4.4. Examples of sharp groups

Before we prove Lemma 4.6 (in Section 4.6), we first give some examples of sharp

Clifford–Klein forms to illustrate and motivate this notion. We begin with an im-

portant example (which holds in the more general context of a homogeneous space

X = G/H where G is a reductive group and H a closed subgroup of G).

Example 4.10. — All standard Clifford–Klein forms of X are sharp.

The notion of “standard” was defined in the introduction (Definition 1.4). To

understand why Example 4.10is true, here is a more precise statement.

Example 4.11. — Let L be a reductive subgroup of G acting properly on X. If L

is stable under the Cartan involution θ, then the set µ(L) is the intersection of a+
with a finite union of subspaces of a, which meet µ(H) only in 0. Let c be the sine of

the minimal angle between µ(L) and µ(H). Then any Clifford–Klein form XΓ with

Γ ⊂ L is (c, 0)-sharp.
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Proof of Example 4.11. — If L is stable under the Cartan involution θ, then K ∩L is

a maximal compact subgroup of L and there is an element k ∈ K such that kAk−1∩L
is a maximal split abelian subgroup of L and the Cartan decomposition

L = (K ∩ L)(kAk−1 ∩ L)(K ∩ L)

holds. The set µ(L) = µ(A ∩ k−1Lk) = a+ ∩ W · (a ∩ Ad(k−1)(Lie(L))) is the

intersection of a+ with a finite union of subspaces of a; it meets µ(H) only in 0 by

the properness criterion [Ko1, Th. 4.1]. By definition of sharpness, L is (c, 0)-sharp

for X , and so is any subgroup Γ ⊂ L.

This explains why Proposition 4.3.(2) is true.

Proof of Proposition 4.3.(2). — The fact that any reductive subgroup L of G acting

properly on X admits a conjugate that is (c, 0)-sharp for some c > 0 follows from

Example 4.11 and from the fact that any reductive subgroupL ofG admits a conjugate

in G that is θ-stable.

Proof of Example 4.10. — The fact that all standard Clifford–Klein forms of X are

sharp follows from Proposition 4.3.(1) and (2).

Additional evidence that sharpness is a fundamental concept is given by the fact

that all known examples of compact Clifford–Klein forms of reductive homogeneous

spaces are sharp, even when they are nonstandard. We conjecture that they should

all be.

Conjecture 4.12. — Let G be a reductive linear Lie group and H a reductive sub-

group of G. Any compact Clifford–Klein form of X = G/H is sharp.

The following particular case of Conjecture 4.12 was proved in [Ka2].

Example 4.13 ([Ka2, Th. 1.1]). — Let X = G/H, where G is a reductive linear Lie

group and H a reductive subgroup of G. Let Γ be a uniform lattice in some reductive

subgroup L of G of real rank 1. Any small deformation of the standard Clifford–Klein

form XΓ is sharp.

In other words, there exists a neighborhood U ⊂ Hom(Γ, G) of the natural inclusion

such that the group ϕ(Γ) is discrete in G and sharp forX for all ϕ ∈ U . More precisely,

if Γ is (c, C)-sharp, then for any ε > 0 there is a neighborhood Uε ⊂ Hom(Γ, G) of

the natural inclusion such that ϕ(Γ) is (c − ε, C + ε)-sharp for all ϕ ∈ Uε (and even

(c − ε, C)-sharp if C > 0 or Γ ∩ K = {e}, for instance if Γ is torsion-free). This

holds more generally whenever Γ is a convex cocompact subgroup of L, i.e. a discrete

subgroup acting cocompactly on some nonempty convex subset of the Riemannian

symmetric space of L.
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In the special case of X = AdS3 = SO(2, 2)0/SO(1, 2)0, sharpness was proved in

[Ka3] for all compact Clifford–Klein forms, even for those that are not deformations

of standard ones (such forms exist by [Sa2]).

Example 4.14 ([Ka3, Th. 5.1.1]). — All compact Clifford–Klein forms of X =

AdS3 are sharp.

As we will see in Section 10.2, this is a special case of the following recent result.

Example 4.15 ([GGKW]). — Let 8G be a real semisimple linear Lie group of real

rank 1. All compact Clifford–Klein forms of X = (8G×8G)/Diag(8G) are sharp.

We note that there exist Clifford–Klein forms XΓ with Γ infinitely generated that

are not sharp (see [GK]). Also, not all sharp Clifford–Klein forms remain sharp

under small deformations; it can happen that the action actually stops being properly

discontinuous.

Example 4.16. — Let X = (8G×8G)/Diag(8G) and Γ = 8Γ×{e}, where 8G is a real

semisimple linear Lie group of real rank 1 and 8Γ a discrete subgroup of 8G containing

a nontrivial unipotent element 8γu (for instance a nonuniform lattice of 8G). For any

neighborhood U ⊂ Hom(Γ, 8G × 8G), there is an element ϕ ∈ U such that the group

ϕ(Γ) does not act properly discontinuously on X.

The idea is to obtain a contradiction with the properness criterion of Benoist and

Kobayashi for some ϕ such that the first projection of ϕ(8γu, e) to
8G is unipotent and

the second projection is hyperbolic (see [GK]).

4.5. Link between the Cartan and polar projections

In order to prove Lemma 4.6, we will use the following link between the Cartan

projection µ (on which the notion of sharpness is built) and the polar projection ν

(on which our counting is based).

Lemma 4.17. — For any g ∈ G,
da(µ(g), µ(H)) ≤ ‖ν(g)‖ ≤ ‖µ(g)‖ .

Proof. — For g ∈ G, write g = kbh, where k ∈ K, b ∈ B+, and h ∈ H . Since H is

fixed by σ, since K is globally preserved by σ (because σ and θ commute), and since

σ(b) = b−1 ∈ B ⊂ A, we have

µ(gσ(g)−1) = µ(bσ(b)−1) = µ(b2) = 2µ(b).

Using (4.2) and the fact that ‖µ(b)‖ = ‖ν(b)‖ = ‖ν(g)‖ by (4.6), we obtain

(4.11) 2 ‖ν(g)‖ = ‖µ(gσ(g)−1)‖ ≤ ‖µ(g)‖+ ‖µ(σ(g)−1)‖.
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Since σ(K) = K and σ(A) = A (because a = (a ∩ h) + b), we have ‖µ(σ(g)−1)‖ =
‖µ(g)‖, which implies ‖ν(g)‖ ≤ ‖µ(g)‖. On the other hand, by (4.4) and (4.6),

da(µ(g), µ(H)) ≤ ‖µ(g)− µ(h)‖
= ‖µ(bh)− µ(h)‖
≤ ‖µ(b)‖ = ‖ν(b)‖ = ‖ν(g)‖.

The following lemma implies, together with (5.16) below, that for any sequence

(Rn) ∈ RN
+ tending to infinity, the sequence (BX(Rn))n∈N of “pseudo-balls” of ra-

dius Rn centered at the origin (see (4.8)) is “well-rounded” in the sense of Eskin–

McMullen [EM]: for any ε > 0 there is a neighborhood U of e in G such that

volX
(
U · ∂BX(Rn)

)
≤ ε volX

(
BX(Rn)

)
.

Lemma 4.18. — For any g, g′ ∈ G,
‖ν(g′)‖ − ‖µ(g)‖ ≤ ‖ν(gg′)‖ ≤ ‖ν(g′)‖+ ‖µ(g)‖.

Proof. — Let g, g′ ∈ G. Write g′ = kbh with k ∈ K, b ∈ B+, and h ∈ H . By

Lemma 4.17 and (4.2),

‖ν(gg′)‖ = ‖ν(gkb)‖ ≤ ‖µ(gkb)‖ ≤ ‖µ(g)‖+ ‖µ(kb)‖.
But ‖µ(kb)‖ = ‖ν(kb)‖ = ‖ν(g)‖ by (4.6), hence ‖ν(gg′)‖ ≤ ‖ν(g′)‖ + ‖µ(g)‖. Ap-

plying this inequality to (g−1, gg′) instead of (g, g′), we obtain ‖ν(gg′)‖ ≥ ‖ν(g′)‖ −
‖µ(g)‖.

4.6. Proof of the counting estimates

We now use Lemmas 4.4 and 4.17, together with the classical growth theory for dis-

crete isometry groups in the Riemannian symmetric space G/K, to prove Lemma 4.6.

Proof of Lemma 4.6.(1). — By Lemmas 4.4 and 4.17, for all g ∈ G and γ ∈ Γ we

have

‖ν(γg)‖ ≥ da(µ(γg), µ(H)) ≥ da(µ(γ), µ(H))− ‖µ(g)‖.
Using the sharpness assumption, we obtain that for all g ∈ G,
(4.12) ‖ν(γg)‖ ≥ c ‖µ(γ)‖ − C − ‖µ(g)‖,
hence

#
{
γ ∈ Γ : ‖ν(γg)‖ < R

}
≤ #

{
γ ∈ Γ : ‖µ(γ)‖ < R+ C + ‖µ(g)‖

c

}
.

We conclude using the definition (4.9) of the critical exponent δΓ.

The proof of Lemma 4.6.(3) follows rigorously the same idea, using the following

classical observation (where y0 = eK ∈ G/K as before).
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Observation 4.19. — There is a constant cG ≥ 1 depending only on G such that

for any discrete subgroup Γ of G and any R > 0,

#
(
Γ·y0 ∩BG/K(R)

)
≤ cG e

2 ‖ρa‖R.

In particular, δΓ ≤ 2 ‖ρa‖ and
#
{
γ ∈ Γ : ‖µ(γ)‖ < R

}
≤ cG e

2 ‖ρa‖R ·#(Γ ∩K).

Proof. — Let

(4.13) DG/K =
{
y ∈ G/K : dG/K(y, y0) ≤ dG/K(y, γ · y0) ∀γ ∈ Γ

}

be the Dirichlet domain centered at y0, and let t > 0 be the distance from y0 to the

boundary of DG/K . For all R > 0 and all γ ∈ Γ with γ · y0 ∈ BG/K(R),

γ · BG/K(t) ⊂ BG/K(R+ t)

since G acts on G/K by isometries. Moreover, by definition of t, the balls γ ·BG/K(t)

and γ′ ·BG/K(t) (for γ, γ′ ∈ Γ) do not intersect if γ · y0 6= γ′ · y0. Therefore,
#
(
Γ·y0 ∩BG/K(R)

)
· volBG/K(t) ≤ volBG/K(R + t).

Observation 4.19 is then a consequence of the following volume estimate (see [He1,

Ch. I, Th. 5.8]): there is a constant c′G (depending only on G) such that

volBG/K(R′) ∼
R′→+∞

c′G e
2‖ρa‖R′

.

We now turn to Lemma 4.6.(2) and (4). It is sufficient to give a proof for x in some

fundamental domain of X for the action of Γ. We consider the following particular

fundamental domain.

Definition-Lemma 4.20 (A pseudo-Riemannian Dirichlet domain)

Let Γ be a discrete subgroup of G acting properly discontinuously on X. The set

DX = {x ∈ X : ‖ν(x)‖ ≤ ‖ν(γ · x)‖ ∀γ ∈ Γ}
is well-defined; it is a fundamental domain of X for the action of Γ.

Proof. — By Remark 4.5, for any given x ∈ X there are only finitely many elements

γ ∈ Γ such that ‖ν(γ ·x)‖ ≤ ‖ν(x)‖; in particular, there is an element γ0 ∈ Γ such

that ‖ν(γ0 ·x)‖ ≤ ‖ν(γ ·x)‖ for all γ ∈ Γ. Thus DX is well-defined and Γ · DX = X .

To see that DX is actually a fundamental domain (which is not needed in our proof

of Lemma 4.6, where we only use Γ · DX = X), it is sufficient to see that for any γ

in the countable group Γ, the set

Hγ := {x ∈ X : ‖ν(x)‖ = ‖ν(γ · x)‖}
has measure 0 in X . But (4.1) and (4.11) imply that for any g ∈ G,

2 ‖ν(g)‖ = ‖µ(gσ(g)−1)‖ = dG/K

(
y0, gσ(g)

−1 · y0
)
.
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Therefore the function ‖ν‖2 is analytic on G, hence on X = G/H . Since x 7→
‖ν(x)‖2 − ‖ν(γ · x)‖2 is not constant on X , the set Hγ has measure 0.

The fundamental domain DX is an analogue, in the pseudo-Riemannian space

X = G/H , of the classical Dirichlet domain DG/K of (4.13). Indeed, by (4.1) and the

G-invariance of the metric dG/K ,

DG/K =
{
y ∈ G/K : ‖µ(y)‖ ≤ ‖µ(γ · y)‖ ∀γ ∈ Γ

}
.

The distance to the origin ‖µ‖ in G/K is replaced by the “pseudo-distance to the

origin” ‖ν‖ in X .

The proof of Lemma 4.6.(2) and (4) is now similar to that of Lemma 4.6.(1) and (3):

we just replace (4.12) by the following inequality.

Lemma 4.21. — Let Γ be a discrete subgroup of G that is (c, C)-sharp for X. For

any γ ∈ Γ and x ∈ DX ,

‖ν(γ ·x)‖ ≥ c

2
‖µ(γ)‖ − C.

Proof. — Let γ ∈ Γ and x ∈ DX . There is an element g ∈ KB+ ⊂ G such that

x = g ·x0. If ‖µ(g)‖ ≥ c
2 ‖µ(γ)‖, then, using the definition of DX and the fact that

g ∈ KB+, together with (4.6), we have

‖ν(γg)‖ ≥ ‖ν(g)‖ = ‖µ(g)‖ ≥ c

2
‖µ(γ)‖.

If ‖µ(g)‖ ≤ c
2 ‖µ(γ)‖, then, using Lemmas 4.4 and 4.17 together with the sharpness

of Γ, we obtain

‖ν(γg)‖ ≥ da(µ(γg), µ(H))

≥ da(µ(γ), µ(H))− ‖µ(g)‖
≥ c

2
‖µ(γ)‖ − C.

4.7. Sharpness and deformation

We conclude this chapter by examining the behavior of the sharpness constants un-

der small deformations in the standard case. The two results below are easy corollaries

of [Ka2, Th. 1.4] (see Example 4.13).

Lemma 4.22. — Let Γ be a convex cocompact subgroup (for instance a uniform lat-

tice) of some reductive subgroup L of G of real rank 1 acting properly on the reductive

symmetric space X. Assume that Γ is (c, C)-sharp for X and that ‖ν(γ)‖ ≥ r for

all γ ∈ Γ r Z(Gs). For any ε > 0 there is a neighborhood Uε ⊂ Hom(Γ, G) of the

natural inclusion such that for any ϕ ∈ Uε, the group ϕ(Γ) is discrete in G and

(c− ε, C + ε)-sharp for X, with ‖ν(ϕ(γ))‖ ≥ r − ε for all γ ∈ Γr Z(Gs).

As in Section 3.3, we denote by Z(Gs) the center of the commutator subgroup

of G.
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Proof. — Fix ε > 0 and let ε′ > 0 be small enough so that

c− ε′
1 + ε′

≥ c− ε and ε′ +
ε′

1 + ε′
≤ ε.

By [Ka2, Th. 1.4], there is a neighborhoodWε′ ⊂ Hom(Γ, G) of the natural inclusion

such that for any ϕ ∈ Wε′ , the group ϕ(Γ) is discrete in G and

‖µ(ϕ(γ))− µ(γ)‖ ≤ ε′ ‖µ(γ)‖+ ε′

for all γ ∈ Γ (and even ‖µ(ϕ(γ)) − µ(γ)‖ ≤ ε′ ‖µ(γ)‖ for all γ ∈ Γ r K). By

Lemma 4.17,

‖ν(ϕ(γ))‖ ≥ da(µ(ϕ(γ)), µ(H))

≥ da(µ(γ), µ(H))− ‖µ(ϕ(γ))− µ(γ)‖
≥ (c− ε′) ‖µ(γ)‖ − (C + ε′)

≥ c− ε′
1 + ε′

‖µ(ϕ(γ))‖ −
(
C + ε′ +

ε′

1 + ε′

)

for all ϕ ∈ Wε′ and γ ∈ Γ; in particular, ϕ(Γ) is (c − ε, C + ε)-sharp for X . Since Γ

is discrete in G and µ is a proper map, the set

F :=
{
γ ∈ Γ : ‖µ(γ)‖ < r + C + ε′

c− ε′
}

is finite. For any ϕ ∈ Wε′ and γ ∈ Γr F we have

‖ν(ϕ(γ))‖ ≥ (c− ε′) ‖µ(γ)‖ − (C + ε′) ≥ r.

Let Uε be the set of elements ϕ ∈ Wε′ such that ‖ν(ϕ(γ))‖ ≥ r−ε for all γ ∈ FrZ(Gs).

Then Uε is a neighborhood of the natural inclusion since ν is continuous and F finite,

and Uε satisfies the conclusions of Lemma 4.22.

Lemma 4.23. — Suppose that G = 8G×8G for some reductive linear group 8G and

let X = (8G × 8G)/Diag(8G). Let 8G1 and 8G2 be reductive subgroups of 8G and let

Γ = 8Γ1 × 8Γ2 for some discrete subgroups 8Γ1 of 8G1 and 8Γ2 of 8G2. Assume that Γ

is (c, C)-sharp for X and that ‖ν(γ)‖ ≥ r for all γ ∈ Γr Z(Gs).

1. Suppose that for all i ∈ {1, 2}, the group 8Γi is

– either an irreducible uniform lattice of 8Gi

– or, more generally, a convex cocompact subgroup of 8Gi if 8Gi has real

rank 1.

Then for any ε > 0 there is a neighborhood Uε ⊂ Hom(Γ, G) of the natural

inclusion such that for any ϕ ∈ Uε, the group ϕ(Γ) is discrete in G and (c −
ε, C + ε)-sharp for X, with ‖ν(ϕ(γ))‖ ≥ r − ε for all γ ∈ Γr Z(Gs).

2. Suppose that 8G1 has real rank 1 and that 8Γ1 is convex cocompact in 8G1. Then

for any ε > 0 there is a neighborhood 8Uε ⊂
Hom(8Γ1,

8G × Z8G(
8Γ2)) of the natural inclusion such that for any 8ϕ ∈ 8Uε,
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the group 8ϕ(8Γ1)
8Γ2 is discrete in G and (c − ε, C + ε)-sharp for X, with

‖ν(ϕ(γ))‖ ≥ r − ε for all γ ∈ Γr Z(Gs).

Here Z8G(
8Γ2) denotes the centralizer of 8Γ2 in 8G.

Proof. — Fix ε > 0 and let ε′ > 0 be small enough so that

c− 2ε′

1 + 2ε′
≥ c− ε and 2

√
2 ε′ +

2
√
2 ε′

1 + 2ε′
≤ ε.

By [Ka2, Th. 1.4], if 8G1 (resp. 8G2) has real rank 1 and 8Γ1 (resp. 8Γ2) is convex

cocompact in 8G1 (resp. in 8G2), then there is a neighborhood W1,ε′ ⊂ Hom(Γ, G)

(resp. W2,ε′ ⊂ Hom(Γ, G)) of the natural inclusion such that for any ϕ ∈ W1,ε′ (resp.

ϕ ∈ W2,ε′), the group ϕ(8Γ1 × {e}) (resp. ϕ({e} × 8Γ2)) is discrete in G and

(4.14) ‖µ(ϕ(8γ1, e))− µ(8γ1, e)‖ ≤ ε′ ‖µ(8γ1, e)‖+ ε′

for all 8γ1 ∈ 8Γ1 (resp.

(4.15) ‖µ(ϕ(e, 8γ2))− µ(e, 8γ2)‖ ≤ ε′ ‖µ(e, 8γ2)‖+ ε′

for all 8γ2 ∈ 8Γ2). If 8G1 (resp. 8G2) has real rank ≥ 2 and 8Γ1 (resp. 8Γ2) is an

irreducible lattice in 8G1 (resp. in 8G2), then
8Γ1 (resp. 8Γ2) is locally rigid in G [Ra1,

We2], and so a similar neighborhood W1,ε′ ⊂ Hom(Γ, G) (resp. W2,ε′ ⊂ Hom(Γ, G))

of the natural inclusion exists by (4.3) and (4.4). Since Γ is discrete in G and µ is a

proper map, the set

F :=
{
γ ∈ Γ : ‖µ(γ)‖ < r + C + 2

√
2 ε′

c− 2ε′

}

is finite. In the setting of (1), we let Uε be the set of elements ϕ ∈ W1,ε′ ∩ W2,ε′

such that ‖ν(ϕ(γ))‖ ≥ r − ε for all γ ∈ F r Z(Gs); then Uε ⊂ Hom(Γ, G) is a

neighborhood of the natural inclusion and any ϕ ∈ Uε satisfies (4.14) and (4.15). In

the setting of (2), we set

8Wε′ :=
{
ϕ ◦ i1 : ϕ ∈ W1,ε′ , ϕ|{e}×8Γ2

= id{e}×8Γ2

}
,

where i1 : 8Γ1 →֒ 8Γ1×{e} is the natural inclusion, and we let 8Uε be the set of elements
8ϕ ∈ 8Wε′ such that ‖ν(8ϕ(8γ1)8γ2)‖ ≥ r − ε for all γ = (8γ1,

8γ2) ∈ F r Z(Gs); then
8Uε ⊂ Hom(8Γ1,

8G×Z8G(
8Γ2)) is a neighborhood of the natural inclusion and for any

8ϕ ∈ 8Uε, the homomorphism ϕ := ((8γ1,
8γ2) 7→ 8ϕ(8γ1)

8γ2) satisfies (4.14) and (4.15).

We now consider ϕ ∈ Hom(Γ, G) satisfying (4.14) and (4.15) and prove that the

group ϕ(Γ) is discrete in G and (c − ε, C + ε)-sharp for X , with ‖ν(ϕ(γ))‖ ≥ r − ε
for all γ ∈ Γ r Z(Gs). We note that a = 8a + 8a, where 8a is a maximal split abelian

subspace of 8g; for i ∈ {1, 2}, let πi : a → 8a be the projection onto the i-th factor.

Then
∥∥π1
(
µ(ϕ(8γ1,

8γ2))− µ(8γ1, 8γ2)
)∥∥ =

∥∥π1
(
µ(ϕ(8γ1,

8γ2))− µ(8γ1, e)
)∥∥

≤
∥∥π1
(
µ(ϕ(8γ1,

8γ2))− µ(ϕ(8γ1, e))
)∥∥+

∥∥π1
(
µ(ϕ(8γ1, e))− µ(8γ1, e)

)∥∥,
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where
∥∥π1
(
µ(ϕ(8γ1,

8γ2))− µ(ϕ(8γ1, e))
)∥∥ ≤

∥∥π1
(
µ(ϕ(e, 8γ2)

)∥∥
=

∥∥π1
(
µ(ϕ(e, 8γ2))− µ(e, 8γ2)

)∥∥
≤ ‖µ(ϕ(e, 8γ2))− µ(e, 8γ2)‖
≤ ε′ ‖µ(e, 8γ2)‖+ ε′

(using (4.3) applied to 8G and (4.15)) and
∥∥π1
(
µ(ϕ(8γ1, e))− µ(8γ1, e)

)∥∥ ≤ ‖µ(ϕ(8γ1, e))− µ(8γ1, e)‖
≤ ε′ ‖µ(8γ1, e)‖+ ε′

(using (4.14)). Therefore,
∥∥π1
(
µ(ϕ(8γ1,

8γ2))− µ(8γ1, 8γ2)
)∥∥ ≤ ε′

(
‖µ(8γ1, e)‖+ ‖µ(e, 8γ2)‖

)
+ 2ε′

≤
√
2ε′ ‖µ(8γ1, 8γ2)‖+ 2ε′.

Similarly,
∥∥π2
(
µ(ϕ(8γ1,

8γ2))− µ(8γ1, 8γ2)
)∥∥ ≤

√
2ε′ ‖µ(8γ1, 8γ2)‖+ 2ε′.

Thus

‖µ(ϕ(γ))− µ(γ)‖ ≤ 2ε′ ‖µ(γ)‖+ 2
√
2ε′

for all γ ∈ Γ. Using the fact that Γ is discrete in G and µ is a proper map, we obtain

that ϕ(Γ) is discrete in G. We conclude as in the proof of Lemma 4.22.





CHAPTER 5

ASYMPTOTIC ESTIMATES FOR EIGENFUNCTIONS

ON SYMMETRIC SPACES

Under the rank condition (3.3), Flensted-Jensen [Fl] proved that the space

L2(X,Mλ)K of K-finite elements in L2(X,Mλ) is nonzero for infinitely many joint

eigenvalues λ, by an explicit construction based on some duality principle and the

Poisson transform. Then, applying deep results of microlocal analysis and hyper-

function theory [KKM+], Oshima and Matsuki [MO, Os2] gave a detailed analysis

of the asymptotic behavior at infinity of these eigenfunctions. In this chapter, we

reformulate their estimates as follows, in terms of

– the “weighted distance” d(λ) of the spectral parameter λ to the walls of j∗ (which

measures the regularity of λ),

– the “pseudo-distance from the origin” ‖ν(x)‖ of x ∈ X (which measures how x

goes to infinity).

Proposition 5.1. — Under the rank condition (3.3), there is a constant q > 0 such

that for all λ ∈ j∗ and ϕ ∈ L2(X,Mλ)K , the function

x 7−→ ϕ(x) · eq d(λ)‖ν(x)‖

is bounded on X; in particular, ϕ ∈ L1(X) if d(λ) > 2‖ρb‖/q.

We refer to Section 3.3 (resp. 4.1) for the definition of d : j∗ → R≥0 (resp. ν : X →
b+). As in Remark 4.8, we denote by ‖ρb‖ the norm of half the sum of the elements

of a positive system Σ+(g, b) of restricted roots of b in g; this norm does not depend

on the choice of Σ+(g, b).

As we shall see, the constant q is computable in terms of some root system (see

(5.14) in the proof of Lemma 5.8).

The proof of Proposition 5.1 will be given in Section 5.4. For the reader’s conve-

nience, we first give a brief review of the Poisson transform on Riemannian symmetric

spaces of the noncompact type (Section 5.1), of the Flensted-Jensen duality (Sec-

tion 5.2), and of the construction of discrete series representations (Section 5.3). The

material of these three sections is not new, but we will need it later. Often analysis
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on reductive symmetric spaces requires a rather large amount of notation; here we

try to keep it minimal for our purpose.

In the whole chapter, we denote by A the sheaf of real analytic functions and by B
the sheaf of hyperfunctions; we refer to [KKK] for an introduction to hyperfunctions.

5.1. Poisson transform in Riemannian symmetric spaces

Let Xd = Gd/Kd be a Riemannian symmetric space of the noncompact type,

where Gd is a connected reductive linear Lie group and Kd a maximal compact

subgroup of Gd. Let P d be a minimal parabolic subgroup of Gd. We give a brief

overview of the theory of the Poisson transform as an intertwining operator between

hyperfunctions on Gd/P d and eigenfunctions on Xd (see [He1, KKM+] for details).

The notation Gd is used to avoid confusion since the results of this paragraph will

not be applied to G but to another real form of GC.

Let j be a maximal split abelian subalgebra of gd := Lie(Gd) such that the Cartan

decomposition Gd = Kd(exp j)Kd holds. Since all minimal parabolic subgroups of Gd

are conjugate, we may assume that P d contains exp j and has the Langlands decom-

position P d =Md(exp j)Nd, whereMd = Kd∩P d is the centralizer of exp j in Kd and

Nd is the unipotent radical of P d. The Iwasawa decomposition Gd = Kd(exp j)Nd

holds. Let ζ : Gd → j be the corresponding Iwasawa projection, defined by

g ∈ Kd(exp ζ(g))Nd

for all g ∈ Gd. For λ ∈ j∗
C
we define functions ξλ, ξ

∨
λ ∈ A(Gd) by

(5.1) ξλ(g) := e〈λ,ζ(g)〉 and ξ∨λ (g) := ξλ(g
−1)

for g ∈ Gd. Since ξλ is left-Kd-invariant, ξ∨λ induces a function on Xd, which we still

denote by ξ∨λ .

We choose a positive system Σ+(gC, jC), defining positive Weyl chambers j+ in j

and j∗+ in j∗. Let ρ be half the sum of the elements of Σ+(gC, jC), counted with root

multiplicities. For λ ∈ j∗
C
, the function ξλ is a character of P d. Let B(Gd/P d,Lλ) be

the hyperfunction-valued normalized principal series representation of Gd associated

with the character ξ−λ of P d: by definition, B(Gd/P d,Lλ) is the set of hyperfunctions
f ∈ B(Gd) such that

f( · p) = ξ−λ+ρ(p
−1)f (= f ξλ−ρ(p))

for all p ∈ P d. Here we use the character ξ−λ and not ξλ, following the usual conven-

tion in harmonic analysis on symmetric spaces (see [BS, D, Fl, He1, MO]) rather

than in the representation theory of reductive groups (see [Kn, Wa]). Setting

A(Gd/P d,L−λ) := A(Gd) ∩ B(Gd/P d,L−λ),

there is a natural Gd-invariant bilinear form

〈 · , · 〉 : B(Gd/P d,Lλ)×A(Gd/P d,L−λ) −→ C
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given by the integration over Gd/P d. We note that ξ−λ−ρ ∈ A(Gd/P d,L−λ), hence

the left translate ξ−λ−ρ(g
−1 · ) also belongs to A(Gd/P d,L−λ) for all g ∈ Gd. Since

ξ−λ−ρ is left-Kd-invariant, we obtain a Gd-intertwining operator (Poisson transform)

Pλ : B(Gd/P d,Lλ) −→ A(Xd)

given by

(Pλf)(g) := 〈f, ξ−λ−ρ(g
−1 · )〉 .

It follows directly from the definition of the Harish-Chandra isomorphism in Sec-

tion 3.1 that for all f ∈ B(Gd/P d,Lλ), the function Pλf ∈ A(Xd) satisfies the sys-

tem (Mλ), defined similarly to Section 3.1. For Reλ ∈ j∗+, the Helgason conjecture

(proved in [KKM+]) asserts that the Poisson transform

Pλ : B(Gd/P d,Lλ) −→ A(Gd/Kd,Mλ)

is actually a bijection.

Example 5.2. — Assume that Gd has real rank 1. Then Gd/P d identifies with the

boundary at infinity of Xd. The function ξ∨λ is the exponential of some multiple of

the Busemann function associated with the geodesic ray (exp j+)K
d in Xd = Gd/Kd;

its level sets are the horospheres centered at eP d ∈ Gd/P d. For λ = ρ, the Poisson

operator Pλ identifies the set of continuous functions on Gd/P d with the set of har-

monic functions on Xd admitting a continuous extension to Xd = Xd ∪Gd/P d. (See

Section 9.7 for the case Gd = SL2(C).)

5.2. Real forms of GC/HC and the Flensted-Jensen duality

We now come back to the setting of Chapters 1 to 4, where G is a connected

reductive linear Lie group and H an open subgroup of the group of fixed points

of G under some involutive automorphism σ. Let GC be a connected Lie group

containing G with Lie algebra gC := g⊗R C, and let HC be the connected subgroup

of GC with Lie algebra hC := h ⊗R C. We consider three different real forms of the

complex symmetric space XC = GC/HC: our original pseudo-Riemannian symmetric

space X = G/H , a Riemannian symmetric space XU = GU/HU of the compact type,

and a Riemannian symmetric space Xd = Gd/Kd of the noncompact type. They are

constructed as follows. Let g = h+q be the decomposition of g into eigenspaces of dσ

as in Section 3.1, and let g = k+ p be the Cartan decomposition associated with the

Cartan involution θ of G of Section 3.2, which commutes with σ. The maps dσ and

dθ extend to automorphisms of the complex Lie algebra gC, for which we use the same

letters. We set

gd := gσθ +
√
−1g−σθ = (h ∩ k+ q ∩ p) +

√
−1 (h ∩ p+ q ∩ k),

kd = hU := h ∩ k+
√
−1 (h ∩ p),

gU := k+
√
−1 p,
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and let Gd (resp. Kd = HU , resp. GU ) be the connected subgroup of GC with

Lie algebra gd (resp. kd = hU , resp. gU ). We note that Kd = HU is the com-

pact real form of HC. For instance, for the anti-de Sitter space X = AdS2n+1 =

SO(2, 2n)0/SO(1, 2n)0, we have XU = SO(2n + 2)/SO(2n + 1) = S2n+1 and Xd =

SO(1, 2n+ 1)0/SO(2n+ 1) = H2n+1 (see Section 10.1).

Let Hd be the connected subgroup of GC with Lie algebra

hd := h ∩ k+
√
−1 (q ∩ k).

We note that Kd ∩ Hd = (H ∩ K)0 and that Hd/Kd ∩ Hd and K/H ∩ K are two

Riemannian symmetric spaces with the same complexification — the first one of the

noncompact type, the second one of the compact type. This will be used in Chapter 7.

For any hd-module V over C, the action of hd on V extends C-linearly to an action

of kC = hd ⊗R C, and the set Vhd of hd-finite vectors is equal to the set VkC of kC-

finite vectors. We define the set VK of K-finite vectors of V to consist of vectors

v ∈ Vhd = VkC such that the action of k ⊂ kC on the C-span of k · v lifts to an action

of K. Then VK is a K-module contained in Vhd .

Remark 5.3. — In the definition of VK , we do not assume that the group K acts

on V . In the situation below, neither V nor Vhd = VkC can be acted on by the groupK.

The Lie algebra gd (hence its subalgebra hd) acts on A(Xd) by differentiation on

the left:

(5.2) (Y · ϕ)(x) = d

dt

∣∣∣
t=0

ϕ
(
exp(−tY ) · x

)

for all Y ∈ gd, all ϕ ∈ A(Xd), and all x ∈ Xd. Since the system (Mλ) is G
d-invariant,

its space of solutions A(Xd,Mλ) is a gd-submodule of A(Xd) for λ ∈ j∗
C
; thus we can

define K-modules A(Xd,Mλ)K ⊂ A(Xd)K . By using holomorphic continuation,

Flensted-Jensen [Fl] constructed an injective homomorphism

η : A(X)K −֒→ A(Xd)K(5.3)

∪ ∪
A(X,Mλ)K −֒→ A(Xd,Mλ)K

for all λ ∈ j∗
C
. For the reader’s convenience, we now recall the construction of η in the

case when GC is simply connected.

Assume that GC is simply connected. Then the set of fixed points of GC under

any involutive automorphism is connected [Bo1, Th. 3.4]. We can extend σ and θ to

holomorphic automorphisms of GC, for which we use the same letters σ and θ. The

complex conjugation of gC = g +
√
−1 g with respect to the real form g lifts to an

anti-holomorphic involution τ of GC, such that G = Gτ
C
. Since σ, θ, and τ commute,

the composition of any of them gives involutive automorphisms of GC. We have

HC = Gσ
C, Gd = Gτσθ

C , Kd = HU = HC ∩Gd, and GU = Gτθ
C .
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Moreover, setting KC = Gθ
C
, we have Hd = (KC ∩ Gd)0 and the following inclusions

hold:

K ⊂ G ⊃ H

⊃ ⊃ ⊃

KC ⊂ GC ⊃ HC(5.4)

⊂ ⊂ ⊂

Hd ⊂ Gd ⊃ Kd.

The restriction of σ to Gd is a Cartan involution of Gd, and the corresponding Cartan

decomposition gd = kd + pd is obtained as the intersection of gd with the direct sum

decomposition gC = hC + qC. The restriction of θ to Gd is an involution of Gd,

and the corresponding decomposition gd = hd + qd of gd (into eigenspaces of dθ

with respective eigenvalues +1 and −1) is obtained as the intersection of gd with the

complexified Cartan decomposition gC = kC + pC. Let b be the maximal semisimple

abelian subspace of p ∩ q from Section 4.1. Since pd ∩ qd = p ∩ q, we may regard

B = exp b as a subgroup of Gd, and the polar decomposition Gd = HdB+K
d holds

similarly to the polar decomposition G = KB+H of Section 4.1. Any function f ∈
A(X)K extends uniquely to a function fC : KCB+HC/HC → C such that k 7→
fC(kbHC) is holomorphic on KC for any b ∈ B+; by letting η(f) be the restriction

of fC to Xd, we get the injective homomorphism (5.3), which is actually bijective.

The homomorphism η respects the left action of U(gC) ([Fl, Th. 2.5]).

We now return to the general case, where GC is not necessarily simply connected.

Any G-invariant (resp. GU -invariant, resp. G
d-invariant) differential operator on X =

G/H (resp. XU = GU/HU , resp. X
d = Gd/Kd) extends holomorphically to XC =

GC/HC, hence we have canonical C-algebra isomorphisms

D(X) ≃ D(XU ) ≃ D(Xd).

Therefore, for λ ∈ j∗
C
, a function f ∈ A(X) satisfies (Mλ) if and only if η(f) ∈ A(Xd)

does.

5.3. Discrete series representations

We continue in the setting of Section 5.2 and now assume that the rank condition

(3.3) is satisfied. In this section we summarize Flensted-Jensen’s construction of

discrete series representations VZ,λ using his duality (5.3). Recall that the regular

representation of G on L2(X) is unitary; an irreducible unitary representation π of G

is said to be a discrete series representation for X if there exists a nonzero continuous

G-intertwining operator from π to L2(X) or, equivalently, if π can be realized as a

closed G-invariant subspace of L2(X). By a little abuse of notation, we shall also

call the underlying (g,K)-module πK a discrete series representation. It should be
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noted that discrete series representations for X = G/H may be different from Harish-

Chandra’s discrete series representations for the group manifold G ifH is noncompact,

because L2(X) 6= L2(G)H .

We shall parameterize the discrete series representations for X by the spectral

parameter λ and some finite set Z defined as follows. Let Pd be the set of minimal

parabolic subalgebras of gd, on which Gd acts transitively by the adjoint action.

There are only finitely many Hd-orbits in Pd; a combinatorial description was given

by Matsuki [Mt]. We set

(5.5) Z := {closed Hd-orbits in Pd}.
Here is a description of the finite set Z. Consider the maximal semisimple abelian

subspace j of
√
−1(q ∩ k) from Chapter 3. The rank condition (3.3) is equivalent to

the fact that j is maximal abelian in pd = q∩p+
√
−1(q∩k). Thus j is a maximal split

abelian subalgebra of gd and the notation fits with that of Section 5.1. All restricted

roots of j in gd take real values on j and there is a natural bijection Σ(gd, j) ≃ Σ(gC, jC).

Note that j is actually contained in hd; there is a natural bijection Σ(hd, j) ≃ Σ(kC, jC).

As in Section 3.1, let W be the Weyl group of the restricted root system Σ(gd, j), and

let WH∩K be that of Σ(hd, j). Any choice of a positive system Σ+(gd, j) ≃ Σ+(gC, jC)

defines a point in Pd and the Hd-orbit through this point is closed. Conversely, any

closed Hd-orbit in Pd is obtained in this way. Recall that in Section 3.3 we have fixed

once and for all a positive system Σ+(kC, jC) ≃ Σ+(hd, j). Since any two such positive

systems are conjugate by Hd, we obtain a one-to-one correspondence

(5.6)
{
positive systems Σ+(gd, j) containing Σ+(hd, j)

}
≃ Z.

Here is another description of the finite set Z. We fix a positive system Σ+(gd, j)

containing Σ+(hd, j); this defines a minimal parabolic subgroup P d of Gd. The sub-

space pd in the Cartan decomposition gd = kd + pd should not be confused with the

Lie algebra of P d. The subset

(5.7) W (Hd, Gd) :=
{
w ∈ W : w(Σ+(gd, j)) ∩Σ(hd, j) = Σ+(hd, j)

}
.

of the Weyl group W gives a complete set of representatives of the left coset space

WH∩K\W . Clearly, e ∈ W (Hd, Gd). We identify Pd with Gd/P d. Then, by (5.6),

the other closed Hd-orbits in Gd/P d are of the form

(5.8) Z = HdwP d for w ∈ W (Hd, Gd) (≃WH∩K\W ).

Thus we have a one-to-one correspondence

(5.9) Z ≃W (Hd, Gd).

Remark 5.4. — We have given two equivalent combinatorial descriptions of the fi-

nite set Z in (5.6) and (5.9). The latter one (5.9) depends on a fixed choice of a

positive system Σ+(gd, j); it is convenient to treat different closed orbits Z simulta-

neously (e.g. in Fact 5.5 below). We shall use the former one (5.6) when we give an



5.3. DISCRETE SERIES REPRESENTATIONS 57

estimate of the asymptotic behavior of individual discrete series representations for a

fixed Z ∈ Z (e.g. in the proof of Proposition 5.1 in Section 5.4, or in Chapter 7).

We now recall from [Fl] how to construct, for any Z ∈ Z and infinitely many

λ ∈ j∗
C
, a subspace VZ,λ of L2(X,Mλ)K that will be a discrete series representation

for X . For Z ∈ Z and λ ∈ j∗
C
, we define a gd-submodule

BZ(Gd/P d,Lλ) :=
{
f ∈ B(Gd/P d,Lλ) : supp f ⊂ Z

}

of the principal series representation B(Gd/P d,Lλ) of Section 5.1. Similarly to the

definition of A(Gd/Kd,Mλ)K , we can define the set BZ(Gd/P d,Lλ)K of K-finite

elements in BZ(Gd/P d,Lλ) even though the group K does not act on BZ(Gd/P d,Lλ)
(see Remark 5.3). For Reλ ∈ j∗+, we then have the following commutative diagram,

where Pλ is the Poisson transform of Section 5.1.

B(Gd/P d,Lλ) ∼−→
Pλ

A(Gd/Kd,Mλ)

∪ ∪
BZ(Gd/P d,Lλ)K −→ A(Gd/Kd,Mλ)K

η←−֓ A(X,Mλ)K .

We set

(5.10) VZ,λ := η−1
(
Pλ

(
BZ(Gd/P d,Lλ)K

))
.

Since BZ(Gd/P d,Lλ)K is a (g,K)-module, VZ,λ is a (g,K)-submodule ofA(X,Mλ)K ,

where g acts by differentiation on the left, similarly to (5.2). We recall that the

space Vλ := L2(X,Mλ)K depends only on the image of λ in j∗
C
/W , hence we may

assume Reλ ∈ j∗+ without loss of generality. The following fact (which includes the

“C = 0” conjecture [Fl] and the irreducibility conjecture) is a consequence of the

work of Flensted-Jensen [Fl], Matsuki–Oshima [MO], and Vogan [V]. See also [BS,

Th. 16.1].

Fact 5.5. — Let λ ∈ j∗
C
satisfy Reλ ∈ j∗+.

– For any Z ∈ Z, the space VZ,λ constructed above is contained in Vλ :=

L2(X,Mλ)K ; it is either zero or irreducible as a (g,K)-module. Moreover,

Vλ =
⊕

Z∈Z
VZ,λ.

– Let Z ∈ Z correspond to w ∈ W (Hd, Gd) via (5.8).

– If VZ,λ is nonzero, then λ ∈ j∗+ and

(5.11) µw
λ := w(λ + ρ)− 2ρc

belongs to the Z-module Λ defined in (3.5).

– Conversely, if λ ∈ j∗+ and if the stronger integrality condition

(5.12) µw
λ ∈ Λ+

holds, where Λ+ is defined in (3.4), then VZ,λ is nonzero.
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Thus there are countably many discrete series representations for X . The discrete

series representations VZ,λ for λ satisfying (5.12) were constructed by Flensted-Jensen

in [Fl]; we will give more details in Section 7.3.

We note that Fact 5.5 completely describes Specd(X) away from the walls of j∗+: the

following lemma states that any λ ∈ j∗+ satisfying the weak condition µw
λ ∈ Λ but not

the strong condition µw
λ ∈ Λ+ has a bounded “weighted distance to the walls” d(λ).

On the other hand, the nonvanishing condition for VZ,λ is combinatorially complicated

for λ near the walls of j∗+; it is still not completely settled in the literature.

Lemma 5.6. — Suppose that λ ∈ j∗+ satisfies d(λ) ≥ mρ, where mρ is given by (3.8).

For w ∈W (Hd, Gd), the following conditions on λ are equivalent:

(i) µw
λ ∈ Λ,

(ii) µw
λ ∈ Λ+.

Proof. — The implication (ii) ⇒ (i) is obvious. Let us prove (i) ⇒ (ii), namely that

if µw
λ ∈ Λ, then µw

λ is dominant with respect to Σ+(hd, j) = Σ+(kC, jC). Firstly, we

note that wρ is half the sum of the elements in w(Σ+(gd, j)) counted with root mul-

tiplicities, where w(Σ+(gd, j)) is a positive system containing Σ+(hd, j) (by definition

(5.7) of W (Hd, Gd)). By [VZ], 2wρ− 2ρc is dominant with respect to Σ+(hd, j). (In

fact, it occurs as the highest weight of a representation of hd in Λ∗qd.) Secondly,

Observation 3.7 and the inequality d(λ) ≥ mρ imply that

λ− ρ =
(
λ− d(λ)

mρ
ρ
)
+
d(λ)−mρ

mρ
ρ ∈ j∗+ ;

therefore w(λ− ρ) is dominant with respect to Σ+(hd, j) since w ∈ W (Hd, Gd). Thus

µw
λ = 2(wρ− ρc) + w(λ − ρ) is dominant with respect to Σ+(hd, j).

5.4. Asymptotic behavior of discrete series

We can now complete the proof of Proposition 5.1.

By Fact 5.5, we may assume that ϕ ∈ L2(X,Mλ)K belongs to VZ,λ for some closed

Hd-orbit Z in Pd. We then use Oshima’s theorem ([Os2], see Fact 5.7 below) that

the asymptotic behavior of the eigenfunction ϕ is determined by Z. This theorem

requires an unavoidable amount of notation. Before entering into technical details,

let us pin down the role of two positive systems involved:
Σ+(gd, j)

∼←→ closed Hd-orbit Z in Pd

Cayley transform Ad(k)

...
... +

W (Z)

Σ+(g, b) . . . asymptotic behavior of ϕ ∈ VZ,λ

at infinity in X = G/H

We now enter into details, retaining notation from Sections 4.1 and 5.3.

We first recall that in Section 4.1 we have chosen a positive system Σ+(gσθ, b),

determining a closed positive Weyl chamber b+ in b, a polar decomposition G =
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K(exp b+)H , and a projection ν : G→ b+. Any choice of a positive system Σ+(g, b)

containing Σ+(gσθ, b) gives rise to a closed positive Weyl chamber b++ ⊂ b+, and

b+ is the union of such Weyl chambers b++ for the (finitely many) different choices

of Σ+(g, b). On the other hand, by Fact 5.5, the space Vλ = L2(X,Mλ)K is the

direct sum of finitely many subspaces VZ,λ, where Z ∈ Z is a closed Hd-orbit in

Pd. Therefore, in the rest of the section, we may restrict to one closed positive

Weyl chamber b++ (determined by some arbitrary positive system Σ+(g, b) containing

Σ+(gσθ, b)) and one Hd-orbit Z ∈ Z, and prove the existence of a constant q > 0

such that for any λ ∈ j∗ and ϕ ∈ VZ,λ, the function

(k, Y ) 7−→ ϕ
(
k(expY ) · x0

)
eq d(λ)‖Y ‖

is bounded on K × b++. Since VZ,λ and d(λ) depend only on the image of λ ∈ j∗

modulo W , we will be able to take λ in any Weyl chamber j∗+ of j∗.

Fix Z ∈ Z and consider the positive Weyl chamber j∗+ in j∗ determined by Z via

(5.6). We introduce some additional notation. Let

+j ≡ +j(Z) :=
{
Ỹ ∈ j : 〈λ, Ỹ 〉 ≥ 0 ∀λ ∈ j∗+

}

be the dual cone of j∗+ and let ρ ∈ j∗+ be given as in Section 3.3. Since all maximally

split abelian subspaces of gd are conjugate by Kd, there exists k ∈ Kd such that

Ad(k)b ⊂ j; the element Ad(k) may be thought of as an analog of a Cayley transform

from the upper-half plane to the hyperbolic disk (see Section 9.8). We may assume

that

(Ad(k)∗α)|b ∈ Σ+(g, b) ∪ {0}
for all α ∈ Σ+(gd, j); in particular, Ad(k)(b++) ⊂+j. For Y ∈ b, we write

Ỹ := Ad(k)Y ∈ j.

Let {Y1, . . . , Yℓ} be the basis of b that is dual to the set of simple roots in Σ+(g, b).

For t ∈ (R+)
ℓ, we set

Yb(t) := −
ℓ∑

j=1

(log tj)Yj ∈ b,

so that t 7→ Yb(t) is a bijection from (R+)
ℓ to b, inducing a bijection between (0, 1]ℓ

and b++. For w ∈W and λ ∈ j∗, we set

βw(λ) :=
(
〈ρ− wλ, Ỹ1〉, . . . , 〈ρ− wλ, Ỹℓ〉

)
∈ Rℓ.

We recall that W is the Weyl group of Σ(gd, j). We define

+W ≡+W (Z) :=
{
w ∈ W : −w−1 · Ad(k)(b++) ⊂+j

}
.

The set +W depends on the closed Hd-orbit Z in Pd. If rankG/H = 1, then ℓ = 1

and+W = {w}, where w is the unique nontrivial element of W .
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With this notation, here is the asymptotic behavior, due to Oshima, that we shall

translate in terms of ν and d to obtain Proposition 5.1. We consider the partial order

on Rℓ given by

β ≺ β′ if and only if βj ≤ β′
j for all 1 ≤ j ≤ ℓ.

Fact 5.7 ([Os2]). — Let λ ∈ j∗+ and let Iλ be the set of minimal elements in the

finite set {βw(λ) : w ∈+W} ⊂ Rℓ for ≺. For any ϕ ∈ VZ,λ, there exist real analytic

functions aβ ∈ A(K), for β ∈ Iλ, such that
∣∣ϕ
(
k(expYb(t))H

)∣∣ ≤
∑

β∈Iλ

aβ(k) t
β

for all k ∈ K and t ∈ (0, 1]ℓ, where we write tβ for
∏ℓ

j=1 tj
βj .

Let +Wλ := {w ∈+W : βw(λ) ∈ Iλ}. Then Fact 5.7 has the following immediate

consequence: for any λ ∈ j∗+ and ϕ ∈ VZ,λ, there is a constant cϕ > 0 such that

(5.13)
∣∣ϕ
(
k(expY )H

)∣∣ ≤ cϕ
∑

w∈+Wλ

e〈wλ,Ỹ 〉

for all k ∈ K and Y ∈ b++. Indeed, K is compact, Iλ is finite, and for all w ∈+Wλ

and t ∈ (0, 1]ℓ,

tβw(λ) = e〈wλ−ρ,Ỹ
b
(t)〉 ≤ e〈wλ,Ỹ

b
(t)〉.

We now bound 〈wλ, Ỹ 〉 in terms of the “weighted distance to the walls” d(λ).

Lemma 5.8. — There is a constant qZ > 0 such that

〈wλ, Ỹ 〉 ≤ −qZ d(λ) ‖Y ‖
for all w ∈+W , all λ ∈ j∗+, and all Y ∈ b++.

Proof. — Let {α1, . . . , αr} be the basis of Σ(gd, j) corresponding to j∗+. Recall that

for any λ ∈ j∗+,

d(λ) = min
1≤i≤r

(λ, αi)

(αi, αi)
.

Let ‖·‖′ be the norm on b defined by ‖∑ℓ
j=1 yjYj‖′ :=

∑ℓ
j=1 |yj | for all y1, . . . , yℓ ∈ R.

An elementary computation shows that we may take

(5.14) qZ =
q1q2
mρ

,

where mρ was defined in (3.8) and

q1 := min
{
− 〈wρ, Ỹj〉 : w ∈+W, 1 ≤ j ≤ ℓ

}
,

q2 := min
Y ∈br{0}

‖Y ‖′
‖Y ‖ .



5.4. ASYMPTOTIC BEHAVIOR OF DISCRETE SERIES 61

By (5.13) and Lemma 5.8, for any λ ∈ j∗+ and ϕ ∈ VZ,λ there is a constant c′ϕ > 0

such that

(5.15)
∣∣ϕ
(
k(expY )H

)∣∣ ≤ c′ϕ e
−qZ d(λ) ‖Y ‖

for all k ∈ K and Y ∈ b++. We now recall (see [Fl, Th. 2.6] for instance) that the

G-invariant Radon measure on X = G/H is given (up to scaling) by

(5.16) d
(
k(expY )H

)
= δ(Y ) dk dY

with respect to the polar decomposition G = K(exp b+)H , where the weight func-

tion δ is given on b++ by

δ(Y ) =
∏

α∈Σ+(g,b)

| sinhα(Y )|dim gσθ
α | coshα(Y )|dim g−σθ

α .

When Y ∈ b++ tends to infinity,

δ(Y ) ∼ e2〈ρb,Y 〉,

where ρb ∈ b++ is half the sum of the elements of Σ+(g, b), counted with root multi-

plicities. In particular, there is a constant C > 0 such that

(5.17) |δ(Y )| ≤ C e2〈ρb,Y 〉 ≤ C e2‖ρb‖ ‖Y ‖

for all Y ∈ b++. Proposition 5.1 follows from (5.15), (5.16), and (5.17), setting

q := min
Z∈Z

qZ .





CHAPTER 6

CONVERGENCE, SQUARE INTEGRABILITY, AND

REGULARITY OF THE GENERALIZED POINCARÉ

SERIES

As before, X = G/H is a reductive symmetric space satisfying the rank condi-

tion (3.3). We use the notation from Chapters 3 to 5. For any Clifford–Klein form

XΓ = Γ\X and any p ≥ 1, we denote by Lp(XΓ,Mλ) the subspace of Lp(XΓ) con-

sisting of the weak solutions to the system (Mλ). The group G acts on Lp(X,Mλ)

by left translation: for g ∈ G and ϕ ∈ Lp(X,Mλ),

g · ϕ := ϕ(g−1 · ) ∈ Lp(X,Mλ).

The first key step in our construction of eigenfunctions on Clifford–Klein forms of X

is the following (see Definition 4.2 for the notion of sharpness).

Proposition 6.1. — There is a constant RX > 0 depending only on X such that for

any c, C > 0 and any discrete subgroup Γ of G that is (c, C)-sharp for X,

1. the function ϕΓ : XΓ → C given by

ϕΓ(Γx) :=
∑

γ∈Γ

(γ · ϕ)(x) =
∑

γ∈Γ

ϕ(γ−1 · x)

is well-defined and continuous for all ϕ ∈ L2(X,Mλ)K with λ ∈ j∗ and d(λ) >

RX/c,

2. furthermore, ϕ 7→ ϕΓ defines a linear operator

SΓ : L2(X,Mλ)K −→ Cm(XΓ) ∩
⋂

1≤p≤∞
Lp(XΓ,Mλ)

for all λ ∈ j∗ and m ∈ N with d(λ) > (m+ 1)RX/c.

The fact that the constant RX/c depends only on the first sharpness constant c

explains why we obtain a universal discrete spectrum in Theorem 1.5, independent

of the discrete subgroup Γ of L (see Proposition 4.3). Note that Proposition 6.1.(2)

actually contains Theorem 3.13. We could obtain a slightly weaker condition than

d(λ) > (m + 1)RX/c by taking into account the critical exponent δΓ of Γ (see Sec-

tion 6.4).
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In Proposition 6.1, the function ϕΓ = SΓ(ϕ) satisfies (Mλ) (in the sense of distri-

butions) because ϕ does and any D ∈ D(X) is G-invariant, that is,

(6.1) D(g · ϕ) = g · (Dϕ)
for all g ∈ G. Furthermore, Proposition 6.1.(2) ensures that ϕΓ satisfies (Mλ) in the

sense of functions if λ is regular enough (i.e. d(λ) large enough). More precisely, recall

from Section 3.1 that D(X) is a polynomial algebra in r := rank(G/H) generators

D1, . . . , Dr. By Proposition 6.1.(2), if we take m to be the maximum degree of

D1, . . . , Dr, then for any λ ∈ j∗ with d(λ) > (m+1)R and any ϕ ∈ L2(X,Mλ)K , the

function ϕΓ = SΓ(ϕ) satisfies

(Dj)Γ ϕ
Γ = χλ(Dj)ϕ

Γ

for all 1 ≤ j ≤ r in the sense of functions.

We note that the image of L2(X,Mλ)K under the summation operator SΓ could

be trivial. In Chapter 8, we will discuss a condition for the nonvanishing of SΓ

(Proposition 8.1). For this we will consider the summation operator SΓ, not only on

L2(X,Mλ)K , but also on some G-translates g ·L2(X,Mλ)K .

The rest of this chapter is devoted to the proof of Proposition 6.1, using the geo-

metric estimates of Chapter 4 (Lemma 4.6) and the analytic estimates of Chapter 5

(Proposition 5.1). As a consequence of Proposition 5.1, the series
∑

γ∈Γ e
−q d(λ)‖ν(γ·x)‖

will naturally appear in the proof of Proposition 6.1: it is a pseudo-Riemannian ana-

logue of the classical Poincaré series
∑

γ∈Γ

e−q d(λ)‖µ(γ·y)‖ =
∑

γ∈Γ

e−q d(λ) dG/K(y0,γ·y)

for y ∈ G/K.

Remark 6.2. — A summation process was used by Tong–Wang in [TW] to con-

struct cohomology classes of Riemannian locally symmetric spaces Γ\G/K with coef-

ficients in a locally constant vector bundle. The summation described here is different

in two respects:

– in the situation considered by Tong–Wang, Γ was a lattice in G and Γ ∩ H a

lattice in H , whereas here Γ can never be a lattice in G and Γ ∩H is finite (see

Remark 4.8);

– Tong–Wang obtained a (g,K)-homomorphism from L2(X,Mλ)K to C∞(Γ\G),
whereas we obtain a map from L2(X,Mλ)K to L2(Γ\G/H) (which cannot be a

(g,K)-homomorphism since G does not act on L2(Γ\G/H)).

6.1. Convergence and boundedness

Let us prove Proposition 6.1.(1). We denote by q > 0 the constant of Proposi-

tion 5.1.
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Lemma 6.3. — Let Γ be a discrete subgroup of G that is (c, C)-sharp for X.

1. For any λ ∈ j∗ with d(λ) > δΓ/qc and any ϕ ∈ L2(X,Mλ)K , the function ϕΓ

is well-defined and continuous.

2. For any λ ∈ j∗ with d(λ) > 2δΓ/qc and any ϕ ∈ L2(X,Mλ)K , the function ϕΓ

is bounded.

Proof. — Fix λ ∈ j∗ with d(λ) > δΓ/qc and ϕ ∈ L2(X,Mλ)K . We claim that

x 7−→
∑

γ∈Γ

|ϕ(γ−1 · x)|

converges uniformly on any compact subset of X . Indeed, by Proposition 5.1, there

is a constant cϕ > 0 such that for all x ∈ X ,
∑

γ∈Γ

|ϕ(γ−1 · x)| ≤ cϕ
∑

γ∈Γ

e−q d(λ)‖ν(γ−1·x)‖,

hence
∑

γ∈Γ

|ϕ(γ−1 · x)| ≤ cϕ
∑

n∈N

e−q d(λ)n ·#{γ ∈ Γ : n ≤ ‖ν(γ−1 · x)‖ < n+ 1}.

Fix ε > 0 such that d(λ) > δΓ+ε
qc and, as before, let x0 be the image ofH in X = G/H .

By Lemma 4.6.(1), there is a constant cε(Γ) > 0 such that for all x = g · x0 ∈ X

(where g ∈ G) and all n ∈ N,

(6.2) #
{
γ ∈ Γ : ‖ν(γ−1 · x)‖ < n+ 1

}
≤ cε(Γ) e(δΓ+ε)(n+1+‖µ(g)‖)/c.

Therefore, for any compact subset C of G and any x ∈ C · x0,
∑

γ∈Γ

|ϕ(γ−1 · x)| ≤ cϕ cε(Γ) e(δΓ+ε)(1+M)/c
∑

n∈N

e−(q d(λ)− δΓ+ε

c )n,

where

M := C +max
g∈C
‖µ(g)‖.

This series converges since d(λ) > δΓ+ε
qc , proving the claim and Lemma 6.3.(1).

The proof of Lemma 6.3.(2) is similar: we replace (6.2) by the uniform (but slightly

less good) estimate of Lemma 4.6.(2) in order to obtain a uniform convergence on the

fundamental domain D of Definition-Lemma 4.20, and hence on the whole of X .

6.2. Square integrability

In order to see that the image of the summation operator SΓ is contained in L2(XΓ),

and more generally in Lp(XΓ) for any 1 ≤ p ≤ ∞, it is enough to see that it is

contained in both L1(XΓ) and L
∞(XΓ), by Hölder’s inequality. The case of L∞(XΓ)

has already been treated in Lemma 6.3. For L1(XΓ), we note that by Fubini’s theorem,
∫

x∈XΓ

∣∣ϕΓ(x)
∣∣ dx =

∫

x∈X

|ϕ(x)| dx ;
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using Proposition 5.1, we obtain the following.

Lemma 6.4. — For any discrete subgroup Γ of G, any λ ∈ j∗ with d(λ) > 2‖ρb‖/q,
and any ϕ ∈ L2(X,Mλ)K , we have ϕΓ ∈ L1(XΓ).

Here, as in Proposition 5.1, we denote by ‖ρb‖ the norm of half the sum of the

elements of a positive system Σ+(g, b) of restricted roots of b in g, and q > 0 is again

the constant of Proposition 5.1.

Hölder’s inequality then gives the following.

Corollary 6.5. — Let Γ be a discrete subgroup of G that is (c, C)-sharp for X. For

any λ ∈ j∗ with

d(λ) >
2

q
max

(
δΓ/c, ‖ρb‖

)

and any ϕ ∈ L2(X,Mλ)K , we have ϕΓ ∈ Lp(XΓ) for all 1 ≤ p ≤ ∞; in particular,

ϕΓ ∈ L2(XΓ).

6.3. Regularity

We now complete the proof of Proposition 6.1.(2) (hence Theorem 3.13) by exam-

ining the regularity of the image of SΓ. We set

eG := max
α∈Σ(g,a)

‖α‖.

Lemma 6.6. — Let Γ be a discrete subgroup of G that is (c, C)-sharp for X. For

any m ∈ N and any λ ∈ j∗ with d(λ) > (δΓ + eGm)/qc,

SΓ

(
L2(X,Mλ)K

)
⊂ Cm(XΓ).

The idea of the proof of Lemma 6.6 is to control the decay at infinity of the

derivatives of the elements of L2(X,Mλ)K by using the action of the enveloping

algebra U(gC) by differentiation on the left, given by

(6.3) (Y · ϕ)(x) = d

dt

∣∣∣
t=0

ϕ
(
exp(−tY )·x

)

for all Y ∈ g, all ϕ ∈ L2(X,Mλ)K , and all x ∈ X . This idea works as a consequence

of Fact 5.7 and of the following well-known fact.

Fact 6.7 (See [Ba87]). — For any λ ∈ j∗
C
, the subspace L2(X,Mλ)K of A(X) is

stable under the action of g by differentiation.

Proof of Lemma 6.6. — Consider λ ∈ j∗ with d(λ) > δΓ/qc and ϕ ∈ L2(X,Mλ)K .

Let {Um(gC)}m∈N be the natural filtration of the enveloping algebra U(gC). Then

any u ∈ Um(gC) gives rise to a differential operator on X of degree ≤ m by (6.3).

Conversely, any differential operator on X of degree ≤ m is obtained as a linear

combination of differential operators induced from Um(gC) with coefficients in C∞(X).
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Therefore, in order to prove that ϕΓ is Cm, it is sufficient to show that for any

differential operator D on X that is induced from an element u ∈ Um(gC),

x 7−→
∑

γ∈Γ

|D(γ · ϕ)(x)|

converges uniformly on all compact subsets of X . As before, let x0 be the image of

H in X = G/H . In view of the formula

D(γ · ϕ)(x) =
(
Ad(γ−1)(u) · ϕ

)
(γ−1 · x),

we only need to prove the existence of a constant R ≥ 0 such that for any integer

m ≥ 1, any Y ∈ g⊗m, and any compact subset C of G,

x 7−→
∑

γ∈Γ

∣∣(Ad(γ)(Y ) · ϕ
)
(γ · x)

∣∣

converges uniformly on C · x0 whenever d(λ) > (m+ 1)R.

We fix a K-invariant inner product on g, extend it to g⊗m, and write the corre-

sponding Euclidean norms as ‖ · ‖g and ‖ · ‖g⊗m , respectively. Let ‖ · ‖End(g) be the

operator norm on g. We observe that

‖T (Y )‖g⊗m ≤ ‖T ‖mEnd(g) ‖Y ‖g⊗m

for all T ∈ End(g) and Y ∈ g⊗m, where T acts on g⊗m diagonally. Moreover,

(6.4) log ‖Ad(g)‖End(g) ≤ eG ‖µ(g)‖

for all g ∈ G: indeed, the Cartan decomposition G = KAK holds and the norm

‖ · ‖g is K-invariant. By Proposition 5.1 and Fact 6.7, we may define a function

ℓ : g⊗m → R≥0 by

ℓ(Y ) = sup
x∈X
|(Y · ϕ)(x)| eq d(λ)‖ν(x)‖.

It satisfies

ℓ(tY + t′Y ′) ≤ |t| ℓ(Y ) + |t′| ℓ(Y ′)

for all t, t′ ∈ C and Y, Y ′ ∈ g⊗m. Taking a (finite) basis of g⊗m, this implies the

existence of a constant cm > 0 such that

ℓ(Y ) ≤ cm ‖Y ‖g⊗m

for all Y ∈ g⊗m. Then for any γ ∈ Γ, any Y ∈ g⊗m, and any x ∈ X ,
∣∣(Ad(γ)(Y ) · ϕ

)
(γ · x)

∣∣ ≤ cm ‖Ad(γ)‖mEnd(g) ‖Y ‖g⊗m e−q d(λ)‖ν(γ·x)‖.

Therefore we only need to prove the existence of a constant R ≥ 0 such that for any

integer m ∈ N and any compact subset C of G,

x 7−→
∑

γ∈Γ

‖Ad(γ)‖mEnd(g) e
−q d(λ)‖ν(γ·x)‖
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converges uniformly on C ·x0 whenever d(λ) > (m+1)R. Let us fix an integer m ∈ N

and a compact subset C of G. By (4.12),

‖ν(γ · x)‖ ≥ c ‖µ(γ)‖ −M
for all γ ∈ Γ and x ∈ C · x0, where

M = C +max
g∈C
‖µ(g)‖.

Using (6.4), we obtain that for all γ ∈ Γ and x ∈ C · x0,∑

γ∈Γ

‖Ad(γ)‖mg e−q d(λ)‖ν(γ·x)‖ ≤ eq d(λ)M
∑

γ∈Γ

e−(q d(λ)c−eGm) ‖µ(γ)‖.

This series converges as soon as

d(λ) >
δΓ + eGm

qc
.

6.4. The constant RX in Proposition 6.1

Lemma 6.3, Corollary 6.5, and Lemma 6.6 show that the summation operator

SΓ : L2(X,Mλ)K −→
⋂

1≤p≤∞
Lp(XΓ,Mλ)

is well-defined and with values in Cm(XΓ) as soon as

(6.5) d(λ) >
1

q
max

(2δΓ
c
, 2‖ρb‖,

δΓ + eGm

c

)
.

We note that

– δΓ ≤ 2‖ρa‖ (Observation 4.19),

– ‖ρb‖ ≤ ‖ρa‖/c by Remark 6.8 below and the fact that c ≤ 1,

– eG ≤ 2‖ρa‖ by definition of eG.

Therefore (6.5) is satisfied as soon as d(λ) > (m+ 1)RX/c for

(6.6) RX :=
4‖ρa‖
q

.

Remark 6.8. — Suppose that the positive systems Σ+(g, a) defining ρa and Σ+(g, b)

defining ρb are compatible, in the sense that the restriction from a to b maps Σ+(g, a)

to Σ+(g, b)∪ {0}. Then ρb is the restriction of ρa to b, i.e. the orthogonal projection

of ρa to b∗. Thus

‖ρb‖ = ‖ρa‖ · cos(Φ),
where Φ ∈ [0, π2 ) is the angle between ρa and ρb. In particular ‖ρb‖ ≤ ‖ρa‖. This

inequality is true in general since the norms ‖ρa‖ and ‖ρb‖ do not depend on the

choice of the positive systems.
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GENERALIZED POINCARÉ SERIES





CHAPTER 7

AN ESTIMATE FOR CERTAIN EIGENFUNCTIONS

NEAR THE ORIGIN

Let Γ be a discrete subgroup of G that is sharp for the reductive symmetric space

X = G/H satisfying the rank condition (3.3). In Proposition 6.1, we saw that the

summation operator

SΓ : L2(X,Mλ)K −→
⋂

1≤p≤∞
Lp(XΓ,Mλ)

mapping ϕ to ϕΓ =
(
Γx 7→ ∑

γ∈Γ (γ · ϕ)(x)
)
is well-defined for all λ ∈ j∗ with

d(λ) sufficiently large. In Section 8.1, we are similarly going to define a summation

operator SΓ on any G-translate g ·L2(X,Mλ)K . Our goal will be to show that SΓ

is nonzero on some G-translate g ·L2(X,Mλ)K for infinitely many joint eigenvalues

λ ∈ j∗, namely for all

(7.1) λ ∈ j∗+ ∩
(
2ρc − ρ+ ΛΓ∩Z(Gs)

)

with d(λ) large enough (Proposition 8.1). Here j∗+ and ρ are defined with respect

to some choice of a positive system Σ+(gC, jC) containing the fixed positive system

Σ+(kC, jC) of Section 3.3; the set ΛΓ∩Z(Gs) is the Z-submodule of Λ of finite index

that was defined in (3.6).

A similar argument to the one used in Chapter 6 for the convergence of ϕΓ would

show that for a fixed λ satisfying (7.1) with d(λ) large enough, SΓ′ is nonzero for any

finite-index subgroup Γ′ of Γ such that the index [Γ : Γ′] is large enough, where “large

enough” depends on Γ and λ. However, we wish to prove that SΓ is nonzero without

passing to any subgroup; therefore we need to carry out some more delicate estimates

in the summation process.

In preparation for Proposition 8.1, the goal of the current chapter is to establish the

following analytic estimate, where, as before, x0 denotes the image of H in X = G/H .

Proposition 7.1. — Under the rank condition (3.3), there exists q′ > 0 with the

following property: for any λ ∈ j∗+ ∩ (2ρc − ρ+ Λ+), there is a function ψλ ∈ VZ,λ ⊂
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L2(X,Mλ)K such that ψλ(x0) = 1, such that

(7.2) |ψλ(x)| ≤ cosh(q′‖ν(x)‖)−d(λ+ρ)

for all x ∈ X, and such that for any finite subgroup J of the center Z(K) of K we

have ψλ(g · x0) = 1 for all g ∈ J if λ ∈ 2ρc − ρ+ ΛJ .

Here Z ∈ Z denotes the closed Hd-orbit through the origin in the flag variety

Pd ≃ Gd/P d, where P d is the minimal parabolic subgroup of Gd corresponding to

the choice of the positive system Σ+(gC, jC) defining j∗+ and ρ, using (5.6). We refer

to Section 5.3 (and more precisely to (5.10)) for the definition of VZ,λ.

The decay at infinity (i.e. when ‖ν(x)‖ → +∞) of the elements of L2(X,Mλ)K
was already discussed in Chapter 5. The point of Proposition 7.1 is to control the

behavior of certain eigenfunctions ψλ, not only at infinity, but also near the origin

x0 ∈ X .

We actually prove that the estimate (7.2) holds for the Flensted-Jensen eigen-

function ψλ = ψλ,Z , given by (7.3) below. In Chapter 8 we shall consider some

G-translates of ψλ,Z and apply the analytic estimate of Proposition 7.1 in connection

with some geometric estimates near the origin (Propositions 8.9 and 8.14).

7.1. Flensted-Jensen’s eigenfunctions

Before we prove Proposition 7.1, we recall the definition of the Flensted-Jensen

eigenfunction ψλ = ψλ,Z , in the spirit of Chapter 5. We note that we may assume that

H is connected, because otherwise the Flensted-Jensen function ψλ ∈ L2(G/H)(⊂
L2(G/H0)) is the average of finitely many Flensted-Jensen functions in L2(G/H0).

We will assume that H is connected for the rest of the chapter.

We retain the notation of Chapters 3 and 5. As explained above, in the whole

chapter we fix a positive system Σ+(gC, jC) ≃ Σ+(gd, j) containing the fixed positive

system Σ+(kC, jC) ≃ Σ+(hd, j) of Section 3.3; it determines a positive Weyl chamber j∗+
and an element ρ ∈ j∗+. Let P d be the corresponding minimal parabolic subgroup

of Gd. We denote by Z ∈ Z the closed Hd-orbit through the origin in Gd/P d.

For λ ∈ j∗+, we set µλ := λ + ρ − 2ρc. The condition on λ ∈ j∗+ that appears in

Proposition 7.1 is µλ ∈ Λ+ (i.e. (5.12) with w = e).

Let δZ be the (Kd ∩ Hd)-invariant probability measure supported on Z. For any

λ ∈ j∗
C
, the Gd-equivariant line bundle Lλ = Gd ×Pd ξρ−λ over Gd/P d is trivial as

a Kd-equivariant line bundle over Kd/Kd ∩ P d(≃ Gd/P d), because the restriction

of ξρ−λ to Kd ∩ P d is trivial. Thus δZ can be seen as an element of B(Gd/P d,Lλ)
via the isomorphism B(Kd/Kd ∩ P d) ≃ B(Gd/P d,Lλ). Flensted-Jensen [Fl] proved

that if λ ∈ j∗+ satisfies µλ ∈ Λ+, then δZ is K-finite (see Remark 5.3) and generates

the irreducible representation of hd with highest weight µλ. The Poisson transform

Pλ(δZ) is also K-finite and moreover, viewed as an element of A(Gd/Kd,Mλ)K , it
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belongs to the image of the homomorphism η of (5.3). He then set

(7.3) ψλ,Z := η−1
(
Pλ(δZ)

)
∈ A(X,Mλ)K .

We shall prove that this function ψλ = ψλ,Z satisfies (7.2). We note that our

estimate (7.2) is stronger, for this specific ψλ, than what is given in the general

theory of [Fl, MO, Os2], as it is both uniform on the spectral parameter λ and

uniform on x ∈ X near the origin.

7.2. Spherical functions on compact symmetric spaces

We first recall some basic results concerning spherical functions on the compact

symmetric space XU = GU/HU (see Section 5.2 for notation). In Section 7.3, some

of these results will actually be used, not only for XU = GU/HU , but also for the

compact symmetric space K/H ∩K.

Let gU = hU+qU be the decomposition of gU into eigenspaces of dσ with respective

eigenvalues +1 and −1. We note that j is a maximal abelian subspace of qU . Similarly

to (3.4), let Λ+(GU/HU ) be the set of highest weights of finite-dimensional irreducible

representations of GU with nonzero HU -invariant vectors; we see it as a subset of j∗
C

by Remark 3.5. We note that XU has the same complexification as the Riemannian

symmetric space of the noncompact type Xd = Gd/Kd. The Borel–Weil theorem (see

[Kn, Th. 5.29]) implies that

(7.4) Λ+(GU/HU ) ≃ {λ ∈ j∗C : ξλ extends holomorphically to GC},
where ξλ : Gd → C is defined by (5.1). If Oalg(GC/HC) denotes the ring of regular

functions on GC/HC, endowed with the action of GC by left translation, then we have

an isomorphism

Oalg(GC/HC) ≃
⊕

λ∈Λ+(GU/HU )

Vλ

of GU -modules, where (πλ, Vλ) is the finite-dimensional irreducible representation

of GU with highest weight λ. A highest weight vector of (πλ, Vλ) is given by the

holomorphic extension of ξ∨λ to GC (see Section 5.1), which is denoted by the same

symbol ξ∨λ . Let {α1, . . . , αr} be the basis of Σ(gC, jC) corresponding to our choice of

Σ+(gC, jC), and let ω1, . . . , ωr ∈ j∗+ be defined by

(7.5)
(αi, ωj)

(αi, αi)
= δi,j

for all 1 ≤ i, j ≤ r, so that

(7.6) λ =

r∑

j=1

(λ, αj)

(αj , αj)
ωj

for all λ ∈ j∗; we note that ωj is twice the usual fundamental weight associated

with αj . If GC is simply connected, then the Cartan–Helgason theorem (see [Wa,
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Th. 3.3.1.1]) shows that

(7.7) Λ+(GU/HU ) =
r⊕

j=1

Nωj.

For any λ ∈ Λ+(GU/HU ), we fix a GU -invariant inner product (·, ·) on Vλ with

(ξ∨λ , ξ
∨
λ ) = 1. The following easy observation and lemma will be useful in the next

section.

Observation 7.2. — For any g ∈ Gd,

ξλ(g)
2 =

(
πλ(g)ξ

∨
λ , πλ(g)ξ

∨
λ

)
.

Proof. — We consider the Iwasawa decomposition Gd = Kd(exp j)Nd of Section 5.1.

For any g = k(exp ζ(g))n ∈ Kd(exp j)Nd = Gd,

πλ(g)ξ
∨
λ = e〈λ,ζ(g)〉 πλ(k)ξ

∨
λ = ξλ(g) πλ(k)ξ

∨
λ .

Since Kd = HU is contained in GU and (·, ·) is GU -invariant, we obtain
(
πλ(g)ξ

∨
λ , πλ(g)ξ

∨
λ

)
= ξλ(g)

2.

Lemma 7.3. — For λ ∈ Λ+(GU/HU ), the function ξλ ∈ O(GC) satisfies

|ξλ(g)| ≤ 1 for all g ∈ GU .

Proof. — By Observation 7.2,

ξλ(g)
2 =

(
πλ(σ(g)

−1g)ξ∨λ , ξ
∨
λ

)
for all g ∈ Gd.

Since both sides are holomorphic functions on GC, this holds for all g ∈ GC. Applying

the Cauchy–Schwarz inequality, we get |ξλ(g)| ≤ 1 on GU .

7.3. Proof of Proposition 7.1 for the Flensted-Jensen functions

We now go back to the setting of Section 7.1. When λ ∈ j∗+ satisfies µλ ∈ Λ+,

the function ψλ ∈ VZ,λ of (7.3) is well-defined and extends uniquely to a right-HC-

invariant function on KCB+HC [Fl]; we keep the notation ψλ for this extension.

Directly from the definition, we have

(7.8) ψλ(ky) =

∫

H∩K

ξµλ
(kℓ) ξ−λ−ρ(y

−1ℓ) dℓ

for all k ∈ KC and y ∈ Gd [Fl, (3.13)], where ξ−λ−ρ : Gd → C is given by (5.1) and

ξµλ
: KC → C is the holomorphic extension, given by (7.4) for the compact symmetric

space K/K ∩H instead of GU/HU , of the function ξµλ
: Hd → C given by (5.1) with

respect to the Iwasawa decomposition

(7.9) Hd = (Kd ∩Hd)(exp j)(Nd ∩Hd).
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We note that the restriction to Hd of any “ξ” function for Gd coincides with the

corresponding “ξ” function for Hd, which is why we use the same notation. The fact

that (7.9) is an Iwasawa decomposition of Hd relies on the rank condition (3.3).

In order to prove Proposition 7.1, we first observe the following.

Lemma 7.4. — Let J be a finite subgroup of the center Z(K) of K. For λ ∈ j∗+ with

µλ ∈ Λ+ ∩ ΛJ , the Flensted-Jensen function ψλ satisfies ψλ(g · x0) = 1 for all g ∈ J .

Proof. — As in Section 3.3, we can see the highest weight of any irreducible represen-

tation of K with nonzero (K ∩H)-fixed vectors as an element of j∗+ (see Remark 3.5).

Let λ ∈ j∗+ satisfy µλ ∈ Λ+. By construction, the highest weight of the K-span of

ψλ|K/K∩H ∈ L2(K/K ∩ H) is µλ; this can be seen directly on (7.8), using the fact

that [jC, hC ∩ kC] ⊂ hC ∩ kC. If µλ ∈ ΛJ , then by definition g ·ψλ|K/K∩H = ψλ|K/K∩H

for all g ∈ J (where g acts by left translation); in particular, ψλ(g · x0) = ψλ(x0) = 1

for all g ∈ J .

Proposition 7.1 for the Flensted-Jensen function ψλ ∈ VZ,λ is an immediate conse-

quence of (7.8), of Lemma 7.4, and of the following lemma.

Lemma 7.5. — Let λ ∈ j∗+ satisfy (5.12). Then

1. |ξµλ
(k)| ≤ 1 for all k ∈ K;

2. there exists q′ > 0 such that for all Y ∈ b and ℓ ∈ H ∩K,

|ξ−λ−ρ(exp(−Y )ℓ)| ≤ cosh(q′‖Y ‖)−d(λ+ρ).

Proof of Lemma 7.5. — Lemma 7.5.(1) follows immediately from Lemma 7.3 applied

to the compact symmetric space K/H ∩K instead of GU/HU .

To prove Lemma 7.5.(2), we may assume that GC is simply connected, because

the Iwasawa projection for Gd is compatible with that of any covering of Gd. Then

ωj ∈ Λ+(GU/HU ) for all 1 ≤ j ≤ r by (7.7). To simplify notation, we write (πj , Vj , ξ
∨
j )

for (πωj , Vωj , ξ
∨
ωj
) and ‖ · ‖j for the Euclidean norm on Vj corresponding to the GU -

invariant inner product (·, ·) of Section 7.2. Then (7.6) and Observation 7.2 imply

that for all λ ∈ j∗ and g ∈ Gd,

|ξ−λ−ρ(g)| = e−〈λ+ρ,ζ(g)〉 =
r∏

j=1

‖πj(g)ξ∨j ‖
− (λ+ρ,αj)

(αj,αj)

j ≤
r∏

j=1

‖πj(g)ξ∨j ‖−d(λ+ρ)
j .

Therefore, in order to prove Lemma 7.5.(2), we only need to prove the existence of a

constant q′ > 0 such that

(7.10) min
1≤j≤r

‖πj((expY )ℓ)ξ∨j ‖j ≥ 1

and

(7.11) max
1≤j≤r

‖πj((expY )ℓ)ξ∨j ‖j ≥ cosh(q′‖Y ‖)
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for all Y ∈ b and ℓ ∈ H ∩K. For any 1 ≤ j ≤ r, the Lie algebra b acts semisimply

on Vj with real eigenvalues, hence there are an orthonormal basis (vij)1≤i≤dimVj of Vj
and linear forms βij ∈ b∗, 1 ≤ i ≤ dimVj , such that

πj(expY ) vij = e〈βij,Y 〉 vij

for all Y ∈ b and 1 ≤ i ≤ dimVj . Write the matrix coefficients {bij} for the restriction
πj |H∩K as

πj(ℓ) ξ
∨
j =

dimVj∑

i=1

bij(ℓ) vij (ℓ ∈ H ∩K),

where
∑dimVj

i=1 |bij(ℓ)|2 = 1 since πj |H∩K is unitary. By [Fl, Lem. 4.6],

‖πj((exp Y )ℓ)ξ∨j ‖2j =

dimVj∑

i=1

|bij(ℓ)|2 cosh〈2βij , Y 〉

for all 1 ≤ j ≤ r, all Y ∈ b, and all ℓ ∈ H ∩ K, hence (7.10) holds. Let us

prove (7.11). By a compactness argument [Fl, Th. 4.8], there is a constant ε > 0 with

the following property: for any Y ∈ b and ℓ ∈ H ∩K, there exist j ∈ {1, . . . , r} and
i0 ∈ {1, . . . , dimVj} such that

(7.12) 〈βi0j , Y 〉 ≥ ε‖Y ‖ and |bi0j(ℓ)| ≥ ε.
For Y ∈ b and ℓ ∈ H ∩K, let (i0, j) be as in (7.12). Then

‖πj((exp Y )ℓ)ξ∨j ‖2j =
dimVj∑

i=1

|bij(ℓ)|2 cosh〈2βij , Y 〉

≥ |bi0j(ℓ)|2 cosh〈2βi0j , Y 〉+
∑

i6=i0

|bij(ℓ)|2

≥ ε2 cosh(2ε‖Y ‖) + (1− ε2).
By using the general inequality

t cosh(x) + (1 − t) ≥
(
cosh

tx

2

)2
,

which holds for any 0 < t ≤ 1 and x ∈ R, we obtain

‖πj((exp Y )ℓ)ξ∨j ‖j ≥ cosh(ε3‖Y ‖).
This proves (7.11) for q′ := ε3 and completes the proof of Lemma 7.5.



CHAPTER 8

NONVANISHING OF EIGENFUNCTIONS ON LOCALLY

SYMMETRIC SPACES

As explained at the beginning of Chapter 7, our goal now is to complete the proof

of the theorems and propositions of Chapters 1 to 3 by establishing the following key

proposition.

As in Section 3.3, we denote by Gc (resp. Lc) the maximal compact normal sub-

group of the reductive group G (resp. L) and by Z(Gs) the center of the commutator

subgroup of G. The Z-module ΛΓ∩Z(Gs) for Γ ⊂ G has been defined in (3.6). We

choose a positive system Σ+(gC, jC) containing the fixed positive system Σ+(kC, jC)

of Section 3.3; this defines a positive Weyl chamber j∗+ and an element ρ ∈ j∗+ as in

Section 3.3.

Proposition 8.1. — Suppose that G is connected, that H does not contain any sim-

ple factor of G, and that the rank condition (3.3) holds.

1. (Sharp Clifford–Klein forms)

For any sharp Clifford–Klein form XΓ of X with Γ ∩ Gc ⊂ Z(Gs), there is a

constant R ≥ 0 such that for any λ ∈ j∗+ ∩ (2ρc − ρ+ΛΓ∩Z(Gs)) with d(λ) > R,

the summation operator SΓ is well-defined and nonzero on g ·L2(X,Mλ)K for

some g ∈ G.

2. (Uniformity for standard Clifford–Klein forms)

Let L be a reductive subgroup of G, with a compact center and acting properly

on X. There is a constant R > 0 with the following property: for any discrete

subgroup Γ of L with Γ∩Lc ⊂ Z(Gs) (in particular, for any torsion-free discrete

subgroup Γ of L) and for any λ ∈ j∗+ ∩ (2ρc − ρ+ΛΓ∩Z(Gs)) with d(λ) > R, the

operator SΓ is well-defined and nonzero on g ·L2(X,Mλ)K for some g ∈ G.

3. (Stability under small deformations)

Let L be a reductive subgroup of G of real rank 1, acting properly on X, and

let Γ be a convex cocompact subgroup of L (for instance a uniform lattice) with

Γ ∩ Gc ⊂ Z(Gs). Then there are a constant R > 0 and a neighborhood U ⊂
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Hom(Γ, G) of the natural inclusion such that for any ϕ ∈ U , the group ϕ(Γ) acts

properly discontinuously on X and for any λ ∈ j∗+ ∩ (2ρc − ρ + ΛΓ∩Z(Gs)) with

d(λ) > R, the operator Sϕ(Γ) is well-defined and nonzero on g·L2(X,Mλ)K for

some g ∈ G.
If Γ ∩ Lc ⊂ Z(Gs) (for instance if Γ is torsion-free or if L is simple with

Z(L) ⊂ Z(Gs)), then we may take the same R (independent of Γ) as in (2), up

to replacing U by some smaller neighborhood.

Recall that L2(X,Mλ) is the space of L2-weak solutions to the system (Mλ) of

Section 3.3 and L2(X,Mλ)K is the subspace of K-finite functions. The group G acts

on L2(X,Mλ) by left translation (3.9). We define a summation operator SΓ on any

G-translate g·L2(X,Mλ)K by the same formula as in Proposition 6.1: see Section 8.1

below. The fact that we need to consider G-translates is linked to the geometric issue

of distribution of Γ-orbits in X and in the Riemannian symmetric space G/K (see

Remark 8.4, together with Propositions 8.9and 8.14).

As we shall see in Section 8.5 (Formulas (8.9) and (8.10)), the constant R of

Proposition 8.1.(1) can be expressed in terms of the sharpness constants (c, C) of Γ

and of the minimal nonzero value of ‖ν‖ on the Γ-orbit Γ·x0. Recall that ‖ν‖ measures

the “pseudo-distance to the origin x0”.

We note that the technical assumptions of Proposition 8.1 are not very restrictive:

Remarks 3.9 also apply in this context.

Remark 8.2. — We can make Proposition 8.1.(1), (2), and (3) more precise with

respect to G-translation: we actually prove that

(a) for d(λ) > R, the operator SΓ is well-defined on g ·L2(X,Mλ)K for all g ∈ G;
(b) there is an element g ∈ G such that SΓ is nonzero on g ·L2(X,Mλ)K for all λ

with d(λ) > R.

Statement (a) follows from Proposition 6.1 and from the fact that the first sharpness

constant is invariant under conjugation (Proposition 4.3), using Remark 8.4 below.

For Statement (b), we refer to Section 8.5.

Remark 8.3. — We can make Proposition 8.1 more precise in terms of discrete

series representations for X . Recall from Fact 5.5 that L2(X,Mλ)K is the direct sum

of finitely many irreducible (g,K)-modules VZ,λ, where Z ∈ Z. We have given two

combinatorial descriptions of the set Z.
– In terms of positive systems: by (5.6), any Z ∈ Z corresponds to a positive

system Σ+(gC, jC), which determines a positive Weyl chamber j∗+ and an element

ρ ∈ j∗+. We prove that SΓ is well-defined and nonzero on g·VZ,λ ⊂ g·L2(X,Mλ)K
for any λ ∈ j∗+ with d(λ) > R satisfying

µλ = λ+ ρ− 2ρc ∈ ΛΓ∩Z(Gs).
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– In terms of Weyl group elements: fix a positive system Σ+(gC, jC) containing the

positive system Σ+(kC, jC) of Section 3.3; this determines a positive Weyl cham-

ber j∗+ and an element ρ ∈ j∗+. By (5.9), any Z ∈ Z corresponds to an element

w ∈ W (Hd, Gd), where W (Hd, Gd) ⊂ W is a complete set of representative for

the left coset space WH∩K\W . We prove that SΓ is well-defined and nonzero on

g · VZ,λ ⊂ g ·L2(X,Mλ)K for any λ ∈ j∗+ with d(λ) > R satisfying

µw
λ = w(λ+ ρ)− 2ρc ∈ ΛΓ∩Z(Gs).

Thus we get different integrality conditions on λ depending on the element Z ∈ Z we

are considering. These conditions might not be all equivalent; it is enough for λ to

satisfy one of them in order to belong to the discrete spectrum Specd(XΓ).

8.1. The summation operator SΓ on G-translates of L2(X,Mλ)K

Let XΓ be a Clifford–Klein form of X . We define the summation operator SΓ on

any G-translate g ·L2(X,Mλ)K as follows.

For g ∈ G, let ℓg : x 7→ g · x be the translation by g on X . The following diagram

commutes, where pΓ : X → XΓ is the natural projection.

X

pΓ

��

ℓg

∼
// X

pgΓg−1

��

x
❴

��

✤ // g · x
❴

��

XΓ
∼ // XgΓg−1 Γx ✤ // (gΓg−1) (g · x)

Since D(X) consists of G-invariant differential operators, we obtain the following

commutative diagram for smooth functions satisfying (Mλ).

C∞(X,Mλ) C∞(X,Mλ)
ℓ∗g

∼
oo

C∞(XΓ,Mλ)

p∗
Γ

OO

C∞(XgΓg−1 ,Mλ)
∼oo

p∗
gΓg−1

OO

The space L2(X,Mλ)K is contained in C∞(X,Mλ) (see Section 5.3), and

(8.1) ℓ∗g L
2(X,Mλ)K = L2(X,Mλ)g−1Kg.

For ϕ ∈ ℓ∗g L2(X,Mλ)K ⊂ C∞(X,Mλ), we set

SΓ(ϕ) = ϕΓ :=

(
Γx 7−→

∑

γ∈Γ

ϕ(γ−1 · x)
)
;
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this is the same formula as the one defining SΓ on L2(X,Mλ)K in Proposition 6.1.

Then SΓ is well-defined on ℓ∗g L
2(X,Mλ)K if and only if SgΓg−1 is well-defined on

L2(X,Mλ)K , and in this case the following diagram commutes.

C∞(X,Mλ) ⊃ ℓ∗g L
2(X,Mλ)K

SΓ

��

L2(X,Mλ)K ⊂ C∞(X,Mλ)
ℓ∗g

∼
oo

SgΓg−1

��

L2(XΓ,Mλ) L2(XgΓg−1 ,Mλ)
∼oo

We note that

(8.2) g · L2(X,Mλ)K = ℓ∗g−1

(
L2(X,Mλ)K

)
.

In particular, we will use the following.

Remark 8.4. — The operator SΓ is nonzero on g · L2(X,Mλ)K if and only if the

operator Sg−1Γg is nonzero on L2(X,Mλ)K .

The reason why we consider G-translates g ·L2(X,Mλ)K to construct nonzero

eigenfunctions on XΓ is precisely that we want to allow ourselves to replace the

groups Γ by conjugates g−1Γg (see Propositions 8.9 and 8.14).

8.2. Nonvanishing on sharp Clifford–Klein forms

We adopt the first point of view described in Remark 8.3: for the whole chapter we

choose a positive system Σ+(gC, jC) containing the fixed positive system Σ+(kC, jC)

of Section 3.3; this defines a positive Weyl chamber j∗+ and an element ρ ∈ j∗+ as in

Section 3.3, as well as an element Z ∈ Z by (5.6). The key ingredient in the proof of

Proposition 8.1 is the following lemma.

Lemma 8.5. — Assume that the rank condition (3.3) holds. For c, C, r > 0, let Γ

be a discrete subgroup of G such that:

1. Γ is (c, C)-sharp for X,

2. inf{‖ν(x)‖ : x ∈ Γ·x0 and x /∈ Xc} ≥ r,
3. Γ·x0 ∩Xc ⊂ Z(Gs)·x0.

For any λ ∈ j∗+ ∩ (2ρc − ρ+ ΛΓ∩Z(Gs)) with d(λ) > max(mρ, RX/c) and

d(λ+ ρ) >
4‖ρa‖(r + C) + log

(
2cG#(Γ ∩K)

)

c log cosh(q′r)
,

the operator SΓ : L2(X,Mλ)K → L2(XΓ,Mλ) is well-defined and any function ψλ ∈
VZ,λ ⊂ L2(X,Mλ)K as in Proposition 7.1 satisfies SΓ(ψλ)(x0) 6= 0.
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Let us recall earlier notation: ρa ∈ a is half the sum of the elements of Σ+(g, a),

counted with root multiplicities, and mρ, cG, RX , and q′ are the constants of (3.8),

Observation 4.19, Proposition 6.1, and Proposition 7.1 respectively. We denote by x0
the image of H in X = G/H and keep the same notation for its image in XΓ = Γ\X
for any Clifford–Klein formXΓ. The setXc = K·x0 consists of the points x inX whose

“pseudo-distance to the origin” ‖ν(x)‖ is zero; it is a maximal compact subsymmetric

subspace of X , and identifies with K/K ∩H . Remark 4.5 implies the following.

Remark 8.6. — For any discrete subgroup Γ of G acting properly discontinuously

on X ,

inf
{
‖ν(x)‖ : x ∈ Γ·x0 and x /∈ Xc

}
> 0.

Remark 8.7. — For any λ ∈ j∗+ we have d(λ + ρ) ≥ d(λ), hence for R′ > 0 the

condition d(λ + ρ) > R′ is satisfied as soon as d(λ) > R′.

Proof of Lemma 8.5. — Let λ ∈ j∗+ ∩ (2ρc − ρ + ΛΓ∩Z(Gs)). Assume that d(λ) >

max(mρ, RX/c); then the summation operator

SΓ : L2(X,Mλ)K −→ L2(XΓ,Mλ)

is well-defined by Proposition 6.1. Assume moreover that d(λ) ≥ mρ; then λ ∈
2ρc − ρ + Λ+ by Lemma 5.6 and we can apply Proposition 7.1. The function ψλ of

Proposition 7.1 has module < 1 outside of Xc. In order to prove that ψΓ
λ(x0) 6= 0, we

naturally split the sum into two: on the one hand the sum over the elements γ ∈ Γ

with γ ·x0 ∈ Xc, on the other hand the sum over the elements γ ∈ Γ with γ ·x0 /∈ Xc.

We control the first summand by using the assumption (3) that the Γ-orbit of Γ·x0
meets Xc only inside the finite set Z(Gs)·x0, where ψλ takes value 1: by Lemma 7.4,

∣∣∣∣∣∣
∑

γ∈Γ, γ·x0∈Xc

ψλ(γ ·x0)

∣∣∣∣∣∣
= #{γ ∈ Γ : γ ·x0 ∈ Xc} ≥ 1.

Therefore, in order to prove that ψΓ
λ(x0) 6= 0, it is sufficient to prove that

∑

γ∈Γ, γ·x0/∈Xc

|ψλ(γ ·x0)| < 1.

The estimate (7.2) and the assumption (2) on the “pseudo-distance to the origin” ‖ν‖
imply

∑

γ∈Γ, γ·x0/∈Xc

|ψλ(γ ·x0)|

≤
+∞∑

n=1

cosh(q′rn)−d(λ+ρ) ·#{γ ∈ Γ : nr ≤ ‖ν(γ)‖ < (n+ 1)r},
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where the constant q′ > 0 of Proposition 7.1 depends only on X . We now use the

assumption (1) that Γ is (c, C)-sharp. By Lemma 4.6.(3),

#{γ ∈ Γ : ‖ν(γ)‖ < (n+ 1)r} ≤ #(Γ ∩K) · cG e2‖ρa‖ (n+1)r+C
c ,

where the constant cG > 0 of Observation 4.19 depends only on G. Thus
∑

γ∈Γ, γ·x0∈Xc

|ψλ(γ ·x0)|

≤ #(Γ ∩K) · cGe
2‖ρa‖(r+C)

c ·
+∞∑

n=1

cosh(q′rn)−d(λ+ρ) · e( 2‖ρa‖r
c )n,

and we conclude using the following lemma.

Lemma 8.8. — For any S, T, U > 0 with S ≥ 1,

S

+∞∑

n=1

cosh(Tn)−d eUn < 1

for all d > R := log(2S)+U
log coshT .

Proof. — It is sufficient to prove that for all d > R and all n ≥ 1,

S cosh(Tn)−d eUn < 2−n,

or equivalently

d >
logS + n (log 2 + U)

log cosh(Tn)
.

One easily checks that for all n ≥ 1,

logS + n (log 2 + U) ≤ n (log(2S) + U)

and

log cosh(Tn) ≥ n log coshT.

8.3. Points near the origin in the orbit of a sharp discrete group

In this section and the next one we do not need the rank condition (3.3).

In Lemma 8.5 we assumed that Γ·x0 ∩Xc ⊂ Z(Gs)·x0, where Xc = K · x0 is the

maximal compact subsymmetric space of X consisting of the points x whose “pseudo-

distance to the origin” ‖ν(x)‖ is zero and Z(Gs) is the center of the commutator

subgroup of G. We now prove the following, where Gc denotes the maximal compact

normal subgroup of G (as in Chapter 3.3) and GH the maximal normal subgroup of G

contained in H .

Proposition 8.9. — For any discrete subgroup Γ of G acting properly discontinu-

ously on X, there is an element g ∈ G such that g−1γg ·x0 /∈ Xc for all γ ∈ ΓrGcGH .
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In Section 8.5 we shall combine Proposition 8.9 with Lemma 8.5 to prove Proposi-

tion 8.1.(1). Recall that in Proposition 8.1.(1) we assumed that H does not contain

any simple factor of G; it has the following consequence.

Remark 8.10. — IfH does not contain any simple factor of G, then GH = Z(G)∩H
and Γ ∩GcGH = Γ ∩Gc for any discrete subgroup Γ of G acting properly discontin-

uously on X = G/H .

The assumption Γ ∩ Gc ⊂ Z(Gs) in Proposition 8.1.(1) is there to ensure that if

g−1γg ·x0 /∈ Xc for all γ ∈ ΓrGc (as given by Proposition 8.9), then g−1Γg ·x0∩Xc ⊂
Z(Gs) · x0 (as required to apply Lemma 8.5).

In the rest of this section we give a proof of Proposition 8.9.

• The main lemma and its interpretation. — We first establish the following.

Lemma 8.11. — For any γ ∈ G r GcGH , there is an element g ∈ G such that

g−1γg · x0 /∈ Xc, or in other words g−1γg /∈ KH.

We note that GH is the set of elements of G that act trivially on X . In particular,

for any γ ∈ GrGH there is an element g ∈ G such that g−1γg ·x0 6= x0. Lemma 8.11

states that if γ /∈ GcGH , then we can actually find g such that g−1γg · x0 /∈ Xc. The

condition γ /∈ GcGH cannot be improved: if γ ∈ GcGH , then any conjugate of γ

maps x0 inside Gc · x0 ⊂ Xc, since GcGH is normal in G.

Here is a group-theoretic interpretation.

Remark 8.12. — For any subset S of G, let

G[S] :=
⋂

g∈G

gSg−1.

If S is a group, then G[S] is the maximal normal subgroup of G contained in S.

In particular, G[K] = Gc and G[H ] = GH . Lemma 8.11 states that G[KH ] =

G[K]G[H ]. We note that this equality may fail if we replace K by some noncompact

symmetric subgroup of G, i.e. by H ′ such that G/H ′ is a non-Riemannian symmetric

space.

• Preliminary Lie-theoretic remarks. — Before we prove Lemma 8.11, we make

a few useful remarks. For any subspaces e, f of g, we set

(8.3) ef :=
{
Y ∈ e : [f, Y ] = {0}

}
.

Lemma 8.13. — Assume that G is simple.

1. For any nonzero ideal k′ of k, we have pk
′

= {0}.
2. The Lie algebra spanned by k ∩ q contains ks.

3. The normalizer NH(k ∩ q) := {h ∈ H : Ad(h)(k ∩ q) = k ∩ q} of k ∩ q in H is

contained in K.
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Proof of Lemma 8.13. — 1. If k′ is an ideal of k, then the space pk
′

is globally

stable under ad(k), or equivalently under Ad(K). But the adjoint action of K

on p is irreducible [KN69, Ch. XI, Prop. 7.4], hence pk
′

is either {0} or p. Since
K is reductive, we can write k as the direct sum of k′ and of some other ideal k′′.

If pk
′

= p, then k′′ + p is an ideal of g, hence k′′ + p = g since g is simple; in

other words, k′ = {0}.
2. For any reductive Lie group L with Lie algebra l, we denote by ls the Lie

algebra of the commutator subgroup (or semisimple part) of L. Proving that ks
is contained in the Lie algebra spanned by k∩q is equivalent to proving that (kC)s
is contained in the Lie algebra spanned by kC ∩ qC. In turn, this is equivalent

to proving that (hd)s is contained in the Lie algebra spanned by hd ∩ pd, since

the complexifications of hd and pd are kC and qC, respectively (see Section 5.2).

But (hd)s admits the Cartan decomposition (hd)s = (hd)s ∩ kd + (hd)s ∩ pd, and
it is well-known that if l is a semisimple Lie algebra with Cartan decomposition

l = kl + pl, then [pl, pl] + pl = l (one easily checks that [pl, pl] + pl is an ideal

of l, hence equal to l if l is simple; the general semisimple case follows from

decomposing l into a sum of simple ideals). Thus (hd)s is contained in the Lie

algebra spanned by (hd)s ∩ pd ⊂ hd ∩ pd.

3. The group L := NH(k ∩ q) is stable under the Cartan involution θ of G, since

k∩q is fixed by θ. Therefore L is reductive and admits the Cartan decomposition

L = (K∩L) exp(p∩l). Proving that L is contained in K is equivalent to proving

that p ∩ l = {0}. We have

p ∩ l =
{
Y ∈ h ∩ p : ad(Y )(k ∩ q) ⊂ k ∩ q

}
= (h ∩ p)k∩q,

hence p∩ l is contained in pk∩q = p〈k∩q〉, where 〈k∩q〉 is the Lie algebra spanned

by k ∩ q. By (1) (with k′ = ks) and (2), we have p〈k∩q〉 = {0}.

• Proof of Lemma 8.11. — Suppose that γ satisfies

(8.4) g−1γg ∈ KH for all g ∈ G.
Let us prove that γ ∈ GcGH . We first assume that G is simple. The idea is to work

in the Riemannian symmetric space G/K of G, where we can use the G-invariant

metric dG/K . As before, we denote by y0 the image of K in G/K.

Firstly, we claim that γ ∈ K. Indeed, write γ ∈ Kh where h ∈ H . Then (8.4) with

g ∈ K implies hKh−1 ⊂ KH , i.e. hKh−1 ·y0 ⊂ H ·y0. By considering the tangent

space of G/K at x0, which identifies with g/k, we see that Ad(h)k ⊂ h+ k, or in other

words k ⊂ h+Ad(h−1)(k). This implies Ad(h−1)(k ∩ q) = k ∩ q. By Lemma 8.13.(3),

we have h ∈ K.

Secondly, we claim that γ−1 fixes pointwise the set KB+ · y0. Indeed, let k ∈ K
and b ∈ B+. By (8.4), we have γ−1kb ·y0 ∈ kbH ·y0. By (4.1), (4.6), and Lemma 4.17,

dG/K(y0, kb · y0) = ‖µ(b)‖ = ‖ν(b)‖ = ‖ν(bh)‖ ≤ ‖µ(bh)‖ = dG/K(y0, kbh · y0)
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for all h ∈ H , hence kb · y0 is the projection of y0 to the totally geodesic subspace

kbH ·y0. Since γ ∈ K fixes y0 and acts on G/K by isometries, we have

dG/K(y0, γ
−1kb · y0) = dG/K(y0, kb · y0) ≤ dG/K(y0, kbh · y0)

for all h ∈ H . But γ−1kb · y0 belongs to kbH · y0 by assumption, and kb · y0 is the

projection of y0 to kbH · y0, so γ−1kb · y0 = kb · y0. This proves the claim.

To prove that γ ∈ GcGH , we assume that the simple group G is noncompact, so

that GcGH = Z(G) (otherwise Gc = G). Then B+ 6= {e}. We have seen that γ−1

fixes pointwise the set KB+ ·y0, which is equivalent to the fact that γ ∈ (kb)K(kb)−1

for all k ∈ K and b ∈ B+. Thus γ belongs to the closed normal subgroup

K ′ :=
⋂

k∈K, b∈B+

(kb)K(kb)−1

of K. We note that Ad(k′)(Y ) = Y for all k′ ∈ K ′ and Y ∈ b+. Indeed, Ad(k
′)(Y )−

Y ∈ p since K ′ ⊂ K, and Ad(k′)(Y ) − Y ∈ k since b−1K ′b ⊂ K. In particular, the

Lie algebra k′ of K ′ satisfies pk
′ 6= {0} with the notation (8.3). But k′ is an ideal of k,

hence k′ = {0} by Lemma 8.13.(1). In other words,K ′ is contained in the center Z(K)

of K. We claim that in fact K ′ ⊂ Z(G). Indeed, for any k′ ∈ K ′ the set gAd(k′) of

fixed points of g under Ad(k′) is a Lie subalgebra that contains both k and b+ 6= {0}.
But the Lie algebra g is generated by k and any nontrivial element of p (because the

adjoint action of K on p is irreducible [KN69, Ch. XI, Prop. 7.4]), hence gAd(k′) = g,

which means that k′ ∈ Z(G). In particular, γ ∈ Z(G) = GcGH .

In the general case where G is not necessarily simple, we write G as the almost

product of a split central torus ≃ Ra, of GcGH , and of noncompact simple factors

G1, . . . , Gm with Gi 6⊂ H for all i. Since γ is elliptic, we can decompose it as γ =

γ0γ1 . . . γm, where γ0 ∈ GcGH and γi ∈ Gi for all i ≥ 1. For i ≥ 1, the restriction

of σ to Gi is an involution; the polar decomposition Gi = (K ∩Gi)(B+ ∩Gi)(H ∩Gi)

holds, with B+ ∩ Gi 6= {e}, and the corresponding projection is the restriction of ν.

By the previous paragraph, γi ∈ Z(Gi) for all i ≥ 1. Therefore γ ∈ GcGH since

Z(Gi) ⊂ GcGH . This completes the proof of Lemma 8.11.

• Proof of Proposition 8.9. — Let Γ be a discrete subgroup of G acting properly

discontinuously X . Consider the set

F := {γ ∈ Γ : da(µ(γ), µ(H)) < 1}.

For any γ ∈ F we have γ · C ∩ C 6= ∅, where C is the compact subset of X = G/H

obtained as the image of µ−1([0, 1]) ⊂ G; therefore F is finite. For γ ∈ F , the map

fγ : G → G sending g ∈ G to g−1γg is real analytic, hence f−1
γ (KH) is an analytic

submanifold of G. By Lemma 8.11, if γ /∈ GcGH , then f−1
γ (KH) is strictly contained

in G, hence it has positive codimension. In particular, there is an element g ∈ G with

‖µ(g)‖ < 1/2 such that g−1γg /∈ KH (i.e. g−1γg · x0 /∈ Xc) for all γ ∈ F r GcGH .
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By Lemmas 4.4 and 4.17, for all γ ∈ Γr F ,

‖ν(g−1γg)‖ ≥ da
(
µ(g−1γg), µ(H)

)
≥ da(µ(γ), µ(H))− 2‖µ(g)‖ > 0.

In particular, g−1γg · x0 /∈ Xc for all γ ∈ Γ r GcGH . This completes the proof of

Proposition 8.9.

8.4. Uniformity for standard Clifford–Klein forms

In Section 8.5, we shall prove Proposition 8.1.(2) by combining Lemma 8.5 with the

following consequence of the Kazhdan–Margulis theorem, applied to some conjugate

of L instead of G.

Proposition 8.14. — Assume that the reductive group G has a compact center.

There is a constant rG > 0 (depending only on G) with the following property: for

any discrete subgroup Γ of G, there is an element g ∈ G such that

‖µ(g−1γg)‖ ≥ rG for all γ ∈ ΓrGc.

As before, Gc denotes the largest compact normal subgroup of G. The condition

γ ∈ Γ r Gc cannot be improved: if γ ∈ Gc, then µ(g−1γg) = 0 for all g ∈ G since

g−1γg ∈ Gc ⊂ K. The condition that the center Z(G) of G is compact also cannot be

improved: if Lie(Z(G))∩a contains a nonzero vector Y , then for any t ∈ R+ the cyclic

group generated by γt := exp(tY ) ∈ GrGc is discrete in G and ‖µ(g−1γtg)‖ = t ‖Y ‖
for all g ∈ G.

Recall that ‖µ(g)‖ = dG/K(y0, g · y0) for all g ∈ G, where y0 is the image of K

in the Riemannian symmetric space G/K. Thus Proposition 8.14 has the following

geometric interpretation: there is a constant rG > 0 such that any Riemannian locally

symmetric space M = Γ\G/K locally modeled on G/K admits a point at which the

injectivity radius is ≥ rG.
Proposition 8.14 is not new; we give a proof for the reader’s convenience. We

begin with an elementary geometric lemma in the Riemannian symmetric space G/K,

designed to treat groups Γ with torsion.

Lemma 8.15. — For any g ∈ GrGc of finite order and any R, ε > 0, there exists

r > 0 such that for any ball B of radius R in G/K,

volG/K

({
y ∈ B : dG/K(y, g ·y) < r

})
< ε.

This r depends only on the conjugacy class of g in G (and on R and ε).

Proof. — For g ∈ GrGc of order n ≥ 2, let Fg be the set of fixed points of g in G/K.

We claim that the set of points y ∈ G/K with dG/K(y, g ·y) < r is contained in an

(n − 1)r-neighborhood of Fg. Indeed, for y ∈ G/K, consider the “center of gravity”

z of the g-orbit {y, g · y, . . . , gn−1 · y}, such that
∑n−1

i=0 dG/K(z, gi · y)2 is minimal.

(The existence and uniqueness of such a point were first established by É. Cartan
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[Ca] to prove his fixed point theorem.) The point z belongs to the convex hull of

{y, g ·y, . . . , gn−1 ·y}, hence there exists 1 ≤ i0 ≤ n − 1 such that dG/K(y, gi0 · y) ≥
dG/K(y, z). Moreover, z ∈ Fg, hence dG/K(y, z) ≥ dG/K(y,Fg). By the triangular

inequality,

dG/K(y, g · y) = 1

i0

i0−1∑

i=0

dG/K(gi · y, gi+1 · y) ≥ 1

i0
dG/K(y, gi0 · y) ≥ 1

i0
dG/K(y,Fg),

which proves the claim. Let R, ε > 0. We note that Fg is an analytic subvariety

of G/K of positive codimension since g /∈ Gc. Therefore, for any ball B′ of radius

(n+ 1)R centered at a point of Fg, there exists r > 0 such that

volG/K

({
y ∈ B′ : dG/K(y, g ·y) < r

})
< ε.

Using the fact that the centralizer of g in G acts transitively on Fg (see [He2, Ch. IV,

§ 7]), it is easy to see that this r can actually be taken uniformly for all such balls. We

conclude the proof of Lemma 8.15 by observing that any ball of radius R meeting the

(n−1)r-neighborhood of Fg is actually contained in a ball of radius (n+1)R centered

at a point of Fg, since r ≥ R. The fact that r depends only on the conjugacy class of

g in G (and on R and ε) follows from the fact that the metric dG/K is G-invariant.

Proof of Proposition 8.14. — We first assume that G is semisimple with no compact

factor, so thatGc = Z(G). The Kazhdan–Margulis theorem (see [Ra2, Th. 11.8]) then

gives the existence of a neighborhood W of e in G with the following property: for

any discrete subgroup Γ of G, there is an element g ∈ G such that g−1Γg ∩W = {e}.
It is enough to prove Proposition 8.14 for discrete groups Γ such that Γ ∩W = {e}.

We note that for all g, γ ∈ G, we have dG/K(y0, g
−1γg · y0) = dG/K(y, γ · y)

where y := g · y0. Therefore, using the interpretation (4.1) of ‖µ‖ as a distance

in the Riemannian symmetric space G/K, it is enough to prove the existence of a

constant rG > 0 with the following property: for any discrete subgroup Γ of G with

Γ ∩W = {e}, there is a point y ∈ G/K such that for any γ ∈ Γr Z(G),

(8.5) dG/K(y, γ · y) ≥ rG.
In order to prove this, we consider a bounded neighborhood U of e in G such that

UU−1 ⊂ W , and an integer m such that

(8.6) m · volG(U) > volG
(
K1 · U

)
,

where we set

K1 :=
{
g ∈ G : dG/K(y0, g · y0) < 1

}
.

• We claim that for any torsion-freediscrete subgroup Γ of L with Γ ∩W = {e},

(8.7) ‖µ(γ)‖ = dG/K(y0, γ · y0) ≥
1

m
.

Indeed, let Γ be such a group. Then γ U ∩ γ′ U = ∅ for all γ 6= γ′ in Γ, hence

volG
(
K1 · U

)
≥ #

(
Γ ∩K1

)
· volG(U).
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Therefore, by (8.6),

#
(
Γ ∩K1

)
< m.

Using the fact (4.2) that ‖µ(gm)‖ ≤ m ‖µ(g)‖ for all g ∈ G, we obtain that any

element γ ∈ Γ with ‖µ(γ)‖ < 1/m has order < m; the number of such elements γ is

< m. In particular, since Γ is torsion-free, the only element γ ∈ Γ with ‖µ(γ)‖ < 1/m

is e, proving (8.7).

• We now deal with groups Γ that have torsion. By Lemma 8.15, for any g ∈ GrGc

of finite order there exists r ∈ (0, 1
3m ] such that for any ball B of radius 1/3m in

G/K,

(8.8) volG/K

({
y ∈ B : dG/K(y, g · y) < r

})
<

1

m
volG/K(B),

and this r depends only on the conjugacy class of g in G. Since there are only finitely

many conjugacy classes of elements of order < m in G [He2, Ch. IX, Cor. 4.4 &

Prop. 4.6], there exists a constant r = rG such that (8.8)holds for all g ∈ G r Gc

of order < m and all balls B of radius 1/3m. Let us prove that this constant rG
satisfies (8.5). Let Γ be a discrete subgroup of G such that Γ ∩W = {e}. The same

reasoning as before shows that any element γ ∈ Γ with ‖µ(γ)‖ < 1/m has order < m;

the number of such elements γ is < m. By (8.8), there is a point y ∈ BG/K(y0,
1

3m )

such that dG/K(y, γ · y) ≥ rG for all γ ∈ Γ r Gc with ‖µ(γ)‖ < 1/m. For all γ ∈ Γ

with ‖µ(γ)‖ = dG/K(y0, γ · y0) ≥ 1/m, we also have

dG/K(y, γ · y) ≥ dG/K(y0, γ · y0)− 2 dG/K(y, y0) ≥
1

3m
≥ rG,

which proves (8.5) and completes the proof of Proposition 8.14 in the case when G

has no compact factor.

We now consider the general case where G may have compact factors. Let π : G→
G/Gc be the natural projection. The group π(G) = G/Gc is semisimple with a trivial

center and no compact factor. It admits the Cartan decomposition

π(G) = π(K)π(A+)π(K).

Let µπ(G) : π(G) → log π(A+) be the corresponding Cartan projection. The restric-

tion of π to A is injective, hence we may identify log π(A+) with a+. With this

identification,

µπ(G)(π(g)) = µ(g)

for all g ∈ G. Therefore, Proposition 8.14 forG follows from Proposition 8.14 for π(G),

given that for any discrete subgroup Γ of G the group π(Γ) is discrete in π(G).

Remark 8.16. — If G is disconnected, with finitely many connected components,

then it still admits a Cartan decomposition G = KA+K, where K is a maximal

compact subgroup of G and A+ a positive Weyl chamber in a maximal split torus

of G, possibly smaller than the corresponding positive Weyl chamber for the identity

component of G. The corresponding Cartan projection µ : G→ logA+ is well-defined
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and has the property that ‖µ(g)‖ = dG/K(y0, g · y0) for all g ∈ G, where y0 denotes

the image of K in G/K. Lemma 8.15 and Proposition 8.14 hold with the same proof.

8.5. Proof of Proposition 8.1

Recall from (6.6) that we may take RX to be 4‖ρa‖/q in Proposition 6.1. For any

subgroup Γ of G acting properly discontinuously on X , we set

rΓ := inf
{
‖ν(x)‖ : x ∈ Γ·x0 and x /∈ Xc

}
> 0

(see Remark 8.6).

We first consider Proposition 8.1.(1). Let XΓ be a sharp Clifford–Klein form of X

with Γ∩Gc ⊂ Z(Gs). If Γ ·x0∩Xc ⊂ Z(Gs) ·x0, then, by Lemma 8.5 and Remark 8.7,

the operator SΓ is well-defined and nonzero on VZ,λ for any λ ∈ j∗+∩(2ρc−ρ+ΛΓ∩Z(Gs))

with d(λ) larger than

(8.9) max
(
mρ ,

4‖ρa‖
qc

,
4‖ρa‖(rΓ + C) + log

(
2cG #(Γ ∩K)

)

c log cosh(q′rΓ)

)
.

Otherwise, we use Proposition 8.9, Remark 8.10, and the assumptions that H does

not contain any simple factor of G and Γ∩Gc ⊂ Z(Gs) to obtain the existence of an

element g ∈ G such that g−1Γg · x0 ∩ Xc ⊂ Z(Gs) · x0; then Sg−1Γg is well-defined

and nonzero on VZ,λ for any λ ∈ j∗+ ∩ (2ρc − ρ+Λg−1Γg∩Z(Gs)) with d(λ) larger than

(8.10) max
(
mρ ,

4‖ρa‖
qc

,
4‖ρa‖(rg−1Γg + C) + log

(
2cG #(g−1Γg ∩K)

)

c log cosh(q′rg−1Γg)

)
.

By Remark 8.4 (and the fact that g−1Γg ∩ Z(Gs) = Γ ∩ Z(Gs)), the operator SΓ is

well-defined and nonzero on g · VZ,λ for any λ ∈ j∗+ ∩ (2ρc − ρ+ ΛΓ∩Z(Gs)) satisfying

(8.10). This concludes the proof of Proposition 8.1.(1).

We now consider Proposition 8.1.(2). Let L be a reductive subgroup of G acting

properly on X . Assume that the center of L is compact. There is a conjugate L′ of

L in G that is stable under the Cartan involution θ; in particular, L′ is (c, 0)-sharp

for some c > 0 (Example 4.11). By Remark 8.4, it is sufficient to prove Proposi-

tion 8.1.(2) for L′. Let L′
c be the maximal compact normal subgroup of L′. Applying

Proposition 8.14 to L′ instead of G, we obtain the existence of a constant rL′ > 0

(depending only on L′) such that any discrete subgroup Γ of L′ admits a conjugate

g−1Γg, g ∈ L′, with ‖µ(g−1γg)‖ ≥ rL′ for all γ ∈ Γr L′
c. The reason why we apply

Proposition 8.14 to L′ and not G is that in this way the group g−1Γg ⊂ L′ remains

(c, 0)-sharp. Lemma 4.17 then yields ‖ν(g−1γg)‖ ≥ c rL′ for all γ ∈ Γ r L′
c. In par-

ticular, g−1γg · x0 /∈ Xc for all γ ∈ Γr L′
c and rΓ ≥ c rL′ . By Remark 8.10 and the

assumptions that H does not contain any simple factor of G and Γ∩L′
c ⊂ Z(Gs), we

have g−1Γg ∩K ⊂ Z(Gs) and g
−1Γg·x0 ∩Xc ⊂ Z(Gs)·x0, which enables us to apply

Lemma 8.5. Using Remark 8.7, we obtain that the operator Sg−1Γg is well-defined



90 CHAPTER 8. NONVANISHING OF EIGENFUNCTIONS

and nonzero on VZ,λ for any λ ∈ j∗+ ∩ (2ρc − ρ+Λg−1Γg∩Z(Gs)) with d(λ) larger than

(8.11) R := max
(
mρ ,

4‖ρa‖
qc

,
4‖ρa‖c rL′ + log

(
2cG #Z(Gs)

)

c log cosh(q′c rL′)

)
.

Proposition 8.1.(2) follows, using Remark 8.4.

We now consider Proposition 8.1.(3). Let L be a reductive subgroup of G of

real rank 1 and let Γ be a convex cocompact subgroup of L with Γ ∩ Gc ⊂ Z(Gs).

By Proposition 8.9, Remark 8.10, and the assumptions that H does not contain

any simple factor of G and Γ ∩ Gc ⊂ Z(Gs), there is an element g ∈ G such that

g−1γg · x0 /∈ Xc for all γ ∈ Γ ∩ Z(Gs). By Proposition 4.3, the group g−1Γg is

(c, C)-sharp for some c, C > 0 (where c depends only on L). Choose ε ∈ (0, rg−1Γg).

By Lemma 4.22 applied to g−1Γg ⊂ g−1Lg instead of Γ ⊂ L, there is a neighborhood

U ′ ⊂ Hom(Γ, G) of the natural inclusion such that for all ϕ ∈ U ′, the group g−1ϕ(Γ)g

is discrete in G and (c−ε, C+ε)-sharp for X , and satisfies ‖ν(g−1ϕ(γ)g)‖ ≥ rg−1Γg−ε
for all γ ∈ Γr Z(Gs). We now use the following fact, which holds because there are

only finitely many conjugacy classes of elements of order ≤ #Z(Gs) in G [He2,

Ch. IX, Cor. 4.4 & Prop. 4.6] and they are all closed [Bo3, Th. 9.2].

Remark 8.17. — There is a neighborhood U ⊂ U ′ ⊂ Hom(Γ, G) of the natural

inclusion such that ϕ(Γ ∩ Z(Gs)) ⊂ Z(Gs) for all ϕ ∈ U .

By Remark 8.17, we have g−1ϕ(Γ)g ·x0 ∩Xc ⊂ Z(Gs) ·x0 and rg−1ϕ(Γ)g ≥ rg−1Γg− ε,
as well as g−1ϕ(Γ)g ∩K ⊂ Z(Gs); we can apply Lemma 8.5. Using Remark 8.7, we

obtain that for all ϕ ∈ U , the operator Sg−1ϕ(Γ)g is well-defined and nonzero on VZ,λ

for any λ ∈ j∗+ ∩ (2ρc − ρ+ Λg−1ϕ(Γ)g∩Z(Gs)) with d(λ) larger than

R := max
(
mρ ,

4‖ρa‖
qc

,
4‖ρa‖(r + C) + log

(
2cG#Z(Gs)

)

c log cosh(q′(r − ε))
)
.

Proposition 8.1.(3) follows, using Remark 8.4. If Γ ∩ Lc ⊂ Z(Gs), then we can

conjugate Γ as in the proof of Proposition 8.1.(2) and take r = c rL′ and C = 0. Since

the function d takes discrete values on j∗+ ∩ (2ρc− ρ+Λ), by choosing ε small enough

we see that we can take the same R as in Proposition 8.1.(2). This completes the

proof.

8.6. Proof of the results of Chapters 1 to 3

The bulk of the paper was the proof of Proposition 8.1; now we briefly explain how

the results of Chapters 1 to 3 follow.

Theorem 3.8.(1) follows immediately from Proposition 8.1.(1); Theorem 3.8.(2)

from Proposition 8.1.(2); Theorem 3.11 from Proposition 8.1.(3); Theorem 3.13 from

Proposition 6.1. In the case when 8G is connected with no compact factor, Proposi-

tions 2.1 and 2.2 follow from Lemmas 4.23 and 8.5 as in the proof of Proposition 8.1.(3)

(see Section 8.5).
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In order to deduce Theorems 1.5, 1.7, and 1.8 from Theorems 3.8 and 3.11, and

to prove Propositions 2.1 and 2.2 in the general case, it is sufficient to deal with the

following three issues:

– G may be disconnected,

– some simple factors of G may be contained in H ,

– G may have compact factors.

Indeed, when G has no compact factor, the condition Γ∩Gc ⊂ Z(Gs) of Theorems 3.8

and 3.11 is automatically satisfied (see Remark 3.9.(a)). The first issue is easily dealt

with: if G0 denotes the identity component of G, then G0/(G0 ∩ H) is a connected

component of X , so Specd(G0/H) is a subset of Specd(X) (extend eigenfunctions

by 0 on the other connected components). In order to deal with the second and

third issues, we consider the group G := G/GcGH , where GH is the maximal normal

subgroup of G contained in H (see Section 8.3). We note that G is reductive with no

compact factor and that none of its simple factors is contained in H := H/GcGH ∩H ,

hence Theorems 3.8 and 3.11 apply to the reductive symmetric space X := G/H. To

relate X to X, we make the following elementary observation.

Observation 8.18. — The natural projection π : X → X induces homomorphisms

– C∞(X)
π∗

−֒→ C∞(X),

– D(X)
π∗−։ D(X),

– HomC-alg(D(X),C)
π∗

−֒→ HomC-alg(D(X),C)

such that for all D ∈ D(X), f ∈ C∞(X), and χ ∈ HomC-alg(D(X),C),

(π∗D)f = χ(π∗D)f ⇐⇒ D(π∗f) = (π∗χ)(D)π∗f.

Moreover, π∗(L2(X)) ⊂ L2(X), hence

π∗(Specd(X)
)
⊂ Specd(X).

Let us now consider Clifford–Klein forms. We note that if Γ is a discrete subgroup

of G acting properly discontinuously and freely on X , then the image Γ of Γ in G is

discrete and acts properly discontinuously on X, but not necessarily freely. However,

in all the previous chapters we could actually drop the assumption that Γ acts freely,

allowingXΓ to be an orbifold (or V -manifold in the sense of Satake) instead of a man-

ifold. Indeed, let us define L2(XΓ) to be the set of Γ-invariant functions on X that

are square-integrable on some fundamental domain for the action of Γ. If C∞
c (XΓ)

denotes the space of Γ-invariant smooth functions on X with compact support mod-

ulo Γ, then any D ∈ D(X) leaves C∞
c (XΓ) invariant, so that for χλ : D(X) → C we

can define the notion of weak solution f ∈ L2(XΓ) to the system

Df = χλ(D)f for all D ∈ D(X) (Mλ)

with respect to integration against elements of C∞
c (XΓ). We can then define

Specd(XΓ) to be the set of C-algebra homomorphisms χλ : D(X)→ C for which the
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system (Mλ) admits a nonzero weak solution f ∈ L2(XΓ). Since our construction

of joint eigenfunctions is obtained by the summation operator SΓ, Propositions 6.1

and 8.1, as well as Theorems 3.8 and 3.11, hold in this more general setting. We

conclude the proof of Theorems 1.5, 1.7, and 1.8 and Propositions 2.1 and 2.2 with

the following observation.

Observation 8.19. — 1. The rank condition (3.3) for X = G/H holds if and

only if that for X = G/H holds.

2. For any discrete subgroup Γ of G acting properly discontinuously on X , the

image Γ of Γ in G is discrete and acts properly discontinuously on X .

3. The projection π : X → X induces π∗(L2(XΓ)) ⊂ L2(XΓ), hence

π∗(Specd(XΓ)
)
⊂ Specd(XΓ).
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CHAPTER 9

THREE-DIMENSIONAL ANTI-DE SITTER MANIFOLDS

In this chapter and the following one, we concentrate on a few examples to illustrate

our general theory. We first examine the case of the 3-dimensional anti-de Sitter space

X = AdS3 = SO(2, 2)0/SO(1, 2)0. Our purpose is 3-fold:

– recall the description of the Clifford–Klein forms of AdS3 in terms of represen-

tations of surface groups, as developed since the 1980’s (Sections 9.1 to 9.3);

– use it to give an explicit infinite subset of the discrete spectrum of the Laplacian

on any Clifford–Klein form Γ\AdS3 with Γ finitely generated, in terms of some

geometric constant CLip(Γ) (Section 9.4);

– understand the analytic estimates developed in Chapters 5 and 7 through con-

crete harmonic analysis computations on the group SL2(R) (Sections 9.5 to 9.9).

As mentioned in the introduction, X = AdS3 is a Lorentzian analogue of the real

hyperbolic space H3 = SO(1, 3)0/SO(3): it is a model space for all Lorentzian 3-

manifolds of constant negative curvature, or anti-de Sitter 3-manifolds. One way to

see X is as the quadric of equation Q = 1 in R4 with the Lorentzian metric induced

by −Q, where

(9.1) Q(x) = x21 + x22 − x23 − x24 ;

the sectional curvature of X is then −1 (see [Wo]). Another way to see X is as the

manifold SL2(R), with the Lorentzian structure induced by 1/8 times the Killing form

of sl2(R) and the transitive action (by isometries) of the group

G := SL2(R)× SL2(R)

by left and right multiplication:

(9.2) (g1, g2) · g = g1gg
−1
2 .
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We will use both realizations of X . An explicit correspondence is given by

{x ∈ R4 : Q(x) = 1} ∼−→ SL2(R) .

x 7−→
(
x1 + x4 −x2 + x3
x2 + x3 x1 − x4

)
(9.3)

The stabilizer in G of the identity element 1 ∈ SL2(R) is the diagonal H :=

Diag(SL2(R)), which is the set of fixed points of G under the involution σ : (g1, g2) 7→
(g2, g1). Thus X = SO(2, 2)0/SO(1, 2)0 identifies with

G/H = (SL2(R)× SL2(R))/Diag(SL2(R)).

We note that the action of G on X factors through G/{±(1, 1)} ≃ SO(2, 2)0; we

have H/{±(1, 1)} ≃ SO(1, 2)0. By [Kl] and [KR], all compact anti-de Sitter 3-

manifolds are Clifford–Klein forms XΓ = Γ\X of X , up to finite covering. We now

recall how these Clifford–Klein forms (compact or not) can be described in terms of

representations of surface groups.

9.1. Description of the Clifford–Klein forms of AdS3

As in Section 1.4, let −I ∈ SO(2, 2)0 be the diagonal matrix with all entries equal

to −1; it identifies with (1,−1) ∈ G/{±(1, 1)} and acts on X = AdS3 by x 7→ −x.
Describing the Clifford–Klein forms of X reduces to describing those of its quotient

of order two

X := SO(2, 2)0/
(
SO(1, 2)0 × {±I}

)

≃
(
PSL2(R)× PSL2(R)

)
/Diag(PSL2(R)).

If Γ is a discrete subgroup of G acting properly discontinuously and freely on X , then

its projection Γ to PSL2(R)×PSL2(R) acts properly discontinuously and freely on X ;

the natural projection XΓ → XΓ between Clifford–Klein forms is an isomorphism if

−I belongs to the image of Γ in SO(2, 2)0, and a double covering otherwise.

A fundamental result of Kulkarni–Raymond [KR] states that if a torsion-free dis-

crete subgroup Γ of PSL2(R)× PSL2(R) acts properly discontinuously on X, then it

is of the form

(9.4) Γ = {(j(γ), ρ(γ)) : γ ∈ π1(S)},
where S is a hyperbolic surface and j, ρ ∈ Hom(π1(S),PSL2(R)) are two represen-

tations of the surface group π1(S), with one of them Fuchsian, i.e. injective and

discrete. The Clifford–Klein form XΓ = Γ\X is compact if and only if S is. Pairs

(j, ρ) ∈ Hom(π1(S),PSL2(R))
2 such that the group (j, ρ)(π1(S)) acts properly dis-

continuously on X are said to be admissible (terminology of [Sa1]). We note that not

all pairs (j, ρ) are admissible: for instance, if j and ρ are conjugate, then the infinite

group (j, ρ)(π1(S)) does not act properly discontinuously on X since it fixes a point.

The question is to determine which pairs are admissible.
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Easy examples of admissible pairs are obtained by taking j Fuchsian and ρ con-

stant, or more generally ρ with values in a compact subgroup of PSL2(R): the group

Γ := (j, ρ)(π1(S)) and the Clifford–Klein form XΓ = Γ\X are then standard in

the sense of Definition 1.4. When ρ is constant, XΓ identifies with 8Γ\8G, where
8G = PSL2(R) and 8Γ = j(π1(S)) is a discrete subgroup of 8G; in other words, it is

the unit tangent bundle to the hyperbolic surface 8Γ\H2 (where H2 denotes the hyper-

bolic plane). The first nonstandard examples of compact anti-de Sitter 3-manifolds

were obtained by deforming standard ones, i.e. proving that for fixed Fuchsian j,

the pair (j, ρ) is admissible for any ρ close enough to the constant homomorphism:

this was done by Goldman [Go] when ρ(π1(S)) is abelian, then by [Ko5] in general.

Salein [Sa2] constructed the first nonstandard compact Clifford–Klein forms that are

not deformations of standard ones. It is also easy to construct nonstandard Clifford–

Klein forms XΓ that are not compact but convex cocompact, in the following sense.

We refer to [Ka3, Ch. 5] and [GK] for more details.

Definition 9.1. — A Clifford–Klein form XΓ is convex cocompact if, up to finite

index and switching the two factors, Γ is of the form (9.4) with j injective and

j(π1(S)) convex cocompact in PSL2(R) in the sense of Section 1.5.

This terminology is justified by the fact that the convex cocompact Clifford–Klein

forms of X are circle bundles over convex cocompact hyperbolic surfaces, up to a

finite covering [DGK]. We shall say that a Clifford–Klein form XΓ of X = AdS3 is

convex cocompact if its projection XΓ is.

By the Selberg lemma [Se2, Lem. 8], any finitely generated subgroup Γ of

PSL2(R) × PSL2(R) acting properly discontinuously on X has a finite-index sub-

group that is torsion-free, hence of the form (9.4). However, in order to obtain

estimates on the discrete spectrum of XΓ itself and not only of a finite covering, we

need to understand the precise structure of Γ itself. We shall use the following result,

whose proof is based on [KR].

Lemma 9.2. — Let Γ be a finitely generated discrete subgroup of PSL2(R)×PSL2(R)

(possibly with torsion) acting properly discontinuously on X. Then either Γ is stan-

dard ( i.e. Γ or σ(Γ) is contained in a conjugate of PSL2(R)×PSO(2)) or Γ is of the

form

(9.4) Γ = {(j(γ), ρ(γ)) : γ ∈ π1(S)},

where S is a 2-dimensional hyperbolic orbifold, π1(S) is the orbifold fundamental

group of S, and (j, ρ) ∈ Hom(π1(S),PSL2(R))
2, with j or ρ Fuchsian.

Recall that a 2-dimensional hyperbolic orbifold S is a hyperbolic surface with

finitely many cone singularities, whose stabilizers are finite groups; the orbifold fun-

damental group π1(S) is torsion-free if and only if S is an actual hyperbolic surface.
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The point of Lemma 9.2 is that in the nonstandard case, even if Γ has torsion, one of

its projections to PSL2(R) is still discrete and injective (not only with a finite kernel).

Proof of Lemma 9.2. — For i ∈ {1, 2}, consider the restriction to Γ of the i-th pro-

jection pri : PSL2(R)×PSL2(R)→ PSL2(R). The kernels Ker(pr1|Γ) and Ker(pr2|Γ)
are discrete. They cannot both be infinite since Γ acts properly discontinuously on X

[KR, § 5]. Therefore, after possibly conjugating and replacing Γ by σ(Γ), we may

assume that Ker(pr1|Γ) is finite and contained in {1}×PSO(2). If Ker(pr1|Γ) = {1},
then Γ is of the form (9.4) with j injective, and j is in fact discrete [KR, § 5]. If

Ker(pr1|Γ) 6= {1}, then it is easy to see that Γ is contained in PSL2(R) × PSO(2)

since it normalizes Ker(pr1|Γ).

9.2. Deformation of convex cocompact Clifford–Klein forms of AdS3

The fact that the group PSL2(R) × PSL2(R) is not simple allows for a rich defor-

mation theory.

For instance, for any compact hyperbolic surface S, the set of admissible pairs

(j, ρ) is open in Hom(π1(S),PSL2(R))
2; the deformation space (modulo conjugation)

thus has dimension 12g − 12, where g is the genus of S. In other words, for any

compact Clifford–Klein form XΓ of X = AdS3 = G/H , the group ϕ(Γ) is discrete

in G and acts properly discontinuously and cocompactly on X for all ϕ ∈ Hom(Γ, G)

in some neighborhood of the natural inclusion of Γ in G. Indeed, this follows from

the completeness of compact anti-de Sitter manifolds [Kl] and from the Ehresmann–

Thurston principle on the holonomy of geometric structures on compact manifolds

(see [Sa1, § 4.2.1]); a quantitative proof was also given in [Ko5].

More generally, proper discontinuity is preserved under small deformations for any

convex cocompact Clifford–Klein form of X (in the sense of Definition 9.1) [Ka3,

Cor. 5.1.6], as a consequence of the following two facts (the first one extending Exam-

ple 4.13).

Fact 9.3 ([Ka3, Th. 5.1.1]). — All convex cocompact Clifford–Klein forms of X =

AdS3 are sharp.

Fact 9.4 ([Ka3, § 5.7.2]). — Let XΓ be a (c, C)-sharp, convex cocompact Clifford–

Klein form of X = AdS3 = G/H. For any ε > 0, there is a neighborhood Uε ⊂
Hom(Γ, G) of the natural inclusion such that the group ϕ(Γ) is discrete in G and

(c− ε, C + ε)-sharp for all ϕ ∈ Uε.

(We refer to Definition 4.2 for the notion of sharpness.)

Facts 9.3 and 9.4 give the geometric estimates that we need (together with the an-

alytic estimates of Section 9.5 below) to construct an infinite stable discrete spectrum

for the convex cocompact Clifford–Klein forms of X = AdS3 (Corollary 9.10). By

[GK], sharpness actually holds for all Clifford–Klein forms XΓ of X with Γ finitely
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generated, which implies that the discrete spectrum is infinite for all such XΓ (The-

orem 9.9).

9.3. The constant CLip(Γ)

The infinite subset of the spectrum that we shall give in Section 9.4 will be ex-

pressed in terms of a geometric constant CLip(Γ). The goal of this section is to

introduce CLip(Γ), to explain how sharpness is determined by this constant, and to

provide some explanation of Facts 9.3 and 9.4.

• A reformulation of sharpness for X = AdS3. — Let µPSL2(R) : PSL2(R)→ R≥0

be the Cartan projection mapping any element g to the logarithm of the highest

eigenvalue of tgg. We will use the following geometric interpretation:

(9.5) µPSL2(R)(g) = dH2(y0, g · y0),
where y0 is the point of H2 whose stabilizer is PSO(2). Consider a 2-dimensional

hyperbolic orbifold S and a pair (j, ρ) ∈ Hom(π1(S),PSL2(R))
2. By [Ka1, Th. 1.3],

if the group (j, ρ)(π1(S)) acts properly discontinuously on X = AdS3, then the set of

points (
µPSL2(R)(j(γ)) , µPSL2(R)(ρ(γ))

)
∈ R2

for γ ∈ π1(S) lies on one side only of the diagonal of R2, up to a finite number of

points. Therefore, the group Γ := (j, ρ)(π1(S)) is sharp for X if and only if, up to

switching j and ρ, there exist constants c′ < 1 and C′ ≥ 0 such that

µPSL2(R)(ρ(γ)) ≤ c′ µPSL2(R)(j(γ)) + C′

for all γ ∈ π1(S); in this case, Γ is (c, C)-sharp for

(9.6) c := sin
(π
4
− arctan(c′)

)
=

(1 − c′)√
2(1 + c′2)

and C :=
C′
√
2

and j is Fuchsian.

• The constants CLip(j, ρ) and CLip(Γ). — We denote by CLip(j, ρ) the infimum

of Lipschitz constants

Lip(f) = sup
y 6=y′ in H2

dH2(f(y), f(y′))

dH2(y, y′)

of maps f : H2 → H2 that are (j, ρ)-equivariant, i.e. that satisfy f
(
j(γ) · y

)
=

ρ(γ) · f(y) for all γ ∈ π1(S) and y ∈ H2. By the Ascoli theorem, this infimum is

a minimum if j is Fuchsian and the Zariski closure of (j, ρ)(π1(S)) is reductive (i.e.

the image of ρ does not fix a unique point on the boundary at infinity of H2). The

constant CLip(j, ρ) is clearly invariant under conjugation of j or ρ by PSL2(R). The

logarithm of CLip can be seen as a generalization of Thurston’s “asymmetric metric”

(or “Lipschitz metric”) on Teichmüller space: see [Ka3, Ch. 5] and [GK].
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Let Γ be a discrete subgroup of G acting properly discontinuously on X . By

Lemma 9.2, either Γ is standard, or its projection to PSL2(R) × PSL2(R) is of the

form (9.4). In the first case, we set CLip(Γ) := 0. In the second case, we set

CLip(Γ) := min
(
CLip(j, ρ) , CLip(ρ, j)

)
.

• Link between sharpness and the constant CLip. — Consider a 2-dimensional

hyperbolic orbifold S and (j, ρ) ∈ Hom(π1(S),PSL2(R))
2 with j Fuchsian. Using the

geometric interpretation (9.5), we make the following easy but useful observation.

Remark 9.5. — – If the Zariski closure of (j, ρ)(π1(S)) is reductive, then there

is an element g0 ∈ PSL2(R) such that for all γ ∈ π1(S),

µPSL2(R)

(
g−1
0 ρ(γ) g0

)
≤ CLip(j, ρ)µPSL2(R)(j(γ)).

– In general, for any ε > 0 there is an element gε ∈ PSL2(R) such that for all

γ ∈ π1(S),

µPSL2(R)

(
g−1
ε ρ(γ) gε

)
≤
(
CLip(j, ρ) + ε

)
µPSL2(R)(j(γ)).

Indeed, for ε ≥ 0, let fε : H2 → H2 be a (j, ρ)-equivariant map with Lip(fε) ≤
CLip(j, ρ) + ε. We can take any gε ∈ PSL2(R) such that fε(y0) = gε · y0,
using the fact that the metric dH2 is invariant under PSL2(R).

Let Γ be a discrete subgroup of G. Proposition 4.3.(1) and Remark 9.5 (together

with the above reformulation of sharpness) imply that if CLip(Γ) < 1, then Γ is sharp

for X ; in particular, Γ acts properly discontinuously on X . The converse is nontriv-

ial but true in the finitely generated case (based on the existence of a “maximally

stretched line” for (j, ρ)-equivariant maps of minimal Lipschitz constant CLip(j, ρ) ≥ 1

[Ka3, GK]).

Fact 9.6 ([Ka3, GK]). — A finitely generated discrete subgroup Γ of G acts prop-

erly discontinuously on X = AdS3 if and only if CLip(Γ) < 1, in which case Γ is

sharp for X.

This is how Fact 9.3 and its generalization [GK] to Clifford–Klein forms XΓ with

Γ finitely generated were obtained. Fact 9.4 is a consequence of Fact 9.6 and of the

following continuity result.

Fact 9.7 ([GK]). — The function (j, ρ) 7→ CLip(j, ρ) is continuous over the set of

pairs (j, ρ) ∈ Hom(π1(S),PSL2(R))
2 with j injective and j(π1(S)) convex cocompact

in PSL2(R).
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9.4. The discrete spectrum of the Laplacian

We note that here

q := g−dσ = {(Y,−Y ) : Y ∈ sl2(R)} ⊂ sl2(R) + sl2(R) = g.

Therefore, the symmetric space X = AdS3 has rank 1 and the C-algebra D(X) is

generated by the Laplacian �X (Fact 3.1). Let us identify X with the quadric of

equationQ = 1 inR4, where the Lorentzian structure is induced by−Q. As mentioned

in the introduction, if we set r(x) :=
√
Q(x) for Q(x) > 0, then the Laplacian �X is

explicitly given by

�Xf =
1

2
�R2,2

(
x 7−→ f

( x

r(x)

))

for all f ∈ C∞(X), where

�R2,2 =
∂2

∂x21
+

∂2

∂x22
− ∂2

∂x23
− ∂2

∂x24

and where f(x/r(x)) is defined on the neighborhood {Q > 0} of X in R4. The

invariant measure ω on X is given by

ω = x1 dx2 dx3 dx4 − x2 dx1 dx3 dx4 + x3 dx1 dx2 dx4 − x4 dx1 dx2 dx3 ;
in other words, 1

rdr ∧ ω is the Lebesgue measure on a neighborhood of X in R4. The

full discrete spectrum of �X is well-known (see [Fa]). It is a special case of the general

theory stated in Fact 5.5, and it also follows from Claim 9.12 below.

Fact 9.8. — The discrete spectrum of the Laplacian on X = AdS3 is

Specd(�X) =
{
ℓ(ℓ− 2) : ℓ ∈ N

}
.

We now consider Clifford–Klein forms XΓ. Here is a more precise version (and

generalization) of Theorem 1.1, using the constant CLip(Γ) of Section 9.3.

Theorem 9.9. — There is a constant R′
X > 0 depending only on X = AdS3

such that for any Clifford–Klein form XΓ with finitely generated Γ ∈ SO(2, 2)0
≃ (SL2(R)× SL2(R))/{±(1, 1)},

– if −I /∈ Γ, then

Specd(�XΓ) ⊃
{
ℓ(ℓ− 2) : ℓ ∈ N, ℓ >

R′
X

(1− CLip(Γ))3

}
;

– if −I ∈ Γ, then

Specd(�XΓ) ⊃
{
ℓ(ℓ− 2) : ℓ ∈ 2N, ℓ >

R′
X

(1 − CLip(Γ))3

}
.

In particular, the discrete spectrum of any Clifford–Klein form XΓ with Γ finitely

generated is infinite.

Using Fact 9.7, we obtain the existence of an infinite stable discrete spectrum in

the convex cocompact case.
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Corollary 9.10. — For any convex cocompact Clifford–Klein form XΓ of X = AdS3

(in the sense of Definition 9.1), there is an infinite subset of Specd(�XΓ) that is stable

under any small deformation of Γ.

We note that Corollary 9.10 is stronger, in the case of X = AdS3, than the general

Theorem 1.7, because it treats small deformations of Clifford–Klein forms that may

be nonstandard to start with.

For standard Clifford–Klein forms XΓ, we have CLip(Γ) = 0 and Theorem 9.9

follows from the general Theorem 3.11. We now explain how to prove Theorem 9.9 for

nonstandard Clifford–Klein forms, using the precise version (8.9) of Proposition 8.1.(1)

together with the theory of Sections 9.1 to 9.3 (in particular Lemma 9.2, Remark 9.5,

and Fact 9.6). We first note that we can identify the closed positive Weyl chamber b+
of Section 4.1 with R+ so that the polar projection

ν : G = SL2(R)× SL2(R) −→ R≥0

of (4.5) is given by

(9.7) ν(g) = µSL2(R)(g1g
−1
2 )

for all g = (g1, g2) ∈ G = SL2(R)×SL2(R). Here µSL2(R) : SL2(R)→ R≥0 is the Cartan

projection of SL2(R) obtained from the Cartan projection µPSL2(R) of Section 9.3 by

projecting SL2(R) onto PSL2(R).

Proof of Theorem 9.9 for nonstandard Clifford–Klein forms

Let Γ be a finitely generated discrete subgroup of G acting properly discontinuously

on X = AdS3. Assume that Γ is nonstandard. By Lemma 9.2 and Fact 9.6, after

possibly applying σ, we may assume that the projection of Γ to PSL2(R)× PSL2(R)

is of the form Γ = (j, ρ)(π1(S)) with (j, ρ) ∈ Hom(π1(S),PSL2(R))
2 and j Fuchsian,

satisfying CLip(j, ρ) < 1. By Proposition 8.14, after replacing j by some conjugate

under PSL2(R), we may assume that µPSL2(R)(j(γ)) ≥ rPSL2(R) > 0 for all γ ∈
π1(S)r {e}, where rPSL2(R) is the constant given by Proposition 8.14, which depends

only on the group PSL2(R). In particular, Γ ∩ K = {e}. Consider ε > 0 such that

CLip(j, ρ) + ε < 1. By Remark 9.5 and (9.6), after replacing ρ by some conjugate

under PSL2(R), we may assume that Γ is (c, 0)-sharp for

c :=
1− (CLip(j, ρ) + ε)√

2
(
1 +

(
CLip(j, ρ) + ε

)2) ≥
1

2

(
1− CLip(j, ρ)− ε

)

and, using (9.7) and (4.2), that

rΓ := inf
γ∈Γr{e}

ν(γ) ≥ inf
γ∈π1(S)r{e}

µPSL2(R)(j(γ))− µPSL2(R)(ρ(γ))

≥ rPSL2(R)

(
1− CLip(j, ρ)− ε

)
> 0.

We note that the function t 7→ log(cosh(t)) t−2 extends by continuity in 0 and is

bounded on any bounded interval of R. We conclude by using Proposition 8.1.(1)
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with the explicit constant (8.9), together with Remark 8.4, and by letting ε tend to

zero.

We note that the infinite subset of Specd(�XΓ) given by Theorem 9.9 is largest

when CLip(Γ) = 0; this condition is realized when Γ is standard, but also when the

projection of Γ to PSL2(R)× PSL2(R) is of the form (9.4) with ρ(π1(S)) unipotent.

Remark 9.11. — Assume that XΓ is a standard compact Clifford–Klein form with

Γ = 8Γ × {e} for some uniform lattice 8Γ of SL2(R). Then the Laplacian �XΓ has

not only infinitely many positive eigenvalues that remain constant under small defor-

mations (given by Theorem 9.9), but also infinitely many negative eigenvalues that

vary.

Indeed, L2(8Γ\H2) embeds into L2(XΓ) = L2(8Γ\SL2(R)) and the restriction to

L2(8Γ\H2) of the Laplacian �XΓ corresponds to −2 times the usual Laplacian ∆ 8Γ\H2

on the hyperbolic surface 8Γ\H2 (see [La, Ch.X]). Therefore �XΓ is essentially self-

adjoint and admits infinitely many negative eigenvalues coming from eigenvalues

of ∆ 8Γ\H2 . All these eigenvalues vary under small deformations of 8Γ inside SL2(R)

(Fact 1.2).

9.5. Flensted-Jensen eigenfunctions and analytic estimates for AdS3

In Section 9.4 we have given an explicit infinite set of eigenvalues of the Laplacian

on Clifford–Klein forms of X = AdS3 (Theorem 9.9), based on a geometric discussion

of properly discontinuous actions on AdS3 (Sections 9.1 to 9.3). We now make the

analytic aspects of the paper more concrete by expliciting the general estimates of

Chapters 5 and 7 in our example X = AdS3. We first give an explicit formula for the

Flensted-Jensen eigenfunctions ψλ.

• Flensted-Jensen functions. — It is known that, in general, the radial part of

the K-invariant eigenfunctions on a rank-one reductive symmetric space X satisfies

the Gauss hypergeometric differential equation [HS, Ch. III, Cor. 2.8]. However, it

is another thing to find an explicit global formula on the whole of X for K-finite

eigenfunctions such as the Flensted-Jensen functions. We now give such a formula for

X = AdS3.

We now switch to the quadric realization of X : we identify X with the quadric

of equation Q = 1 in R4, where Q is given by (9.1). We use the same letter Q to

denote the corresponding complex quadratic form on C4. Let ℓ be an integer. For

any a = (ai) ∈ C4 with Q(a) = 0, the restriction of the function x 7→ (
∑4

i=1 aixi)
−ℓ

to X is well-defined. It is an eigenfunction of �X with eigenvalue ℓ(ℓ− 2), as one sees

from the formulas

�R2,2

( 4∑

i=1

aixi

)−ℓ

= 0
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for Q(a) = 0 and

−r2 �R2,2 = −
(
r
∂

∂r

)2
− 2r

∂

∂r
+�X

(where, as above, we set r(x) :=
√
Q(x) for Q(x) > 0). Let ψ+

ℓ : X → C and

ψ−
ℓ : X → C be given by

(9.8) ψ+
ℓ (x) =

(
x1 +

√
−1x2

)−ℓ
and ψ−

ℓ (x) =
(
x1 −

√
−1x2

)−ℓ
.

Then �X ψ±
ℓ = ℓ(ℓ− 2)ψ±

ℓ and the following holds.

Claim 9.12. — For any integer ℓ ≥ 2, the functions ψ±
ℓ : X → C are Flensted-

Jensen functions for the parameter λ = 2ℓ − 2 ∈ R+ ≃ j∗+. The (g,K)-modules

generated by ψ+
ℓ and by ψ−

ℓ (ℓ = 2, 3, ...) form the complete set of discrete series

representations for X.

A proof of Claim 9.12 will be given in Section 9.9, after we explicit the Flensted-

Jensen duality, the Poisson transform, and the complexified Iwasawa projection GC =

KC(exp jC)NC in Sections 9.6 to 9.8.

Remark 9.13. — It is known that for the rank-one symmetric spaces G/H =

O(p, q)/O(p − 1, q), the radial part of the K-finite eigenfunctions is given by hy-

pergeometric functions with respect to the polar decomposition G = K(exp b+)H ,

while the spherical part is given by spherical harmonics (see [Fa] or [Sc2] for in-

stance). Combining the radial and spherical parts in the case p = q = 2, we could

obtain Claim 9.12 from some nontrivial relation between special functions [KØ,

Lem. 8.1]. Instead, we will take an alternative approach, using the explicit realization

of XC = GC/HC as a complex quadric in C4.

• Analytic estimates. — Here are the estimates of Propositions 5.1 and 7.1 for

the Flensted-Jensen functions ψ±
ℓ of (9.8). As before, we denote by x0 the image of

H in X = G/H ; in our quadric realization, x0 = (1, 0, 0, 0) ∈ R4.

Lemma 9.14. — For any x ∈ X = AdS3,

(9.9) |ψ±
ℓ (x)| ≤

(cosh ν(x)
2

)−ℓ/2

≤ 2ℓ e−ℓ ν(x)/2,

and

(9.10) |ψ±
ℓ (x)| ≤ cosh

(ν(x)
2

)−ℓ/2

≤ cosh
(ν(x)

4

)−ℓ

≤ |ψ±
ℓ (x0)| = 1.

We give a direct, elementary proof of these inequalities.

Proof. — By (9.7), in the realization of X = AdS3 as the group manifold

SL2(R), the polar projection ν : X → R≥0 coincides with the Cartan projec-

tion µSL2(R) : SL2(R) → R≥0, which maps g ∈ SL2(R) to the logarithm of the
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highest eigenvalue of tgg, or in other words to arcosh(tr(tgg)/2). Using the explicit

correspondence (9.3), we obtain

(9.11) ν(x) = arcosh(x21 + x22 + x23 + x24) = arcosh(2x21 + 2x22 − 1)

for all x = (x1, x2, x3, x4) ∈ X in the quadric realization. By definition (9.8) of ψ±
ℓ ,

we have |ψ±
ℓ (x)| = (x21 + x22)

−ℓ/2 for all x ∈ X . Thus (9.9) follows directly from

(9.11). To obtain (9.10), we use the general inequality 1 + cosh(2s) ≥ 2 cosh(s) with

2s = ν(x).

The rest of the chapter is devoted to explaining Claim 9.12. For this purpose we

explicit, in the particular case of X = AdS3, some of the notation that was introduced

in Chapters 3 to 8.

9.6. The Flensted-Jensen duality for AdS3

We now realize X again as (SL2(R) × SL2(R))/Diag(SL2(R)). Then the set of

inclusions (5.4) is given by
K = SO(2) × SO(2) ⊂ G = SL2(R)× SL2(R) ⊃ H = Diag(SL2(R))

⊃ ⊃ ⊃
KC = SO(2,C)× SO(2,C) ⊂ GC = SL2(C)× SL2(C) ⊃ HC = Diag(SL2(C))

⊂ ⊂ ⊂

Hd = Φ(SO(2,C)) ⊂ Gd = Φ(SL2(C)) ⊃ Kd = Φ(SU(2)),

where Φ is the embedding of SL2(C) into SL2(C)× SL2(C) defined by

(9.12) Φ(g) =
(
g, tg−1

)

for all g ∈ SL2(C). We can see the complexified symmetric space XC either as the

3-dimensional complex sphere of equation Q = 1 in C4 or as the group SL2(C) with

the transitive action (9.2) of SL2(C) × SL2(C) by left and right multiplication; the

correspondence is given by the complex linear extension of (9.3). The dual space Xd

can be realized either as

(9.13) Xd =
{(
x1,
√
−1x2, x3, x4

)
: xi ∈ R, x21 − x22 − x23 − x24 = 1, x1 > 0

}

or as the set Herm(2,C)+∩SL2(C) of positive definite Hermitian matrices in SL2(C);

it identifies with the 3-dimensional hyperbolic space H3. The compact form XU of XC

can be realized either as

XU =
{(
x1, x2,

√
−1x3,

√
−1x4

)
: xi ∈ R, x21 + x22 + x23 + x24 = 1

}

or as the subgroup SU(2) of SL2(C); it identifies with the 3-dimensional real sphere

S3. The following diagram summarizes the different realizations of X , XC, and X
d.
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X = G/H ≃ SL2(R) −֒→ R4

⊂ ⊂ ⊂
XC = GC/HC

∼−→
Φ′

SL2(C)
(9.3)
−֒→ C4

⊂ ⊂ ⊂

Xd = Gd/Hd ≃ Herm(2,C)+ ∩ SL2(C) −֒→ R×
√
−1R× R× R

∼ −
→ Φ

∼

−−−
−→

Φ
′◦Φ

SL2(C)/SU(2),

Here we set

Φ′(gHC) := g1g
−1
2

for all g = (g1, g2) ∈ GC = SL2(C) × SL2(C). In the rest of the chapter, we always

identify Gd with SL2(C) using the isomorphism Φ of (9.12).

9.7. Eigenfunctions on Xd ≃ H3 and the Poisson transform

Let P d be any Borel subgroup of Gd = SL2(C), let N
d be the unipotent radical

of P d, and let j be any maximal split abelian subalgebra of gd with exp j ⊂ P d. For

instance, we could take P d to be the group of upper triangular matrices of determi-

nant 1, so that Nd is the group of unipotent upper triangular matrices, and take j

to be the set of real diagonal matrices of trace 0 (in the next section we are going to

make another choice).

The boundary at infinity ∂∞Xd ≃ P1C of Xd ≃ H3 identifies with Gd/P d; we

denote the image of P d by z0. Let yd0 be the image of Kd in Xd = Gd/Kd and let

L be the geodesic line (exp j) · yd0 . The Iwasawa decomposition Gd = Kd(exp j)Nd

holds; this means that any point y ∈ Xd can be reached from yd0 by first applying

some translation along the line L, then traveling along some horosphere centered at

z0 ∈ ∂∞Xd. The Iwasawa projection ζd : Gd → j measures this translation: we can

identify j with R so that ζd(g) is the signed distance between yd0 and the horosphere

through g−1 · yd0 centered at z0 for any g ∈ Gd; the sign of ζd(g) is negative if the

horosphere intersects the geodesic ray R := (exp j+) · yd0 and nonnegative otherwise.

For all k ∈ Kd and g ∈ Gd,

ζd(g−1k) = Bk·R(g · yd0),

where Bk·R : Xd → R is the Busemann function associated with the geodesic ray k·R.
Recall that by definition

Bk·R(x) = lim
t→+∞

(
dXd

(
x, k·R(t)

)
− t
)
,

where dXd is the metric on the Riemannian symmetric space Xd = Gd/Kd.
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We note that the group Kd acts transitively on ∂∞Xd. The classical Poisson

transform, defined by

(Pf)(y) =
∫

k∈Kd/Kd∩Pd

f(k·z0) e−2Bk·R(y) dk

for all f ∈ C(∂∞Xd) and y ∈ Xd = Gd/Kd, induces a bijection between the continu-

ous functions on ∂∞Xd and the harmonic functions on Xd that extend continuously

to ∂∞Xd; the function Pf is the unique solution to the Dirichlet problem on Xd ≃ H3

with boundary condition f (see [He1, Ch. II, § 4]). If we extend the domain of defi-

nition of P to the space of all hyperfunctions on ∂∞Xd, then we obtain all harmonic

functions on Xd in a unique way. For λ ∈ j∗
C
≃ C (where ρ ∈ j∗

C
corresponds to 2 ∈ C),

the “twisted Poisson transform”

Pλ : B(Kd/Kd ∩ P d)
∼−→ A(Xd,Mλ)

of Section 5.1 is given by

(Pλf)(y) =

∫

k∈Kd/Kd∩Pd

f(k·z0) e−(λ+2)Bk·R(y) dk

for y ∈ Xd; its image consists of eigenfunctions of the Laplacian onXd with eigenvalue

λ(λ+ 2)/4.

The action of Hd = SO(2,C) on ∂∞Xd corresponds to the action of C∗ by mul-

tiplication on P1C, hence there are three Hd-orbits: two closed ones Z0 = {z0} and
Z∞ = {w ·z0} (where w is the nontrivial element of the Weyl groupW =W (gC, jC) ≃
Z/2Z), corresponding respectively to {0} and {∞}, and an open one, corresponding

to C∗.

9.8. Meromorphic continuation of the Iwasawa projection

We now assume that j is a maximal semisimple abelian subspace of
√
−1(k∩ q), as

in Section 3.3. If we still identify Gd with SL2(C) by (9.12), this means that

j =
√
−1R

(
0 1

−1 0

)
.

Thus j is a maximal split abelian subalgebra of gd as in Section 9.7. It is readily seen

that

nd := C

(
1

√
−1√

−1 −1

)

is a root space for j, hence the Iwasawa decomposition Gd = Kd(exp j)Nd holds

for Nd := exp nd. This Iwasawa decomposition can be recovered from the usual

decomposition

(9.14) Gd = Kd exp

(
R

(
1 0

0 −1

))
exp

(
C

(
0 1

0 0

))
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by conjugating by

(9.15) k :=
1

2

(
1 +
√
−1 1 +

√
−1

−1 +
√
−1 1−

√
−1

)
∈ Kd.

We note that

k SL2(R) k
−1 = SU(1, 1) =

{
g ∈ SL2(C) :

tg

(
0 1

1 0

)
g =

(
0 1

1 0

)}

and that Ad(k) induces an identification (“Cayley transform”) between the up-

per half-plane model SL2(R)/SO(2) of H2 and the unit disk model SU(1, 1)/

S(U(1) × U(1)). An elementary computation shows that the Iwasawa projection

corresponding to (9.14) is given by

(9.16) g ∈ Gd 7−→ 1

2
log(tgg)1,1 ∈ R,

where (tgg)1,1 denotes the upper left entry of tgg ∈ SL2(C). We now go back to

the quadric realization (9.13) of Xd. Using (9.16) and the explicit correspondence

(9.3), we see that if ζd : Gd → R is the Iwasawa projection corresponding to Gd =

Kd(exp j)Nd, then for λ ∈ j∗ ≃ R the map ξ∨λ : Xd → R induced by g 7→ e〈λ,ζ
d(g−1)〉

is given by

(9.17) ξ∨λ (z) =
(
z1 +

√
−1 z2

)λ/2

for all z = (z1, z2, z3, z4) ∈ Xd ⊂ C4. When λ ∈ 2Z, the map ξ∨λ extends mero-

morphically to XC = {z ∈ C4 : Q(z) = 1} and restricts to an analytic function

on X .

9.9. Proof of Claim 9.12

We now combine the elementary computations of Sections 9.6 to 9.8 to obtain an

explicit formula of the Flensted-Jensen functions ψλ for X = AdS3.

We choose j and Nd as in Section 9.8 and let P d be the Borel subgroup of Gd ≃
SL2(C) containing exp j and Nd. By Section 9.7, the two closed Hd-orbits in Gd/P d

are Z0 = HdP d and Z∞ = HdwP d. If we identify Gd/P d with Kd/Kd ∩ P d ≃
SU(2)/SO(2), then

Z0 = {Kd ∩ P d} and Z∞ = {w(Kd ∩ P d)}.
For λ ∈ j∗ ≃ R, the Flensted-Jensen function ψ0

λ : Xd → C associated with Z0 is the

Poisson transform Pλ(δZ0) of the Dirac delta function δZ0 , hence

ψ0
λ(gK

d) = e〈−λ−ρ,ζd(g−1)〉 = ξ∨−λ−ρ(g)

for all g ∈ Gd. Similarly, the Flensted-Jensen function ψ∞
λ : Xd → C associated

with Z∞ is given by

ψ∞
λ (gKd) = e〈−λ−ρ,ζd(g−1w)〉 = ξ∨−λ−ρ(w

−1g).



9.9. PROOF OF CLAIM 9.12 109

Therefore, by (9.17),

ψ0
λ(z) =

(
z1 +

√
−1 z2

)−(λ+2)/2
and ψ∞

λ (z) =
(
z1 −

√
−1 z2

)−(λ+2)/2

for all z ∈ Xd, in the quadric realization (9.13). As observed at the end of Section 9.8,

the functions ψ0
λ and ψ∞

λ on Xd induce analytic functions on X as soon as (λ+2)/2 ∈
Z, i.e. as soon as λ ∈ 2Z; this corresponds to the integrality condition (5.12) (we have

µe
λ = µw

λ = λ+ 2). The proof of Claim 9.12 is now complete.





CHAPTER 10

SOME OTHER ILLUSTRATIVE EXAMPLES

In this chapter we present some higher-dimensional examples of non-Riemannian

locally symmetric spaces to which our theorems apply, namely higher-dimensional

anti-de Sitter manifolds and group manifolds, as well as certain indefinite Kähler

manifolds.

10.1. Anti-de Sitter manifolds of arbitrary dimension

As a generalization of Chapter 9, we consider the discrete spectrum of complete

anti-de Sitter manifolds of arbitrary dimension ≥ 3.

For m ≥ 2, the anti-de Sitter space X = AdSm+1 := SO(2,m)0/SO(1,m)0 is a

model space for all Lorentzian manifolds of dimension m + 1 and constant negative

curvature. It can be realized as the quadric of Rm+2 of equation Q = 1, endowed

with the Lorentzian structure induced by −Q, where

Q(x) = x21 + x22 − x23 − · · · − x2m+2 ;

the sectional curvature is then −1 (see [Wo]).

By the general construction of [Ko1], we see that AdSm+1 admits proper actions

by reductive subgroups L of G := SO(2,m)0 of real rank 1 such as:

– L = U(1, [m2 ]), where [m2 ] denotes the largest integer ≤ m
2 ;

– L = PSL2(R), via a real 5-dimensional irreducible representation τ5 of PSL2(R)

when m ≥ 3.

Standard Clifford–Klein formsXΓ of X can be obtained by taking Γ to be any torsion-

free discrete subgroup inside L (for instance an infinite cyclic group, a nonabelian free

group, a lattice of L, an embedded surface group, etc.).

In particular, since U(1, m2 ) acts transitively on X for m even, we can obtain com-

pact (resp. noncompact but finite-volume) standard Clifford–Klein forms of AdSm+1

for m even by taking Γ to be any torsion-free uniform (resp. nonuniform) lattice
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in U(1, m2 ). This construction of compact Clifford–Klein forms of AdSm+1 is (conjec-

turally) the only one for m > 2 since

– compact Clifford–Klein forms do not exist when m is odd [Ku],

– Zeghib [Z] has conjectured that for m even > 2, all compact Clifford–Klein

should be standard, with Γ ⊂ U(1, m2 ) up to conjugation (this conjecture is still

open).

We recall from Chapter 9 that the case m = 2 is different, as AdS3 admits many

nonstandard compact Clifford–Klein forms.

Since all compact anti-de Sitter manifolds are complete [Kl], small deformations of

the anti-de Sitter structure on a compact Clifford–Klein form Γ\AdSm+1 correspond

to small deformations of Γ inside G = SO(2,m)0. When Γ ⊂ L is standard, nontrivial

deformations exist as soon as the first Betti number of Γ is nonzero [Ko5], which

can happen by work of Kazhdan [Kz]. For m > 2, small deformations of standard

compact Clifford–Klein forms of AdSm+1 can never give rise to nonstandard forms

(see Section 2.3). However, standard noncompact Clifford–Klein forms Γ\AdSm+1

can, typically if Γ is a convex cocompact subgroup of L that is a free group (Schottky

group). By [Ka2], if Γ is an arbitrary convex cocompact subgroup of L, then it keeps

acting properly discontinuously on AdSm+1 after any small (possibly nonstandard)

deformation inside G. Nonstandard noncompact Clifford–Klein forms of AdSm+1

were also constructed by Benoist [Bn] without using any deformation.

As a symmetric space, X = AdSm+1 has rank one, hence the algebra D(X) of G-

invariant differential operators on X is generated by the Laplacian �X . For standard

Clifford–Klein forms of X , Theorem 3.8.(2) yields the following (explicit eigenfunc-

tions can be constructed as in Chapter 9).

Proposition 10.1. — There is an integer ℓ0 such that for any standard Clifford–

Klein form XΓ of X = AdSm+1 with Γ ⊂ L = U(1, [m2 ]) and Γ ∩ Z(L) = {e},
(10.1) Specd(�XΓ) ⊃

{
ℓ(ℓ−m) : ℓ ∈ N, ℓ ≥ ℓ0

}
,

and (10.1) still holds after a small deformation of Γ inside G. A similar statement

holds for L = PSL2(R), embedded in SO(2,m)0 via τ5.

For the reader who would not be very familiar with reductive symmetric spaces,

we now explicit the notation of the previous chapters for X = AdSm+1. We see

H := SO(1,m)0 as SO(2,m)0∩SLm+1(R), where SLm+1(R) is embedded in the lower

right corner of SLm+2(R); the involution σ defining H is thus given by

σ(g) =




1
−1

. . .
−1


 g




1
−1

. . .
−1




for g ∈ G = SO(2,m)0.
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• Cartan and generalized Cartan decompositions. — The Cartan decompo-

sition G = KAK holds, where K = SO(2)× SO(m) and the Lie algebra a of A is the

set of block matrices of the form

as,t :=



Es,t 0

0 0




for s, t ∈ R, where

Es,t :=




0 s
0 t
−t 0

−s 0


 ∈ so(4).

The generalized Cartan decomposition G = KBH holds, where the Lie algebra b of B

is the set of elements as,0 for s ∈ R.

• The Flensted-Jensen duality. — The set of inclusions (5.4) is given by
K = SO(2)× SO(m) ⊂ G = SO(2,m)0 ⊃ H = SO(1, m)0

⊃ ⊃ ⊃

KC = SO(2,C)× SO(m,C) ⊂ GC = SO(m+ 2,C) ⊃ HC = SO(m+ 1,C)

⊂ ⊂ ⊂
Hd = SO(1, 1)0 × SO(m) ⊂ Gd = SO(1,m+ 1)0 ⊃ Kd = SO(m+ 1).

In particular, Xd = Gd/Kd = SO(1,m + 1)0/SO(m + 1) is the real hyperbolic

space Hm.

• Closed Hd-orbits Z and the parameter λ of discrete series representations.

— A maximal abelian subspace of
√
−1 (k∩q) is given by j :=

√
−1 so(2), where so(2)

is the first factor of k = so(2) ⊕ so(m). We note that j is also maximal abelian in√
−1 q, hence

rankG/H = rankK/H ∩K = 1 = dim j.

Since j is centralized by k, the restricted root system Σ(kC, jC) is empty. Let Y be the

generator
√
−1
(

0 1

−1 0

)
of j =

√
−1 so(2) and let e1 ∈ j∗ be defined by 〈e1, Y 〉 = 1.

There are two possible choices of positive systems Σ+(gC, jC), namely {e1} and {−e1}.
By (5.6), the set Z of closed Hd-orbits in the real flag variety Gd/P d has exactly two

elements. They are actually singletons, the “North and South poles” of Gd/P d ≃ Sm.

Take Σ+(gC, jC) to be {e1} (resp. {−e1}). If we identify j with R by sending e1 (resp.

−e1) to 1, then j∗+ identifies with R+ and we have ρ = m
2 and ρc = 0, hence

µλ = λ+ ρ− 2ρc = λ+
m

2
.

Condition (5.12) on µλ amounts to λ ∈ Z. The two discrete series representations

with parameter ±λ are dual to each other.
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• Eigenvalues of the Laplacian. — By Fact 3.4, the action of the Laplacian �X

on L2(X,Mλ) is given by multiplication by the scalar

(λ, λ) − (ρ, ρ) = λ2 − m2

4
,

which can be written as ℓ(ℓ−m) if we set ℓ := λ+ m
2 . This explains Proposition 10.1.

10.2. Group manifolds

In this section we consider symmetric spaces of the form X = (8G×8G)/Diag(8G)

where 8G is any reductive linear Lie group. As mentioned in Section 2.2, the rank

condition (3.3) is here equivalent to rank 8G = rank 8K, where 8K is a maximal com-

pact subgroup of 8G. This condition is satisfied for 8G = SL2(R), in which case X is

the 3-dimensional anti-de Sitter space AdS3 examined in Chapter 9. More generally,

it is satisfied for all simple groups 8G with Lie algebra in the list (2.2). It is equivalent

to the fact that the Cartan involution of 8G is an inner automorphism.

• Infinite stable spectrum in real rank one.— Assume that 8G has real rank 1.

Then the structural results of Section 9.1 generalize: by [Ka1, Th. 1.3] (improving an

earlier result of [Ko2]), if a torsion-free discrete subgroup Γ of 8G×8G acts properly

discontinuously on X , then it is of the form

(10.2) Γ =
{
(j(γ), ρ(γ)) : γ ∈ 8Γ

}
,

where 8Γ is a discrete subgroup of 8G and j, ρ ∈ Hom(8Γ, 8G) are two representations

with j injective and discrete (up to switching the two factors). Moreover, the Clifford–

Klein form XΓ is compact if and only if j(8Γ)\G is. Standard Clifford–Klein forms

correspond to the case when ρ(8Γ) is bounded.

There exist standard compact Clifford–Klein forms XΓ that can be deformed into

nonstandard ones if and only if 8G has a simple factor that is locally isomorphic

to SO(1, 2n) or SU(1, n) [Ko5, Th.A]. On the other hand, for convex cocompact

Clifford–Klein forms XΓ, i.e. for Γ of the form (10.2) with j injective and j(8Γ)

convex cocompact in 8G up to switching the two factors (see Definition 9.1), there

is much more room for deformation: for instance, Γ could be a free group of any

rank m, in which case the deformation space has dimension m · 2 dim(8G). Similarly

to Corollary 9.10, we can extend Theorem 1.7 to nonstandard convex cocompact

Clifford–Klein forms (in particular that do not identify with 8Γ\8G).

Theorem 10.2. — Let 8G be a semisimple linear Lie group of real rank 1 satisfying

rank 8G = rank 8K. All convex cocompact Clifford–Klein forms XΓ have an infinite

stable discrete spectrum.

We note that most semisimple groups 8G of real rank 1 satisfy the condition

rank 8G = rank 8K: the only exception is if the Lie algebra 8g is so(1, n) for some
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odd n up to a compact factor. Theorem 10.2 relies on the following two properties,

which generalize Facts 9.3 and 9.4 and corroborate Conjecture 4.12.

Fact 10.3 ([GGKW]). — Let 8G be a semisimple linear Lie group of real rank 1.

All convex cocompact Clifford–Klein forms of X = (8G×8G)/Diag(8G) are sharp.

Fact 10.4 ([GGKW]). — Let 8G be a semisimple linear Lie group of real rank 1

and let XΓ be a (c, C)-sharp, convex cocompact Clifford–Klein form of X = (8G ×
8G)/Diag(8G). For any ε > 0, there is a neighborhood Uε ⊂ Hom(Γ, 8G × 8G) of the

natural inclusion such that ϕ(Γ) is discrete in 8G×8G and (c− ε, C + ε)-sharp for all

ϕ ∈ Uε.

For 8G = SO(1, n), Facts 10.3 and 10.4 were first established in [GK], using the

Lipschitz approach of Section 9.3. In this case, Fact 10.3 actually holds for a larger

class of Clifford–Klein forms XΓ, namely all those that are geometrically finite (in the

sense that the hyperbolic manifold j(8Γ)\Hn is geometrically finite, allowing for cusps)

[GK]. This implies that the discrete spectrum of any geometrically finite Clifford–

Klein form of X = (SO(1, n)× SO(1, n))/Diag(SO(1, n)) is infinite for n even.

• “Exotic” Clifford–Klein forms in higher real rank. — As we have seen in

Section 2.2, for several families of groups 8G of higher real rank, the space X = (8G×
8G)/Diag(8G) admits standard compact Clifford–Klein forms XΓ of a more general

form than 8Γ\8G. More precisely, let 8G1 and 8G2 be two reductive subgroups of 8G

such that 8G1 acts properly and cocompactly on 8G/8G2: we can then take Γ of the

form Γ = 8Γ1 × 8Γ2, where
8Γ1 (resp. 8Γ2) is a uniform lattice of 8G1 (resp. of 8G2).

Theorem 1.5 and Proposition 2.1 apply to the discrete spectrum of these “exotic”

standard compact Clifford–Klein forms XΓ ≃ 8Γ1\8G/8Γ2 when rank 8G = rank 8K.

A list of examples is given in Table 2.2 of Chapter 2. Among them, the example

(8G, 8G1,
8G2) = (SO(2, 2n)0, SO(1, 2n)0,U(1, n)) has the property that certain uni-

form lattices 8Γ1 of 8G1 admit nonstandard deformations inside 8G, for which there

exists an infinite stable discrete spectrum by Proposition 2.1. For n = 1, manifolds of

the form XΓ = 8Γ1\8G/8Γ2 have dimension 6 and are locally modeled on AdS3×AdS3;
the ring D(XΓ) is generated by the Laplacians of the two factors. The following table,

for general n, shows that these Clifford–Klein forms XΓ = 8Γ1\8G/8Γ2 are very differ-

ent from the anti-de Sitter manifolds 8G1\8G/8Γ2 ≃ 8Γ2\8G/8G1 = 8Γ2\AdS2n+1 which

we examined in Section 10.1 and from the indefinite Kähler manifolds 8Γ1\8G/8G2 =
8Γ1\SO(2, 2n)0/U(1, n) which we shall examine in Section 10.3.
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Type of Clifford–Klein form 8Γ1\8G/8Γ2
8G1\8G/8Γ2

8Γ1\8G/8G2

Model space X SO(2, 2n)0 AdS2n+1 SO(2, 2n)0/U(1, n)

Dimension 2n2 + 3n+ 1 2n+ 1 n(n+ 1)

Signature (4n, 2n2 − n+ 1) (2n, 1) (2n, n2 − n)
rank(X) n+ 1 1 n

Degrees of generators of D(X) 2, 4, . . . , 2n, n+ 1 2 2, 4, . . . , 2n

#Z 2(n+ 1) 2 1

More generally, whenever 8G has real rank > 1, there always exist two nontrivial

reductive subgroups 8G1 and
8G2 of

8G such that 8G1 acts properly (but not necessarily

cocompactly) on 8G/8G2 [Ko2, Th. 3.3]. When rank 8G = rank 8K, Theorem 1.5

and Propositions 2.1 and 2.2 apply to the standard Clifford–Klein forms (possibly of

infinite volume) XΓ = 8Γ1\8G/8Γ2, where Γ = 8Γ1× 8Γ2 is the product of any discrete

subgroup 8Γ1 of 8G1 with any discrete subgroup 8Γ2 of 8G2.

• Link between the discrete series representations of X and 8G. — We now

assume that 8G is connected and that rank 8G = rank 8K. Flensted-Jensen’s construc-

tion of discrete series representations VZ,λ for X = (8G×8G)/∆(8G) (as described in

Section 5.3) yields all of Harish-Chandra’s discrete series representations π8λ for 8G.

This is well-known, but for the reader’s convenience we briefly recall the Harish-

Chandra discrete series and make the link with our previous notation.

Let 8θ be a Cartan involution of 8G and let 8K = (8G)
8θ be the corresponding

maximal compact subgroup of 8G. For simplicity, suppose that 8θ extends to a holo-

morphic involution of some complexification 8GC of 8G. As in Section 9.6, we define

a holomorphic embedding Φ : 8GC → 8GC ×8GC by

Φ(g) :=
(
g, 8θ(g)

)
.

Then the set of inclusions (5.4) is given by

K = 8K ×8K ⊂ G = 8G×8G ⊃ H = Diag(8G)

⊃ ⊃ ⊃

KC = 8KC ×8KC ⊂ GC = 8GC ×8GC ⊃ HC = Diag(8GC)

⊂ ⊂ ⊂

Hd = Φ(8KC) ⊂ Gd = Φ(8GC) ⊃ Kd = Φ(8GU ),

where 8GU is the compact real form of 8GC defined similarly to Section 5.2. As in

Section 9.6, the group Hd identifies with 8KC and Gd/P d with the full complex flag

variety 8GC/
8BC, where

8BC is a Borel subgroup of 8GC. Fix a Cartan subalgebra 8t

of 8k and a positive system ∆+(8kC,
8tC). We note that 8t is also a Cartan subalgebra

of 8g since rank 8G = rank 8K. The set Z of closed Hd-orbits in Gd/P d identifies

with the set of positive systems ∆+(8gC,
8tC) containing the fixed positive system
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∆+(8kC,
8tC). In particular, the cardinal of Z is easily computable as the quotient of

the cardinals of two Weyl groups. For instance, for 8G = SO(1, 2n)0, we have

#Z =
#W (Bn)

#W (Dn)
= 2.

Let 8ρc be half the sum of the elements of ∆+(8kC,
8tC). Any choice of a positive

system ∆+(8gC,
8tC) containing ∆+(8kC,

8tC) determines a positive Weyl chamber 8t∗+
in 8t∗, an element 8ρ ∈ 8t∗+, defined as half the sum of the elements of ∆+(8gC,

8tC),

and an element Z ∈ Z. For any 8λ ∈ 8t∗+ such that

µ8λ := 8λ+ 8ρ− 28ρc

lifts to the torus 8T ⊂ 8K with Lie algebra 8t, Harish-Chandra proved the existence

of an irreducible unitary representation π8λ of 8G with square-integrable matrix co-

efficients, with infinitesimal character 8λ (Harish-Chandra parameter) and minimal
8K-type µ8λ (Blattner parameter). With the notation of the previous chapters, we

can take

j = {(8Y,−8Y ) : 8Y ∈ 8t}.
For λ = (8λ,−8λ) ∈ j∗ and Y = (8Y,−8Y ) ∈ j, we have

〈λ, Y 〉 = 2 〈8λ, 8Y 〉,
and if 8d : 8t∗ → R+ denotes the “weighted distance to the walls” defined as in

Section 3.3, then

d(λ) = 8d(8λ).

Since K/H ∩K = (8K × 8K)/Diag(8K) ≃ 8K, the set Λ+ = Λ+(K/H ∩K) of (3.4)

is here equal to {(8λ,−8λ) : 8λ ∈ 8̂K}, which naturally identifies with the set 8̂K of

irreducible representations of 8K. For λ = (8λ,−8λ) ∈ j∗+, we have an isomorphism of

(8g, 8K)× (8g, 8K)-modules:

VZ,λ ≃ (π8λ)8K ⊠ (π∨
8λ)8K .

• Regular representation on L2(8Γ\8G). — Let 8Γ be a discrete subgroup of 8G.

The action of 8G on 8Γ\8G from the right defines a unitary representation of 8G on

L2(8Γ\8G). With the previous notation, here is a consequence of Proposition 8.1.(2)

applied to the special case

G = 8G×8G, H = Diag(8G), Γ = 8Γ× {e},
where the Clifford–Klein form XΓ = Γ\G/H identifies with 8Γ\8G.

Proposition 10.5. — Let 8G be a reductive linear group with rank 8G = rank 8K.

1. There is a constant R > 0 (depending only on 8G) such that for any torsion-free

discrete subgroup 8Γ of 8G and any discrete series representation π8λ of 8G with
8d(8λ) > R,

Hom8G

(
π8λ, L

2(8Γ\8G)
)
6= {0}.
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2. The same statement holds without the “torsion-free” assumption on Γ if 8G has

no compact factor.

Proof. — Consider 8λ ∈ 8t∗+ such that µ8λ lifts to a maximal torus in 8K. Then λ :=

(8λ,−8λ) ∈ j∗+ belongs to 2ρc−ρ+Λ+ and d(λ) = 8d(8λ). Applying Proposition 8.1.(2),

together with (8.1) and (8.2), to

G = 8G×8G, H = Diag(8G), Γ = 8Γ× {e},

we obtain the existence of a constant R > 0 such that if 8d(8λ) > R and 8G has no

compact factor (resp. 8G has compact factors), then for any discrete (resp. torsion-free

discrete) subgroup 8Γ of 8G, the summation operator

SΓ : L2(8G,Mλ)8K1×8K2 −→ L2(8Γ\8G,Mλ)

is well-defined and nonzero for some conjugates 8K1 = g1
8Kg−1

1 and 8K2 = g2
8Kg−1

2

of 8K (where gi ∈ 8G). In our specific setting, for ϕ ∈ L2(8G,Mλ)8K1×8K2 , the

function SΓ(ϕ) is nothing but the classical Poincaré series
∑

γ∈8Γ

ϕ(γ ·) ∈ L2(8Γ\8G,Mλ)8K2 ,

and SΓ respects the action of (8g, 8K2) from the right. Therefore,

Hom(8g,8K2)

(
(π8λ)8K2 , L

2(8Γ\8G)
)
8K2
6= {0}

if 8d(8λ) > R. Since π8λ is an irreducible unitary representation of 8G, this is equivalent

to

Hom8G

(
π8λ, L

2(8Γ\8G)
)
6= {0}.

Remark 10.6. — For arithmetic 8Γ, we may consider a tower of congruence sub-

groups 8Γ ⊃ 8Γ1 ⊃ 8Γ2 ⊃ · · · . In the work of DeGeorge–Wallach [DW] (cocom-

pact case), Clozel [Cl], Rohlfs–Speh [RS], and Savin [Sv] (finite covolume case), the

asymptotic behavior of the multiplicities Hom8G

(
π8λ, L

2(8Γj\8G)
)
for a discrete series

representation π8λ was studied as j goes to infinity, under the condition rank 8G =

rank 8K. Then one could deduce from their result that any discrete series representa-

tion π8λ with 8d(8λ) large enough occurs in L2(88Γ\8G) for some congruence subgroup
88Γ of 8Γ, where 88Γ possibly depends on π8λ. The approach of [DW, Cl, Sv] uses the

Arthur–Selberg trace formula. There is another approach for classical groups 8G and

arithmetic subgroups 8Γ using the theta-lifting, see [BW, Kz, Li]. Proposition 10.5

is stronger in three respects:

1. 8Γ is not necessarily arithmetic and 8Γ\8G can have infinite volume,

2. we do not need to replace 8Γ by some finite-index subgroup 88Γ,

3. the constant R is independent of the discrete group 8Γ.
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10.3. Indefinite Kähler manifolds

We now consider the symmetric space X = SO(2, 2m)0/U(1,m) for m ≥ 2. Later

we will assume m to be even for the rank condition (3.3) to be satisfied. We see the

group O(2, 2m) as the set of linear transformations of R2m+2 preserving the quadratic

form

x21 + y21 − x22 − y22 − · · · − x2m+1 − y2m+1,

and the subgroup H := U(1,m) of G := SO(2, 2m)0 as the set of linear trans-

formations of Cm+1 preserving the Hermitian form |z1|2 − |z2|2 − · · · − |zm+1|2.
The involution σ of G defining H is given by σ(g) = JgJ−1, where J is the diagonal

block matrix with all diagonal blocks equal to

(
0 −1

1 0

)
.

The natural G-invariant pseudo-Riemannian metric g on X has signature

(2m,m(m − 1)). We note that here X carries some additional structures, due

to the fact that H is the centralizer of a one-dimensional compact torus (namely its

center Z(H) ≃ U(1)):

1. X can be identified with an adjoint orbit (namely Ad(G)v where v is any gen-

erator of the Lie algebra of Z(H)), hence also with a coadjoint orbit via the

isomorphism g∗ ≃ g induced by the Killing form; thus, X carries a Kostant–

Souriau symplectic form ω (see [Ki, Ch. 1, Th. 1]);

2. X can be realized as an open subset of the flag variety GC/PC for some maximal

proper parabolic subgroup PC of GC = SO(2m + 2,C), as a generalized Borel

embedding (see [KO] for instance); in particular, X has a G-invariant complex

structure and g +
√
−1ω is a G-invariant indefinite Kähler form on X if g is

normalized by the Killing form.

The existence of the complex structure can easily be seen for m = 2, since

SO(2, 4)0/U(1, 2) identifies with SU(2, 2)/U(1, 2), which can be realized as an open

subset of P3C (see Section 1.4).

Standard Clifford–Klein forms XΓ of X that are compact (resp. noncompact but

of finite volume) were constructed in [Ko1]. They can be obtained by taking torsion-

free uniform (resp. nonuniform) lattices Γ inside L := SO(1, 2m)0. We note that the

group L acts properly and transitively on X . An elementary explanation for this is to

observe that U(m+1) acts transitively on the sphere S2m+1 = SO(2m+2)/SO(2m+1);

by duality, so does SO(2m + 1) on SO(2m + 2)/U(m + 1); in turn, L acts properly

and transitively on X = SO(2, 2m)0/U(1,m). (For a general argument, we refer to

[Ko3, Lem. 5.1].)

If Γ is a free discrete subgroup of L, then the noncompact standard Clifford–Klein

form XΓ has a large deformation space. There are also examples of compact stan-

dard Clifford–Klein forms that admit interesting small deformations. Indeed, certain

arithmetic uniform lattices Γ of L = SO(1,m)0 have the following property: there is

a continuous 1-parameter group (ϕt)t∈R of homomorphisms from Γ to G such that for
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any t 6= 0 small enough, the group ϕt(Γ) is discrete in G and Zariski-dense in G; this

1-parameter group can be obtained by a bending construction due to Johnson–Millson

(see [Ka2, § 6]). As we have seen in Example 4.11, any discrete subgroup Γ of L is

(
√
2
2 , 0)-sharp for X ; by [Ka2], if Γ is cocompact or convex cocompact in L, then

for any ε > 0 there is a neighborhood Uε ⊂ Hom(Γ, G) of the natural inclusion such

that for any ϕ ∈ Uε, the group ϕ(Γ) is discrete in G and (
√
2
2 − ε, ε)-sharp for X (see

Lemma 4.22).

We now assume that m = 2n is even, so that the rank condition (3.3) is satisfied.

We start by examining the case n = 1, in which we give explicit formulas for the

Flensted-Jensen eigenfunctions of Section 7.1; we then explicit the notation of the

previous chapters for general n.

• The case n = 1. — The groupG = SO(2, 4)0 admits SU(2, 2) as a double covering,

and the preimage of H = U(1, 2) in SU(2, 2) is S(U(1) × U(1, 2)) ≃ U(1, 2). For an

actual computation, in this paragraph we set G := SU(2, 2) and H := S(U(1) ×
U(1, 2)) ≃ U(1, 2), and we consider the maximal compact subgroup K := S(U(2) ×
U(2)). The symmetric space X ≃ SU(2, 2)/U(1, 2) identifies with the open subset

of P3C of equation h > 0, where

h(z) = |z1|2 + |z2|2 − |z3|2 − |z4|2

for z = (zi)1≤i≤4 ∈ C4. The Laplacian �X has been made explicit in Section 1.4. For

any ℓ ∈ N, we consider the following harmonic polynomial of degree (ℓ, ℓ) on C2:

Pℓ(z1, z2) :=

ℓ∑

i=0

(
ℓ

i

)2

(−1)i |z1|2ℓ−2i |z2|2i.

Up to a multiplicative scalar, it is the unique harmonic polynomial of degree (ℓ, ℓ)

that is fixed by U(1) × U(1) ≃ H ∩ K; we normalize it so that Pℓ(1, 0) = 1. The

function

(10.3) ψℓ : z = (zi)1≤i≤4 7−→ Pℓ(z1, z2)h(z)
ℓ+1
(
|z1|2 + |z2|2

)−2ℓ−1

on C4 r {0} satisfies the following differential equation:

h(z) �C2,2 ψℓ = (ℓ + 1)(ℓ− 2)ψℓ.

Since ψℓ is homogeneous of degree 0, we may regard it as a function on X = {h >
0} ⊂ P3C. Using these properties, we obtain the following (we omit the details).

Claim 10.7. — For any ℓ ∈ N+, the function ψℓ : X → C is a Flensted-Jensen

function on X = SU(2, 2)/U(1, 2), with parameter λ = 2ℓ− 1 ∈ R+ ≃ j∗+ and with

�X ψℓ = 2(ℓ+ 1)(ℓ− 2)ψℓ.

The (g,K)-modules Vℓ generated by ψℓ for ℓ ∈ N+ form the complete set of discrete

series representations for X.
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We note that the (g,K)-module Vℓ is irreducible and isomorphic to the Zuckerman–

Vogan derived functor module V0(2ℓ − 1, 1) in algebraic representation theory,

with notation as in [Ko3, § 4]; in particular, Vℓ has infinitesimal character
1
2 (2ℓ − 1, 1,−1,−2ℓ + 1) in the Harish-Chandra parameterization and minimal

K-type parameter (ℓ,−ℓ, 0, 0).
For the symmetric pair (G,H) ≃ (SU(2, 2),U(1, 2)), the polar decomposition G =

KBH holds, where the Lie algebra b of B is generated by

Y0 :=




0
0

1
0

1
0

0
0


 ∈ su(2, 2) ≃ g.

If we identify b with R by sending Y0 to 1, then

ν(z) = arccosh

√
|z1|2 + |z2|2

h(z)
∈ R≥0

for all z = [z1 : z2 : z3 : z4] ∈ X . Here are the analytic estimates of Propositions 5.1

and 7.1 for the Flensted-Jensen functions ψℓ of (10.3).

Lemma 10.8. — For any z ∈ X = SU(2, 2)/U(1, 2),

|ψℓ(z)| ≤
(
cosh ν(z)

)−2(ℓ+1) ≤ 22(ℓ+1) e−2(ℓ+1)ν(z).

This estimate follows immediately from the definition (10.3) of ψℓ, in light of the

inequality |Pℓ(z1, z2)| ≤ (|z1|2 + |z2|2)ℓ for all (z1, z2) ∈ C2. Using (5.16), one can

show that the function ψℓ is square integrable on X if and only if ℓ > 1/2.

• The general case. — We now consider G = SO(2, 4n)0 and H = U(1, 2n) for

an arbitrary integer n ≥ 1. The Cartan decomposition G = KAK holds, where

K = SO(2) × SO(4n) and A is the maximal split abelian subgroup of G whose Lie

algebra a is the set of elements

as,t :=




0 s 0
0 t

s 0
0 t

0

0

0 0




for s, t ∈ R. The generalized Cartan decomposition G = KBH holds, where the Lie

algebra b of B is the set of elements as,−s with s ∈ R. The set of inclusions (5.4) is

given by
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K = SO(2)× SO(4n) ⊂ G = SO(2, 4n)0 ⊃ H = U(1, 2n)

⊃ ⊃ ⊃

KC = SO(2,C)× SO(4n,C) ⊂ GC = SO(2 + 4n,C) ⊃ HC = GL(1 + 2n,C)
⊂ ⊂ ⊂

Hd = SO(2)× SO∗(4n) ⊂ Gd = SO∗(2 + 4n) ⊃ Kd = U(1 + 2n).

We recall that for any m ≥ 1, the group SO∗(2m) is a real form of SO(2m,C) with

maximal compact subgroup U(m).

A maximal abelian subspace j of
√
−1(k ∩ q) is given by the set of block matrices

Y(s1,...,sn) :=




0 0

0

snY

. .
.

s1Y

−s1Y

. .
.

−snY




for s1, . . . , sn ∈ R, where

Y :=

(
0
√
−1√

−1 0

)
.

In particular, the rank of the symmetric space X is dim j = n.

Let {f1, . . . , fn} be the basis of j∗ that is dual to {Y(1,0,...,0), . . . , Y(0,...,0,1)}. The

set

Σ+(kC, jC) := {fi ± fj : 1 ≤ i < j ≤ n} ∪ {2fk : 1 ≤ k ≤ n}
is a positive system of restricted roots of jC in kC. There is a unique positive system

Σ+(gC, jC) that contains it, namely

{fi ± fj : 1 ≤ i < j ≤ n} ∪ {2fk : 1 ≤ k ≤ n} ∪ {fk : 1 ≤ k ≤ n}.
By (5.6), for any minimal parabolic subgroup P d of Gd, there is a unique closed

Hd-orbit in Gd/P d, i.e. the set Z has only one element. The multiplicities of the

restricted roots ±fi ± fj and ±fk are four, and those of ±2fk are one. Identifying j∗

with Rn via the basis {f1, . . . , fn}, we obtain

j∗+ =
{
λ = (λ1, . . . , λn) : λ1 > λ2 > · · · > λn > 0},

d(λ) =
1

2
min

{
λ1 − λ2, λ2 − λ3, . . . , λn−1 − λn, 2λn

}
,

ρ =
(
4n− 1, 4n− 5, . . . , 7, 3

)
,

ρc =
(
4n− 3, 4n− 7, . . . , 5, 1

)
,

µλ = λ+ ρ− 2ρc =
(
λ1 − 4n+ 5, λ2 − 4n+ 9, . . . , λn−1 − 3, λn + 1

)
.
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The integrality condition (5.12) on µλ amounts to

λj + 1 ∈ 2N for all 1 ≤ j ≤ n
and λj − λj+1 ≥ 4 for all 1 ≤ j ≤ n− 1.

Since the restricted root system Σ(gC, jC) is of type BCn, the Weyl group W is iso-

morphic to the semidirect product Sn⋉(Z/2Z)n and we have C-algebra isomorphisms

D(X) ≃ C[x1, . . . , xn]
Sn⋉(Z/2Z)n ≃ C[D1, . . . , Dn],

where D1, D2, . . . , Dn are algebraically independent invariant polynomials of homo-

geneous degrees 2, 4, . . . , 2n. If we normalize the pseudo-Riemannian metric g on X

by g(Y, Y ) = 1 for Y := d
ds |s=0 exp(as,−s) ·x0 ∈ Tx0X (where x0 denotes the image of

H in X = G/H , as usual), then the Laplacian �X is 16n times the Casimir operator

defined by the Killing form (for n = 1, this is twice the Laplacian that we defined in

Section 1.4 with respect to the “indefinite Fubini–Study metric” h). By Fact 3.4, the

action of the Laplacian �X on L2(X,Mλ) is given by multiplication by the scalar

(λ, λ) − (ρ, ρ) = λ21 + · · ·+ λ2n −
1

3
(16n3 + 12n2 − n).

We note that the center Z(SO(2, 4n)0) is contained in U(1, 2n), hence

ΛΓ∩Z(Gs) = Λ for all Γ by Remark 3.6; this shows that the choice of Γ does

not impose any additional integrality condition on the discrete spectrum for

X = SO(2, 4n)0/U(1, 2n) when we apply Theorems 3.8 and 3.11.

Remark 10.9. — In Sections 10.1 and 10.3, the isometry group of X is in the same

family O(2, 2m), with m ∈ N in Section 10.1 and m ∈ 2N in Section 10.3. However,

the representations VZ,λ of G = SO(2, 2m)0 that are involved are different: they are

all highest-weight modules if X = AdS2m+1, and never highest-weight modules if X

is the indefinite Kähler manifold SO(2, 4n)0/U(1, 2n).
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pacts connexes, Tôhoku Math. J. 13 (1961), p. 216–240.

[Bo2] A. Borel, Compact Clifford–Klein forms of symmetric spaces, Topology 2
(1963), p. 111–122.

[Bo3] A. Borel, Linear algebraic groups, second enlarged edition, Graduate
Texts in Mathematics 126, Springer-Verlag, New York, 1991.

[BW] A. Borel, N. Wallach, Continuous cohomology, discrete subgroups, and
representations of reductive groups, Second edition, Mathematical Surveys
and Monographs 67, American Mathematical Society, Providence, RI, 2000.

[BC] P. Buser, G. Courtois, Finite parts of the spectrum of a Riemann sur-
face, Math. Ann. 287 (1990), p. 523–530.
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