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POINCARE SERIES FOR NON-RIEMANNIAN LOCALLY
SYMMETRIC SPACES

Fanny Kassel, Toshiyuki Kobayashi

Abstract. — The discrete spectrum of the Laplacian has been extensively studied
on reductive symmetric spaces and on Riemannian locally symmetric spaces. Here
we examine it for the first time in the general setting of non-Riemannian, reductive,
locally symmetric spaces.

For any non-Riemannian, reductive symmetric space X on which the discrete spec-
trum of the Laplacian is nonempty, and for any discrete group of isometries I' whose
action on X is sufficiently proper, we construct L2-eigenfunctions of the Laplacian
on Xp :=T'\X for an infinite set of eigenvalues. These eigenfunctions are obtained
as generalized Poincaré series, i.e. as projections to X of sums, over the I'-orbits, of
eigenfunctions of the Laplacian on X.

We prove that the Poincaré series we construct still converge, and define nonzero
L?-functions, after any small deformation of T', for a large class of groups I'. In other
words, the infinite set of eigenvalues we construct is stable under small deformations.
This contrasts with the classical setting where the nonzero discrete spectrum varies
on the Teichmiiller space of a compact Riemann surface.

We actually construct joint L2-eigenfunctions for the whole commutative algebra
of invariant differential operators on Xr.



Résumé (Séries de Poincaré pour les espaces localement symétriques non
riemanniens)

Le spectre discret du laplacien a été beaucoup étudié sur les espaces symétriques
réductifs, ainsi que sur les espaces localement symétriques riemanniens. Dans cet ar-
ticle, nous I’étudions pour la premiere fois dans le cadre général des espaces localement
symétriques réductifs non riemanniens.

Pour tout espace symétrique réductif X dont le spectre discret du laplacien est non
vide, et pour tout groupe discret d’isométries I' dont ’action sur X est suffisamment
propre, nous construisons des fonctions propres L? du laplacien sur Xt := I'\ X pour
une infinité de valeurs propres. Ces fonctions propres sont obtenues comme séries
de Poincaré généralisées, c’est-a-dire comme projections sur Xr de sommes, sur les
I'-orbites, de fonctions propres du laplacien sur X.

Nous montrons que ces séries de Poincaré continuent a converger et a définir des
fonctions L? non nulles apres n’importe quelle petite déformation de I', pour une classe
importante de groupes I'. En d’autres termes, ’ensemble infini de valeurs propres
que nous construisons est stable par petites déformations de I'. Ceci contraste avec
la situation riemannienne classique ou le spectre discret non nul d’une surface de
Riemann compacte varie de maniere non constante sur son espace de Teichmiiller.

Les fonctions propres que nous construisons sont en fait communes a toute ’algebre
commutative des opérateurs différentiels invariants sur Xp.



CONTENTS

1. Introduction. ... 1
1.1. The main objects. . ..o 1
1.2. The main problems. . ... e 3
1.3. One approach: constructing generalized Poincaré series.................. 4
1.4, Two examples. . ..o 6
1.5. General results for standard Clifford—Klein forms........................ 8
1.6. General results for sharp Clifford—Klein forms............................ 10
1.7. Another approach in certain standard cases...................c.ovn... 11
1.8. Organization of the paper.......... .. .. i i, 12
NOBATION. .« ot 13

Part I. Precise description of the results................................. 15

2. Lists of examples to which the results apply........................... 17
2.1. Symmetric spaces with standard compact Clifford-Klein forms........... 17

2.2. Group manifolds with interesting standard compact Clifford-Klein forms 18
2.3. Symmetric spaces with nontrivial deformations of standard compact

Clifford-Klein forms.......... ... ... 19

2.4. Clifford-Klein forms of infinite volume...................... ... ... ... 20

3. Quantitative versions of the results............. .. ... ... ... . 23
3.1. Invariant differential operators.......... ... .. .. i 23
3.2. The Laplaciamn. . ... ..ot e 26
3.3. Some further basic notation......... ... . ..o 26
3.4. Precise statements of the main theorems.............. .. .. ... ... ... 29
3.5. Regularity of the generalized Poincaré series.................. .. .. .. .. 30
Part II. Construction of generalized Poincaré series.................... 33

4. Sharpness and counting in non-Riemannian symmetric spaces...... 35



vi CONTENTS
4.1. Preliminaries: Cartan and polar projections.........................o.... 35
4.2, SHAIPIESS. « o ettt 37
4.3. Counting in the reductive symmetric space X .............cooiiiiiin... 39
4.4. Examples of sharp groups......... ... 41
4.5. Link between the Cartan and polar projections.......................... 43
4.6. Proof of the counting estimates. ..., 44
4.7. Sharpness and deformation. ......... ... ... i 46
5. Asymptotic estimates for eigenfunctions on symmetric spaces....... 51
5.1. Poisson transform in Riemannian symmetric spaces...................... 52
5.2. Real forms of G¢/Hc and the Flensted-Jensen duality................... 53
5.3. Discrete series representations. ... ... ... 55
5.4. Asymptotic behavior of discrete series..............coiiiiiiiiiiii... 58
6. Convergence, square integrability, and regularity of the generalized
Poincaré series........ ... 63
6.1. Convergence and boundedness..............cooiiiiiiiiiiiiiiiiiiia.. 64
6.2. Square integrability. ... ... 65
6.3. Regularity. ... ..o 66
6.4. The constant Rx in Proposition 6.1........ ... ... i . 68
Part ITII. Nonvanishing of the generalized Poincaré series.............. 69
7. An estimate for certain eigenfunctions near the origin............... 71
7.1. Flensted-Jensen’s eigenfunctions......... ... .. ..o il 72
7.2. Spherical functions on compact symmetric spaces........................ 73
7.3. Proof of Proposition 7.1 for the Flensted-Jensen functions............... 74
8. Nonvanishing of eigenfunctions on locally symmetric spaces......... 77
8.1. The summation operator Sr on G-translates of L? (X, M) g oo 79
8.2. Nonvanishing on sharp Clifford-Klein forms......................... ..., 80
8.3. Points near the origin in the orbit of a sharp discrete group.............. 82
8.4. Uniformity for standard Clifford—Klein forms............................ 86
8.5. Proof of Proposition 8.1....... ... 89
8.6. Proof of the results of Chapters 1 to 3........ ... ... i it 90
Part IV. Detailed discussion of some examples.......................... 93
9. Three-dimensional anti-de Sitter manifolds............................ 95
9.1. Description of the Clifford-Klein forms of AdS®.......................... 96
9.2. Deformation of convex cocompact Clifford—Klein forms of AdS®.......... 98
9.3. The constant Crip(I)....oovieii 99
9.4. The discrete spectrum of the Laplacian.............. ... ... ... ....... 101
9.5. Flensted-Jensen eigenfunctions and analytic estimates for AdS*.......... 103
9.6. The Flensted-Jensen duality for AdS®. ... .. ..., 105

9.7. Eigenfunctions on X ~ H? and the Poisson transform................... 106



CONTENTS vii

9.8. Meromorphic continuation of the Iwasawa projection..................... 107
9.9. Proof of Claim 9.12. .. ... ..o 108
10. Some other illustrative examples............... ... .. ... i 111
10.1. Anti-de Sitter manifolds of arbitrary dimension......................... 111
10.2. Group manifolds. ....... ... 114
10.3. Indefinite Kéhler manifolds............ ... ... . o i 119
Acknowledgements. ... .. ... 125

Bibliography ... ... ..o 127






CHAPTER 1

INTRODUCTION

The spectral properties of the Laplacian have been much investigated both on Rie-
mannian locally symmetric spaces I'\G/K and on reductive symmetric spaces G/H.
These are all special cases of pseudo-Riemannian locally symmetric spaces T'\G/H,
for which the Laplacian continues to exist and be worthy of study. The aim of this
paper is to set up a framework for spectral theory in this general setting and to prove
the first results on the discrete spectrum of such spaces under a rank condition on
G/H (which makes them non-Riemannian if G is noncompact). In particular, we
construct L2-eigenfunctions for an infinite set of eigenvalues on a large class of spaces
(not necessarily compact or of finite volume) and prove some deformation results that
have no analogue in the classical Riemannian setting. More precisely, we work not
only with the Laplacian, but with the whole commutative algebra of “intrinsic” dif-
ferential operators on I'\G/H, which includes the Laplacian. Before describing our
results in more detail, we first recall the definitions of the main objects.

1.1. The main objects

A pseudo-Riemannian metric on a manifold M is a smooth, nondegenerate, sym-
metric bilinear tensor g of signature (p, q) for some p,q € N. As in the Riemannian
case (i.e. ¢ = 0), the metric g induces a second-order differential operator

(1.1) O = div grad

called the Laplacian or Laplace—Beltrami operator. For instance, for

(M, g) = RP?:= (RPT?, daf + -+ +da) —daj, ) — - —daj,,)
the Laplacian is
Oppr = 2 oy & ¢ &
0z? dxZ  Oxp,, oz, ,
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In general, Oy is elliptic if g is Riemannian, hyperbolic if ¢ is Lorentzian (i.e. ¢ = 1),
and none of these otherwise. The discrete spectrum of (), is its set of eigenvalues
corresponding to L2-eigenfunctions:

(1.2) Specy(On) = {t€C: If € L*(M), f#0, Ouf =tf},

where L?(M) is the Hilbert space of square-integrable functions on M with respect
to the Radon measure induced by the pseudo-Riemannian structure.

A reductive symmetric space is a homogeneous space X = G/H where G is a
real reductive Lie group and H an open subgroup of the group of fixed points of G
under some involutive automorphism o. The manifold X naturally carries a pseudo-
Riemannian metric, induced by the Killing form of the Lie algebra g of G when G is
semisimple; therefore, X has a Laplacian (x. Alternatively, [(0x is induced by the
Casimir element of the enveloping algebra U(g), acting on C°°(X) by differentiation
(see Section 3.2). Let D(X) be the C-algebra of differential operators on X that are
invariant under the natural G-action

g-D=0oDo(f) " = (f — D(fg”)g) :
where we set (;(f) = f9 := f(g-). The Laplacian Ox belongs to D(X) and, since
X is a symmetric space, D(X) is commutative (see Section 3.1); we shall consider
eigenfunctions for Oy that are in fact joint eigenfunctions for D(X).

A locally symmetric space is a quotient Xp = I'\ X of a reductive symmetric space
X = G/H by a discrete subgroup I' of G acting properly discontinuously and freely.
Such a quotient is also called a Clifford-Klein form of X. The proper discontinuity
of the action of I" ensures that Xt is Hausdorff, and it is in fact a manifold since the
action is free. It is locally modeled on X (it is a complete (G, X )-manifold in the sense
of Ehresmann and Thurston), hence inherits a pseudo-Riemannian structure from X
and has a Laplacian Ox.. Any operator D € D(X) induces a differential operator Dy
on X such that the following diagram commutes, where pr : X — Xp is the natural
projection.

C®(X) —2—= C=(X)

In particular, note that

Oxr = (Ox)r-
The discrete spectrum Specy(Xr) of Xr is defined to be the set of C-algebra ho-
momorphisms x, : D(X) — C such that the space L?(Xr, M,) of weak solutions
f € L*(Xt) to the system

Drf=xx(D)f for all D € D(X) (M)
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is nonzero. (The notation y, will be explained in Section 3.1.) It is the set of
joint eigenvalues for the commutative algebra D(Xr) := {Dr : D € D(X)}, which
we think of as the algebra of “intrinsic” differential operators on Xp. The discrete
spectrum Spec,;(Xr) refines the discrete spectrum of the Laplacian Ox,. from (1.2)
(see Remark 3.3).

1.2. The main problems

Let Xp = I'\X be a locally symmetric space. We consider the following problems
(see [KK1]):

Problem A: To construct joint L?-eigenfunctions on Xt corresponding to Spec,(Xr).

Problem B: To understand the behavior of Spec,(Xr) under small deformations
of I' inside G.

By a small deformation we mean a homomorphism close enough to the natural
inclusion in the compact-open topology on Hom(T', G).

Problems A and B have been studied extensively in the following two cases.

— Assume that H is compact. Then X is Riemannian and the Laplacian Oy is
elliptic. If Xt is compact, then the discrete spectrum of [x,. is infinite. If
furthermore T' is irreducible, then Weil’s local rigidity theorem [Wel] states
that nontrivial deformations exist only when X is the hyperbolic plane H? =
SL2(R)/SO(2), in which case compact Clifford-Klein forms have an interesting
deformation space modulo conjugation, namely their Teichmiiller space. Viewed
as a “function” on the Teichmiiller space, the discrete spectrum varies ana-
lytically [BC] and nonconstantly (Fact 1.2 below). On the other hand, for
noncompact Xr the discrete spectrum Spec,(Xr) may be considerably different
depending on whether I' is arithmetic or not (see Selberg [Sel], Phillips—Sarnak
[PS1, PS2], Wolpert [Wp], etc.).

— Assume that T is trivial. Then the group G naturally acts on L?(Xt) = L*(X)
and so representation-theoretic methods may be used. Spectral analysis on the
reductive symmetric space X with respect to D(X) is essentially equivalent to
finding a Plancherel-type theorem for the irreducible decomposition of the regu-
lar representation of G on L?(X): see van den Ban—Schlichtkrull [BS], Delorme
[D], and Oshima [Os1], as a far-reaching generalization of Harish-Chandra’s ear-
lier work [Ha] on the regular representation L?(G) for group manifolds. Flensted-
Jensen [F1] and Matsuki-Oshima [M O] showed that Spec,;(X) # 0 if and only if
the condition rank G/H = rank K/K N H is satisfied (see Section 3.3), in which
case they gave an explicit description of Specy(X) (Fact 5.5). The rest of the
spectrum (tempered representations for X, see [Br]) is constructed from the
discrete spectrum of smaller symmetric spaces by induction.
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On the other hand, Problems A and B have not been much studied when H is
noncompact, I' is nontrivial, and I" acts properly discontinuously on X = G/H,
except in the group manifold case when Xt identifies with ‘TI'\'G for some reductive
Lie group ‘G and some discrete subgroup ‘I'. Here we give the first results that do
not restrict to this case. The fact that H is noncompact and I' nontrivial implies new
difficulties from several perspectives:

1. Analysis: the Laplacian on Xp is not an elliptic operator anymore;

2. Geometry: an arbitrary discrete subgroup I' of G' does not necessarily act prop-
erly discontinuously on X;

3. Representation theory: a discrete subgroup I' of G acting properly discontin-
uously on X always has infinite covolume in G; moreover, G does not act on
L?(Xt) and L?(Xr) # L*(T\G)¥ since H is noncompact.

In particular, point (1) makes Problem A nontrivial: we do not know a priori whether
or not Spec,(Xr) # 0, even for compact Xr.

Point (2) creates some underlying difficulty to Problem B: we need to consider
Clifford—Klein forms Xt for which the proper discontinuity of the action of I' on X
is preserved under small deformations of I" in G. Not all Clifford—Klein forms X
have this property (see Example 4.16), but a large class does (see Example 4.13 and
subsequent comments). The study of small deformations of Clifford-Klein forms in
the general setting of reductive homogeneous spaces was initiated in [Ko5]; we refer
to [Cn] for a recent survey in the case of compact Clifford—Klein forms. An interesting
aspect of the case of noncompact H is that there are more examples where nontrivial
deformations of compact Clifford—Klein forms exist than for compact H (see Sections
2.3 and 2.4).

1.3. One approach: constructing generalized Poincaré series

In this paper we investigate Problems A and B under the assumption (3.3) that
X admits a maximal compact subsymmetric space of full rank. This case is somehow
orthogonal to the case of Riemannian symmetric spaces of the noncompact type, where
compact subsymmetric spaces are reduced to points. Assuming that G is noncompact,
the group H is thus noncompact and X non-Riemannian.

By [Fl, MOJ], the assumption (3.3) is equivalent to the fact that Spec,(X) is
nonempty. Our idea is then to construct joint eigenfunctions on Xr as generalized
Poincaré series
(1.3) o' Ta—s Z o(y-x),

yel’
where the ¢ are well-behaved joint eigenfunctions on X. The convergence and non-
vanishing of the series are nontrivial since the behavior of ¢ needs to be controlled in
relation to the distribution of T'-orbits in the non-Riemannian space X, for which not
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much is known since I" is not a lattice in G (see Remark 4.8). From a representation-
theoretic viewpoint, we build on Flensted-Jensen’s discrete series representations [F1]
for X, whose underlying (g, K)-modules are isomorphic to certain Zuckerman—Vogan
derived functor modules A4(A). The summation process (1.3) is different from that
of [TW]: see Remark 6.2.

Our approach enables us to address Problem A for a large class of Clifford—Klein
forms Xt of X, constructing eigenfunctions on Xr for an explicit, infinite set of
joint eigenvalues contained in Spec,(X). In particular, this proves that the discrete
spectrum Spec,(Xr) is nonempty.

We also address Problem B for a large class of Clifford—Klein forms Xr. We prove
that the infinite subset of Spec,(Xr) that we construct is stable under any small
deformation of T in G, by establishing that the generalized Poincaré series (1.3) still
converges after such a small deformation. This is achieved by carefully controlling
the analytic parameters and using recent results in the deformation theory of proper
actions on homogeneous spaces.

One special example to which our results apply is the aforementioned classical
quotients T'\G, regarded as I x {e}\(G x G)/Diag(G) where Diag(G) is the diagonal
of G x G. Our geometric and analytic estimates in this case imply that all discrete
series representations of G with sufficiently regular parameter appear in the regular
representation L?(I'\G), without replacing I' by a deep enough finite-index subgroup
(Proposition 10.5). When T' is arithmetic, this improves the non-vanishing results of
the classical Poincaré series that were known earlier from the asymptotic multiplicity
formulas of DeGeorge-Wallach [DW], Clozel [Cl], and Rohlfs-Speh [RS] or the theta-
lifting (see Kazhdan [Kz], Borel-Wallach [BW], Li [Li]) in automorphic forms; these
results required passing to a congruence subgroup that depended on the discrete series
representation. Our approach does not depend on the Arthur—Selberg trace formula
or the theta-lifting. We refer to Remark 10.6 for more details.

We introduce three main ingredients:

1. Uniform analytic estimates for eigenfunctions on X, including their asymptotic
behavior at infinity (Proposition 5.1) and the local behavior near the origin of
specific eigenfunctions (Proposition 7.1);

2. A quantitative understanding of proper actions on reductive homogeneous
spaces (notion of sharpness — Definition 4.2);

3. Counting estimates for points of a given I'-orbit in X, both in large “pseudo-
balls” (Lemma 4.6) and near the origin (Proposition 8.9).

In (1), our estimates are uniform in the spectral parameter and refine results of
Flensted-Jensen [F1] and Matsuki-Oshima [MO]. In (2), the quantitative approach
to properness that we develop builds on the qualitative interpretation of Benoist [Bn]
and Kobayashi [Ko1, Ko4] in terms of a Cartan decomposition G = KAK. In (3), we
relate the natural “pseudo-distance from the origin” in the non-Riemannian space X
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to the distance from the origin in the Riemannian symmetric space G/K of G in
order to use the growth rate of I', the Kazhdan—Margulis lemma, and the sharpness
constants of (2). Our counting results may be compared to those obtained by Eskin—
McMullen [EM] in a different setting, where I' is a lattice in G (see Remark 4.8).
We now state precise results, not on our construction of joint eigenfunctions (for
this we refer to Propositions 6.1 and 8.1), but on the corresponding eigenvalues, i.e.
on the discrete spectrum of our locally symmetric spaces. These results were partially
announced in [KK1]. Before we state them in full generality, we illustrate them with
two simple examples of rank one (see Chapters 9 and 10 for more details); in these
two examples, the commutative C-algebra D(X) is generated by the Laplacian Oy
and therefore Spec,;(Xr) identifies with Spec,;(Ox,.) for any Clifford—Klein form Xp.

1.4. Two examples

Our first example is the 3-dimensional anti-de Sitter space X = AdS® =
SO(2,2)0/SO(1,2)g, which can be realized as the quadric of R* of equation @ = 1,
endowed with the Lorentzian metric induced by —@Q, where

Q(x) =i + 25 — 2§ — ai.

It is a Lorentzian analogue of the real hyperbolic space H?, being a model space
for all Lorentzian 3-manifolds of constant sectional curvature —1 (or anti-de Sitter
3-manifolds). The Laplacian (4¢3 is a hyperbolic operator of signature (+ 4 —); it
is given explicitly by

e = Bus(e — 1{)

for all f € C>°(AdS?), where f(z/+/Q(z)) is defined on the neighborhood {Q(z) > 0}
of the quadric AdS® in R*. Tt is equal to 4 times the Casimir operator of g = s0(2, 2)
with respect to the Killing form. We construct eigenfunctions of the Laplacian on all
compact anti-de Sitter 3-manifolds, for an infinite set of eigenvalues, and prove that
this infinite set of eigenvalues is stable under any small deformation of the anti-de
Sitter structure.

Theorem 1.1. — The discrete spectrum of any compact anti-de Sitter 3-manifold is
infinite. Explicitly, if M = T'\AdS® with —1 ¢ T, then
(1.4) Specy(Oar) D {00 —2): LEN, £> (o}

for some integer Ly; moreover, (1.4) still holds (with the same Ly) after any small
deformation of the anti-de Sitter structure on M.

Here —I € SO(2,2)¢ is the nontrivial element of the center of SO(2,2)¢, acting on
AdS® = {x € R* : Q(x) = 1} by the antipodal map z +— —z. If —I € T, then half of
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the spectrum survives:
Specy(Oar) D {€(—2): L€ 2N, £> 4y}

for some 5. We actually prove that (1.4) holds (for some explicit £y) for any complete
anti-de Sitter 3-manifold M = T'\AdS® with I finitely generated (Theorem 9.9). The
stability of eigenvalues under small deformations in Theorem 1.1 contrasts with the
situation in the Riemannian case:

Fact 1.2 (see [Wp, Th.5.14]). — No nonzero eigenvalue of the Laplacian on a com-
pact Riemann surface is constant on its Teichmiiller space.

As we shall recall in Chapter 9, any compact anti-de Sitter 3-manifold M is a circle
bundle over some closed hyperbolic surface S (up to a finite covering); the deformation
space of M contains the Teichmiiller space of S, and its dimension is actually twice
as large. We shall also prove the existence of an infinite stable spectrum for a large
class of noncompact complete anti-de Sitter 3-manifolds (Corollary 9.10).

Our second example is the 3-dimensional complex manifold

which can be realized as the open subset of P3C of equation h > 0, where
h(z) = [z1]? + |z2]* — |23]* — |2a]?

on C*. The space X is naturally endowed with an indefinite Hermitian structure of
signature (2, 1) induced by —h. The imaginary part of —h endows X with a symplectic
structure, making X into an indefinite Kahler manifold. The real part of —h gives rise
to a pseudo-Riemannian metric of signature (4,2). The Laplacian Ox has signature
(+ + + + — —) and is given by the following commutative diagram:

C=(Ch,) < C®(X)

2h Dcz,zl LDX

C=(Ch,) <T— C=(X),

where
4 4.,
C,., =1{2€C": h(z) > 0},
where 7 : Ci>o—> X is the natural projection, and where
02 0? 0? 02

— — — + — + —
(921(921 822622 823623 824624
on C*. Tt is 8 times the Casimir operator of g = su(2,2) with respect to the Killing
form. A natural way to construct Clifford—Klein forms of X is to notice that X fibers

Dc2,2 = —
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over the quaternionic hyperbolic space Hi; = Sp(1,1)/Sp(1) x Sp(1), with compact
fiber:
{zeC*:h(z) =1} — X = {[z] e P3C: h(z) > 0}
fiber U(1)
R lﬁber Sp(1)/U(1)
{fueB?: |ju > —|Jwa? =1} —— Hy = {[u] ePH: |u1]® — |us|? > 0},
fiber Sp(1)
where H is the ring of quaternions and P*H the quotient of H? \. {0} by the diago-
nal action of H ~ {0} on the right. The isometry group Sp(1,1) of the Riemannian
symmetric space Hy; acts transitively on X, and this action is proper since the fiber
Sp(1)/U(1) =~ S? is compact. Any torsion-free discrete subgroup I' of Sp(1, 1) there-
fore acts properly discontinuously and freely on X; we say that the corresponding
Clifford—Klein form Xr is standard (see Definition 1.4).

Theorem 1.3. — The discrete spectrum of any standard Clifford—Klein form Xr of
X = SU(2,2)/U(1,2) is infinite. Explicitly, for T C Sp(1,1) there is an integer ly,
independent of T, such that

(1.5) Specy(Oxr) D {200 —2)(¢+1): LN, > ly};

moreover, (1.5) still holds after any small deformation of T in SU(2,2).

We will see in Section 10.3 that there exist interesting small deformations of standard
Clifford—Klein forms of X = SU(2,2)/U(1,2), both compact and noncompact. We
will compute explicit eigenfunctions. We refer to [Ko6] for further global analysis
on X in connection with branching laws of unitary representations with respect to
the restriction SU(2,2) | Sp(1,1).

1.5. General results for standard Clifford—Klein forms

We now state our results in the general setting of reductive symmetric spaces
X = G/H, as defined in Section 1.1. For simplicity we shall assume G to be linear
throughout the paper.

An important class of Clifford—Klein forms X of X that we consider is the standard
ones.

Definition 1.4. — A Clifford—Klein form Xr of X is standard if T" is contained in
some reductive subgroup L of G acting properly on X.

This generalizes the notion introduced above for X = SU(2,2)/U(1,2). When
L acts cocompactly on X, we can obtain compact (resp. finite-volume noncompact)
standard Clifford-Klein forms X by taking I to be a uniform (resp. nonuniform)
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lattice in L. An open conjecture [KY, Conj. 3.3.10] states that any reductive homo-
geneous space G/H admitting compact Clifford—Klein forms should admit standard
ones.

Our first main result in this general setting is the existence of an infinite discrete
spectrum for all standard Clifford—Klein forms of X when Spec,(X) # 0.

Theorem 1.5. — Let X = G/H be a reductive symmetric space with Spec,(X) # 0,
and L a reductive subgroup of G acting properly on X. Then #Spec,(Xr) = 400
for any standard Clifford—Klein form Xp with I' C L. Moreover, if L is simple
(resp. semisimple), then there is an infinite subset of Specy(X) that is contained in
Spec,(Xr) for any (resp. any torsion-free) T' C L.

We wish to emphasize that when L is semisimple, the infinite subset of the discrete
spectrum that we find is universal, in the sense that it does not depend on I' C L. A
universal spectrum does not exist in the Riemannian case (see Fact 1.2). Our proof is
constructive; we shall explicitly describe an infinite subset of Spec;(Xr) N Specy(X),
independent of I' C L, in terms of the geometry of X and of some quantitative
estimate of the proper discontinuity of L acting on X (see Theorem 3.8).

For I' = {e}, the existence of an infinite discrete spectrum was established by
Flensted-Jensen [F1]. As mentioned above, by [F1, MO], the condition Spec;(X) # 0
is equivalent to the condition rank G/H = rank K/KNH (see Section 3.3), or in other
words to the existence of a maximal compact subsymmetric space of X of full rank.

Our second main result concerns the stability of the discrete spectrum of standard
compact Clifford-Klein forms Xt of X under small deformations of I' in G. The set
Hom(T', G) of group homomorphisms from I" to G is endowed with the compact-open
topology. In the following definition, we assume that the group ¢(T") acts properly
discontinuously and freely on X for all ¢ € Hom(T',G) in some neighborhood Uy
of the natural inclusion of T in G (we shall call this property “stability for proper
discontinuity”). Under this assumption, X, ) = ¢(I')\ X is a manifold for all ¢ € Uy
and we can consider the discrete spectrum Spec, (X, r)); recall that it is contained
in the set of C-algebra homomorphisms from D(X) to C.

Definition 1.6. — We say that A € Specy(Xr) is stable under small deformations
if there exists a neighborhood U C Uy C Hom(I', G) of the natural inclusion such that
A € Specy(Xyry) for all € U.

We say that X has an infinite stable discrete spectrum if there exists an infinite
subset of Spec,(Xt) that is contained in Spec,; (X)) for all ¢ in some neighborhood
U C Uy € Hom(T', G) of the natural inclusion.

We address the existence of an infinite stable discrete spectrum for standard com-
pact Clifford—Klein forms Xp, where I' is a uniform lattice in some reductive sub-
group L of G. First observe that if L has real rank > 2 and I' is irreducible,
then T is locally rigid in G by Margulis’s superrigidity theorem [Mr2, Cor.1X.5.9],
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i.e. all small deformations of I' in G are obtained by conjugation; consequently
Specy(Xyry) = Specy(Xr) for all small deformations ¢, and thus Xr has an infi-
nite stable discrete spectrum by Theorem 1.5. Consider the more interesting case
when L has real rank 1. Then nontrivial deformations of I" inside G may exist (see
Section 2.3). By [Ka2], all compact Clifford-Klein forms Xt with I' C L have the
stability property for proper discontinuity; more generally, so do all Clifford—Klein
forms Xt with I" convex cocompact in L. We prove the existence of an infinite stable
discrete spectrum when Spec,(X) # 0.

Theorem 1.7. — Let X = G/H be a reductive symmetric space with Spec,(X) # 0,
and L a reductive subgroup of G of real rank 1 acting properly on X. Then Xr has
an infinite stable discrete spectrum for any uniform lattice T of L, and more generally
for any convex cocompact subgroup T of L.

We recall that a discrete subgroup I' of L is said to be convex cocompact if it acts
cocompactly on some nonempty convex subset of the Riemannian symmetric space
of L. Convex cocompact groups include uniform lattices, but also discrete groups of
infinite covolume such as Schottky groups, or for instance quasi-Fuchsian embeddings
of surface groups for L = PSLy(C).

Let us emphasize that the small deformations of I' that we consider in Theorem 1.7
are arbitrary inside G; in particular, in the interesting cases I does not remain inside a
conjugate of L. A description of an infinite stable discrete spectrum as in Theorem 1.7
will be given in Theorem 3.11.

In addition to this infinite stable discrete spectrum, standard Clifford—Klein
forms Xt may also have infinitely many eigenvalues that vary under small defor-
mations (see Remark 9.11). Note that an explicit description of the full discrete
spectrum is not known even in the Riemannian case.

1.6. General results for sharp Clifford—Klein forms

The class of standard Clifford—Klein forms that we have just considered is itself
contained in a larger class of Clifford-Klein forms, namely those that we call sharp.
Let us define this notion (see Sections 4.2 and 4.4 for more details and examples).

Let G = KA, K be a Cartan decomposition of G, where K is a maximal compact
subgroup of G and A, a closed Weyl chamber in a maximal split abelian subgroup
of G. Any element g € G may be written as g = kjake for some ki,ky € K and
a unique a € A ; setting u(g) = loga defines a continuous, proper, and surjective
map g : G — log Ay C a:= Lie(A), called the Cartan projection associated with the
Cartan decomposition G = KA K (see Example 4.1 for G = SL,(R)). Let || - || be a
norm on a. We say that a discrete subgroup I' of G is sharp for X = G/H if there
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are constants ¢ > 0 and C > 0 such that
(1.6) da(p(v), p(H)) = cllp(y)] = C

for all v € T, where dq is the metric on a induced by the norm || - ||. This means
that the set u(T') “goes away linearly from p(H) at infinity”. This notion does not
depend on the choice of the Cartan decomposition G = KA, K nor of the norm || - ||.
By the properness criterion of Benoist [Bn] and Kobayashi [Ko4|, any sharp discrete
subgroup T' of G acts properly discontinuously on X (see Section 4.4); sharpness
should be thought of as a form of strong proper discontinuity. When I" is sharp, we
say that the corresponding Clifford-Klein form Xr is sharp too.

Examples of sharp Clifford—Klein forms are plentiful, as explained in Section 4.4.
For instance, all standard Clifford—Klein forms are sharp. Also, all known examples
of compact Clifford—Klein forms of reductive homogeneous spaces are sharp, even
when they are nonstandard. We conjecture that all compact Clifford—Klein forms of
reductive homogeneous spaces should be sharp (Conjecture 4.12).

We generalize Theorem 1.5 from the standard to the sharp case and prove the
following.

Theorem 1.8. — Let X = G/H be a reductive symmetric space with Spec,(X) # (.
Then Spec,(Xr) is infinite for any sharp Clifford-Klein form Xr of X.

We give an explicit infinite subset of Spec;(Xr) contained in Spec,(X) (see Theo-
rem 3.8), in terms of the geometry of X, of the “sharpness constants” ¢, C' from (1.6),
and of a “pseudo-distance” from the origin g = eH of X = G//H to the other points
of its I'-orbit in X.

Recall that on a Riemannian symmetric space all eigenfunctions of the Laplacian
are analytic by the elliptic regularity theorem (see [KKK, Th.3.4.4] for instance).
Here X is non-Riemannian, hence eigenfunctions are not automatically analytic. We
still obtain some regularity result (see Section 3.5).

1.7. Another approach in certain standard cases

The approach described in this paper is based on the existence of discrete series
representation for the reductive symmetric space X — a phenomenon specific to the
non-Riemannian case, and equivalent to the condition (3.3). It is not the only possible
approach for constructing joint eigenfunctions on Clifford—Klein forms Xt. When I’
is contained in some reductive subgroup L of G acting properly and transitively on X,
it is possible to construct other eigenfunctions by using the spectral analysis of the
Riemannian symmetric space of L and the restriction to L of irreducible unitary
representations of G (branching laws for G | L). More precisely, if X is irreducible
and spherical as an L-homogeneous space (but does not necessarily satisfy (3.3)), then
it is possible to show that Spec;(Xr) \ Spec,(X) is infinite for any uniform lattice
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T of L: details will be given in [KK2]. The following issues are also treated there in
some standard cases:

— Extension of the Laplacian Ux,. to a self-adjoint operator on L?(Xr);

— Inclusion of analytic functions as a dense subspace of L?(Xr, M,);

— Infinite multiplicity of joint eigenvalues for D(Xr);

— Relations with branching laws of unitary representations.

1.8. Organization of the paper

The paper is divided into four parts.

Part I is a complement to the introduction. In Chapter 2 we give an overview of
various types of examples that our main theorems cover. In Chapter 3 we introduce
some basic notation and give more precise statements of the theorems by means of
the Harish-Chandra isomorphism for the ring of invariant differential operators; in
particular, we describe an explicit infinite set of eigenvalues, which in the standard
case of Theorem 1.7 is both universal and stable under small deformations.

Part II is devoted to the proof that for all K-finite L2-eigenfunctions ¢ on X with
sufficiently regular spectral parameter, the generalized Poincaré series (1.3) converges
and yields an L?-eigenfunction on Xp. The proof is carried out in Chapter 6, based
on both geometric and analytic estimates. The geometric estimates are established in
Chapter 4, where we quantify proper discontinuity through the notion of sharpness
and count points of I'-orbits in the non-Riemannian symmetric space X when I' is a
sharp discrete subgroup of GG. The analytic estimates are given in Chapter 5, where
we reinterpret some asymptotic estimates of Oshima in terms of the regularity of the
spectral parameter and of a “pseudo-distance from the origin” in X.

Part III establishes that, as soon as the spectral parameter X is regular enough and
satisfies some integrality and positivity condition, the generalized Poincaré series (1.3)
is nonzero for some good choice of ¢; this completes the proof of the results stated in
Chapters 1 to 3. The functions ¢ that we consider are G-translates of some K-finite
L?-eigenfunctions 1y on X introduced by Flensted-Jensen. The proof is given in
Chapter 8, and prepared in Chapter 7, where we give a finer analytic estimate for ¥y
that controls its behavior, not only at infinity, but also near the origin z¢ := eH
of X = G/H. To deduce the nonvanishing of the series (1.3), it is then enough to
control how the I'-orbit through zo approaches x(: this is done in Chapter 8, after
conjugating I' by some appropriate element of GG; for uniformity for standard I", we
use the Kazhdan—Margulis theorem. We complete the proof of the main theorems in
Section 8.6.

Finally, Part IV provides a detailed discussion of some examples, designed to illus-
trate the general theory in a more concrete way.
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Notation

In the whole paper, we use the notation Ry = (0, +00) and R>¢ = [0, +c0), as well
as N+ = ZQR+ and N = ZQRZO
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RESULTS






CHAPTER 2

LISTS OF EXAMPLES TO WHICH THE RESULTS
APPLY

There is a variety of locally symmetric spaces Xp = I'NG/H to which Theorems
1.5, 1.7, and 1.8 can be applied. The aim of this chapter is to provide a brief overview,
with an emphasis on compact Xt in the first three sections. Some of the examples
mentioned here will be analyzed in more detail in Chapters 9 and 10.

2.1. Symmetric spaces with standard compact Clifford—Klein forms

We recall the following general construction from [Kol]. Assume that there exists
a reductive subgroup L of G acting properly and cocompactly on X. Then standard
compact Clifford—Klein forms X = I'\X can be obtained by taking I' to be any
torsion-free uniform lattice in L. Likewise, standard Clifford-Klein forms Xt that are
noncompact but of finite volume can be obtained by taking I' to be any torsion-free
nonuniform lattice in L. Uniform lattices of L always exist and nonuniform lattices
exist for semisimple L, by work of Borel-Harish-Chandra, Mostow—Tamagawa, and
Borel [Bo2]; they all admit torsion-free subgroups of finite index by the Selberg lemma
[Se2, Lem. 8].

Here is a list, taken from [KY, Cor.3.3.7], of some triples (G, H, L) where G is
a simple Lie group, X = G/H is a reductive symmetric space, and L is a reductive
subgroup of G acting properly and cocompactly on X, with the additional assumption
here that Spec,;(X) # 0 (so that Theorem 1.5 applies). We denote by m and n any
integers > 1 with m even.

G H L
(1) SO(2,2n) SO(1,2n) U(l,n)
(ii) SO(2,2m) U(1,m) SO(1,2m)
(iii) SO(4, 4n) SO(3,4n) Sp(1,n)
(iv) SU(2,2n) U(1,2n) Sp(1,n)
(v) SO(8,8) SO(7,8) Spin(1, 8)
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TABLE 2.1

2.2. Group manifolds with interesting standard compact Clifford—Klein
forms

Any reductive group ‘G may be regarded as a homogeneous space under the action
of ‘G x'G by left and right multiplication; in this way, it identifies with the symmetric
space X = (‘G x'G)/Diag(‘G), where Diag(‘G) denotes the diagonal of ‘G x ‘G.
The condition Specy(X) # 0, or in other words rank G/H = rank K/K N H (see
Section 3.3), is equivalent to the condition

(2.1) rank ‘G = rank ‘K,

where ‘K is any maximal compact subgroup of ‘G; for ‘G simple, this condition is
satisfied if and only if the Lie algebra of ‘G belongs to the following list, where n, p,
and ¢ are any integers > 1:

(2:2) so(p,2q), su(p, q), sp(p, q), sp(n,R), 50%(2n),
€6(2)s €6(—14)y €7(7)s €7(=5) €7(—25)) €8(—24)s f4(4), f4(—20)7 92(2)-

Standard Clifford—Klein forms X1 of X = (‘G x'G)/Diag(*G) can always be obtained
by taking I' of the form ‘" x {e} or {e} x ‘T', where ‘T is a discrete subgroup of ‘G.
Then Xt identifies with a usual quotient ‘T'\'G or ‘G/'T" of ‘G by a discrete subgroup
on one side; in particular, Xt has finite volume (resp. is compact) if and only if ‘T is
a lattice (resp. a uniform lattice) in ‘G. Theorem 1.5 applies to such Xr.

It is worth noting that for certain specific groups ‘G of real rank > 2, there is
another (more general) type of standard compact Clifford—Klein forms of X, namely
double quotients ‘T'1\'G/'T's where ‘T'; and ‘T'y are discrete subgroups of ‘G [Ko2].
This happens when there exist two reductive subgroups ‘G; and ‘G4 of ‘G such that
‘GGy acts properly and cocompactly on ‘G/*'Gs. In this case, the group L :=‘G1 X ‘G2
acts properly and cocompactly on X = (*G x'G)/Diag(‘G), and standard Clifford—
Klein forms X1 can be obtained by taking I' of the form I' = ‘I'; x ‘I'y C L, where ‘T';
is a discrete subgroup of ‘G;. Such a Clifford—Klein form Xt identifies with the double
quotient ‘I'1\'G/'T'y; it has finite volume (resp. is compact) if and only if ‘T'; is a lattice
(resp. a uniform lattice) in ‘G; for all i € {1,2}. We would like to emphasize that this
“exotic” X is locally modeled on the group manifold ‘G and not on the homogeneous
space ‘G /'G2. The following table, obtained from [KY, Cor. 3.3.7], gives some triples
(‘\G, G1,'G>) such that ‘G satisfies the rank condition (2.1) and ‘G acts properly and
cocompactly on ‘G/'Gy; Theorem 1.5 applies to the corresponding double quotients
‘T'1\'G/'T'y. Here n is any integer > 1; it does not need to be even in Example (ii), in
contrast with Example (ii) of Table 2.1. We note that neither (‘G,‘'G1) nor (‘G,'G2)
has to be a symmetric pair, and that ‘G7 and ‘G play symmetric roles.
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‘G ‘G ‘G
(i) ‘G with Lie algebra in (2.2) ‘G {e}
(ii) SO(2,2n) SO(1,2n) U(1,n)
(ii) SO(4,4n) SO(3, 4n) Sp(1, n)
(iv) SU(2,2n) U(1,2n) Sp(1,n)
(v) SO(8,8) SO(7,8) Spin(1,8)
(vi) SO(4,4) SO(4,3) Spin(4,1)
(vii) SO(4,4) Spin(4, 3) SO(4,1) x SO(3)
(viii) SO(4,3) G SO(4,1) x SO(2)
(ix) SO*(8) U(3,1) Spin(1,6)
(x) SO*(8) SO*(6) x SO*(2) Spin(1,6)
TABLE 2.2

2.3. Symmetric spaces with nontrivial deformations of standard compact
Clifford—Klein forms

Theorem 1.7 applies to all the examples in Table 2.1. However, this theorem is
relevant only for standard Clifford—Klein forms Xr such that I' admits nontrivial
small deformations inside G, i.e. deformations that are not obtained by conjugation.
Such deformations do not always exist when Xt is compact. We now point out a few
examples where they do exist.

Consider Example (i) of Table 2.1, where X = SO(2,2n)/SO(1,2n) is the (2n+1)-
dimensional anti-de Sitter space AdS*™ . The group L = U(1,n) has a nontrivial
center Z(L), isomorphic to U(1). For certain uniform lattices I' of L, small nontriv-
ial deformations of T' inside G = SO(2,2n) can be obtained by considering homo-
morphisms of the form v — 9 (y) with ¢ € Hom(T', Z(L)) (see [Ko5]). By [Ral]
and [We2], any small deformation of " inside G is actually of this form, up to conjuga-
tion. The Clifford—Klein forms corresponding to these nontrivial deformations remain
standard, but the existence of a stable discrete spectrum given by Theorem 1.7 is not
obvious even in this case. We examine this example in more detail in Section 10.1.

Consider Example (ii) of Table 2.1, where X = SO(2,2m)/U(1,m) has the addi-
tional structure of an indefinite Kahler manifold (see Section 10.3). Here it is actually
possible to deform certain standard compact Clifford—Klein forms of X into nonstan-
dard ones. Indeed, using a bending construction due to Johnson—Millson [JM], one
can obtain small Zariski-dense deformations inside G = SO(2,2m) of certain arith-
metic uniform lattices T' of L = SO(1,2m) (see [Ka2, §6]): this yields a continuous
family of compact Clifford-Klein forms X with I' Zariski-dense in G. (Recall that
a group is said to be Zariski-dense in G if it is not contained in any proper algebraic
subgroup of G.) Here the C-algebra D(X) is a polynomial ring in [Z4] generators;
we discuss the discrete spectrum of Xt in Section 10.3.
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Finally, consider the “exotic” standard compact Clifford—Klein forms
‘T'1'\'G/'T'y discussed in Section 2.2, for which some examples are given in Ta-
ble 2.2. Here is an analog of Theorem 1.7 in this setting (see Proposition 2.2 below
for noncompact Clifford-Klein forms): the novelty is the stability of the discrete
spectrum, whereas the fact that the quotient remains a manifold under small defor-
mations (i.e. stability for proper discontinuity, in the sense of Section 1.5) is a direct
consequence of [Ka2]. We refer to Section 8.6 for a proof.

Proposition 2.1. — Let ‘G be a reductive linear Lie group and let ‘G1 and ‘G be
two reductive subgroups of ‘G such that ‘G acts properly on ‘G/'Gy. Any standard
Clifford-Klein form

\Fl\\G/ \FQ >~ (\Fl X\FQ)\(\G x\G)/Diag(\G),

where ‘T'; is an irreducible uniform lattice of ‘\G; for alli € {1,2}, remains a manifold
after any small deformation of ‘T'y x'T'y inside ‘G x'G, and it has an infinite stable
discrete spectrum if (2.1) is satisfied.

In Examples (ii), (vii), and (viii) of Table 2.2, certain standard compact Clifford—
Klein forms ‘I';\'G/'I'y admit small nonstandard deformations obtained by bending,
similarly to Example (ii) of Table 2.1 above. In Example (i) of Table 2.2, there exist
standard compact Clifford-Klein forms ‘I';\'G with nonstandard small deformations
if and only if ‘G has a simple factor that is locally isomorphic to SO(1, 2n) or SU(1,n)
[Ko5, Th. AJ.

2.4. Clifford—Klein forms of infinite volume

Most examples of Clifford—Klein forms that we have given in Sections 2.1 to 2.3
were compact. However, Theorems 1.5, 1.7, and 1.8 do not require any compactness
assumption. In particular, in Theorems 1.5 and 1.7 on the existence of an infinite
(universal or stable) spectrum for standard Clifford-Klein forms, we remark that

— the reductive group L does not need to act cocompactly on X (it could be quite

“small”, for instance locally isomorphic to SLa(R)),

— the discrete group I' does not need to be cocompact (nor of finite covolume) in L.
Also, in Theorem 1.8, the sharp Clifford—Klein form X does not need to be compact
(nor of finite volume). Therefore, our theorems apply to much wider settings than
those of Tables 2.1 and 2.2; we now discuss some examples.

Firstly, as soon as rankg H < rankr GG, there exist infinite cyclic discrete sub-
groups I' of G that are sharp for X = G/H [Kol]; Theorem 1.8 applies to the
corresponding Clifford—Klein forms Xp. Even in this case, the existence of an infinite
discrete spectrum for Xt is new.

Secondly, for many X there exist discrete subgroups I' of G that are nonvirtually
abelian (i.e. with no abelian subgroup of finite index) and sharp for X; we can again
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apply Theorem 1.8. This is for instance the case for X = SO(p + 1,q)/SO(p, q)
whenever 0 < p < ¢—1or p=¢—1is odd [Bn]. Recently, Okuda [Ok] gave a
complete list of reductive symmetric spaces X = G/H with G simple that admit
Clifford-Klein forms Xr with I' nonvirtually abelian. For such symmetric spaces,
there always exist interesting sharp examples:

1. on the one hand, sharp Clifford-Klein forms Xr such that I" is a free group,
Zariski-dense in G [Bn, Th.1.1];

2. on the other hand, standard Clifford-Klein forms Xr with I' C L for some
subgroup L of G isomorphic to SLy(R) or PSLa(R) [OK].

In case (1), the group T is in some sense “as large as possible”, in contrast with
case (2), where it is contained in a proper algebraic subgroup L of G. In case (2),
we can take I' to be a surface group embedded in L, therefore admitting nontrivial
deformations inside L. Theorem 1.8 applies to case (1) and Theorems 1.5 and 1.7 to
case (2).

Thirdly, for group manifolds X = (‘G x'G)/Diag(‘G) there are many examples of
standard Clifford—Klein forms of infinite volume that admit nontrivial deformations.
As in Section 2.2, we can take a pair of reductive subgroups ‘G1, Gy of ‘G such that
‘G acts properly on ‘G/'G3, but now we do not require anymore that this action be
cocompact. We consider Xr = ‘T'1\'G/'T's where ‘T'; is a discrete subgroup of ‘G;
(not necessarily cocompact) and we deform ‘T’ inside ‘G x‘'G. Here is an analog of
Theorem 1.7 that applies in this setting; we refer to Section 8.6 for a proof.

Proposition 2.2. — Let ‘G be a reductive linear Lie group satisfying (2.1) and let
‘G and ‘Gq be two reductive subgroups of ‘G such that ‘G acts properly on ‘G /'Ga.
Consider a standard Clifford—Klein form

\Fl\\G/\FQ >~ (\Fl X\FQ)\(\G x‘G)/Diag(‘G),
where ‘T; is a discrete subgroup of \G; for all i.

1. If‘G1 has real rank 1 and ‘T'y is convex cocompact in ‘G, then there exists an
infinite subset I of Specy(‘\T1\'G/'T'2) and a neighborhood ‘U C Hom(‘I'y,'G x
Z('T2)) of the natural inclusion such that ‘p(\T'1)\'G/'T'2 is a manifold and
I C Spec,(‘¢(‘T'1)\'G/'T'3) for all‘p € ‘U.

2. If \G; has real rank 1 and ‘T; is convex cocompact in ‘G; for all i € {1,2},
then the standard Clifford-Klein form ‘T'1\'G/'T's remains a manifold after any

small deformation of ‘T'y x'I'y inside ‘G xX'G and it has an infinite stable discrete
spectrum in the sense of Definition 1.6.






CHAPTER 3

QUANTITATIVE VERSIONS OF THE RESULTS

In this chapter, we give some quantitative estimates of Theorems 1.5, 1.7, and
1.8 (Section 3.4) and discuss the regularity of our eigenfunctions (Section 3.5). We
first fix some notation that will be used throughout the paper and recall some useful
classical facts (Sections 3.1 to 3.3).

3.1. Invariant differential operators

In the whole paper, G denotes a real reductive linear Lie group and H an open
subgroup of the group of fixed points of G under some involutive automorphism o.
We denote their respective Lie algebras by g and . Without loss of generality, we
may and will assume that G is connected; indeed, we only need to consider the discrete
spectrum of one connected component of X = G/H.

In this paragraph, we recall some classical results on the structure of the algebra
D(X) of G-invariant differential operators on X. We refer the reader to [Hel, Ch.TI]
for proofs and more details.

Let U(gc) be the enveloping algebra of the complexified Lie algebra gc := g ®@g C
and U(gc)? the subalgebra of Adg(H)-invariant elements (it contains in particular
the center Z(gc) of U(ge)). Recall that U(ge) acts on C°°(G) by differentiation on
the right, with

o d
T dy

for all Y1,...,Y,, € g, all f € C(G), and all g € G. This gives an isomorphism
between U (gc) and the ring of left-invariant differential operators on G. By identifying
the set of smooth functions on X with the set of right- H-invariant smooth functions
on G, we obtain a C-algebra homomorphism

d
t1=0 dtm

(V1Y) - f)(9)

- f(gexp(t1Y1) -+ exp(tm¥im))

p: Ulge)” — D(X).
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This homomorphism is surjective, with kernel U(gc)hc N U(ge)? [Hel, Ch.II,
Th. 4.6], hence it induces an algebra isomorphism

(3.1) U(gc)” /U (gc)be NU(gc)? = D(X).

Let g = b 4+ q be the decomposition of g into eigenspaces of do, with respective
eigenvalues +1 and —1. In the whole paper, we fix a mazimal semisimple abelian
subspace j of v/—1q. The integer

(3.2) rank G/H := dimg j

does not depend on the choice of j. Geometrically, if xo denotes the image of H in
X = G/H, then exp(v/—1j) - ¢ is a maximal flat totally geodesic submanifold of X,
where “flat” means that the induced pseudo-Riemannian metric is nondegenerate
and that the curvature tensor vanishes (see [KIN69, Ch.XI, §4]). Let W be the
Weyl group of the restricted root system Y(gc,jc) of jc in gc, and let S(ic)" be
the subalgebra of W-invariant elements in the symmetric algebra S(jc) of jc. The
important fact that we will use is the following.

Fact 3.1. — The algebra D(X) of G-invariant differential operators on X is a poly-
nomial algebra in r :=rank G/H generators. It naturally identifies with S(ic)", and
the set of C-algebra homomorphisms from D(X) to C identifies with i /W, where j¢
is the dual vector space of jc.

Let us explicit these identifications. Let X7 (gc,jc) be a system of positive roots

in X(gc,jc) and let
ne= @ (g0)a
aeXt (ge,ic)
be the sum of the corresponding root spaces, where
(90)a :=={Y € gc, [T,Y] = a(T)Y VT'€ j}.
The complexified Iwasawa decomposition gc = he+jc+ne holds, implying that U(ge)
is the direct sum of U(jc) ~ S(jc) and heU(ge) +U(ge)ne. Let p' : U(ge) — S(ic) be

the projection onto S(jc) with respect to this direct sum and let p” : U(ge) — S(ic)
be the “shifted projection” given by

(p" (), A) = (p'(u), A = p)

for all A € ji, where

pimy > dimclgchacit
a€X T (ge,jc)
is half the sum of the elements of X7 (gc,jc), counted with root multiplicities. The
restriction of p” to U(gc)?
isomorphism

is independent of the choice of X (gc,jc) and induces an

U(gc)™ /U(gc)be NU ()" — S(c)"”
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[Hel, Ch.II, Th.5.17]. If H is connected, then U(gc)Yc = U(gc)? and, using (3.1)
above, we obtain the following commutative diagram.

1

D(X) =———— U(ge)? —— 5S(ic)

T~ T

U(ac)? /U(gc)be NU(ge)?

w

Thus we have a C-algebra isomorphism ¥ : D(X) = S(jc)" (Harish-Chandra iso-
morphism). In the general case when H is not necessarily connected, we still have an
isomorphism ¥ : D(X) = S(ic)" by the following remark.

Remark 3.2. — The C-algebra D(X) is isomorphic to D(G/Hy), where Hy denotes
the identity component of H.

Proof. — There is a natural injective algebra homomorphism D(X) — D(G/H)
induced by the natural projection G/Hy — X. To see that this homomorphism is
surjective, it is sufficient to see that H acts trivially on D(G/Hy). This follows from
the fact that the quotient field of D(G/Hy) is isomorphic to that of p(Z(gc)) [Hel,
Ch.III, Th.3.16] (where p : U(gc)e — D(G/Hy) is given by the diagram above
for Hy) and from the fact that H acts trivially on Z(gc) and p is H-equivariant. [

By the Harish-Chandra isomorphism ¥ : D(X) = S(jc)", the C-algebra D(X)
is a commutative algebra generated by r := dimg j = rank G/H homogeneous, alge-
braically independent differential operators Dy, ..., D,. If we identify S(jc) with the
ring of polynomial functions on j¢, then any homomorphism from D(X) to C is of the
form

Xx: D+— (¥(D), \)
for some A € j, and xn = x if and only if \ € W-A. By construction, any D € D(X)
acts on the constant functions on X by multiplication by the scalar x,(D). From now
on, we identify the set of C-algebra homomorphisms from D(X) to C with j&/W; in
particular, we see Specy(X) (or Specy(Xr) for any Clifford-Klein form Xr) as a
subset of j&/W:

Specy(Xr) = {X €j¢/W : L*(Xr, My) # {0}},
where L?(Xr, M,) is the space of weak solutions f € L?(Xr) to the system
Drf=x(D)f  forall DeD(X) (M),

Remark 3.3. — When r = rankG/H > 1, the space L?(Xr, M,) is in general
strictly contained in the space of L2-eigenfunctions of the Laplacian Oy,. (details will
be given in [KK2]).
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3.2. The Laplacian

In the whole paper, we fix a Cartan involution 6 of G commuting with o and let
K = GY be the corresponding mazimal compact subgroup of G, with Lie algebra .
Let g = £+ p be the corresponding Cartan decomposition, i.e. the decomposition of g
into eigenspaces of df with respective eigenvalues +1 and —1. We fix a G-invariant
nondegenerate symmetric bilinear form B on g with the following properties: B is
positive definite on p, negative definite on £, and p and € are orthogonal for B. If G
is semisimple, we can take B to be the Killing form & of g.

On the one hand, since the involution o commutes with the Cartan involution 6,
the form B is nondegenerate on h x h, and induces an H-invariant nondegenerate
symmetric bilinear form on g/h. By identifying the tangent space T,,(G/H) at x¢ =
eH € G/H with g/h and using left translations, we obtain a G-invariant pseudo-
Riemannian structure on X = G/H. We then define the Laplacian Ox as in (1.1)
with respect to this pseudo-Riemannian structure.

On the other hand, the form B defines an isomorphism g* ~ g, yielding a canonical
element in (g® g)¢ corresponding to the identity under the isomorphism (g* ® g)¢ ~
Home (g, g). This element projects to the Casimir element of U(gc), which lies in the
center Z(gc). It gives a differential operator of order two on X, the Casimir operator,
whose actions by differentiation on the left and on the right coincide. Since X is a
symmetric space, the Casimir operator on X coincides with Ox. (We refer to [Hel,
Ch.II, Exer. A.4] for the case when H is a maximal compact subgroup of G; a proof
for the general case goes similarly.)

We now explicit the eigenvalues of Ox. For this we note that B is nondegenerate
on any f#-stable subspace of g. In particular, if j is 6-stable (which will always be the
case below), then B induces a nondegenerate W-invariant bilinear form (-,-) on j*,
which we extend to a complex bilinear form (-, -) on jg.

Fact 3.4. — If f € C™(X) satisfies (M) for some X € jf, then

Indeed, this follows from the above description of the Harish-Chandra isomorphism;
one can also use [Hel, Ch.II, Cor.5.20] and the fact that D(X) ~ D(X?), where X¢
is a Riemannian symmetric space of the noncompact type with the same complexifi-
cation as X (see Section 5.2).

3.3. Some further basic notation

We now fix some additional notation that will be used throughout the paper.

We first recall that the connected reductive group G is the almost product of its
connected center Z(G)o and of its commutator subgroup G, which is semisimple. The
group G, itself is the almost product of finitely many (nontrivial) connected simple
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normal subgroups, called the simple factors of G. The connected center Z(G)o is
isomorphic to R® x (S)? for some integers a,b € N. Recall that G' admits a unique
maximal compact normal subgroup G., which is generated by the compact simple
factors of G, by the center Z(Gs) of G, and by the compact part of Z(G)y. The
group G is said to have no compact factor if G. = Z(Gj).

Flensted-Jensen [F1] and Matsuki-Oshima [MO] proved that Spec,(X) is
nonempty if and only if

(3.3) rank G/H = rank K/HN K,

where the rank is defined as in (3.2). This is equivalent to the fact that X admits
a maximal compact subsymmetric space of full rank, namely K/H N K. Under the
rank condition (3.3), we may and do assume that the maximal abelian subspace j
of Section 3.1 is contained in /—1(€ N q). Then j is f-stable, all restricted roots
a € 3(gc,jc) take real values on j, and the W-invariant bilinear form (-,-) on j* from
Section 3.2 is positive definite.

We fiz once and for all a positive system X7 (€c,jc) of restricted roots of jc in €c,
which we will keep until the end of the paper; we denote by p. half the sum of the
elements of X7 (€c,jc), counted with root multiplicities. We now introduce some
notation A, A, and A’ that will be used throughout the paper. We start by extending
j to a maximal abelian subspace j of /=1t Let AT (c,jc) be a positive system
of roots of j¢ in f¢ such that the restriction map o ol sends A"’({?CJC) to
Yt (kc,jc) U {0}. We identify the set of irreducible finite-dimensional representations
of ¢ with the set of dominant integral weights with respect to the positive system
At (Ec,jic). As a subset, we denote by

(3.4) Ay = Ay (K/HNK)

the set of irreducible representations of K with nonzero (H N K)-fixed vectors; it is the
support of the regular representation of K on L?(K/H N K) by Frobenius reciprocity.

Remark 3.5. — By definition, A is a set of dominant integral elements in the dual
of j =j+ (jNbhc). However, we can regard it as a subset of j* by the Cartan—Helgason
theorem [Wa, Th. 3.3.1.1].

We set
(3.5) A :=Z-span(Ay) Cj*.

For any finite subgroup J of the center Z(K) of K, let I/(-/T] be the set of (highest
weights of) irreducible representations of K that factor through K/J and let

(3.6) A7 := Z-span(A; N I/(/\J)

We note that the Z-module A’ has finite index in A. Indeed, if J has cardinal m,
then A7 contains mA = {mX: X\ € A} since (mA)(z) = A(z™) =1 for all A € A} and
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zeJ. If JcJ, then A > A7 in particular, for any discrete subgroup I' of G we
have

(3.7) A D ATNZ(Gs) o AZ(Gy)
where, as before, Z(Gy) is the center of the commutator subgroup G, of G.

Remark 3.6. — If J C H, then A = A’. In particular, if Z(G,) C H, then
ATNZ(Gs) = A for any subgroup I of G.

Indeed, if J C H, then J acts trivially on K/H N K, hence the regular representation
of K on L*(K/H N K) factors through K/.J.

Any choice of a positive system Y7 (gc,jc) of restricted roots of j¢ in g¢ containing
Yt (bc,jc) will determine:
1. a basis {aq,...,a,} of X(gc,ic),
2. a positive Weyl chamber
it == {X € Homg(j,R) : (A, @) > 0 for all @ € ¥ (gc,ic)},
with closure E in j*,
3. anelement p € j% , defined as half the sum of the elements of X (gc,jc), counted
with root multiplicities,

4. a function d : E — R4 measuring the “weighted distance” from A to the walls
of j%, given by
()\a ai)

= 1 >
d(\) : min (o) = 0.

The function d does not depend on the choice of the W-invariant inner product (-, -)
that we made in Section 3.2; we extend it as a W-invariant function on j*. We note
that any element of j* enters the positive Weyl chamber j7 if we add tp for some
sufficiently large t > 0; conversely, d(\) measures to which extent A —¢p remains in j*,
for X €77 :

Observation 3.7. — For all X € j7,

d(N) =
- m—p JZSES W
where we set
(3.8) m, = max (pya)

<< (ag, 04)
Proof. — For any simple root a; (1 <i <),

)\_Mp7ai
w>(“ @mpzo' 0

(cviy ;) - mp

We note that if jc is a Cartan subalgebra of gc, then d(p) = m, =1/2.
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3.4. Precise statements of the main theorems

With the above notation, here is a more precise statement of Theorems 1.5 and 1.8
on the existence of an infinite discrete spectrum, which is “universal” for standard
Clifford-Klein forms. We choose a positive system X% (gc,jc) containing the fixed
positive system X7 (¢, jc) of Section 3.3; this determines a positive Weyl chamber j*.
and an element p € j} .

Theorem 3.8. — Suppose that G is connected, that H does not contain any simple
factor of G, and that the rank condition (3.3) holds.

1. For any sharp Clifford—Klein form Xp with T NG, C Z(Gs), there is a constant
R > 0 such that

{Me7in (2pe—p+ ATHE)) 1 d(N) > R} € Specy(Xr).

2. The constant R can be taken uniformly for standard Clifford—Klein forms: given
any reductive subgroup L of G, with a compact center and acting properly on X,
there is a constant R > 0 such that

{N€itn (2o —p+ ATVHE)) 1 d(A) > R} C Specy(Xr)

for all discrete subgroups T' of L with T' N L. C Z(Gy) (this includes all torsion-
free discrete subgroups T of L); in particular, by (3.7),

{N€i1n (20— p+ A7) 1 d(N) > R} © Specy(Xr)
for all such T.

As in Section 3.3, we denote by G, (resp. by L.) the maximal compact normal
subgroup of G (resp. of L), and by Z(G5) the center of the semisimple part of G. The
Z-modules AT"?() and A%(%) have been defined in (3.6) and the term “sharp” in
Section 1.6.

We note that the technical assumptions of Theorem 3.8 are not very restrictive:

Remarks 8.9. — (a) The assumption I' N G. C Z(Gy) is automatically satisfied
if G has no compact factor (i.e. if G. = Z(G5)) or if T' is torsion-free. This
assumption will be removed in Section 8.6 in order to prove the theorems and
propositions of Chapters 1 and 2.

(b) The assumption ' N L. C Z(G5) is automatically satisfied if I" is torsion-free,
or if L has no compact factor and Z(L) C Z(Gs). We note that for I' C L, the
condition I' N L. C Z(G) is stronger than I'N G, C Z(Gy).

Constants R as in Theorem 3.8.(1) and (2) can be expressed in terms of the ge-
ometry of X, of the sharpness constants (¢, C) of I, and of a “pseudo-distance” from
the origin zp = eH of X = G/H to the other points of its '-orbit in X: see (8.9),
(8.10), and (8.11).

3
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We note that our choice of a positive system X7 (gc,jc) containing X (g, jc) could
affect the lattice condition A € 2p. — p+ AT"Z(G4) since p depends on this choice. All
elements A satisfying one of these lattice conditions appear in the discrete spectrum.
We refer to (5.6) for a geometric meaning of the choice of X (gc,jc).

Remark 3.10. — In Theorem 3.8.(1), we can take R = 0 if ' = {e}. This is
the “C' = 07 conjecture of [F1] on the precise condition of the parameter A for the
square integrability of certain joint eigenfunctions on X; this conjecture was proved
affirmatively in [MO], and the main ingredient is Fact 5.7 that we also use below.

The following theorem gives a description of an infinite stable discrete spectrum
as in Theorem 1.7: it states that the constant R of Theorem 3.8.(2) is stable under
small deformations.

Theorem 3.11. — Assume that G is connected, that H does not contain any simple
factor of G, and that the rank condition (3.3) holds. For any reductive subgroup L
of G of real rank 1 and any convex cocompact subgroup T' of L (in particular, any
uniform lattice T of L) with T N G. C Z(Gy), there are a constant R > 0 and a
neighborhood U C Hom(T', G) of the natural inclusion such that X,y = @(I')\X is a
Clifford—Klein form of X for all o € U and

(A€t N (200 — p+ ATTZED) 1 d(N) > R} C Specy (X))
In particular, for all ¢ € U,
(A€t N (2pc — p+AZGD) 1 d(N) > R} C Specy(Xp(r))-

IfT'N L. C Z(Gs) (for instance if T is torsion-free or if L is simple with Z(L) C
Z(Gy)), then we may take the same R (independent of T') as in Theorem 3.8.(2), up
to replacing U by some smaller neighborhood.

Theorems 3.8 and 3.11 will be proved in Chapter 8.

Remark 3.12. — Our proofs depend on the rank condition (3.3). It is plausible that
for a general locally symmetric space, no nonzero eigenvalue is stable under nontrivial
small deformations unless (3.3) is satisfied. This is corroborated by Fact 1.2 (in the
Riemannian case, (3.3) is not satisfied). It is also plausible that there should be no
“universal spectrum” as in Theorems 1.5 and 3.8 unless (3.3) is satisfied.

3.5. Regularity of the generalized Poincaré series

As explained in the introduction, Theorems 3.8 and 3.11 are proved by constructing
generalized Poincaré series. Consider the action of G on L?(X, M) by left translation

(3.9) g-p=9g ")
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and let L?(X, M)k be the subspace of K-finite functions in L?(X, M,). We prove
that for any A € j* with d(\) large enough, the operator

St : L2(X,M,\)K — LQ(XBMA)
mapping ¢ to

o= (To— > (- 9)(@))
yel’

is well-defined (Proposition 6.1.(1)). We actually prove that Sp is well-defined on
g-L*(X, M)k for any g € G and X € j with d()\) large enough, and that there
exists g € G such that for any \ € % N (2p. — p + ATNZ(G2)) with d(\) large enough,
Sr is nonzero on g-L*(X, M)k (Proposition 8.1 and Remark 8.2).

By using the fact that L?(X, M)k is stable under the action of g by differentiation,
we obtain the following regularity result for the image of Sp (Proposition 6.1.(2)).

Theorem 3.13. — Assume that G is connected and that the rank condition (3.3)
holds. Let Xt be a sharp Clifford—Klein form with T N G. C Z(G;) and let R > 0
be the corresponding constant given by Theorem 3.8. For any A € i with d(\) > R
and any g € G, the image of g-L*(X, M)k under the summation operator Sr is
contained in LP(Xr) for all 1 < p < oo, and in C™(Xr) whenever d(A) > (m + 1)R.

In particular, if we take m to be the maximum degree of the generators D1, ..., D,
of the C-algebra D(X), then for f € Sr(g-L?(X, M))k) we have

(Dj)r f=xa(Dj)f
for all 1 < j < r in the sense of functions, not only in the sense of distributions.
For certain standard Clifford—Klein forms Xr, it is actually possible to prove that the

image of L?(X, M)k under the summation operator Sr consists of analytic functions
(see [KK2]).
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CHAPTER 4

SHARPNESS AND COUNTING IN NON-RIEMANNIAN
SYMMETRIC SPACES

In this chapter we examine in detail the new notion of sharpness, which we have in-
troduced in Section 1.6. We then establish some counting results for the orbits of sharp
discrete groups I in the non-Riemannian symmetric space X = G/H (Lemma 4.6 and
Corollary 4.7). We note that these groups I' can never be lattices of G: they have to
be much “smaller” (Remark 4.8).

Counting is developed here in the perspective of spectral theory: our results will be
useful, together with the analytic estimates of Chapter 5, to prove the convergence of
the generalized Poincaré series (1.3). However, the counting results we obtain might
also have some interest of their own.

We first introduce some notation and briefly recall the notions of Cartan and polar
projections for noncompact, reductive G.

4.1. Preliminaries: Cartan and polar projections

We keep the notation of Chapter 3. In particular, 8 is the Cartan involution and
g = £+ p the Cartan decomposition introduced in Section 3.2. Let a be a maximal
abelian subspace of p and let A = expa be the corresponding connected subgroup
of G. We consider the logarithm log : A = a, which is the inverse of exp : a = A.
We choose a system Y7 (g, a) of positive restricted roots and let @ and A, = expay
denote the corresponding closed positive Weyl chambers in a and A, respectively.
The Cartan decomposition G = KA, K holds [He2]: any g € G may be written as
g = kgagk; for some k,, k; € K and a unique a, € AL Setting u(g) = loga, defines
a map

p:G —a; =log A,

called the Cartan projection associated with the Cartan decomposition G = KA, K.
This map is continuous, proper, surjective, and bi- K-invariant; we will still denote
by p the induced map on the Riemannian symmetric space G/K of G.
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Ezample 4.1. — For G = SL,(R) and 0 = (g — g~ 1), we have K = SO(n). We
can take A to be the group of diagonal matrices in SL, (R) with positive entries and its
subset A| to consist of matrices with entries in nonincreasing order; then the Cartan
decomposition G = KA K follows from the polar decomposition in SL,(R) and from
the reduction of symmetric matrices. We have u(g) = (4 logt;)1<i<n where t; is the
i-th eigenvalue of 'gg.

The G-invariant symmetric bilinear form B of Section 3.2 restricts to a K-invariant
inner product on p, which defines a Euclidean norm || - || on a and a G-invariant
Riemannian metric dg/x on G/K. The norm of the Cartan projection y admits the
following geometric interpretation in terms of distances in the Riemannian symmetric
space G/K:

(4.1) ()l = da/x (Yo, 9 - yo)

for all g € G, where yo denotes the image of K in G/ K. Using the triangular inequality
and the fact that G acts by isometries on G/ K, we obtain that

(4.2) eCgg")l < (o)l + (gl

for all g, ¢’ € G. In fact, the following stronger inequalities hold, which can be proved
in a geometric way (see [Kal, Lem. 2.3]):

(4.3) l1(gg’) — @l < 1@l
(4.4) [1(gg") — (@Il < l(g)l-

On the other hand, recall that the group H is an open subgroup of the set of
fixed points of G under the involution . Let g = b + q be the decomposition of g
into eigenspaces of do as in Section 3.1. Since # commutes with o, the following
decomposition holds:

g=(EnNbh)+ENa) +pNH +(pNaq).

Let b be a maximal abelian subspace of p N q and let B := exp(b). We choose a
system X (g?? b) of positive restricted roots of b in the subspace g”? of fixed points
of g under d(c6), and let b, be the corresponding closed positive Weyl chamber and
B, :=expb,. Then the polar decomposition (or generalized Cartan decomposition)
G = KB4 H holds [Scl, Prop.7.1.3]: any g € G may be written as g = k,byh, for
some k, € K, hy € H, and a unique b, € By. We refer to Chapters 9 and 10 for
examples. Since all maximal abelian subspaces of p are conjugate under the adjoint
action of K, we may (and will) assume that a contains b. As above, we define a
projection

(4.5) v:G—by Ca

corresponding to the polar decomposition G = KB H. It is continuous, surjective,

and right- H-invariant; we will still denote by v the induced map on X. Geometrically,
|lv(2)|| can be interpreted as some kind of “pseudo-distance” from the origin 2o = eH
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of X = G/H to z € X: in order to go from zy to 2 in X, one can first travel along
the flat sector B, -z, then along some (compact) K-orbit; ||v(z)| measures how far
one must go in B -x. The set of points # € X such that v(z) = 0 is the maximal
compact subsymmetric space X, := K-xo ~ K/HN K.

We note that for any b € B there is some w € W(G, A) such that u(b) = w - v(b),
hence

(4.6) 4(O)] = llw ().

4.2. Sharpness

We now turn to the new notion of sharpness, which quantifies proper discontinuity.
We first recall that not all discrete subgroups I' of G can act properly discontinuously
on X = G/H since H is noncompact. A criterion for proper discontinuity was estab-
lished by Benoist [Bn, Cor. 5.2] and Kobayashi [Ko4, Th. 1.1], in terms of the Cartan
projection p. This criterion states that a closed subgroup I' of G acts properly on
X = G/H if and only if the set u(T')N(u(H)+C) is bounded for any compact subset C
of a; equivalently, if and only if u(T") “goes away from p(H) at infinity”.

In this paper, we introduce the following stronger condition.

Definition 4.2. — A subgroup I' of G is said to be sharp for X if there are constants
c € (0,1] and C > 0 such that

(4.7) da(p(7), p(H)) = cllp(y) - C

for all v € T, where dq is the metric on a induced by the Euclidean norm || - ||. If (4.7)
is satisfied, we say that T is (¢, C)-sharp.

We note that this definition makes sense in the more general context of a homo-
geneous space X = G/H where G is a reductive group and H a closed subgroup
of G.

If T is sharp for X, then p(I") “goes away from p(H) at infinity” with a speed that
is at least linear. Indeed, consider the open cone

C(e) = {Y ey : da(Y,u(H)) < c|Y|}

of angle arcsin(c) around p(H). If T' is (¢, C')-sharp with ¢ € (0,1), then the set p(T")
is contained in the \/%T—Deighborhood of a; \ €(c); in other words, it does not meet
the shaded region in Figure 1.

In particular, if I' is sharp for X and closed in G, then the action of I' on X is
proper by the properness criterion. The bigger c is, the “more proper” the action is;
the critical case is therefore when ¢ gets close to 0. For I" discrete and sharp, we will
equivalently say that the Clifford—Klein form Xp = I'\ X is sharp.

The following two properties will be useful.
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arcsin(c)
p(H)

FIGURE 1. The Cartan projection of a (¢, C)-sharp group I'

Proposition 4.3. — 1. If a subgroup T of G is (¢,C)-sharp for X, then any
conjugate of T is (¢, C")-sharp for some C’ > 0.

2. Any reductive subgroup L of G acting properly on X admits a conjugate that is
(¢,0)-sharp for some ¢ > 0.

Proposition 4.3.(1) is an immediate consequence of the following inequality, which
will be used several times in the paper.

Lemma 4.4. — For any g,q9',9" € G,

da (1(9'99"), n(H)) = da(pu(g), n(H)) = ln(g")l = ll(g”)]I-
Proof. — For all h € H, by (4.3) and (4.4) we have

da(p(g), 1(H)) [1(g) — p(n)|
1(9) — (g'9g")Il + llu(g'ag”) — p(h)|
(g + NllgI + lulg’'gg”) — p(h)||. O

We will explain why Proposition 4.3.(2) is true in Section 4.4. We refer to Sec-
tion 4.4 for a list of examples of sharp Clifford—Klein forms and to Section 4.7 for a
discussion of how sharpness behaves under small deformations.

We note that dq(u(y), p(H)) < ||u(v)] always holds, since dq(u(y), u(H)) is the
norm of the projection of p(7y) to the orthogonal of p(H) in a; this is why we restrict
to ¢ < 1 in Definition 4.2.

ININ A
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4.3. Counting in the reductive symmetric space X

In order to prove the convergence of the generalized Poincaré series (1.3), we will
need to understand the growth rate of I' with respect to the norm of v. Given the

above geometric interpretation of |v| as a ¢

‘pseudo-distance from the origin” in the
reductive symmetric space X, this means estimating the number of points of any

given I'-orbit in the “pseudo-ball”

(4.8) Bx(R) :={z € X : |v(x)| < R}

as R tends to infinity. We note that the closure of Bx(R) is compact for all R > 0,
which implies the following (by definition of proper discontinuity).

Remark 4.5. — Let I' be a discrete subgroup of G acting properly discontinuously
on X. For any z € X, the set of elements v € T with v -z € Bx(R) is finite.

In the case when T is sharp for X, we establish exponential bounds for the growth of
T-orbits in X: here are the precise estimates that we will need for our theorems (a
proof will be given in Section 4.6).

Lemma 4.6. — Let c € (0,1] and C > 0.

1. For any discrete subgroup I' of G that is (¢, C)-sharp for X and any e > 0, there
is a constant c.(T') > 0 such that for any R >0 and any x = g-x¢ € X (where
ge@q),

#lyeT: [u(y-a)| < R} < o) eCrroHinial/e

2. (Removing the dependence in x)
For any discrete subgroup T' of G that is (¢, C)-sharp for X and any e > 0, there
is a constant cL(T') > 0 such that for any R >0 and any x € X,

#{vel: |v(ya)ll < R} < ()Xol

3. (Controlling the dependence in T', allowing for dependence in x)
There is a constant cqg > 0 depending only on G such that for any discrete
subgroup T of G that is (¢, C)-sharp for X, any R >0, and any x =g 29 € X
(where g € G),

#{7 er: |lv(y-2)| < R} <#ITNK)-cg e2llpal(R+CHln(g)l/ e

4. (Controlling the dependence in T' and removing the dependence in x)
There is a constant cqg > 0 depending only on G such that for any discrete
subgroup I" of G that is (c,C)-sharp for X, any R >0, and any z € X,

#{vel: [v(ya)] < R} < #T NK)-cgellrallBre)/e,
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As before, z( is the image of H in X = G/H and p, € a is half the sum of the
elements of X7 (g, a), counted with root multiplicities. We denote by
(4.9) dr := lim sup (}% log #(T-yo N BG/K(R))>
R—+oc0
the critical exponent of I', which measures the growth rate of the I'-orbits in the
Riemannian symmetric space G/K of G. Here

Ba/k(R) :={y € G/K : ||u(y)ll < R}
is the ball of radius R centered at yo = eK € G/K for the Riemannian metric dg, x
(see (4.1)). Recall that the classical Poincaré series > eIt converges for
s > or and diverges for s < dr, and that if G has real rank 1, then dr is the Hausdorff
dimension of the limit set of T" in the boundary at infinity of G/K [Pa, Su, Cr|.
In X, consider the “pseudo-ball” Bx(R) of radius R centered at xq, as in (4.8).
For all z = g - 29 € X (where g € G), the stabilizer of z in I" is I'N gHg ™!, hence

(4.10) #{veTl: |v(ya)| <R} =#TnNgHg ") - #(-2NBx(R)).

Therefore, Lemma 4.6 gives the following counting result for I'-orbits in X.

Corollary 4.7. — For any discrete subgroup T of G that is (¢, C)-sharp for X and
any x € X,
1 dr
limsup [ =1lo I''zN Bx(R < —;
R%+£<R g#( x( ))) T c
if moreover T N K = {e} (for instance if T is torsion-free), then

#(T-29 N Bx(R)) < ¢ 2B+ /e

and for all x € X,
#(T-2 N Bx(R)) < cg elllPallB+O)/e.

Remark 4.8. — In our setting I' can never be a lattice in G because it acts properly
discontinuously on X = G/H and H is noncompact. (In fact I" has to be quite “small”:
the cohomological dimension of any torsion-free finite-index subgroup of I' has to be
< dim(G/K)—dim(H/H N K), see [Kol].) Corollary 4.7 can be compared with the
following results on lattices of G.

(a) Let T be an irreducible lattice of G such that T'N H is a lattice of H. Here is
a precise counting result, due to Eskin-McMullen [EM], for the T-orbit through
the origin z¢: for any sequence (B, )nen of “well-rounded” subsets of X,

vol((TN H)\H)
IeoNB,) ~ ————=—= volx(B,).
#(La0 0 Bn) ~ vol\G) x(Bn)
In particular (see Lemma 4.18 and (5.16), (5.17) below), there is a constant C' > 0,
independent of I, such that

#(D-z0 N Bx(R)) ~ C- %@)\H) _2lmlR.
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(b) Let I be a lattice of G. The I'-orbit through an arbitrary point z € X can
be dense in X, in which case #(I'-z N Bx(R)) is infinite. For instance, this is
generically the case for X = SL3(R)/SO(2,1) and T' = SL3(Z): see Margulis’s
proof [Mr1] of the Oppenheim conjecture.

Here we denote by |ps|| the norm of half the sum of the elements of a positive
system X7 (g, b) of restricted roots of b in g; this norm does not depend on the choice
of X1 (g,b). We note that ||pp|| < ||pall (see Remark 6.8).

It would be interesting to obtain a precise counting result in our setting, in terms
of the sharpness constants and of the critical exponent of I'. We observe that the
following lower bound holds.

Remark 4.9. — Let T’ be a discrete subgroup of G whose Zariski closure in G is
semisimple or contained in a semisimple group of real rank 1. For any € > 0 there
is a constant c.(T') € (0,1] such that for any * = g-z9 € X (where g € G) and any
R >0, 0
Ce r or—e)(R— «
#(0-2 N Bx(R)) > PTG ) eOr—=e)(R=lln(g)l)
(with the convention 1/4+00 = 0). If T" is (¢, C')-sharp, then

2 [n(@)I+C
c

#(T'N gHgil) < CE(F)71 elor+e) +-00.

Indeed, the first formula is a consequence of (4.10), of the inequality [|v| < ||u|
(Lemma 4.17), and of the fact that the critical exponent, defined as a limsup, is
in fact a limit [Ro, Q]. The bound on #(I' N gHg ') for sharp ' comes from the
fact that if v € gHg™', then dq(p(y), u(H)) < 2| u(g)]| by (4.3) and (4.4), hence
()| < HHDIEE by (¢, C)-sharpness.

4.4. Examples of sharp groups

Before we prove Lemma 4.6 (in Section 4.6), we first give some examples of sharp
Clifford—Klein forms to illustrate and motivate this notion. We begin with an im-
portant example (which holds in the more general context of a homogeneous space
X = G/H where G is a reductive group and H a closed subgroup of G).

Example 4.10. — All standard Clifford—Klein forms of X are sharp.

The notion of “standard” was defined in the introduction (Definition 1.4). To
understand why Example 4.10is true, here is a more precise statement.

Example 4.11. — Let L be a reductive subgroup of G acting properly on X. If L
is stable under the Cartan involution 6, then the set u(L) is the intersection of at
with a finite union of subspaces of a, which meet u(H) only in 0. Let ¢ be the sine of
the minimal angle between p(L) and w(H). Then any Clifford-Klein form Xp with
I' C L is (c,0)-sharp.
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Proof of Example 4.11. — If L is stable under the Cartan involution €, then K N L is
a maximal compact subgroup of L and there is an element k € K such that kAk~'NL
is a maximal split abelian subgroup of L and the Cartan decomposition

L=(KNL)(kAE'NL)(KNL)

holds. The set u(L) = p(AN k™ 'Lk) = ax N W - (a N Ad(k~1)(Lie(L))) is the
intersection of @y with a finite union of subspaces of a; it meets u(H) only in 0 by
the properness criterion [Kol, Th.4.1]. By definition of sharpness, L is (¢, 0)-sharp
for X, and so is any subgroup I' C L. O

This explains why Proposition 4.3.(2) is true.

Proof of Proposition 4.3.(2). — The fact that any reductive subgroup L of G acting
properly on X admits a conjugate that is (¢,0)-sharp for some ¢ > 0 follows from
Example 4.11 and from the fact that any reductive subgroup L of G admits a conjugate
in G that is #-stable. |

Proof of Example 4.10. — The fact that all standard Clifford—Klein forms of X are
sharp follows from Proposition 4.3.(1) and (2). O

Additional evidence that sharpness is a fundamental concept is given by the fact
that all known examples of compact Clifford—Klein forms of reductive homogeneous
spaces are sharp, even when they are nonstandard. We conjecture that they should
all be.

Conjecture 4.12. — Let G be a reductive linear Lie group and H a reductive sub-
group of G. Any compact Clifford-Klein form of X = G/H is sharp.

The following particular case of Conjecture 4.12 was proved in [Ka2].

Example 4.13 ([Ka2, Th.1.1]). — Let X = G/H, where G is a reductive linear Lie
group and H a reductive subgroup of G. Let T' be a uniform lattice in some reductive
subgroup L of G of real rank 1. Any small deformation of the standard Clifford—Klein
form Xr is sharp.

In other words, there exists a neighborhood 4 C Hom(T", G) of the natural inclusion
such that the group ¢(I") is discrete in G and sharp for X for all ¢ € Y. More precisely,
if T is (¢, C')-sharp, then for any ¢ > 0 there is a neighborhood U € Hom(T",G) of
the natural inclusion such that ¢(T") is (¢ — ¢, C' + ¢)-sharp for all ¢ € U (and even
(¢ —e,C)-sharp if C > 0 or ' N K = {e}, for instance if I" is torsion-free). This
holds more generally whenever I' is a convex cocompact subgroup of L, i.e. a discrete
subgroup acting cocompactly on some nonempty convex subset of the Riemannian
symmetric space of L.
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In the special case of X = AdS® = SO(2,2)5/SO(1,2)o, sharpness was proved in
[Ka3| for all compact Clifford—Klein forms, even for those that are not deformations
of standard ones (such forms exist by [Sa2]).

Example 4.14 ([Ka3, Th.5.1.1)). — All compact Clifford-Klein forms of X =
AdS? are sharp.

As we will see in Section 10.2, this is a special case of the following recent result.

Example 4.15 ([GGKW]). — Let ‘G be a real semisimple linear Lie group of real
rank 1. All compact Clifford-Klein forms of X = (‘G x‘G)/Diag(‘G) are sharp.

We note that there exist Clifford—Klein forms Xt with I infinitely generated that
are not sharp (see [GK]). Also, not all sharp Clifford-Klein forms remain sharp
under small deformations; it can happen that the action actually stops being properly
discontinuous.

Example 4.16. — Let X = ("G x'G)/Diag(*G) and T ="'T x {e}, where ‘G is a real
semisimple linear Lie group of real rank 1 and ‘T a discrete subgroup of ‘G containing
a nontrivial unipotent element ‘v, (for instance a nonuniform lattice of *\G). For any
neighborhood U C Hom(T','G x‘G), there is an element ¢ € U such that the group
©(T) does not act properly discontinuously on X .

The idea is to obtain a contradiction with the properness criterion of Benoist and
Kobayashi for some ¢ such that the first projection of ¢(*7y,, €) to ‘G is unipotent and
the second projection is hyperbolic (see [GK]).

4.5. Link between the Cartan and polar projections

In order to prove Lemma 4.6, we will use the following link between the Cartan
projection p (on which the notion of sharpness is built) and the polar projection v
(on which our counting is based).

Lemma 4.17. — For any g € G,
da(p(9), n(H)) < [lv(g)]l < [lu(a)ll -

Proof. — For g € G, write g = kbh, where k € K, b € B, and h € H. Since H is
fixed by o, since K is globally preserved by o (because o and § commute), and since
o(b) =b"' € B C A, we have

go(9)™") = u(bo (b)) = u(b®) = 2 u(b).
Using (4.2) and the fact that ||u(b)|| = ||[v(d)]| = ||v(g)]] by (4.6), we obtain

(4.11) 2wl = llulgo(g) DI < (@)l + llula(g) DI
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Since o(K) = K and o(A) = A (because a = (a N h) + b), we have ||u(a(g)~1)|| =
Il2(9)|l, which implies ||v(g)|| < ||#(g)]]. On the other hand, by (4.4) and (4.6),
da(p(9), p(H)) < lp(g) = p(h)|
[l12(0h) = p(R)|
@) = @) = ()]l O
The following lemma implies, together with (5.16) below, that for any sequence
(R,) € RY tending to infinity, the sequence (Bx (Ry))nen of “pseudo-balls” of ra-

dius R, centered at the origin (see (4.8)) is “well-rounded” in the sense of Eskin—
McMullen [EM]: for any & > 0 there is a neighborhood U of e in G such that

VOIX (Z/[ . 6Bx(Rn)) S EVOIX (Bx(Rn))

IN

Lemma 4.18. — For any g,9' € G,

(g = Nl < [lv(gg")Il < v (g + [ln(g)]-

Proof. — Let g,g' € G. Write ¢’ = kbh with k € K, b € By, and h € H. By
Lemma 4.17 and (4.2),

w99l = v (gkb)|| < ln(ghd)l < llu(g)ll + (kD).

But [|u(kb)[| = [lv(kb)[| = [[v(9)]l by (4.6), hence [lv(gg")] < [lv(g")]l + [u(g)ll. Ap-
plying this inequality to (g7, gg’) instead of (g,g’), we obtain ||v(gg’)|| > ||v(¢")|| —

[12(g)|l- O

4.6. Proof of the counting estimates

We now use Lemmas 4.4 and 4.17, together with the classical growth theory for dis-
crete isometry groups in the Riemannian symmetric space G/ K, to prove Lemma 4.6.

Proof of Lemma 4.6.(1). — By Lemmas 4.4 and 4.17, for all ¢ € G and v € T we
have

[v(vo)ll = da(u(vg), w(H)) = da(p(y), w(H)) = [|u(g)]-
Using the sharpness assumption, we obtain that for all g € G,
(4.12) lv(yo)ll = ellutN)I = C = llu(g)ll,

hence

{70 o)l < By < #{y €T+ ()| <« LHEEI@IY

We conclude using the definition (4.9) of the critical exponent dr. O

The proof of Lemma 4.6.(3) follows rigorously the same idea, using the following
classical observation (where yo = eK € G/K as before).
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Observation 4.19. — There is a constant ¢g > 1 depending only on G such that
for any discrete subgroup I' of G and any R > 0,

#(TyoN Bg/x(R)) < cge® llpall 2
In particular, or < 2 ||p,|| and
#{1 €T ()] < R} < cqe? IR 4T A K).
Proof. — Let
(4.13) Dok ={y € G/K : da/kx(y,y0) < dg/x(y.v ) VyeT}

be the Dirichlet domain centered at yo, and let ¢ > 0 be the distance from yo to the
boundary of D¢/ . For all R > 0 and all v € I' with v - yo € Bg/k(R),

v-Ba/k(t) C Bq/r(R+1)

since G’ acts on G/ K by isometries. Moreover, by definition of ¢, the balls - B/ (1)
and 7' - Bk (t) (for v,7" € ') do not intersect if - yo # 7" - yo. Therefore,

#(F~y0 N Bg/K(R)) VOlBg/K(t) S VOlBg/K(R + t).

Observation 4.19 is then a consequence of the following volume estimate (see [Hel,
Ch.I, Th.5.8]): there is a constant ¢/, (depending only on G) such that

VOIBG/K(R/) . N+ C/C;‘ eszaHR,' O

We now turn to Lemma 4.6.(2) and (4). It is sufficient to give a proof for  in some
fundamental domain of X for the action of I'. We consider the following particular
fundamental domain.

Definition-Lemma 4.20 (A pseudo-Riemannian Dirichlet domain)
Let T be a discrete subgroup of G acting properly discontinuously on X. The set
Dx ={zeX: |v@)| <lv(y-2)| Vyel}

1s well-defined; it is a fundamental domain of X for the action of T.

Proof. — By Remark 4.5, for any given x € X there are only finitely many elements
v € T such that [[v(y-2)| < |lv(x)]; in particular, there is an element vy € T' such
that [|[v(yo-2)|| < [[v(y-2)| for all v € I'. Thus Dx is well-defined and I' - Dx = X.
To see that Dy is actually a fundamental domain (which is not needed in our proof

of Lemma 4.6, where we only use I'- Dx = X), it is sufficient to see that for any ~y
in the countable group I', the set

Hy={ze X [v(@)] = vy o)}
has measure 0 in X. But (4.1) and (4.11) imply that for any g € G,

2|[v(g)ll = llu(go(g)™ NIl = dayx (o, 9o (9) ™" - o).
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Therefore the function ||v||? is analytic on G, hence on X = G/H. Since z ~
|lv(x)]|? = ||v(v - 2)||* is not constant on X, the set H., has measure 0. O

The fundamental domain Dy is an analogue, in the pseudo-Riemannian space
X = G/H, of the classical Dirichlet domain D¢/ of (4.13). Indeed, by (4.1) and the
G-invariance of the metric dg

Dok ={y € G/K + |u)l < lluly-y)ll vy eT}.
The distance to the origin ||| in G/K is replaced by the “pseudo-distance to the
origin” ||v| in X.
The proof of Lemma 4.6.(2) and (4) is now similar to that of Lemma 4.6.(1) and (3):
we just replace (4.12) by the following inequality.

Lemma 4.21. — Let T be a discrete subgroup of G that is (¢, C)-sharp for X. For
any v €1 and x € Dx,

IvGra)l = 5 ()l -

Proof. — Let v € T and € Dx. There is an element ¢ € KB, C G such that
v = g-wo. If [[u(g)ll > §[|u(v)|l, then, using the definition of Dx and the fact that
g € KB, together with (4.6), we have

a9l = 1@l = @l = 5 le()l.

If |u(g)l| < § ()], then, using Lemmas 4.4 and 4.17 together with the sharpness
of I, we obtain

IOl = dalulrg), p(H))
> da(u(y), n(H) = l|n(9)]
> Slumll-c. O

4.7. Sharpness and deformation

We conclude this chapter by examining the behavior of the sharpness constants un-
der small deformations in the standard case. The two results below are easy corollaries
of [Ka2, Th. 1.4] (see Example 4.13).

Lemma 4.22. — Let T be a convex cocompact subgroup (for instance a uniform lat-
tice) of some reductive subgroup L of G of real rank 1 acting properly on the reductive
symmetric space X. Assume that T' is (¢, C)-sharp for X and that |v(7)|| > r for
all v € T'\\ Z(Gy). For any € > 0 there is a neighborhood U, C Hom(T', G) of the
natural inclusion such that for any ¢ € U=, the group o(I') is discrete in G and
(¢ —¢e,C +e)-sharp for X, with |[v(e(y))|| > r—¢ for ally € T \ Z(Gs).

As in Section 3.3, we denote by Z(Gs) the center of the commutator subgroup
of G.
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Proof. — Fix € > 0 and let ¢ > 0 be small enough so that

c-¢ >c—c¢ and e + < <e.

14¢ — 1+¢ —
By [Ka2, Th. 1.4], there is a neighborhood W.» C Hom(T", G) of the natural inclusion
such that for any ¢ € W/, the group o(I') is discrete in G and

(e (7)) = NI < " lun)Il + €’

for all v € I' (and even [u(p(y)) — p()Il < €'[lu(y)]| for all y € T' \ K). By
Lemma 4.17,

(eI = da(ple(7)), u(H))
> do(p(y), n(H)) = [[1(e(7)) = ()]l
> (c=&)lpM)) = (C+£)
> el - (C+e + )

for all ¢ € W, and « € T'; in particular, ¢(I') is (¢ — &, C + ¢)-sharp for X. Since I’
is discrete in G and p is a proper map, the set

T—i-C'—I—E’}

!/

Fi={yeT: |ut)l <
is finite. For any ¢ € W, and v € I' \ F' we have

(eI = (e =)l = (C+€') =

Let U, be the set of elements ¢ € W,s such that ||v(p(y))|| > r—e forall y € FNZ(Gs).
Then U, is a neighborhood of the natural inclusion since v is continuous and F finite,

— &

and U. satisfies the conclusions of Lemma 4.22. O

Lemma 4.23. — Suppose that G =G x'G for some reductive linear group ‘G and
let X = ("G x'G)/Diag(*G). Let ‘Gy1 and ‘G2 be reductive subgroups of ‘G and let
I' ='TI'y x ‘T'y for some discrete subgroups ‘T'y of ‘G1 and ‘T'y of ‘Ga. Assume that T
is (¢, C)-sharp for X and that ||v(y)|| > r for all v € T N Z(G).

1. Suppose that for all i € {1,2}, the group ‘T'; is
— either an irreducible uniform lattice of ‘G
— or, more generally, a convex cocompact subgroup of ‘G; if ‘G; has real
rank 1.
Then for any € > 0 there is a neighborhood U. C Hom(T',G) of the natural
inclusion such that for any ¢ € U, the group p(T') is discrete in G and (¢ —
g,C +e)-sharp for X, with ||[v(e(Y)|| > —¢ for all v € T\ Z(Gy).

2. Suppose that ‘G1 has real rank 1 and that ‘T'y is convex cocompact in ‘Gy1. Then
for any ¢ > 0 there is a  neighborhood ‘U. C
Hom(‘I'1,'G x Z.¢(‘T'2)) of the natural inclusion such that for any ‘¢ € ‘U,
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the group ‘©(‘T'1)'T'y is discrete in G and (¢ — €,C + &)-sharp for X, with
()| =r—e for ally € T\ Z(Gs).

Here Z\¢(‘'T'2) denotes the centralizer of ‘T’z in ‘G.

Proof. — Fix € > 0 and let ¢’ > 0 be small enough so that

c—2¢ 2v/2¢’
1+25/20—5 and 2V2¢ —i— 2/_8

By [Ka2, Th.1.4], if ‘Gy (resp. ‘G2) has real rank 1 and ‘T'; (resp. ‘I'2) is convex
cocompact in ‘G (resp. in ‘Gs), then there is a neighborhood W; . € Hom(T', G)
(resp. Wa o C Hom(T', G)) of the natural inclusion such that for any ¢ € Wi o (resp.
© € Wha o), the group o('T'y x {e}) (resp. ¢({e} x ‘I'2)) is discrete in G' and

(4.14) (i e)) — uCys e)ll < e'fluCy,e)ll + ¢
for all “y; € ‘T'y (resp.
(4.15) [1(ple, v2)) — ule, o)l < € llule, y2)|| + €

for all ‘v € ‘T'3). If ‘Gy (resp. ‘G2) has real rank > 2 and ‘T'y (resp. ‘T's) is an
irreducible lattice in ‘G (resp. in ‘Gz), then ‘T'y (resp. ‘T's) is locally rigid in G [Ral,
Wez2], and so a similar neighborhood Wi .» € Hom(T', G) (resp. Wa oo C Hom(T', G))
of the natural inclusion exists by (4.3) and (4.4). Since I' is discrete in G and p is a
proper map, the set
r+C+2V2¢
F= {7 el:[u(l < c——25’}

is finite. In the setting of (1), we let U be the set of elements ¢ € Wi oo N Ws o
such that ||v(p(y))|| > r — € for all v € F ~ Z(Gs); then U, € Hom(T',G) is a
neighborhood of the natural inclusion and any ¢ € U, satisfies (4.14) and (4.15). In
the setting of (2), we set

Weri={poi1: ¢ € Wi, ¢lieyxer, = idgeyxor, )

where i1 : ‘T'y < ‘T'y x{e} is the natural inclusion, and we let ‘U, be the set of elements
‘o € 'Wer such that [|[v({o(*y1)'v2)|| > r—e for all v = (M1, y2) € F N Z(Gy); then
‘U, C Hom('T'1, G x Z:¢('T'2)) is a neighborhood of the natural inclusion and for any
‘v € ‘U, the homomorphism ¢ := ((‘y1,'72) = ‘0 (*71)'y2) satisfies (4.14) and (4.15).

We now consider ¢ € Hom(I', G) satisfying (4.14) and (4.15) and prove that the
group ¢(I') is discrete in G and (¢ — &, C + ¢)-sharp for X, with [|[v(e())|| > r —¢
for all v € T' \ Z(Gs). We note that a = ‘a +‘a, where ‘a is a maximal split abelian
subspace of ‘g; for ¢ € {1,2}, let m; : a — ‘a be the projection onto the i-th factor.
Then

|71 (e (71, 2)) = (1)) | = ||mi (e, 2)) = (s )|
71 (n(e (7. 2)) = (e yase) || + ||m (e rase)) — u( 7.6))|,
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where
71 (1o, 2)) — m(eCrse))|| < [Jm (lele, e )H
= |Im(ule(e, \v2)) — ule, v2)) ||
< lulele, 2)) — ple, )l
< €lple, )l + €
(using (4.3) applied to ‘G and (4.15)) and
[[m1 (e e)) — plye))|| < (e, e) — uy,e)
< &y el +¢€

(using (4.14)). Therefore,

w1 (o1, v2)) = 1y, ) | <0 & (s o)l + e, y2)ll) + 2¢7
< V2 |uy, )| + 2¢
Similarly,
|72 (o1, 92)) — 1 y1, 2)) || < V2 (i, )| + 2¢
Thus

l(e(y)) — n(V < 26" [|u(y)|| + 2v2¢’

for all v € I'. Using the fact that I' is discrete in G and p is a proper map, we obtain
that ¢(T") is discrete in G. We conclude as in the proof of Lemma 4.22. O






CHAPTER 5

ASYMPTOTIC ESTIMATES FOR EIGENFUNCTIONS
ON SYMMETRIC SPACES

Under the rank condition (3.3), Flensted-Jensen [F1] proved that the space
L?(X, M)k of K-finite elements in L?(X, M,) is nonzero for infinitely many joint
eigenvalues A\, by an explicit construction based on some duality principle and the
Poisson transform. Then, applying deep results of microlocal analysis and hyper-
function theory [KKM+], Oshima and Matsuki [MO, Os2] gave a detailed analysis
of the asymptotic behavior at infinity of these eigenfunctions. In this chapter, we
reformulate their estimates as follows, in terms of

— the “weighted distance” d(\) of the spectral parameter A to the walls of j* (which

measures the regularity of \),

— the “pseudo-distance from the origin” ||v(x)|| of x € X (which measures how z

goes to infinity).

Proposition 5.1. — Under the rank condition (3.3), there is a constant ¢ > 0 such
that for all X € i* and ¢ € L*(X, M)k, the function

2 () - 19N @]
is bounded on X ; in particular, ¢ € L*(X) if d(X) > 2||psl/q.

We refer to Section 3.3 (resp. 4.1) for the definition of d : j* — R (resp. v: X —
b.). As in Remark 4.8, we denote by ||ps|| the norm of half the sum of the elements
of a positive system X% (g, b) of restricted roots of b in g; this norm does not depend
on the choice of X7 (g, b).

As we shall see, the constant ¢ is computable in terms of some root system (see
(5.14) in the proof of Lemma 5.8).

The proof of Proposition 5.1 will be given in Section 5.4. For the reader’s conve-
nience, we first give a brief review of the Poisson transform on Riemannian symmetric
spaces of the noncompact type (Section 5.1), of the Flensted-Jensen duality (Sec-
tion 5.2), and of the construction of discrete series representations (Section 5.3). The
material of these three sections is not new, but we will need it later. Often analysis
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on reductive symmetric spaces requires a rather large amount of notation; here we
try to keep it minimal for our purpose.

In the whole chapter, we denote by A the sheaf of real analytic functions and by B
the sheaf of hyperfunctions; we refer to [KKK] for an introduction to hyperfunctions.

5.1. Poisson transform in Riemannian symmetric spaces

Let X = G%/K? be a Riemannian symmetric space of the noncompact type,
where G? is a connected reductive linear Lie group and K¢ a maximal compact
subgroup of G¢. Let P? be a minimal parabolic subgroup of G¢. We give a brief
overview of the theory of the Poisson transform as an intertwining operator between
hyperfunctions on G¢/P? and eigenfunctions on X? (see [Hel, KKM-] for details).
The notation G? is used to avoid confusion since the results of this paragraph will
not be applied to G but to another real form of G¢.

Let j be a maximal split abelian subalgebra of g¢ := Lie(G?) such that the Cartan
decomposition G¢ = K%(expj)K? holds. Since all minimal parabolic subgroups of G
are conjugate, we may assume that P? contains expj and has the Langlands decom-
position P4 = M%(expj)N?, where M? = KN P? is the centralizer of expj in K¢ and
N4 is the unipotent radical of P¢. The Iwasawa decomposition G¢ = K%(expj)N¢
holds. Let ¢ : G — j be the corresponding Iwasawa projection, defined by

g € Kexp((9))N*
for all g € G%. For X € ji we define functions &,,£Y € A(G?) by

(5.1) Eg) =M and - gl(g) =&
for g € G?. Since &, is left- K %-invariant, &Y induces a function on X 4 which we still
denote by &Y.

We choose a positive system Y7 (gc,jc), defining positive Weyl chambers j in j
and j* in j*. Let p be half the sum of the elements of X% (gc,jc), counted with root
multiplicities. For A € j%, the function &, is a character of P?. Let B(G?/P? L)) be
the hyperfunction-valued normalized principal series representation of G¢ associated
with the character £y of P%: by definition, B(G¢/P?, L) is the set of hyperfunctions
f € B(G?) such that

FCp)=Ensp(0™)f (= Fer-p(p))
for all p € P9, Here we use the character £ and not &y, following the usual conven-
tion in harmonic analysis on symmetric spaces (see [BS, D, Fl, Hel, MO]) rather
than in the representation theory of reductive groups (see [Kn, Wal). Setting

AGY/PT L) = AGHNB(GY/ P L)),
there is a natural G%-invariant bilinear form

(-,-) : B(GY P Ly) x A(GY/P? L)) — C
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given by the integration over G¢/P?. We note that £_,_, € A(G?/P%,L_)), hence
the left translate £_x_,(g~'+) also belongs to A(G?/P4,L_)) for all g € G. Since
&_x—p is left- K9-invariant, we obtain a G%-intertwining operator (Poisson transform)

Py : B(GY/ P L) — AXY)

given by

(PAf)(g) = (f-nmplg™" ) -
It follows directly from the definition of the Harish-Chandra isomorphism in Sec-
tion 3.1 that for all f € B(GY/P%, L)), the function Pyf € A(X?) satisfies the sys-
tem (M), defined similarly to Section 3.1. For Re A € E, the Helgason conjecture
(proved in [KKM+]) asserts that the Poisson transform

P : B(GY/PY L)) — A(GY/K?, M)
is actually a bijection.

Example 5.2. — Assume that G% has real rank 1. Then G%/P? identifies with the
boundary at infinity of X¢. The function & is the exponential of some multiple of
the Busemann function associated with the geodesic ray (expjy)K?% in X4 = G?/K4;
its level sets are the horospheres centered at eP? € G%/PY. For \ = p, the Poisson
operator Py identifies the set of continuous functions on G¢/P® with the set of har-

monic functions on X% admitting a continuous extension to X4 = X1UG?/P?. (See
Section 9.7 for the case G¢ = SLy(C).)

5.2. Real forms of G¢/H¢ and the Flensted-Jensen duality

We now come back to the setting of Chapters 1 to 4, where GG is a connected
reductive linear Lie group and H an open subgroup of the group of fixed points
of G under some involutive automorphism o. Let G¢ be a connected Lie group
containing G with Lie algebra gc := g ®r C, and let Hc¢ be the connected subgroup
of G¢ with Lie algebra he := h ®r C. We consider three different real forms of the
complex symmetric space X¢ = G¢/Hc: our original pseudo-Riemannian symmetric
space X = G/H, a Riemannian symmetric space Xy = Gy /Hy of the compact type,
and a Riemannian symmetric space X9 = G¢/K“ of the noncompact type. They are
constructed as follows. Let g = h+ q be the decomposition of g into eigenspaces of do
as in Section 3.1, and let g = € + p be the Cartan decomposition associated with the
Cartan involution 6 of G of Section 3.2, which commutes with ¢. The maps do and
df extend to automorphisms of the complex Lie algebra gc, for which we use the same
letters. We set

g = g+ V=Ig’=(nt+anp) +vV-1(hNp+qne),
Ed:[’)U = hﬂE‘F\/__l(bmp)v
gu = E'i‘\/—_lp,
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and let G (resp. K¢ = Hy, resp. Gy) be the connected subgroup of G¢ with
Lie algebra g¢ (resp. £ = by, resp. gy). We note that K¢ = Hy is the com-
pact real form of He. For instance, for the anti-de Sitter space X = AdS*™ ! =
SO(2,2n)0/SO(1,2n)g, we have Xy = SO(2n + 2)/SO(2n + 1) = S*! and X¢ =
SO(1,2n + 1) /SO(2n + 1) = H?"*! (see Section 10.1).

Let H? be the connected subgroup of G¢ with Lie algebra
bl :=hNne+v—1(qNE).

We note that KN HY = (H N K)o and that H/K?N H? and K/H N K are two
Riemannian symmetric spaces with the same complexification — the first one of the
noncompact type, the second one of the compact type. This will be used in Chapter 7.

For any h%module V over C, the action of h¢ on V extends C-linearly to an action
of ¢ = h? ®r C, and the set Viya of hd-finite vectors is equal to the set Vi, of £c-
finite vectors. We define the set Vi of K-finite vectors of V' to consist of vectors

v € Viya = Vi such that the action of £ C £c on the C-span of £ - v lifts to an action
of K. Then Vi is a K-module contained in Vja.

Remark 5.3. — In the definition of Vi, we do not assume that the group K acts
on V. In the situation below, neither V nor Vj« = Vi, can be acted on by the group K.

The Lie algebra g (hence its subalgebra h?) acts on A(X?) by differentiation on
the left:
d

(52) Q) = =

forall Y € g%, all p € A(X?), and all # € X9. Since the system (M) is G%-invariant,
its space of solutions A(X?, M,) is a g¢-submodule of A(X?) for A € j&; thus we can
define K-modules A(X9 My)x C A(X%) k. By using holomorphic continuation,
Flensted-Jensen [F1] constructed an injective homomorphism
(53) n: A(X)K — A(Xd)K
U U
A(X,M)\)K — A(Xd,./\/l)\)}(

t:ow( exp(—tY) - x)

for all A € j¢. For the reader’s convenience, we now recall the construction of 7 in the
case when G is simply connected.

Assume that G¢ is simply connected. Then the set of fixed points of G¢ under
any involutive automorphism is connected [Bol, Th. 3.4]. We can extend o and 6 to
holomorphic automorphisms of G¢, for which we use the same letters o and 6. The
complex conjugation of gc = g + v/—1g with respect to the real form g lifts to an
anti-holomorphic involution 7 of G¢, such that G = G{. Since o, 0, and 7 commute,
the composition of any of them gives involutive automorphisms of G¢. We have

H(C: E, Gd:Géae, Kd:HU:HCﬂGd7 and GU:Gée.
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Moreover, setting K¢ = Gg:, we have H = (Kcn Gd)o and the following inclusions
hold:

K CcG D H

N N N
(5.4) K¢ C Ge D He
U U U

H* ¢ G > K<

The restriction of o to G? is a Cartan involution of G?, and the corresponding Cartan
decomposition g = £ + p? is obtained as the intersection of g¢ with the direct sum
decomposition gc = hc + qc. The restriction of # to G? is an involution of G¢,
and the corresponding decomposition g? = h? + q? of g? (into eigenspaces of df
with respective eigenvalues +1 and —1) is obtained as the intersection of g¢ with the
complexified Cartan decomposition gc = £c + pc. Let b be the maximal semisimple
abelian subspace of p N q from Section 4.1. Since p? N g% = p N q, we may regard
B = expb as a subgroup of G%, and the polar decomposition G = H?B, K% holds
similarly to the polar decomposition G = KBy H of Section 4.1. Any function f €
A(X)x extends uniquely to a function fc : KcByHc/He — C such that k —
fc(kbHc) is holomorphic on K¢ for any b € B, ; by letting n(f) be the restriction
of fc to X%, we get the injective homomorphism (5.3), which is actually bijective.
The homomorphism 7 respects the left action of U(gc) ([F1, Th. 2.5]).

We now return to the general case, where G is not necessarily simply connected.
Any G-invariant (resp. Gy-invariant, resp. G%invariant) differential operator on X =
G/H (resp. Xy = Gy /Hy, resp. X? = G?/K?) extends holomorphically to X¢ =
Gc/Hg, hence we have canonical C-algebra isomorphisms

D(X) ~ D(Xy) ~ D(XY).

Therefore, for A € j%, a function f € A(X) satisfies (M) if and only if n(f) € A(X9)
does.

5.3. Discrete series representations

We continue in the setting of Section 5.2 and now assume that the rank condition
(3.3) is satisfied. In this section we summarize Flensted-Jensen’s construction of
discrete series representations Vz x using his duality (5.3). Recall that the regular
representation of G on L?(X) is unitary; an irreducible unitary representation 7 of G
is said to be a discrete series representation for X if there exists a nonzero continuous
G-intertwining operator from 7 to L?(X) or, equivalently, if 7 can be realized as a
closed G-invariant subspace of L?(X). By a little abuse of notation, we shall also
call the underlying (g, K)-module 7x a discrete series representation. It should be
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noted that discrete series representations for X = G/H may be different from Harish-
Chandra’s discrete series representations for the group manifold G if H is noncompact,
because L?(X) # L*(G)*.

We shall parameterize the discrete series representations for X by the spectral
parameter A and some finite set Z defined as follows. Let P? be the set of minimal
parabolic subalgebras of g? on which G% acts transitively by the adjoint action.
There are only finitely many H%orbits in P%; a combinatorial description was given
by Matsuki [Mt]. We set

(5.5) Z := {closed H%orbits in P?}.

Here is a description of the finite set Z. Consider the maximal semisimple abelian
subspace j of \/—1(q N €) from Chapter 3. The rank condition (3.3) is equivalent to
the fact that j is maximal abelian in p? = qNp++/—1(qN¥€). Thus j is a maximal split
abelian subalgebra of g? and the notation fits with that of Section 5.1. All restricted
roots of j in g¢ take real values on j and there is a natural bijection ¥(g¢,j) ~ %(gc, ic)-
Note that j is actually contained in h?; there is a natural bijection X(h%,) ~ S (¢c, jc).
As in Section 3.1, let W be the Weyl group of the restricted root system (g%, i), and
let Wgnx be that of £(h?,j). Any choice of a positive system ¥F(g?,j) ~ X (gc,ic)
defines a point in P¢ and the H%orbit through this point is closed. Conversely, any
closed H?-orbit in P? is obtained in this way. Recall that in Section 3.3 we have fixed
once and for all a positive system X7 (¢, ic) ~ £+ (h?,j). Since any two such positive
systems are conjugate by H?, we obtain a one-to-one correspondence

(5.6) {positive systems »* (g%, j) containing E+(bd,j)} ~ Z.

Here is another description of the finite set Z. We fix a positive system X+ (g<,j)
containing ¥+ (h?,j); this defines a minimal parabolic subgroup P? of G?. The sub-
space p? in the Cartan decomposition g% = €% 4+ p? should not be confused with the
Lie algebra of P?. The subset

(5.7) W(H, G = {weW: wEt(g?i)N(h%i) =ST(h%))}.

of the Weyl group W gives a complete set of representatives of the left coset space
Wranxg\W. Clearly, e € W(H? G?%). We identify P¢ with G¢/P?. Then, by (5.6),
the other closed H%orbits in G¢/P? are of the form

(5.8) Z = HwP? for w e W(H?, G (= Wynx\W).

Thus we have a one-to-one correspondence

(5.9) Z~W(H? G?).

Remark 5.4. — We have given two equivalent combinatorial descriptions of the fi-

nite set Z in (5.6) and (5.9). The latter one (5.9) depends on a fixed choice of a
positive system YT (g?,j); it is convenient to treat different closed orbits Z simulta-
neously (e.g. in Fact 5.5 below). We shall use the former one (5.6) when we give an
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estimate of the asymptotic behavior of individual discrete series representations for a
fixed Z € Z (e.g. in the proof of Proposition 5.1 in Section 5.4, or in Chapter 7).

We now recall from [F1] how to construct, for any Z € Z and infinitely many
A € j%, a subspace Vz 5 of L?(X, M,)k that will be a discrete series representation
for X. For Z € Z and \ € j%, we define a g¢-submodule

Bz(G*/P?, L)) == {f € B(G'/P*, L)) :supp f C Z}

of the principal series representation B(G?/P? L)) of Section 5.1. Similarly to the
definition of A(GY/K% M))r, we can define the set Bz(G¢/P?, L)) of K-finite
elements in Bz (G?/P?, L) even though the group K does not act on Bz(G¢/P?, L))
(see Remark 5.3). For Re\ € j%, we then have the following commutative diagram,
where P, is the Poisson transform of Section 5.1.

B(G4/ P, L) 7%* AGY/ K, My)
U U
Bz(G4/PL L)k — AGYKI M)k = AX, Myk.
We set

(5.10) Vi =0 (PA(B(GY/PY L)) ).

Since Bz(G4/P%, L))k is a (g, K)-module, Vz , is a (g, K )-submodule of A(X, M),
where g acts by differentiation on the left, similarly to (5.2). We recall that the
space V) := L*(X, M)k depends only on the image of A in j&/W, hence we may
assume Re \ € E without loss of generality. The following fact (which includes the

“C' = 07 conjecture [F1] and the irreducibility conjecture) is a consequence of the
work of Flensted-Jensen [F1], Matsuki-Oshima [MO], and Vogan [V]. See also [BS,
Th. 16.1].

Fact 5.5. — Let A € satisfy Re A € E
— For any Z € Z, the space Vzx constructed above is contained in Vy :=
L2(X, M) it is either zero or irreducible as a (g, K)-module. Moreover,

Vs = @ Vza
zZeZ
~ Let Z € Z correspond to w € W(H,G9) via (5.8).
— If V7 \ is nonzero, then X € j% and
(5.11) py = w(A+ p) — 2pc

belongs to the Z-module A defined in (3.5).
— Conversely, if A € j% and if the stronger integrality condition

(5.12) pe e Ay

holds, where Ay is defined in (3.4), then Vz x is nonzero.
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Thus there are countably many discrete series representations for X. The discrete
series representations Vyz  for A satisfying (5.12) were constructed by Flensted-Jensen
in [F1]; we will give more details in Section 7.3.

We note that Fact 5.5 completely describes Spec,(X) away from the walls of j* : the
following lemma states that any A € j* satisfying the weak condition p¥ € A but not
the strong condition py € Ay has a bounded “weighted distance to the walls” d(\).
On the other hand, the nonvanishing condition for V7  is combinatorially complicated
for A near the walls of j7 ; it is still not completely settled in the literature.

Lemma 5.6. — Suppose that X € j% satisfies d(\) > m,,, where m,, is given by (3.8).
For w € W(H?, G%), the following conditions on A are equivalent:
(i) py €A,
Proof. — The implication (ii) = (i) is obvious. Let us prove (i) = (ii), namely that
if p¥ € A, then p¥ is dominant with respect to X+ (h?,j) = S+ (kc,jc). Firstly, we
note that wp is half the sum of the elements in w(X* (g%, j)) counted with root mul-
tiplicities, where w(X+(g¢,j)) is a positive system containing ¥+ (h?,j) (by definition
(5.7) of W(H?,G9)). By [VZ], 2wp — 2p, is dominant with respect to ¥+ (h?,j). (In
fact, it occurs as the highest weight of a representation of h? in A*q?.) Secondly,
Observation 3.7 and the inequality d(\) > m, imply that
d(A d(\) — —

pE It
mp mp

therefore w(\ — p) is dominant with respect to X*(h¢,j) since w € W (H?, G¢). Thus
p¥ =2(wp — pe) + w(A — p) is dominant with respect to £ (h,j). O

5.4. Asymptotic behavior of discrete series

We can now complete the proof of Proposition 5.1.

By Fact 5.5, we may assume that ¢ € L?(X, M)k belongs to Vz  for some closed
H4orbit Z in P4 We then use Oshima’s theorem ([Os2], see Fact 5.7 below) that
the asymptotic behavior of the eigenfunction ¢ is determined by Z. This theorem
requires an unavoidable amount of notation. Before entering into technical details,
let us pin down the role of two positive systems involved:

YH(gd,j) <+ closed H%orbit Z in P?
Cayley transform Ad(k) +tw(2)
Y *(g,b) ... asymptotic behavior of ¢ € Vz )

at infinity in X = G/H
We now enter into details, retaining notation from Sections 4.1 and 5.3.
We first recall that in Section 4.1 we have chosen a positive system X7 (g??, b),
determining a closed positive Weyl chamber b, in b, a polar decomposition G =
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K(expby)H, and a projection v : G — by. Any choice of a positive system X7 (g, b)
containing X (g?? b) gives rise to a closed positive Weyl chamber b, C b, and
b, is the union of such Weyl chambers b, for the (finitely many) different choices
of ¥*(g,b). On the other hand, by Fact 5.5, the space V) = L?(X, M)k is the
direct sum of finitely many subspaces Vz.,, where Z € Z is a closed H%orbit in
P<. Therefore, in the rest of the section, we may restrict to one closed positive
Weyl chamber b, (determined by some arbitrary positive system %% (g, b) containing
¥+ (g??, b)) and one H%orbit Z € Z, and prove the existence of a constant ¢ > 0
such that for any A € j* and ¢ € Vyz y, the function

(k,Y) — (p(k(exp Y) . xO) eqd()‘)”YH

is bounded on K x by . Since V7 and d(\) depend only on the image of A € j*
modulo W, we will be able to take A in any Weyl chamber j7} of j*.

Fix Z € Z and consider the positive Weyl chamber j* in j* determined by Z via
(5.6). We introduce some additional notation. Let

H=F2) ={Yej: \Y)>0 Vrej;}

be the dual cone of j} and let p € j be given as in Section 3.3. Since all maximally
split abelian subspaces of g? are conjugate by K¢, there exists k € K< such that
Ad(k)b C j; the element Ad(k) may be thought of as an analog of a Cayley transform
from the upper-half plane to the hyperbolic disk (see Section 9.8). We may assume
that

(Ad(k)*a)le € X7 (g, b) U {0}

for all & € £t (g%, j); in particular, Ad(k)(b,;) Ctj. For Y € b, we write
Y = Ad(k)Y €.
Let {Y1,...,Ys} be the basis of b that is dual to the set of simple roots in X7 (g, b).
For t € (R, ), we set
¢
Yo(t) == = > (logt;)Y; € b,
j=1

so that t — Yy (t) is a bijection from (R, )’ to b, inducing a bijection between (0, 1]¢
and by . For w € W and A € j*, we set

Buw(N) = ({(p — wA, Y1)y (p— wA, SNQ)) € R".
We recall that W is the Weyl group of ¥(g?,j). We define
TW=tW(Z) ={weW: —w - Ad(k)(bsy) CTi}.

The set *W depends on the closed H%orbit Z in P9. If rank G/H = 1, then £ = 1
and TW = {w}, where w is the unique nontrivial element of W.
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With this notation, here is the asymptotic behavior, due to Oshima, that we shall
translate in terms of v and d to obtain Proposition 5.1. We consider the partial order
on R given by

B=<f ifandonlyif B; <, forall1<j<f.

Fact 5.7 ([Os2]). — Let A\ € i and let Iy be the set of minimal elements in the
finite set {Buw(\) 1 w € TW} C R for <. For any ¢ € Vz.\, there exist real analytic
functions ag € A(K), for 8 € I, such that

o (k(expYo(t)H)| < 7 as(k)t’
BEIN

for allk € K and t € (0,1])°, where we write t° for HZ

P tjﬁj,

Let Wy := {w € W : B,(\) € I,}. Then Fact 5.7 has the following immediate
consequence: for any A € j7 and ¢ € Vz y, there is a constant ¢, > 0 such that

(5.13) lo(k(expY)H)| < ¢, Z o(WAY)

wet Wy
for all k € K and Y € b, .. Indeed, K is compact, I, is finite, and for all w € TW)

and t € (0,1]",
B _ fwA—p ) < WA TR®)

We now bound (wA, 37) in terms of the “weighted distance to the walls” d()).

Lemma 5.8. — There is a constant gz > 0 such that
(wA,Y) < —qzdN) |||
for allw e ™W, all N €ji, and allY € by 4.

Proof. — Let {ai,...,a,} be the basis of ¥(g?j) corresponding to it . Recall that
for any A € j7,
d(A\) = min (A, @) )
1<i<r (a, ;)
Let ||-||" be the norm on b defined by || Z§:1 y;iY;l = Z§:1 ly;| for all y1,...,y0 € R.
An elementary computation shows that we may take

(5.14) gz = L2

mp

where m, was defined in (3.8) and
g ==min{ — (wp,Y;) :w et W, 1<j <1},

4]
vebo~{o} ||Y]|

g2 ‘=
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By (5.13) and Lemma 5.8, for any A € j% and ¢ € Vz ) there is a constant ¢/, > 0
such that

(5.15) lo(k(expY)H)| < e 17 4NV
forall k € K and Y € byy. We now recall (see [Fl, Th.2.6] for instance) that the
G-invariant Radon measure on X = G/H is given (up to scaling) by
(5.16) d(k(expY)H) = §(Y) dk dY
with respect to the polar decomposition G = K (exp by )H, where the weight func-
tion § is given on by by

oY) = H | sinh a(Y")|dim a2’ | cosh a(Y)|dim 8.7,

a€Xt(g,b)
When Y € by tends to infinity,
5(Y) ~ e2reY)

where p, € b, is half the sum of the elements of ¥ (g, b), counted with root multi-
plicities. In particular, there is a constant C' > 0 such that
(5.17) 16(Y)] < Ce2rY) < ¢ 2llellIY
for all Y € by . Proposition 5.1 follows from (5.15), (5.16), and (5.17), setting

= min qz.
q ZezZ q






CHAPTER 6

CONVERGENCE, SQUARE INTEGRABILITY, AND
REGULARITY OF THE GENERALIZED POINCARE
SERIES

As before, X = G/H is a reductive symmetric space satisfying the rank condi-
tion (3.3). We use the notation from Chapters 3 to 5. For any Clifford-Klein form
Xr = T'\X and any p > 1, we denote by L?(Xr, M) the subspace of LP(Xp) con-
sisting of the weak solutions to the system (My). The group G acts on LP(X, M)
by left translation: for g € G and ¢ € LP(X, M),

g =g ") € LP(X,M,).

The first key step in our construction of eigenfunctions on Clifford-Klein forms of X
is the following (see Definition 4.2 for the notion of sharpness).

Proposition 6.1. — There is a constant Rx > 0 depending only on X such that for
any ¢,C > 0 and any discrete subgroup I' of G that is (c,C)-sharp for X,

1. the function @ : Xr — C given by
P'Tz) = (v-o)z) =D oy "2
yel’ ~el’

is well-defined and continuous for all ¢ € L*(X, M)k with X\ € j* and d(\) >

Rx /e,
2. furthermore, ¢ v @' defines a linear operator

Sr o LA(X, My)gk — C™(Xr)n (] LP(Xr,My)
1<p<oco

for all X € 3* and m € N with d(\) > (m + 1)Rx/c.

The fact that the constant Rx /c depends only on the first sharpness constant ¢
explains why we obtain a universal discrete spectrum in Theorem 1.5, independent
of the discrete subgroup I" of L (see Proposition 4.3). Note that Proposition 6.1.(2)
actually contains Theorem 3.13. We could obtain a slightly weaker condition than
d(X) > (m + 1)Rx/c by taking into account the critical exponent dp of I' (see Sec-
tion 6.4).
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In Proposition 6.1, the function o' = Sr(p) satisfies (M) (in the sense of distri-
butions) because ¢ does and any D € D(X) is G-invariant, that is,

(6.1) D(g-¢)=g-(Dy)

for all g € G. Furthermore, Proposition 6.1.(2) ensures that o' satisfies (M) in the
sense of functions if X is regular enough (i.e. d(\) large enough). More precisely, recall
from Section 3.1 that D(X) is a polynomial algebra in r := rank(G/H) generators
Ds,...,D,. By Proposition 6.1.(2), if we take m to be the maximum degree of
Ds,...,D,, then for any A € j* with d(\) > (m +1)R and any ¢ € L*(X, M)k, the
function ¢! = Sr(p) satisfies
(Dj)r¢" = xa(Dj) "

for all 1 < j < r in the sense of functions.

We note that the image of L?(X, M))x under the summation operator Sr could
be trivial. In Chapter 8, we will discuss a condition for the nonvanishing of Sp
(Proposition 8.1). For this we will consider the summation operator Sr, not only on
L?(X, M)k, but also on some G-translates g-L*(X, M) k.

The rest of this chapter is devoted to the proof of Proposition 6.1, using the geo-
metric estimates of Chapter 4 (Lemma 4.6) and the analytic estimates of Chapter 5
(Proposition 5.1). As a consequence of Proposition 5.1, the series 3 e AN v (r-2)l
will naturally appear in the proof of Proposition 6.1: it is a pseudo-Riemannian ana-
logue of the classical Poincaré series

Z e~ 4dN vyl — Z e~ 43N da/ Kk (yo,7y)
yer yel
fory € G/K.

Remark 6.2. — A summation process was used by Tong-Wang in [TW] to con-
struct cohomology classes of Riemannian locally symmetric spaces I'\G /K with coef-
ficients in a locally constant vector bundle. The summation described here is different
in two respects:

— in the situation considered by Tong-Wang, I' was a lattice in G and ' N H a
lattice in H, whereas here I" can never be a lattice in G and I' N H is finite (see
Remark 4.8);

— Tong-Wang obtained a (g, K)-homomorphism from L?(X, M)k to C=(T'\G),
whereas we obtain a map from L?(X, M) to L*(I'\G/H) (which cannot be a
(g, K)-homomorphism since G' does not act on L?(I'\G/H)).

6.1. Convergence and boundedness

Let us prove Proposition 6.1.(1). We denote by ¢ > 0 the constant of Proposi-
tion 5.1.
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Lemma 6.3. — Let T be a discrete subgroup of G that is (¢, C)-sharp for X.
1. For any \ € j* with d(\) > ér/qc and any ¢ € L*(X, M)k, the function @F
is well-defined and continuous.
2. For any \ € §* with d(\) > 20r/qc and any ¢ € L*(X, M)k, the function "
is bounded.

Proof. — Fix A € j* with d()\) > dr/qc and ¢ € L?*(X, M,)k. We claim that
z— Y [ty o)
yel’

converges uniformly on any compact subset of X. Indeed, by Proposition 5.1, there
is a constant c, > 0 such that for all z € X,

Sole(r e a) e, Y et IIETEI

yel’ ~el
hence

Z lo(v ™! )| < ey Z e 1IN iy e T in < |lv(y ! 2)|| < n+1}).
~el’ neN

Fix ¢ > 0 such that d(\) > 62;55 and, as before, let zg be the image of H in X = G/H.
By Lemma 4.6.(1), there is a constant ¢.(I') > 0 such that for all z = g - 29 € X

(where g € G) and all n € N,
(6.2) #{y el lv(y ™t 2)| <n+1} < e (D) ePrtomtitlu@ll/e

Therefore, for any compact subset C of G and any = € C - zg,

D lo(r 7 @) < e (D) Cr A/ BT o),
yel neN

where

M:=C .
+max | u(g)l|

This series converges since d(\) > 55;8, proving the claim and Lemma 6.3.(1).

The proof of Lemma 6.3.(2) is similar: we replace (6.2) by the uniform (but slightly
less good) estimate of Lemma 4.6.(2) in order to obtain a uniform convergence on the
fundamental domain D of Definition-Lemma 4.20, and hence on the whole of X. [

6.2. Square integrability

In order to see that the image of the summation operator Sr is contained in L?(Xt),
and more generally in LP(Xr) for any 1 < p < oo, it is enough to see that it is
contained in both L'(Xr) and L>(Xr), by Hélder’s inequality. The case of L (Xt)
has already been treated in Lemma 6.3. For L!(Xt), we note that by Fubini’s theorem,

/IEXF ¥ (@)] d7 = /IGX ()| da;
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using Proposition 5.1, we obtain the following.

Lemma 6.4. — For any discrete subgroup T' of G, any X € j* with d(\) > 2||psl|/q,
and any p € L*(X, M)k, we have o' € L*(Xr).

Here, as in Proposition 5.1, we denote by ||ps|| the norm of half the sum of the
elements of a positive system X% (g, b) of restricted roots of b in g, and ¢ > 0 is again
the constant of Proposition 5.1.

Holder’s inequality then gives the following.

Corollary 6.5. — Let T be a discrete subgroup of G that is (¢, C)-sharp for X. For
any A € j* with

d(\) > % max (dr/c, || ps||)

and any ¢ € L*(X, M)k, we have @' € LP(Xt) for all 1 < p < oo; in particular,
o' € L*(Xr).

6.3. Regularity

We now complete the proof of Proposition 6.1.(2) (hence Theorem 3.13) by exam-
ining the regularity of the image of St. We set

eg = ma of.
= mmax faf

Lemma 6.6. — Let T' be a discrete subgroup of G that is (¢,C)-sharp for X. For
any m € N and any \ € j* with d(\) > (dr + egm)/qc,

Sp (L*(X,My)k) C C™(Xr).

The idea of the proof of Lemma 6.6 is to control the decay at infinity of the
derivatives of the elements of L?(X, M,)x by using the action of the enveloping
algebra U(gc) by differentiation on the left, given by

(63 V- 9)w) = T| _p(exp(-1v)2)

forall Y € g, all ¢ € L?(X, M)k, and all x € X. This idea works as a consequence
of Fact 5.7 and of the following well-known fact.

Fact 6.7 (See [Ba87]). — For any \ € j;, the subspace L*(X, M))k of A(X) is
stable under the action of g by differentiation.

Proof of Lemma 6.6. — Consider A € j* with d(\) > dr/qc and ¢ € L*(X, M))k.
Let {Un(gc)}men be the natural filtration of the enveloping algebra U(gce). Then
any u € Uy (ge) gives rise to a differential operator on X of degree < m by (6.3).
Conversely, any differential operator on X of degree < m is obtained as a linear
combination of differential operators induced from U, (gc) with coefficients in C°°(X).
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Therefore, in order to prove that ¢' is C™, it is sufficient to show that for any
differential operator D on X that is induced from an element u € Uy, (gc),

z— > _|D(y-¢)(x)|

converges uniformly on all compact subsets of X. As before, let x¢ be the image of
H in X = G/H. In view of the formula

D(v-¢)(x) = (Ad(y ) (u) - ) (v z),

we only need to prove the existence of a constant R > 0 such that for any integer
m>1,any Y € g®™, and any compact subset C of G,

2= > [(Ad(Y) - @) (7 @)
~yerl

converges uniformly on C - 2o whenever d(\) > (m + 1)R.

We fix a K-invariant inner product on g, extend it to g®™, and write the corre-
sponding Euclidean norms as || - [|g and || - [[gem, respectively. Let || - ||gna(g) be the
operator norm on g. We observe that

IT(Y)lgem < T Enacg) 1Y lgem
for all T € End(g) and Y € g®™, where T acts on g©™ diagonally. Moreover,

(6.4) log || Ad(9)|lEnace) < € lln(9)]l

for all ¢ € G: indeed, the Cartan decomposition G = KAK holds and the norm
| - ||g is K-invariant. By Proposition 5.1 and Fact 6.7, we may define a function
I g®m — RZQ by

(Y) = sup |(Y - @) ()| &4 dN)v (@)l
zeX

It satisfies
LAY +Y") < oY) + [t e(Y7)
for all t,#/ € C and Y,Y’ € g®™. Taking a (finite) basis of g®™, this implies the
existence of a constant ¢,, > 0 such that
(Y) < e[V gom
for all Y € g®™. Then for any v € T, any Y € g®™, and any z € X,
(AN (Y) - 0) (v 2)] < e | A [Fna(q) 1Y llgem e @ VIO

Therefore we only need to prove the existence of a constant R > 0 such that for any
integer m € N and any compact subset C of G,

w3 [ Ad() [ 14N IO
yel



68 CHAPTER 6. CONVERGENCE, SQUARE INTEGRABILITY, AND REGULARITY

converges uniformly on C - g whenever d(A) > (m+ 1)R. Let us fix an integer m € N
and a compact subset C of G. By (4.12),

lv(y - @)l = ellp(y)Il — M
for all vy € I' and « € C - xp, where

M=C .
+r§gg<|\u(g)ll

Using (6.4), we obtain that for all v € I" and x € C - xo,

Z | Ad(y) |7 e~ 1N Iv(ro)l < gadNM Z e—(@d(Ne—egm) [ln()||
~vel yel

This series converges as soon as

or +eam

d(\) > ”

O

6.4. The constant Rx in Proposition 6.1

Lemma 6.3, Corollary 6.5, and Lemma 6.6 show that the summation operator
Sro: XX, Myg — ) LP(X1, M,)
1<p<oco
is well-defined and with values in C"™(Xr) as soon as
25{‘
P

or +eam
2y, 2HEE™),

(6.5) dA) > % ma

We note that
— or < 2||pall (Observation 4.19),
— |lpvll < llpall/c by Remark 6.8 below and the fact that ¢ <1,
— eg < 2||pa|| by definition of egq.

Therefore (6.5) is satisfied as soon as d(\) > (m + 1)Rx/c for

_ e
: .

Remark 6.8. — Suppose that the positive systems X7 (g, a) defining p, and X7 (g, b)
defining p, are compatible, in the sense that the restriction from a to b maps X% (g, a)
to ©7(g,b) U{0}. Then p, is the restriction of p, to b, i.e. the orthogonal projection
of p, to b*. Thus

(6.6) Rx

ool = llpall - cos(®),
where ® € [0, 5) is the angle between p, and p,. In particular |ps| < ||pe|. This
inequality is true in general since the norms ||pe| and ||pp|| do not depend on the
choice of the positive systems.
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NONVANISHING OF THE
GENERALIZED POINCARE SERIES






CHAPTER 7

AN ESTIMATE FOR CERTAIN EIGENFUNCTIONS
NEAR THE ORIGIN

Let T" be a discrete subgroup of G that is sharp for the reductive symmetric space
X = G/H satisfying the rank condition (3.3). In Proposition 6.1, we saw that the
summation operator

Sro: XX, Myk — () LP(Xr.My)

1<p<oo

mapping ¢ to ' = (Tz — domer (7 ©)(x)) is well-defined for all A € j* with
d()) sufficiently large. In Section 8.1, we are similarly going to define a summation
operator Sr on any G-translate g-L?(X, M))g. Our goal will be to show that Sr
is nonzero on some G-translate g-L?(X, M) for infinitely many joint eigenvalues
A €)%, namely for all

(7.1) X €7t N (2pc — p+ ATNZ(G))

with d(\) large enough (Proposition 8.1). Here j*% and p are defined with respect
to some choice of a positive system X7 (gc,jc) containing the fixed positive system
Y*(kc,ic) of Section 3.3; the set AT"4(G4) is the Z-submodule of A of finite index
that was defined in (3.6).

A similar argument to the one used in Chapter 6 for the convergence of ¢! would
show that for a fixed A satisfying (7.1) with d(\) large enough, Sr- is nonzero for any
finite-index subgroup IV of I' such that the index [I" : T”] is large enough, where “large
enough” depends on I'" and A. However, we wish to prove that St is nonzero without
passing to any subgroup; therefore we need to carry out some more delicate estimates
in the summation process.

In preparation for Proposition 8.1, the goal of the current chapter is to establish the
following analytic estimate, where, as before, zy denotes the image of H in X = G/H.

Proposition 7.1. — Under the rank condition (3.3), there exists ¢ > 0 with the
following property: for any A € i N (2p. — p+ Ay ), there is a function 1y € Vz\ C
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L2(X, M)k such that 1y (zo) = 1, such that
(7.2) [ (@)] < cosh(q'[[v()]) =7

for all x € X, and such that for any finite subgroup J of the center Z(K) of K we
have (g -x0) =1 for all g € J if X\ € 2p. — p+ A”.

Here Z € Z denotes the closed H?-orbit through the origin in the flag variety
Pd ~ G4/P?, where P? is the minimal parabolic subgroup of G corresponding to
the choice of the positive system X7 (gc,jc) defining j% and p, using (5.6). We refer
to Section 5.3 (and more precisely to (5.10)) for the definition of Vyz .

The decay at infinity (i.e. when |v(z)|| — +00) of the elements of L?(X, M)k
was already discussed in Chapter 5. The point of Proposition 7.1 is to control the
behavior of certain eigenfunctions 1y, not only at infinity, but also near the origin
o € X.

We actually prove that the estimate (7.2) holds for the Flensted-Jensen eigen-
function ¥y = ¥y z, given by (7.3) below. In Chapter 8 we shall consider some
G-translates of 1) 7 and apply the analytic estimate of Proposition 7.1 in connection
with some geometric estimates near the origin (Propositions 8.9 and 8.14).

7.1. Flensted-Jensen’s eigenfunctions

Before we prove Proposition 7.1, we recall the definition of the Flensted-Jensen
eigenfunction ¥y = v z, in the spirit of Chapter 5. We note that we may assume that
H is connected, because otherwise the Flensted-Jensen function ¢y € L?*(G/H)(C
L?(G/Hy)) is the average of finitely many Flensted-Jensen functions in L?(G/Hy).
We will assume that H is connected for the rest of the chapter.

We retain the notation of Chapters 3 and 5. As explained above, in the whole
chapter we fix a positive system ©*(gc,ic) ~ X7 (g?,j) containing the fixed positive
system X T (¢c,jc) ~ X T (h?,j) of Section 3.3; it determines a positive Weyl chamber .
and an element p € j7. Let P? be the corresponding minimal parabolic subgroup
of GY. We denote by Z € Z the closed H%orbit through the origin in G?/P4.
For A € j%, we set puy := A+ p — 2p.. The condition on A € ji that appears in
Proposition 7.1 is puy € Ay (i.e. (5.12) with w = e).

Let 67 be the (K¢ N H%)-invariant probability measure supported on Z. For any
A € jg, the G-equivariant line bundle £y = G¢ X pa §p—n over G?/P? is trivial as
a K%-equivariant line bundle over K¢/K? N P(~ G%/P?), because the restriction
of £,_» to KN P? is trivial. Thus dz can be seen as an element of B(G?/P%, L))
via the isomorphism B(K?/K9 N P4) ~ B(G/P% L,). Flensted-Jensen [F1] proved
that if A € j% satisfies uy € A4, then §z is K-finite (see Remark 5.3) and generates
the irreducible representation of h¢ with highest weight py. The Poisson transform
Pr(67) is also K-finite and moreover, viewed as an element of A(G?/K% M)k, it
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belongs to the image of the homomorphism 7 of (5.3). He then set
(7.3) U,z = nil(P)\(éz)) € AX, M)\ k.

We shall prove that this function ¥y = )y z satisfies (7.2). We note that our
estimate (7.2) is stronger, for this specific ¥, than what is given in the general
theory of [F1, MO, Os2], as it is both uniform on the spectral parameter A\ and
uniform on z € X near the origin.

7.2. Spherical functions on compact symmetric spaces

We first recall some basic results concerning spherical functions on the compact
symmetric space Xy = Gy /Hy (see Section 5.2 for notation). In Section 7.3, some
of these results will actually be used, not only for Xy = Gy /Hy, but also for the
compact symmetric space K/H N K.

Let gu = hu +qu be the decomposition of gy into eigenspaces of do with respective
eigenvalues +1 and —1. We note that j is a maximal abelian subspace of q¢;. Similarly
to (3.4), let AL (Gu/Hy) be the set of highest weights of finite-dimensional irreducible
representations of Gy with nonzero Hy-invariant vectors; we see it as a subset of j&
by Remark 3.5. We note that Xy has the same complexification as the Riemannian
symmetric space of the noncompact type X¢ = G¢/K?. The Borel-Weil theorem (see
[Kn, Th. 5.29]) implies that

(7.4) AL (Gy/Hy) ~{\ €ji : &\ extends holomorphically to Ge},

where & : G¢ — C is defined by (5.1). If O,z(Gc/Hc) denotes the ring of regular
functions on G¢/Hc, endowed with the action of G by left translation, then we have
an isomorphism
Oalg(Gc/H(c) ~ @ VA
AeA4(Gu/Hu)

of Gy-modules, where (my,Vy) is the finite-dimensional irreducible representation
of Gy with highest weight A. A highest weight vector of (my,V)) is given by the
holomorphic extension of &) to G¢ (see Section 5.1), which is denoted by the same
symbol &Y. Let {a,..., -} be the basis of X(gc,jc) corresponding to our choice of
Y (gc,jc), and let wi, ..., w, €j% be defined by

(7.5) M =0

for all 1 <i,5 <r, so that

(7.6) A=

for all A € j*; we note that w; is twice the usual fundamental weight associated
with «;. If G is simply connected, then the Cartan—Helgason theorem (see [Wa,
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Th. 3.3.1.1]) shows that
(7.7) +(Gy/Hy) EBNWJ

For any A € AL (Gy/Hy), we fix a GU—mvarlant inner product (-,-) on V) with
(£Y,€Y) = 1. The following easy observation and lemma will be useful in the next
section.

Observation 7.2. — For any g € G,
&(9)* = (ma(9)&X, mA(9)&Y)-

Proof. — We consider the Iwasawa decomposition G¢ = K%(expj)N? of Section 5.1.
For any g = k(exp((g))n € K%(expj)N? = G4,

A& = M mRE = €a(9) mA(R)EX
Since K% = Hy is contained in Gy and (+,+) is Gy-invariant, we obtain
(M (9)&, A (9)EX) = &xl9)*. O
Lemma 7.8. — For A € AL (Gy/Hy), the function §x € O(Ge) satisfies
lEx(g)l <1 for all g € Gu.
Proof. — By Observation 7.2,

&(9)? = (malo(g) " 9)&X,&Y) forall g e G

Since both sides are holomorphic functions on G¢, this holds for all g € G¢. Applying
the Cauchy—Schwarz inequality, we get [€x(g)] < 1 on Gy. O

7.3. Proof of Proposition 7.1 for the Flensted-Jensen functions

We now go back to the setting of Section 7.1. When X\ € j% satisfies uy € Ay,
the function 1 € Vz  of (7.3) is well-defined and extends uniquely to a right-Hc-
invariant function on KcBy Hc [Fl|; we keep the notation 1, for this extension.
Directly from the definition, we have

(7.8) a(ky) = /H BN ranL

for all k € K¢ and y € G? [F1, (3.13)], where £_5_, : G¢ — C is given by (5.1) and
&u, : Kc — Cis the holomorphic extension, given by (7.4) for the compact symmetric
space K/K N H instead of Gy /Hy, of the function £, : H? — C given by (5.1) with
respect to the Iwasawa decomposition

(7.9) H? = (KYn H)(expij)(N? N HY).
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We note that the restriction to H? of any “¢” function for G coincides with the
corresponding “£” function for H¢, which is why we use the same notation. The fact
that (7.9) is an Iwasawa decomposition of H? relies on the rank condition (3.3).

In order to prove Proposition 7.1, we first observe the following.

Lemma 7.4. — Let J be a finite subgroup of the center Z(K) of K. For X € j* with
px € Ay NA7, the Flensted-Jensen function 1y satisfies ¥a(g-x0) =1 for all g € J.

Proof. — As in Section 3.3, we can see the highest weight of any irreducible represen-
tation of K with nonzero (K N H)-fixed vectors as an element of j% (see Remark 3.5).
Let A € j7} satisfy py € Ay. By construction, the highest weight of the K-span of
Urlk/kne € L*(K/K N H) is py; this can be seen directly on (7.8), using the fact
that [jc, be N€c] C he Nee. If py € A7, then by definition g - w)\lK/KﬂH = "/U\|K/KQH
for all g € J (where g acts by left translation); in particular, ¥ (g - o) = ¥a(x0) =1
for all g € J. O

Proposition 7.1 for the Flensted-Jensen function 1) € Vz ) is an immediate conse-
quence of (7.8), of Lemma 7.4, and of the following lemma.

Lemma 7.5. — Let \ €j% satisfy (5.12). Then
1. &, (k)| <1 for all k € K;
2. there exists ¢’ > 0 such that for allY € b and { € HN K,
|6 a_p(exp(=Y)€)| < cosh(q'[|[Y])~4O+P).

Proof of Lemma 7.5. — Lemma 7.5.(1) follows immediately from Lemma 7.3 applied
to the compact symmetric space K/H N K instead of Gy /Hy.

To prove Lemma 7.5.(2), we may assume that G¢ is simply connected, because
the Iwasawa projection for G¢ is compatible with that of any covering of G¢. Then
wj € Ay (Gu/Hy) forall 1 < j < r by (7.7). Tosimplify notation, we write (m;, V;, ;)
for (mu;, Vi, &5,) and || - [|; for the Euclidean norm on V; corresponding to the G-
invariant inner product (-,-) of Section 7.2. Then (7.6) and Observation 7.2 imply
that for all A € j* and g € G¢,

(A+p,aj) r

- - Taje5) —d(x
€a ()] = <) = [T w0 l, ™ < [T Imilo)ey ;0.
Jj=1 j=1

Therefore, in order to prove Lemma 7.5.(2), we only need to prove the existence of a
constant ¢’ > 0 such that

(7.10) in [ (exp V)08, > 1
and
(7.11) max |7 ((exp Y)0)&) || > cosh(q'[[Y])

1<j<r
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forall Y e band ¢ € HN K. For any 1 < j < r, the Lie algebra b acts semisimply
on V; with real eigenvalues, hence there are an orthonormal basis (v;;)1<i<dim v of V;
and linear forms 3;; € b*, 1 <7 < dim Vj}, such that

mi(expY) vy = ePii¥)
forallY € band 1 <4 < dim V}. Write the matrix coefficients {b;;} for the restriction

7Tj|HﬁK as
dim Vj

= Z bij(ﬂ)vij (KEHQK),

where S V3 b, (£)2 = 1 since 7;| g is unitary. By [F1, Lem. 4.6],
dim V;

75 ((exp Y ))& |15 = Z [bij (£)]* cosh(2B;;,Y)

forall 1 < j < r,all Y € b, and all 6 € H N K, hence (7.10) holds. Let us
prove (7.11). By a compactness argument [F1, Th. 4.8], there is a constant £ > 0 with
the following property: for any Y € b and ¢ € H N K, there exist j € {1,...,r} and
ip € {1,...,dim V;} such that

(7.12) (Bios> Y) Z ellYIl and  [bio;(6)] > e
ForY e band ¢ € HN K, let (ip,7) be as in (7.12). Then
dim V;

i ((exp Y)OL |13 = > [bi(0)] cosh(28;;,Y)
=1

Y

1bio ()] cosh(2B,,5, Y) + Y [bi;(£)
i#ig
> e?cosh(2¢||Y ) + (1 —&2).

By using the general inequality
tcosh(z) + (1 —1t) > (cosh %)2,
which holds for any 0 < ¢ <1 and x € R, we obtain
I ((exp Y)O)&] || > cosh(®||Y])).
This proves (7.11) for ¢’ := &% and completes the proof of Lemma 7.5. O



CHAPTER 8

NONVANISHING OF EIGENFUNCTIONS ON LOCALLY
SYMMETRIC SPACES

As explained at the beginning of Chapter 7, our goal now is to complete the proof
of the theorems and propositions of Chapters 1 to 3 by establishing the following key
proposition.

As in Section 3.3, we denote by G, (resp. L.) the maximal compact normal sub-
group of the reductive group G (resp. L) and by Z(Gs) the center of the commutator
subgroup of G. The Z-module AT"%(%s) for T C G has been defined in (3.6). We
choose a positive system X% (gc,jc) containing the fixed positive system X% (Ec, jc)
of Section 3.3; this defines a positive Weyl chamber j% and an element p € j7% as in
Section 3.3.

Proposition 8.1. — Suppose that G is connected, that H does not contain any sim-
ple factor of G, and that the rank condition (3.3) holds.

1. (Sharp Clifford-Klein forms)
For any sharp Clifford-Klein form Xp of X with T NG. C Z(G,), there is a
constant R > 0 such that for any X € j* N (2p. — p + ATNZ(C)) with d(\) > R,
the summation operator Sr is well-defined and nonzero on g-L*(X, M)k for
some g € G.

2. (Uniformity for standard Clifford-Klein forms)
Let L be a reductive subgroup of G, with a compact center and acting properly
on X. There is a constant R > 0 with the following property: for any discrete
subgroup T of L withT'NL. C Z(Gs) (in particular, for any torsion-free discrete
subgroup T' of L) and for any \ € % N (2p. — p + AYNZ(G)) with d(\) > R, the
operator Sr is well-defined and nonzero on g-L*(X, M)k for some g € G.

3. (Stability under small deformations)
Let L be a reductive subgroup of G of real rank 1, acting properly on X, and
let T be a conver cocompact subgroup of L (for instance a uniform lattice) with
I'NG. C Z(Gs). Then there are a constant R > 0 and a neighborhood U C
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Hom(T', G) of the natural inclusion such that for any ¢ € U, the group (') acts
properly discontinuously on X and for any X € i N (2pc — p + AFOZ(Gs)) with
d(X\) > R, the operator S,y is well-defined and nonzero on g-L*(X, M)k for
some g € G.

IfTNL. C Z(Gs) (for instance if T is torsion-free or if L is simple with
Z(L) C Z(Gs)), then we may take the same R (independent of T') as in (2), up
to replacing U by some smaller neighborhood.

Recall that L2?(X, M,) is the space of L?-weak solutions to the system (M) of
Section 3.3 and L2(X, M)k is the subspace of K-finite functions. The group G acts
on L?(X, M) by left translation (3.9). We define a summation operator Sr on any
G-translate g-L?(X, M)k by the same formula as in Proposition 6.1: see Section 8.1
below. The fact that we need to consider G-translates is linked to the geometric issue
of distribution of T'-orbits in X and in the Riemannian symmetric space G/K (see
Remark 8.4, together with Propositions 8.9and 8.14).

As we shall see in Section 8.5 (Formulas (8.9) and (8.10)), the constant R of
Proposition 8.1.(1) can be expressed in terms of the sharpness constants (¢,C) of T
and of the minimal nonzero value of ||| on the T'-orbit Tzy. Recall that ||| measures
the “pseudo-distance to the origin zy”.

We note that the technical assumptions of Proposition 8.1 are not very restrictive:
Remarks 3.9 also apply in this context.

Remark 8.2. — We can make Proposition 8.1.(1), (2), and (3) more precise with
respect to G-translation: we actually prove that

(a) for d()\) > R, the operator Sr is well-defined on g-L?(X, M)k for all g € G;

(b) there is an element g € G such that Sr is nonzero on g-L?(X, M)k for all A
with d(\) > R.

Statement (a) follows from Proposition 6.1 and from the fact that the first sharpness
constant is invariant under conjugation (Proposition 4.3), using Remark 8.4 below.
For Statement (b), we refer to Section 8.5.

Remark 8.3. — We can make Proposition 8.1 more precise in terms of discrete
series representations for X. Recall from Fact 5.5 that L?(X, M)k is the direct sum
of finitely many irreducible (g, K')-modules Vz x, where Z € Z. We have given two
combinatorial descriptions of the set Z.
— In terms of positive systems: by (5.6), any Z € Z corresponds to a positive
system X7 (gc, jc), which determines a positive Weyl chamber j% and an element
p €j%. We prove that Sr is well-defined and nonzero on g-Vz \ C g L*(X, M)k
for any A € j7 with d()\) > R satisfying

i = A+ p—2p, € ATNZ(Gs),
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— In terms of Weyl group elements: fix a positive system X7 (gc,jc) containing the
positive system X7 (£, jc) of Section 3.3; this determines a positive Weyl cham-
ber j% and an element p € j%. By (5.9), any Z € Z corresponds to an element
w € W(H GY), where W(H?, G%) C W is a complete set of representative for
the left coset space Wynx \W. We prove that Sr is well-defined and nonzero on
g-Vzx Cg-L*(X, M)k for any X € j% with d(\) > R satisfying

pY = w\+ p) — 2p, € ATNZ(G:),

Thus we get different integrality conditions on A depending on the element Z € Z we
are considering. These conditions might not be all equivalent; it is enough for A to
satisfy one of them in order to belong to the discrete spectrum Spec,(Xr).

8.1. The summation operator Sr on G-translates of L?(X, M)k

Let Xt be a Clifford—Klein form of X. We define the summation operator Sr on
any G-translate g-L?*(X, M)k as follows.

For g € G, let £y : x — g - x be the translation by g on X. The following diagram
commutes, where pr : X — Xr is the natural projection.

14

X — - X T — g-x
R
Xr = Xgrg—1 e —— (gTg~ ") (g )

Since D(X) consists of G-invariant differential operators, we obtain the following
commutative diagram for smooth functions satisfying (M ).

.-
CR¥(X, M) =——— C=(X, M,)

p;T Tpgrgl

~

COO(XF,M)\) < COO(XgFgfluMX)
The space L?(X, M) is contained in C* (X, M,) (see Section 5.3), and

(8.1) 0 LA (X, My g = L(X, M)) g1k
For ¢ € £} L?(X, M)k C C%®(X, M)), we set

Sr(p) = ¢' = (F:c — Z (vt :v)) ,

yel
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this is the same formula as the one defining Sr on L?(X, M)k in Proposition 6.1.

Then Sr is well-defined on £} L?(X, M)k if and only if S 1 is well-defined on

gl'g~
L?(X, M)k, and in this case the following diagram commutes.

o
OOO(X,M)\) D é;L2(X,M)\)K <Ng— LQ(X,M)\)K C COO(X,MA)

Spl lsyrgl

LQ(XF; MA) -~ L2(XgFg*1 ; M)\)

We note that
(8.2) g'L2(_X,M)\)KZKZ—I(L2(X7M)\)K).
In particular, we will use the following.

Remark 8.4. — The operator Sr is nonzero on g - L*(X, My)x if and only if the
operator S,-1p, is nonzero on L?(X, M) k.

The reason why we consider G-translates g-L?(X, M)k to construct nonzero
eigenfunctions on Xr is precisely that we want to allow ourselves to replace the
groups I' by conjugates g~ 'T'g (see Propositions 8.9 and 8.14).

8.2. Nonvanishing on sharp Clifford—Klein forms

We adopt the first point of view described in Remark 8.3: for the whole chapter we
choose a positive system XV (gc,jc) containing the fixed positive system X+ (Ec,ic)
of Section 3.3; this defines a positive Weyl chamber j% and an element p € ji as in
Section 3.3, as well as an element Z € Z by (5.6). The key ingredient in the proof of
Proposition 8.1 is the following lemma.

Lemma 8.5. — Assume that the rank condition (3.3) holds. For ¢,C,r > 0, let T
be a discrete subgroup of G such that:
1. T is (¢,C)-sharp for X,
2. inf{|v(x)]|:x €T a0 and x ¢ X} >,
3. TxgNX. C Z(Gs)-xp.
For any X € 3% N (2p. — p + ATNZ(CE)) with d(\) > max(m,, Rx /c) and
4| pall(r + C) + log (2cq #(I' N K))
¢ log cosh(q'r)

the operator St : L*(X, M)k — L?(Xt, M)) is well-defined and any function 1y €
Vza C L?(X, M\)k as in Proposition 7.1 satisfies Sr(1x)(zo) # 0.

dA+p) >

)
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Let us recall earlier notation: p, € a is half the sum of the elements of ¥ (g, a),
counted with root multiplicities, and m,, c¢¢, Rx, and ¢’ are the constants of (3.8),
Observation 4.19, Proposition 6.1, and Proposition 7.1 respectively. We denote by zq
the image of H in X = G/H and keep the same notation for its image in Xp = '\ X
for any Clifford—Klein form Xp. The set X, = K consists of the points = in X whose
“pseudo-distance to the origin” ||v(z)|| is zero; it is a maximal compact subsymmetric
subspace of X, and identifies with K /K N H. Remark 4.5 implies the following.

Remark 8.6. — For any discrete subgroup I' of G acting properly discontinuously
on X,

inf {||v(z)|| : 2 € T-mg and = ¢ X} > 0.

Remark 8.7. — For any A € j% we have d(A + p) > d()), hence for R’ > 0 the
condition d(A + p) > R’ is satisfied as soon as d(\) > R’.

Proof of Lemma 8.5. — Let A\ € i% N (2p. — p + ATNZ(G)). Assume that d()) >
max(m,, Rx/c); then the summation operator

SF : L2(X,M)\)K — L2(XF,M)\)

is well-defined by Proposition 6.1. Assume moreover that d(\) > m,; then A €
2p. — p+ Ay by Lemma 5.6 and we can apply Proposition 7.1. The function ¥ of
Proposition 7.1 has module < 1 outside of X.. In order to prove that ¢£($0) # 0, we
naturally split the sum into two: on the one hand the sum over the elements v € I’
with v-xzg € X, on the other hand the sum over the elements v € T with v-xo ¢ X,.
We control the first summand by using the assumption (3) that the I'-orbit of T'-zg
meets X, only inside the finite set Z(Gy)-xo, where ¥ takes value 1: by Lemma 7.4,

Z Ua(y-zo)| = #{yeTl yao e X} > 1.
veL, vy woeXe

Therefore, in order to prove that ¥} (z¢) # 0, it is sufficient to prove that

Z [ha(y-mo)| < 1.
V€T, yxo¢Xe

The estimate (7.2) and the assumption (2) on the “pseudo-distance to the origin” ||v||
imply

Z [ (7o)

RISIAN 7'I0¢Xc
—+o0
<3 cosh(g'rn) ¥ gy € T e < v()] < (n + )},

n=1
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where the constant ¢’ > 0 of Proposition 7.1 depends only on X. We now use the
assumption (1) that T is (¢, C)-sharp. By Lemma 4.6.(3),

#Hyel: v <+ D)r} <#ITNK)-coe
where the constant ¢ > 0 of Observation 4.19 depends only on G. Thus

Z |tha(y-wo))|

vEL, v xo€Xe

1)r4+C
2Hpa||%,

—+o0
< #NK)- CGempa lr+0) Z cosh(q'Tn)_d(’\+p) . 6(2”PCa ur)n7
n=1
and we conclude using the following lemma. O

Lemma 8.8. — For any S, T,U >0 with S > 1,
+oo
S Zcosh(Tn)_d V" <1

n=1

for all d > R := PEESEL

Proof. — Tt is sufficient to prove that for all d > R and all n > 1,
S cosh(Tn)~ eV < 27,

or equivalently

logS+n(log2+U)

d
- log cosh(T'n)

One easily checks that for all n > 1,
log S+ n(log2+U) <n(log(25)+U)

and
log cosh(Tn) > n logcoshT. O

8.3. Points near the origin in the orbit of a sharp discrete group

In this section and the next one we do not need the rank condition (3.3).

In Lemma 8.5 we assumed that T'-zo N X, C Z(Gy) 2o, where X, = K -z is the
maximal compact subsymmetric space of X consisting of the points z whose “pseudo-
distance to the origin” |[v(x)|| is zero and Z(Gs) is the center of the commutator
subgroup of G. We now prove the following, where G denotes the maximal compact
normal subgroup of G (as in Chapter 3.3) and Gy the maximal normal subgroup of G
contained in H.

Proposition 8.9. — For any discrete subgroup I' of G acting properly discontinu-
ously on X, there is an element g € G such that g~ yg-xo ¢ X. for ally € T\NG.Gpy.
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In Section 8.5 we shall combine Proposition 8.9 with Lemma 8.5 to prove Proposi-
tion 8.1.(1). Recall that in Proposition 8.1.(1) we assumed that H does not contain
any simple factor of G; it has the following consequence.

Remark 8.10. — If H does not contain any simple factor of G, then Gy = Z(G)NH
and I'NG.Gyg =T NG, for any discrete subgroup I' of G acting properly discontin-
uously on X = G/H.

The assumption I' N G, C Z(G,) in Proposition 8.1.(1) is there to ensure that if
g 1vg 7o ¢ X, for all v € TG, (as given by Proposition 8.9), then g 'T'g-zo0N X, C
Z(Gy) - zo (as required to apply Lemma 8.5).

In the rest of this section we give a proof of Proposition 8.9.

e The main lemma and its interpretation. — We first establish the following.

Lemma 8.11. — For any v € G\ G.Gp, there is an element g € G such that
g tvg - w0 & X., or in other words g~ 'vg ¢ KH.

We note that Gy is the set of elements of G that act trivially on X. In particular,
for any v € G~ G there is an element g € G such that g~ !'vg-2¢ # x9. Lemma 8.11
states that if v ¢ G. G, then we can actually find g such that g='yg -z ¢ X.. The
condition v ¢ G. Gy cannot be improved: if v € G. Gy, then any conjugate of ~
maps zg inside G, - xg C X, since G, Gy is normal in G.

Here is a group-theoretic interpretation.

Remark 8.12. — For any subset S of G, let
GIS]:= () 959"
geG

If S is a group, then G[S] is the maximal normal subgroup of G contained in S.
In particular, G[K] = G, and G[H] = Gg. Lemma 8.11 states that GI[KH] =
G[K|G[H]. We note that this equality may fail if we replace K by some noncompact
symmetric subgroup of G, i.e. by H' such that G/H’ is a non-Riemannian symmetric
space.

e Preliminary Lie-theoretic remarks. — Before we prove Lemma 8.11, we make
a few useful remarks. For any subspaces e, f of g, we set

(8.3) i ={Y ee:[},Y]={0}}.
Lemma 8.13. — Assume that G is simple.
1. For any nonzero ideal ¥ of €, we have p¢ = {0}.
2. The Lie algebra spanned by €N q contains €s.

3. The normalizer Ny(¢Ngq):={h € H: Ad(h)(tNq) =€tNq} of tNqin H is
contained in K.
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Proof of Lemma 8.13. — 1. If ¢ is an ideal of £, then the space pe/ is globally
stable under ad(), or equivalently under Ad(K). But the adjoint action of K
on p is irreducible [KN69, Ch. XI, Prop. 7.4], hence p¥ is either {0} or p. Since
K is reductive, we can write £ as the direct sum of ¢ and of some other ideal €.
If pt' = p, then ¢ + p is an ideal of g, hence & 4+ p = g since g is simple; in
other words, ¢ = {0}.

2. For any reductive Lie group L with Lie algebra [, we denote by [s the Lie
algebra of the commutator subgroup (or semisimple part) of L. Proving that €,
is contained in the Lie algebra spanned by £Nq is equivalent to proving that (&c)s
is contained in the Lie algebra spanned by £¢ N qc. In turn, this is equivalent
to proving that (h%), is contained in the Lie algebra spanned by h? N p?, since
the complexifications of h? and p? are £ and qc, respectively (see Section 5.2).
But (h%)s admits the Cartan decomposition (h?)s = (h4)s N€ + (h?)s Np?, and
it is well-known that if [ is a semisimple Lie algebra with Cartan decomposition
[ = & + py, then [py, pi] + pr = [ (one easily checks that [p, pi] + pr is an ideal
of I, hence equal to [ if [ is simple; the general semisimple case follows from
decomposing [ into a sum of simple ideals). Thus (h%), is contained in the Lie
algebra spanned by (h?), Np? C h? N pd.

3. The group L := Ny (€N q) is stable under the Cartan involution 6 of G, since
tNq is fixed by 6. Therefore L is reductive and admits the Cartan decomposition
L = (KNL) exp(pNl). Proving that L is contained in K is equivalent to proving
that p N[ = {0}. We have

pnl={Y ehnp:adY)(tng) ctng}l=(Hnp,

hence p N1 is contained in pt"9 = p{tM9)  where (€N q) is the Lie algebra spanned
by £Nq. By (1) (with ¢ = ¢,) and (2), we have p{*M® = {0}. O

e Proof of Lemma 8.11. — Suppose that v satisfies
(8.4) g 'yge KH forall g € G.

Let us prove that v € G. Gy. We first assume that G is simple. The idea is to work
in the Riemannian symmetric space G/K of G, where we can use the G-invariant
metric dg/ . As before, we denote by yo the image of K in G/K.

Firstly, we claim that v € K. Indeed, write v € Kh where h € H. Then (8.4) with
g € K implies hKh™' € KH, i.e. hKh™'-yy C H-yy. By considering the tangent
space of G/K at xg, which identifies with g/, we see that Ad(h)€ C h+¢, or in other
words € C b+ Ad(h=1)(€). This implies Ad(h~!)(ENq) = £Nq. By Lemma 8.13.(3),
we have h € K.

Secondly, we claim that y~! fixes pointwise the set KB, - yo. Indeed, let k € K
and b € By. By (8.4), we have y~'kb-yo € kbH -yo. By (4.1), (4.6), and Lemma 4.17,

de/x (Yo, kb - yo) = [lp®)l| = [v(O)] = [lv®M) < [lu(h)|| = de/x (yo, kbR - yo)
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for all h € H, hence kb - yo is the projection of yg to the totally geodesic subspace
kbH -yg. Since v € K fixes yo and acts on G/K by isometries, we have

de i (Yo, v kb y0) = da /i (Yo, kb - yo) < de/x (Yo, kbh - yo)

for all h € H. But v~ 'kb - yo belongs to kbH - yo by assumption, and kb - yo is the
projection of yg to kbH - yo, so v~ kb - yo = kb - yo. This proves the claim.

To prove that v € G. Gy, we assume that the simple group G is noncompact, so
that G.Gg = Z(G) (otherwise G. = G). Then B, # {e}. We have seen that 7!
fixes pointwise the set K B - yo, which is equivalent to the fact that v € (kb) K (kb)~*
for all k € K and b € By. Thus v belongs to the closed normal subgroup

K= () (kb)EK(kb)™
k€K, beB4

of K. We note that Ad(k')(Y) =Y for all ¥’ € K’ and Y € b,. Indeed, Ad(k')(Y) —
Y € p since K’ C K, and Ad(k')(Y) — Y € € since b"*K'b C K. In particular, the
Lie algebra ¢ of K’ satisfies p¥ # {0} with the notation (8.3). But ¥ is an ideal of &,
hence ¢ = {0} by Lemma 8.13.(1). In other words, K’ is contained in the center Z(K)
of K. We claim that in fact K’ C Z(@). Indeed, for any k' € K’ the set gAd*) of
fixed points of g under Ad(k’) is a Lie subalgebra that contains both £ and b # {0}.
But the Lie algebra g is generated by € and any nontrivial element of p (because the
adjoint action of K on p is irreducible [KN69, Ch. XI, Prop. 7.4]), hence ghdl) = ¢
which means that &' € Z(G). In particular, v € Z(G) = G.Gg.

In the general case where GG is not necessarily simple, we write G as the almost
product of a split central torus ~ R, of G.Gpg, and of noncompact simple factors
G1,...,Gy with G; ¢ H for all i. Since ~ is elliptic, we can decompose it as v =
YoY1 - - - Ym, Where 79 € G. Gy and v; € G; for all ¢ > 1. For ¢ > 1, the restriction
of o to G is an involution; the polar decomposition G; = (K NG;)(By NG;)(HNG;)
holds, with B, N G; # {e}, and the corresponding projection is the restriction of v.
By the previous paragraph, v; € Z(G;) for all i« > 1. Therefore v € G. Gy since
Z(G;) C G. Gy. This completes the proof of Lemma 8.11.

e Proof of Proposition 8.9. — Let I' be a discrete subgroup of G acting properly
discontinuously X. Consider the set

Fi={yeT da(u(y), n(H)) < 1}.

For any v € F we have - CNC # (), where C is the compact subset of X = G/H
obtained as the image of u='([0,1]) C G; therefore F is finite. For v € F, the map
[y : G = G sending g € G to g~'vg is real analytic, hence f;l(KH) is an analytic
submanifold of G. By Lemma 8.11, if v ¢ G. Gy, then f7'(K H) is strictly contained
in G, hence it has positive codimension. In particular, there is an element g € G with
lu(g)|] < 1/2 such that g~ 'vg ¢ KH (i.e. g~ yg- 20 ¢ X.) forally € F N\ G.Gpy.
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By Lemmas 4.4 and 4.17, for all y € I' \ F,
(g™ v9)ll = da(p(g™"9) p(H)) = da(pu(v), n(H)) = 2[|u(g)]| > 0.

In particular, g~ 'yg - xg ¢ X, for all ¥ € I' " G.Gy. This completes the proof of
Proposition 8.9.

8.4. Uniformity for standard Clifford—Klein forms

In Section 8.5, we shall prove Proposition 8.1.(2) by combining Lemma 8.5 with the
following consequence of the Kazhdan—Margulis theorem, applied to some conjugate
of L instead of G.

Proposition 8.14. — Assume that the reductive group G has a compact center.
There is a constant rg > 0 (depending only on G) with the following property: for
any discrete subgroup I' of G, there is an element g € G such that

lu(g=vg)|| > rg  for ally €T\ G..

As before, G. denotes the largest compact normal subgroup of G. The condition
v € T'\ G, cannot be improved: if v € G, then u(g~tvg) = 0 for all g € G since
g 1vg € G. C K. The condition that the center Z(G) of G is compact also cannot be
improved: if Lie(Z(G))Na contains a nonzero vector Y, then for any ¢ € R the cyclic
group generated by y; := exp(tY) € G\ G, is discrete in G and ||u(g~ 1 yg)|| =t ||Y||
for all g € G.

Recall that [|u(g)|l = da/x(yo,9 - yo) for all g € G, where yo is the image of K
in the Riemannian symmetric space G/K. Thus Proposition 8.14 has the following
geometric interpretation: there is a constant rg > 0 such that any Riemannian locally
symmetric space M = I'\G/K locally modeled on G/K admits a point at which the
injectivity radius is > rgq.

Proposition 8.14 is not new; we give a proof for the reader’s convenience. We
begin with an elementary geometric lemma in the Riemannian symmetric space G/ K,
designed to treat groups I' with torsion.

Lemma 8.15. — For any g € G\ G. of finite order and any R,e > 0, there ezists
r > 0 such that for any ball B of radius R in G/K,

volg/k ({y € B+ dgx(y,gy) <r}) <e.
This r depends only on the conjugacy class of g in G (and on R and ¢).

Proof. — For g € G\ G, of order n > 2, let F, be the set of fixed points of g in G/ K.
We claim that the set of points y € G/K with dg/x(y,g-y) < r is contained in an
(n — 1)r-neighborhood of F,. Indeed, for y € G/K, consider the “center of gravity”
z of the g-orbit {y,g-y,...,g" ' -y}, such that S0 de/k(z,9"-y)? is minimal.
(The existence and uniqueness of such a point were first established by E. Cartan
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[Ca] to prove his fixed point theorem.) The point z belongs to the convex hull of
{y.9-y,...,9" -y}, hence there exists 1 < igp < n — 1 such that dg/k(y,g" - y) >

da/k (y,2). Moreover, z € Fy, hence dg/k(y,2) > da i (y, Fy). By the triangular

inequality,
10—1
i i 1 i 1
da/x(y,9-y) = o Z de/r (9" -y, gt y) > P da/x (Y, 9" -y) > o da/x (Y, Fg)s
i=0

which proves the claim. Let R,e > 0. We note that F, is an analytic subvariety
of G/K of positive codimension since g ¢ G.. Therefore, for any ball B" of radius
(n+ 1)R centered at a point of Fy, there exists r > 0 such that

volg k({y € B' : dajk(y,g-y) <r}) <e.
Using the fact that the centralizer of g in G acts transitively on F, (see [He2, Ch.IV,
§7]), it is easy to see that this r can actually be taken uniformly for all such balls. We
conclude the proof of Lemma 8.15 by observing that any ball of radius R meeting the
(n—1)r-neighborhood of F, is actually contained in a ball of radius (n+ 1) R centered
at a point of F,, since » > R. The fact that r depends only on the conjugacy class of
g in G (and on R and ¢) follows from the fact that the metric dg, i is G-invariant. O

Proof of Proposition 8.14. — We first assume that G is semisimple with no compact
factor, so that G, = Z(G). The Kazhdan-Margulis theorem (see [Ra2, Th. 11.8]) then
gives the existence of a neighborhood W of e in G with the following property: for
any discrete subgroup I' of G, there is an element g € G such that g7 'TgNW = {e}.
It is enough to prove Proposition 8.14 for discrete groups I' such that T NW = {e}.

We note that for all g,y € G, we have dG/K(yo,g_lvg “yo) = da/x(y,Y - Y)
where y := ¢ - yo. Therefore, using the interpretation (4.1) of ||u|| as a distance
in the Riemannian symmetric space G/K, it is enough to prove the existence of a
constant r¢ > 0 with the following property: for any discrete subgroup I' of G with
I'NW = {e}, there is a point y € G/K such that for any v € I' \ Z(G),

(8.5) da/x (Y, y) = re.
In order to prove this, we consider a bounded neighborhood U of e in G such that
UU~Y C W, and an integer m such that

(8.6) m - volg(U) > volg (K1 -U),
where we set
Ki:={g€G:dg/x(yo, 9 yo) <1}.
e We claim that for any torsion-freediscrete subgroup I' of L with T NW = {e},
(57) 0l = doxc (o1 90) 2 -
Indeed, let T be such a group. Then vU N~'U = () for all v # + in T, hence
volg (K1 -U) > #(I'N K1) - volg(U).
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Therefore, by (8.6),

#(TNKy) <m.
Using the fact (4.2) that ||u(g™)] < m|ju(g)| for all ¢ € G, we obtain that any
element v € " with ||u(7y)|| < 1/m has order < m; the number of such elements v is
< m. In particular, since I is torsion-free, the only element v € I with [|u(7)]| < 1/m
is e, proving (8.7).
e We now deal with groups I' that have torsion. By Lemma 8.15, for any g € G \ G,
of finite order there exists 7 € (0, 3] such that for any ball B of radius 1/3m in
G/K,

1
(8.8) volgk({y € B: da/x(y,9-y) <r}) < EVOIG/K(B)u

and this r depends only on the conjugacy class of g in G. Since there are only finitely
many conjugacy classes of elements of order < m in G [He2, Ch.IX, Cor.44 &
Prop.4.6], there exists a constant r = rg such that (8.8)holds for all g € G \ G,
of order < m and all balls B of radius 1/3m. Let us prove that this constant r¢g
satisfies (8.5). Let I' be a discrete subgroup of G such that I' N1 W = {e}. The same
reasoning as before shows that any element v € T with ||u(7)|| < 1/m has order < m;
the number of such elements y is < m. By (8.8), there is a point y € B,k (vo, %)
such that dg i (y,7-y) > rg for all v € T' \ G, with [|u(y)]] < 1/m. For all y € T
with ||p()|| = de/k (Yo, - yo) > 1/m, we also have

1
da/k (Y, v -y) > da/x (Yo, - yo) — 2dea/k (Y, v0) > 3 >ra,

which proves (8.5) and completes the proof of Proposition 8.14 in the case when G
has no compact factor.

We now consider the general case where G may have compact factors. Let 7 : G —
G/G. be the natural projection. The group 7(G) = G/G. is semisimple with a trivial
center and no compact factor. It admits the Cartan decomposition

(@) = 7(K) n(A7) 7(K).

Let fir(q) : 7(G) — logm(A) be the corresponding Cartan projection. The restric-
tion of m to A is injective, hence we may identify logm(Ay) with ar. With this
identification,

tx () ((9)) = nlg)
for all g € G. Therefore, Proposition 8.14 for G follows from Proposition 8.14 for 7 (&),
given that for any discrete subgroup I" of G the group 7 (I') is discrete in 7(G). O

Remark 8.16. — If G is disconnected, with finitely many connected components,
then it still admits a Cartan decomposition G = KA, K, where K is a maximal
compact subgroup of G and A a positive Weyl chamber in a maximal split torus
of G, possibly smaller than the corresponding positive Weyl chamber for the identity
component of G. The corresponding Cartan projection u : G — log A is well-defined
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and has the property that ||u(g)|| = dg/x(y0,9 - yo) for all g € G, where yo denotes
the image of K in G/K. Lemma 8.15 and Proposition 8.14 hold with the same proof.

8.5. Proof of Proposition 8.1

Recall from (6.6) that we may take Rx to be 4||p,||/¢ in Proposition 6.1. For any
subgroup I' of G acting properly discontinuously on X, we set

rp = inf {v(2)]| 1@ € T-zo and # ¢ X} >0

(see Remark 8.6).

We first consider Proposition 8.1.(1). Let X1 be a sharp Clifford—Klein form of X
with TNG. C Z(Gs). UT-2gNX. C Z(Gs)-xo, then, by Lemma 8.5 and Remark 8.7,
the operator St is well-defined and nonzero on Vz  for any A € j*+ﬂ(2pc—p+AFmZ(Gs))
with d(\) larger than

4pall  4lpall(rr + C) +log (2cc #(I' N K))

(8.9) max (mp , , )
qc ¢ log cosh(q'rr)

Otherwise, we use Proposition 8.9, Remark 8.10, and the assumptions that H does

not contain any simple factor of G and I' NG, C Z(G5) to obtain the existence of an

element g € G such that g7 'T'g - 29 N X. C Z(Gy) - 7o; then Sg-1rg is well-defined

and nonzero on Vz  for any A € j% N (2p. — p + Agflrng(Gs)) with d()) larger than

Allpall ~ 4llpall(rg-11g + C) + log (2¢c #(9~'Tg N K)) )
gc ' c logcosh(q'r,-1r,) '

(8.10) max (mp,

By Remark 8.4 (and the fact that g~ 'T'g N Z(Gs) = I' N Z(Gy)), the operator Sr is
well-defined and nonzero on g - Vz for any A € j% N (2p. — p + ATZ(G) satisfying
(8.10). This concludes the proof of Proposition 8.1.(1).

We now consider Proposition 8.1.(2). Let L be a reductive subgroup of G acting
properly on X. Assume that the center of L is compact. There is a conjugate L’ of
L in G that is stable under the Cartan involution 6; in particular, L’ is (¢, 0)-sharp
for some ¢ > 0 (Example 4.11). By Remark 8.4, it is sufficient to prove Proposi-
tion 8.1.(2) for L'. Let L, be the maximal compact normal subgroup of L’. Applying
Proposition 8.14 to L’ instead of GG, we obtain the existence of a constant rp, > 0
(depending only on L’) such that any discrete subgroup I' of L’ admits a conjugate
g 'T'g, g € L', with ||u(g~*yg)| > 7 for all v € T' \. L. The reason why we apply
Proposition 8.14 to L’ and not G is that in this way the group ¢~ 'I'g C L’ remains
(¢,0)-sharp. Lemma 4.17 then yields ||v(g~'yg)|| > c¢rys for all v € T' . L. In par-
ticular, g7 lvg - 29 ¢ X, for all y € '\ L, and rr > c¢rr,. By Remark 8.10 and the
assumptions that H does not contain any simple factor of G and TN L. C Z(Gs), we
have g ' TgN K C Z(Gs) and g 'T'g-29 N X. C Z(Gs)-wg, which enables us to apply
Lemma 8.5. Using Remark 8.7, we obtain that the operator S -1, is well-defined
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and nonzero on Vz y for any A € j5 N (2p. —p + A-"flrgmz(Gs)) with d()) larger than

4 a 4 a ’ +1 2 Z Gs
(8.11) R := max (mpu I ; pallers +1og (2cq #2( )))
qc ¢ logcosh(q’cryy)

Proposition 8.1.(2) follows, using Remark 8.4.

We now consider Proposition 8.1.(3). Let L be a reductive subgroup of G of
real rank 1 and let I be a convex cocompact subgroup of L with I' N G. C Z(Gy).
By Proposition 8.9, Remark 8.10, and the assumptions that H does not contain
any simple factor of G and T'N G, C Z(Gs), there is an element g € G such that
g 1vg 20 ¢ X, for all v € T'N Z(Gs). By Proposition 4.3, the group g~ 'I'g is
(¢, C)-sharp for some ¢,C' > 0 (where ¢ depends only on L). Choose € € (0,74-11,).
By Lemma 4.22 applied to g 'T'g C g~ Lg instead of I' C L, there is a neighborhood
U" € Hom(T, G) of the natural inclusion such that for all ¢ € U’, the group g~ t¢(T)g
is discrete in G and (c—&, C'+-¢)-sharp for X, and satisfies |[v(g~ o(7)g)|| = ry-1r,—€
for all v € '\ Z(G5). We now use the following fact, which holds because there are
only finitely many conjugacy classes of elements of order < #Z(G;) in G [He2,
Ch.IX, Cor.4.4 & Prop.4.6] and they are all closed [Bo3, Th.9.2].

Remark 8.17. — There is a neighborhood & C U’ C Hom(I',G) of the natural
inclusion such that o(I' N Z(Gs)) C Z(G) for all ¢ € U.

By Remark 8.17, we have g~ '¢(T')g- 20 N Xe C Z(Gs)- o and -1,y > rg-1rg — &,
as well as g 1p(I')g N K C Z(Gy); we can apply Lemma 8.5. Using Remark 8.7, we
obtain that for all ¢ € U, the operator Sy-1,(r)4 is well-defined and nonzero on Vz x
for any X € % N (2p. — p + A9 "e(anZ(G2)) with d()) larger than

Allpall  4llpall(r + C) +log (2cc #Z(Gs)) )

R = ( ’ ’
max (m, qc ¢ log cosh(q'(r — €))

Proposition 8.1.(3) follows, using Remark 8.4. If ' N L. C Z(Gy), then we can
conjugate I' as in the proof of Proposition 8.1.(2) and take r = ¢rr, and C' = 0. Since
the function d takes discrete values on j% N (2p. — p+ A), by choosing € small enough
we see that we can take the same R as in Proposition 8.1.(2). This completes the
proof.

8.6. Proof of the results of Chapters 1 to 3

The bulk of the paper was the proof of Proposition 8.1; now we briefly explain how
the results of Chapters 1 to 3 follow.

Theorem 3.8.(1) follows immediately from Proposition 8.1.(1); Theorem 3.8.(2)
from Proposition 8.1.(2); Theorem 3.11 from Proposition 8.1.(3); Theorem 3.13 from
Proposition 6.1. In the case when ‘G is connected with no compact factor, Proposi-
tions 2.1 and 2.2 follow from Lemmas 4.23 and 8.5 as in the proof of Proposition 8.1.(3)
(see Section 8.5).
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In order to deduce Theorems 1.5, 1.7, and 1.8 from Theorems 3.8 and 3.11, and
to prove Propositions 2.1 and 2.2 in the general case, it is sufficient to deal with the
following three issues:

— G may be disconnected,

— some simple factors of G may be contained in H,

— (G may have compact factors.

Indeed, when G has no compact factor, the condition I'NG. C Z(G,) of Theorems 3.8
and 3.11 is automatically satisfied (see Remark 3.9.(a)). The first issue is easily dealt
with: if Go denotes the identity component of G, then Go/(Go N H) is a connected
component of X, so Spec;(Go/H) is a subset of Spec;(X) (extend eigenfunctions
by 0 on the other connected components). In order to deal with the second and
third issues, we consider the group G := G /G.Gp, where Gy is the maximal normal
subgroup of G contained in H (see Section 8.3). We note that G is reductive with no
compact factor and that none of its simple factors is contained in H := H/G.GgNH,
hence Theorems 3.8 and 3.11 apply to the reductive symmetric space X := G /H. To
relate X to X, we make the following elementary observation.

Observation 8.18. — The natural projection 7 : X — X induces homomorphisms
- O(X) S O (X),
- D(X) > D(X),
~ Homg a14(D(X), C) <= Homg a4 (D(X), C) B

such that for all D € D(X), f € C*°(X), and x € Homc.a14(D(X),C),

(m.D)f =x(m.D)f <= D" f)=(r"x)(D)7"f.
Moreover, 7*(L*(X)) C L*(X), hence
7 (Specy(X)) C Specy(X).

Let us now consider Clifford-Klein forms. We note that if I' is a discrete subgroup
of G acting properly discontinuously and freely on X, then the image T of ' in G is
discrete and acts properly discontinuously on X, but not necessarily freely. However,
in all the previous chapters we could actually drop the assumption that I" acts freely,
allowing Xt to be an orbifold (or V-manifold in the sense of Satake) instead of a man-
ifold. Indeed, let us define L?(Xr) to be the set of [-invariant functions on X that
are square-integrable on some fundamental domain for the action of I'. If C2°(XT)
denotes the space of I'-invariant smooth functions on X with compact support mod-
ulo T, then any D € D(X) leaves C°(Xr) invariant, so that for x» : D(X) — C we
can define the notion of weak solution f € L?(Xr) to the system

Df =xx(D)f for all D € D(X) (M)

with respect to integration against elements of C°(Xr). We can then define
Spec,(XT) to be the set of C-algebra homomorphisms x : D(X) — C for which the
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system (M) admits a nonzero weak solution f € L*(Xr). Since our construction
of joint eigenfunctions is obtained by the summation operator Sr, Propositions 6.1
and 8.1, as well as Theorems 3.8 and 3.11, hold in this more general setting. We
conclude the proof of Theorems 1.5, 1.7, and 1.8 and Propositions 2.1 and 2.2 with
the following observation.

Observation 8.19. — 1. The rank condition (3.3) for X = G/H holds if and
only if that for X = G/H holds.

2. For any discrete subgroup I' of G acting properly discontinuously on X, the
image T’ of I" in G is discrete and acts properly discontinuously on X.

3. The projection 7 : X — X induces 7*(L?(X)) C L?(Xr), hence
7 (Specy (X)) C Specy(Xr).
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CHAPTER 9

THREE-DIMENSIONAL ANTI-DE SITTER MANIFOLDS

In this chapter and the following one, we concentrate on a few examples to illustrate
our general theory. We first examine the case of the 3-dimensional anti-de Sitter space
X = AdS® = 80(2,2)0/S0(1,2). Our purpose is 3-fold:

— recall the description of the Clifford-Klein forms of AdS® in terms of represen-

tations of surface groups, as developed since the 1980’s (Sections 9.1 to 9.3);

— use it to give an explicit infinite subset of the discrete spectrum of the Laplacian
on any Clifford—Klein form 1"\AdS3 with T" finitely generated, in terms of some
geometric constant Cr;,(I") (Section 9.4);

— understand the analytic estimates developed in Chapters 5 and 7 through con-
crete harmonic analysis computations on the group SLa(R) (Sections 9.5 to 9.9).

As mentioned in the introduction, X = AdS?® is a Lorentzian analogue of the real
hyperbolic space H? = SO(1,3)0/SO(3): it is a model space for all Lorentzian 3-
manifolds of constant negative curvature, or anti-de Sitter 3-manifolds. One way to
see X is as the quadric of equation @ = 1 in R* with the Lorentzian metric induced
by —@Q, where

(9-1) Qz) =i + a3 — 25 — a7

the sectional curvature of X is then —1 (see [Wo]). Another way to see X is as the
manifold SLy(R), with the Lorentzian structure induced by 1/8 times the Killing form
of sl3(R) and the transitive action (by isometries) of the group

G .= SLQ (R) X SLQ (R)
by left and right multiplication:

(9.2) (91,92) -9 = 91995 -
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We will use both realizations of X. An explicit correspondence is given by

{reR*: Qx) =1} = SLy(R)
(9.3) T — (wl tare —r2t x3)
' To + I3 xT1 — T4

The stabilizer in G of the identity element 1 € SLy(R) is the diagonal H :=
Diag(SL2(R)), which is the set of fixed points of G under the involution o : (g1, g2) —
(92,91). Thus X = S0(2,2)9/SO(1,2)o identifies with

G/H = (SLy(R) x SLy(R))/Diag(SL (R)).
We note that the action of G on X factors through G/{+(1,1)} =~ SO(2,2)¢; we
have H/{£(1,1)} ~ SO(1,2)o. By [K]] and [KR], all compact anti-de Sitter 3-
manifolds are Clifford—Klein forms Xp = I'\X of X, up to finite covering. We now

recall how these Clifford-Klein forms (compact or not) can be described in terms of
representations of surface groups.

9.1. Description of the Clifford—Klein forms of AdS?

As in Section 1.4, let —I € SO(2,2)y be the diagonal matrix with all entries equal
to —1; it identifies with (1, —1) € G/{#(1,1)} and acts on X = AdS® by z — —z.
Describing the Clifford—Klein forms of X reduces to describing those of its quotient
of order two

X SO(2,2)0/(SO(1,2)0 x {£I})
(PSL2 (R) x PSLy (R))/Diag(PSLg (R)).

12

If T is a discrete subgroup of G acting properly discontinuously and freely on X, then
its projection I' to PSLa(R) x PSLa(R) acts properly discontinuously and freely on X;
the natural projection Xr — Yf between Clifford—Klein forms is an isomorphism if
—1I belongs to the image of T' in SO(2,2)y, and a double covering otherwise.

A fundamental result of Kulkarni-Raymond [KR] states that if a torsion-free dis-
crete subgroup T of PSLy(R) x PSLa(R) acts properly discontinuously on X, then it
is of the form

(9.4) T={(G(),p(7)) : v € m(9)},

where S is a hyperbolic surface and j, p € Hom(m(S), PSLa(R)) are two represen-
tations of the surface group m1(S), with one of them Fuchsian, i.e. injective and
discrete. The Clifford—Klein form Yf = T'\ X is compact if and only if S is. Pairs
(4, p) € Hom(m(S), PSL2(R))? such that the group (j, p)(m1(S)) acts properly dis-
continuously on X are said to be admissible (terminology of [Sal]). We note that not
all pairs (7, p) are admissible: for instance, if j and p are conjugate, then the infinite
group (4, p)(m1(S)) does not act properly discontinuously on X since it fixes a point.

The question is to determine which pairs are admissible.
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Easy examples of admissible pairs are obtained by taking j Fuchsian and p con-
stant, or more generally p with values in a compact subgroup of PSLy(R): the group
T := (j,p)(m1(S)) and the Clifford-Klein form X = I'\X are then standard in
the sense of Definition 1.4. When p is constant, Xt identifies with ‘I'\'G, where
‘G = PSLy(R) and 'T" = j(m1(9)) is a discrete subgroup of ‘G; in other words, it is
the unit tangent bundle to the hyperbolic surface ‘T'\H? (where H? denotes the hyper-
bolic plane). The first nonstandard examples of compact anti-de Sitter 3-manifolds
were obtained by deforming standard ones, i.e. proving that for fixed Fuchsian j,
the pair (j,p) is admissible for any p close enough to the constant homomorphism:
this was done by Goldman [Go] when p(m;(S)) is abelian, then by [Ko5] in general.
Salein [Sa2] constructed the first nonstandard compact Clifford—Klein forms that are
not deformations of standard ones. It is also easy to construct nonstandard Clifford—
Klein forms Yf that are not compact but conver cocompact, in the following sense.
We refer to [Ka3, Ch. 5] and [GK] for more details.

Definition 9.1. — A Clifford—Klein form Yf is convexr cocompact if, up to finite
index and switching the two factors, I' is of the form (9.4) with j injective and
J(m1(S)) convex cocompact in PSLy(R) in the sense of Section 1.5.

This terminology is justified by the fact that the convex cocompact Clifford—Klein
forms of X are circle bundles over convex cocompact hyperbolic surfaces, up to a
finite covering [DGK]. We shall say that a Clifford-Klein form Xr of X = AdS® is
convex cocompact if its projection Yf is.

By the Selberg lemma [Se2, Lem.8], any finitely generated subgroup I' of
PSL2(R) x PSLy(R) acting properly discontinuously on X has a finite-index sub-
group that is torsion-free, hence of the form (9.4). However, in order to obtain
estimates on the discrete spectrum of YF itself and not only of a finite covering, we
need to understand the precise structure of T itself. We shall use the following result,
whose proof is based on [KR].

Lemma 9.2. — LetT be a finitely generated discrete subgroup of PSLa(R)x PSLy(R)
(possibly with torsion) acting properly discontinuously on X. Then either T is stan-
dard (i.e. T' or o(T') is contained in a conjugate of PSLa(R) x PSO(2)) or T is of the
form

(9.4) T={({(),p0)) v € m(9)},

where S is a 2-dimensional hyperbolic orbifold, m1(S) is the orbifold fundamental
group of S, and (j, p) € Hom(m;(S), PSL2(R))?, with j or p Fuchsian.

Recall that a 2-dimensional hyperbolic orbifold S is a hyperbolic surface with
finitely many cone singularities, whose stabilizers are finite groups; the orbifold fun-
damental group 71 (S) is torsion-free if and only if S is an actual hyperbolic surface.
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The point of Lemma 9.2 is that in the nonstandard case, even if T has torsion, one of
its projections to PSLy(R) is still discrete and injective (not only with a finite kernel).

Proof of Lemma 9.2. — For i € {1,2}, consider the restriction to I of the i-th pro-
jection pr; : PSLa(R) x PSLy(R) — PSLa(R). The kernels Ker(pr,|r) and Ker(prs|p)
are discrete. They cannot both be infinite since T' acts properly discontinuously on X
[KR, §5]. Therefore, after possibly conjugating and replacing I' by o(T), we may
assume that Ker(pr, |) is finite and contained in {1} x PSO(2). If Ker(pr,|r) = {1},
then T is of the form (9.4) with j injective, and j is in fact discrete [KR, §5]. If
Ker(pry|z) # {1}, then it is easy to see that I is contained in PSLy(R) x PSO(2)

since it normalizes Ker(pr, |f). O

9.2. Deformation of convex cocompact Clifford—Klein forms of AdS?

The fact that the group PSLy(R) x PSLy(R) is not simple allows for a rich defor-
mation theory.

For instance, for any compact hyperbolic surface S, the set of admissible pairs
(4,p) is open in Hom(71(S), PSLa(R))?; the deformation space (modulo conjugation)
thus has dimension 12g — 12, where g is the genus of S. In other words, for any
compact Clifford-Klein form X of X = AdS® = G/H, the group ¢(I') is discrete
in G and acts properly discontinuously and cocompactly on X for all ¢ € Hom(T', G)
in some neighborhood of the natural inclusion of I" in . Indeed, this follows from
the completeness of compact anti-de Sitter manifolds [K]] and from the Ehresmann—
Thurston principle on the holonomy of geometric structures on compact manifolds
(see [Sal, §4.2.1]); a quantitative proof was also given in [Ko5].

More generally, proper discontinuity is preserved under small deformations for any
convex cocompact Clifford-Klein form of X (in the sense of Definition 9.1) [Ka3,
Cor. 5.1.6], as a consequence of the following two facts (the first one extending Exam-
ple 4.13).

Fact 9.3 ([Ka3, Th.5.1.1)). — All convex cocompact Clifford-Klein forms of X =
AdS? are sharp.

Fact 9.4 ([Ka3, §5.7.2]). — Let Xr be a (c,C)-sharp, convex cocompact Clifford—-
Klein form of X = AdS® = G/H. For any € > 0, there is a neighborhood U. C
Hom(I', G) of the natural inclusion such that the group ¢(I') is discrete in G and
(¢ —e,C +€)-sharp for all p € U..

(We refer to Definition 4.2 for the notion of sharpness.)

Facts 9.3 and 9.4 give the geometric estimates that we need (together with the an-
alytic estimates of Section 9.5 below) to construct an infinite stable discrete spectrum
for the convex cocompact Clifford—Klein forms of X = AdS? (Corollary 9.10). By
[GK], sharpness actually holds for all Clifford—Klein forms Xt of X with T" finitely
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generated, which implies that the discrete spectrum is infinite for all such X (The-
orem 9.9).

9.3. The constant Cp;,(T")

The infinite subset of the spectrum that we shall give in Section 9.4 will be ex-
pressed in terms of a geometric constant Cr;y(I"). The goal of this section is to
introduce Cpr;,(T), to explain how sharpness is determined by this constant, and to
provide some explanation of Facts 9.3 and 9.4.

e A reformulation of sharpness for X = AdS®. — Let ppsL, (r) - PSL2(R) = Rx>o
be the Cartan projection mapping any element g to the logarithm of the highest
eigenvalue of tgg. We will use the following geometric interpretation:

(9.5) HPSL, () (9) = duz (Yo, 9 - Yo),
where yo is the point of H? whose stabilizer is PSO(2). Consider a 2-dimensional
hyperbolic orbifold S and a pair (j, p) € Hom(71(S), PSL2(R))?. By [Kal, Th.1.3],
if the group (j, p)(m1(S)) acts properly discontinuously on X = AdS®, then the set of
points

(ppsta®) (F(Y)) s tpsia®)(p(7))) € R?
for v € m1(S) lies on one side only of the diagonal of R?, up to a finite number of
points. Therefore, the group T := (4, p)(m1(S)) is sharp for X if and only if, up to
switching 7 and p, there exist constants ¢ < 1 and C” > 0 such that

ppsta ) (P(Y)) < ¢ ppsryw) ((7)) + €7
for all 4 € m;(S); in this case, I is (¢, C)-sharp for

o /
7(1 ‘) and C’::g

(9.6) ¢ :=sin (g — arctan(c')) = o) NG

and j is Fuchsian.

e The constants Cr;,(j,p) and Cr;,(I'). — We denote by Crip(4, p) the infimum
of Lipschitz constants

: dy2(f(y), f(¥'))
Llp(f) y;éys’ulrn) H?2 dpz (yu y/)
of maps f : H? — H? that are (j,p)-equivariant, i.e. that satisfy f(j(v)-y) =
p(y) - f(y) for all v € m(S) and y € H2. By the Ascoli theorem, this infimum is
a minimum if j is Fuchsian and the Zariski closure of (j, p)(m1(5)) is reductive (i.e.
the image of p does not fix a unique point on the boundary at infinity of H?). The
constant Cr;p(j, p) is clearly invariant under conjugation of j or p by PSLa(R). The
logarithm of C'r;;, can be seen as a generalization of Thurston’s “asymmetric metric”
(or “Lipschitz metric”) on Teichmiiller space: see [Ka3, Ch.5] and [GK].
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Let ' be a discrete subgroup of G acting properly discontinuously on X. By
Lemma 9.2, either T' is standard, or its projection to PSLs(R) x PSLs(R) is of the
form (9.4). In the first case, we set Cp;p(I") := 0. In the second case, we set

CLip(T) :=min (CLip(j, p) , CLip(p, ))-

e Link between sharpness and the constant Cr;,. — Consider a 2-dimensional
hyperbolic orbifold S and (j, p) € Hom(71(S), PSL2(R))? with j Fuchsian. Using the
geometric interpretation (9.5), we make the following easy but useful observation.

Remark 9.5. —  — If the Zariski closure of (4, p)(m1(5)) is reductive, then there
is an element go € PSLo(R) such that for all v € m(.5),

1psLy®) (90 - P(Y) 90) < CLip(j, p) ipsra @) ((Y))-

— In general, for any € > 0 there is an element g. € PSL2(R) such that for all
Y E ™ (S),

ppsto®) (92 p(7) 9¢) < (CLip(fs p) + €) tpsia @) (5(7))-

Indeed, for ¢ > 0, let f. : H? — H? be a (j, p)-equivariant map with Lip(f.) <
CrLip(4,p) + e. We can take any g. € PSLz(R) such that f.(yo) = ge - Yo,
using the fact that the metric dy2 is invariant under PSLa(R).

Let T' be a discrete subgroup of G. Proposition 4.3.(1) and Remark 9.5 (together
with the above reformulation of sharpness) imply that if Cr;,(I') < 1, then I is sharp
for X; in particular, I" acts properly discontinuously on X. The converse is nontriv-
ial but true in the finitely generated case (based on the existence of a “maximally
stretched line” for (j, p)-equivariant maps of minimal Lipschitz constant C'ri, (4, p) > 1
[Ka3, GK]).

Fact 9.6 ([Ka3, GK]). — A finitely generated discrete subgroup T' of G acts prop-
erly discontinuously on X = AdS® if and only if CrLip(T) < 1, in which case T' is
sharp for X.

This is how Fact 9.3 and its generalization [GK] to Clifford-Klein forms Xr with
I’ finitely generated were obtained. Fact 9.4 is a consequence of Fact 9.6 and of the
following continuity result.

Fact 9.7 ([GK]). — The function (j,p) — CrLip(J, p) is continuous over the set of
pairs (j, p) € Hom(my(S), PSLa(R))? with j injective and j(m1(S)) convex cocompact
in PSLy(R).
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9.4. The discrete spectrum of the Laplacian
We note that here
=g ={(Y,-Y):Y €sL(R)} C sh(R)+sh([R)=g.

Therefore, the symmetric space X = AdS® has rank 1 and the C-algebra D(X) is
generated by the Laplacian Ox (Fact 3.1). Let us identify X with the quadric of
equation @ = 1inR*, where the Lorentzian structure is induced by —Q. As mentioned
in the introduction, if we set r(z) := \/Q(x) for Q(z) > 0, then the Laplacian Oy is
explicitly given by

1

Oxf = = Olgans (g; — f(i))

2 r(z)
for all f € C*°(X), where
0? 0? 02 0?
022 " Ozl 02 042
and where f(z/r(z)) is defined on the neighborhood {Q > 0} of X in R* The

invariant measure w on X is given by

DR2,2 =

w = x1 drodrs dry — 29 doy dag day + 23 dry dos doy — x4 day dos dos

in other words, %dr Aw is the Lebesgue measure on a neighborhood of X in R*. The
full discrete spectrum of Ox is well-known (see [Fa]). It is a special case of the general
theory stated in Fact 5.5, and it also follows from Claim 9.12 below.

Fact 9.8. — The discrete spectrum of the Laplacian on X = AdS? is
Specy(Ox) = {¢({ —2): £ € N}.

We now consider Clifford—Klein forms Xp. Here is a more precise version (and
generalization) of Theorem 1.1, using the constant Cp;,(I") of Section 9.3.

Theorem 9.9. — There is a constant Ry > 0 depending only on X = AdS?
such that for any Clifford-Klein form Xp with finitely generated T € SO(2,2)
~ (SLa(R) x SL2(R))/{£(1, 1)},

—if =1 ¢ T, then
Ry
Spec,(Ox.) D 46(6—2): LEN, > ——=x L.
pecy(Hxr) {( ) <1—cup<r>>3}
—if =1 €T, then
Ry
Spec,(Ox.) D 400 —2): £eaN, 0> —x L
pecy(Hxr) {( ) <1—cup<r>>3}

In particular, the discrete spectrum of any Clifford—Klein form Xp with T' finitely
generated is infinite.

Using Fact 9.7, we obtain the existence of an infinite stable discrete spectrum in
the convex cocompact case.
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Corollary 9.10. — For any convex cocompact Clifford—Klein form Xr of X = AdS?
(in the sense of Definition 9.1), there is an infinite subset of Spec,(Ox,.) that is stable
under any small deformation of T'.

We note that Corollary 9.10 is stronger, in the case of X = AdS®, than the general
Theorem 1.7, because it treats small deformations of Clifford—Klein forms that may
be nonstandard to start with.

For standard Clifford—Klein forms X, we have Cp;,(I') = 0 and Theorem 9.9
follows from the general Theorem 3.11. We now explain how to prove Theorem 9.9 for
nonstandard Clifford—Klein forms, using the precise version (8.9) of Proposition 8.1.(1)
together with the theory of Sections 9.1 to 9.3 (in particular Lemma 9.2, Remark 9.5,
and Fact 9.6). We first note that we can identify the closed positive Weyl chamber b
of Section 4.1 with R so that the polar projection

v: G= SLQ(R) X SLQ(R) — RZO
of (4.5) is given by

(9.7) v(g) = MSLy(R) (9195 ")
forall g = (g1, 92) € G = SLa(R)xSL2(R). Here yig, (r) : SL2(R)— R>g is the Cartan

projection of SLy(R) obtained from the Cartan projection ppgr, ) of Section 9.3 by
projecting SLs(R) onto PSLa(R).

Proof of Theorem 9.9 for nonstandard Clifford-Klein forms

Let T be a finitely generated discrete subgroup of G acting properly discontinuously
on X = AdS®. Assume that T is nonstandard. By Lemma 9.2 and Fact 9.6, after
possibly applying o, we may assume that the projection of T' to PSLy(R) x PSLy(R)
is of the form T = (j, p)(m1(S)) with (j,p) € Hom(m(S), PSL2(R))? and j Fuchsian,
satisfying C'rip(j, p) < 1. By Proposition 8.14, after replacing j by some conjugate
under PSLy(R), we may assume that ppsr,w)(j(7)) > rpsi,®) > 0 for all v €
71(S) ~ {e}, where rpgr, () is the constant given by Proposition 8.14, which depends
only on the group PSLa(R). In particular, ' N K = {e}. Consider £ > 0 such that
CrLip(j,p) + ¢ < 1. By Remark 9.5 and (9.6), after replacing p by some conjugate
under PSLy(R), we may assume that T is (¢, 0)-sharp for

1—(OL1p(]ap)+€) > %(1—0Lip(jap)_€)

c =
V2(L+ (Crinliop) +2)°)
and, using (9.7) and (4.2), that

= inf > inf j -
T WGIL{{B}V(W) = ’Yeﬂ_ll(%)\{e}MPSLz(R)(]('y)) NPSL2(R)(P(’7))

> rpsLo@ (1= Crip(j, p) —€) > 0.

We note that the function ¢ +— log(cosh(t))t=2 extends by continuity in 0 and is
bounded on any bounded interval of R. We conclude by using Proposition 8.1.(1)
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with the explicit constant (8.9), together with Remark 8.4, and by letting e tend to
Z€ro. O

We note that the infinite subset of Spec;(Hx,.) given by Theorem 9.9 is largest
when Cp;,(I") = 0; this condition is realized when I is standard, but also when the
projection of T' to PSLy(R) x PSLy(R) is of the form (9.4) with p(m(S)) unipotent.

Remark 9.11. — Assume that X is a standard compact Clifford—Klein form with
I' = 'T' x {e} for some uniform lattice ‘T" of SLy(R). Then the Laplacian Ox,. has
not only infinitely many positive eigenvalues that remain constant under small defor-
mations (given by Theorem 9.9), but also infinitely many negative eigenvalues that
vary.

Indeed, L?(‘I'\H?) embeds into L?*(Xr) = L2?(‘T'\SLz(R)) and the restriction to
L*('T'\H?) of the Laplacian Oy, corresponds to —2 times the usual Laplacian A\p g2
on the hyperbolic surface ‘T'\H? (see [La, Ch.X]). Therefore [x,. is essentially self-
adjoint and admits infinitely many negative eigenvalues coming from eigenvalues
of Avp\g2. All these eigenvalues vary under small deformations of ‘I inside SL2(R)
(Fact 1.2).

9.5. Flensted-Jensen eigenfunctions and analytic estimates for AdS®

In Section 9.4 we have given an explicit infinite set of eigenvalues of the Laplacian
on Clifford-Klein forms of X = AdS* (Theorem 9.9), based on a geometric discussion
of properly discontinuous actions on AdS* (Sections 9.1 to 9.3). We now make the
analytic aspects of the paper more concrete by expliciting the general estimates of
Chapters 5 and 7 in our example X = AdS®. We first give an explicit formula for the
Flensted-Jensen eigenfunctions ).

e Flensted-Jensen functions. — It is known that, in general, the radial part of
the K-invariant eigenfunctions on a rank-one reductive symmetric space X satisfies
the Gauss hypergeometric differential equation [HS, Ch.III, Cor.2.8]. However, it
is another thing to find an explicit global formula on the whole of X for K-finite
eigenfunctions such as the Flensted-Jensen functions. We now give such a formula for
X = AdS®.

We now switch to the quadric realization of X: we identify X with the quadric
of equation @ = 1 in R?*, where @ is given by (9.1). We use the same letter Q to
denote the corresponding complex quadratic form on C*. Let ¢ be an integer. For
any a = (a;) € C* with Q(a) = 0, the restriction of the function z (Z?:l a;x;) "
to X is well-defined. It is an eigenfunction of Ox with eigenvalue (¢ — 2), as one sees

from the formulas , ,
DR2,2 <Z aixi) =0
i=1
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for Q(a) =0 and
0\2 0
2 22 = —(1r— — —_—
r* Ope, (raT) 2T8T+DX
(where, as above, we set 7(z) := /Q(z) for Q(z) > 0). Let ¢/ : X — C and
Y, : X — C be given by

(9.8) v (@) = (z1 + V-1 xg)% and 1, () = (21 — \/—1172)4.
Then Ox 1 = £(¢ — 2)3F and the following holds.

Claim 9.12. — For any integer { > 2, the functions z/@t : X — C are Flensted-
Jensen functions for the parameter X = 20 —2 € Ry ~ j*. The (g, K)-modules
generated by 1/)2' and by v, (€ = 2,3,...) form the complete set of discrete series
representations for X.

A proof of Claim 9.12 will be given in Section 9.9, after we explicit the Flensted-
Jensen duality, the Poisson transform, and the complexified Iwasawa projection G¢ =
Kc(expic)Nc in Sections 9.6 to 9.8.

Remark 9.13. — It is known that for the rank-one symmetric spaces G/H =
O(p,q)/O(p — 1,q), the radial part of the K-finite eigenfunctions is given by hy-
pergeometric functions with respect to the polar decomposition G = K(expb,)H,
while the spherical part is given by spherical harmonics (see [Fa] or [Sc2] for in-
stance). Combining the radial and spherical parts in the case p = ¢ = 2, we could
obtain Claim 9.12 from some nontrivial relation between special functions K@,
Lem. 8.1]. Instead, we will take an alternative approach, using the explicit realization
of X¢ = G¢/Hc as a complex quadric in C*.

e Analytic estimates. — Here are the estimates of Propositions 5.1 and 7.1 for
the Flensted-Jensen functions 1/1} of (9.8). As before, we denote by xo the image of
H in X = G/H; in our quadric realization, zo = (1,0,0,0) € R*.

Lemma 9.14. — For any x € X = AdS?,

(99) |1/Jét($)| < (%V(:C))_é/2 < 22 e*lu(z)/Q,
and
v(z)\ ¢/ vlx)\ =4
1) ) < eosh (U)o () < Gl =1

We give a direct, elementary proof of these inequalities.

Proof. — By (9.7), in the realization of X = AdS® as the group manifold
SL2(R), the polar projection v : X — Rs¢ coincides with the Cartan projec-
tion psp,r) @ SL2(R) — R>g, which maps g € SLa(R) to the logarithm of the
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highest eigenvalue of gg, or in other words to arcosh(tr(lgg)/2). Using the explicit
correspondence (9.3), we obtain

(9.11) v(x) = arcosh(z] + 23 + 23 + 1) = arcosh(2z7 + 223 — 1)

for all z = (1,22, 23,74) € X in the quadric realization. By definition (9.8) of ¥,
we have [¢f(z)] = (23 + 23)~%? for all 2 € X. Thus (9.9) follows directly from
(9.11). To obtain (9.10), we use the general inequality 1 4 cosh(2s) > 2 cosh(s) with
2s = v(x). O

The rest of the chapter is devoted to explaining Claim 9.12. For this purpose we
explicit, in the particular case of X = AdS®, some of the notation that was introduced
in Chapters 3 to 8.

9.6. The Flensted-Jensen duality for AdS®

We now realize X again as (SLa(R) x SLa(R))/Diag(SLa(R)). Then the set of
inclusions (5.4) is given by
K =S0(2) xSO(2)  C G=SLy(R) xSLa(R) o H = Diag(SLa(R))

N N N
Ke =S0(2,C) x SO(2,C) € Gc =SLy(C) x SLy(C) > He = Diag(SL2(C))
U U U
H% = ®(S0(2,0C)) C G? = ®(SL2(C)) > K%=®(SU(2)),
where @ is the embedding of SLy(C) into SLy(C) x SLy(C) defined by
(9.12) ®(9) = (9,977)

for all g € SL2(C). We can see the complexified symmetric space X¢ either as the
3-dimensional complex sphere of equation Q = 1 in C* or as the group SLz(C) with
the transitive action (9.2) of SLy(C) x SLy(C) by left and right multiplication; the
correspondence is given by the complex linear extension of (9.3). The dual space X¢
can be realized either as

(9.13) X?= {(z1,.V—122,25,74) 12, €ER, 2} — 25 — 25 — 2] =1, 21 > 0}

or as the set Herm(2, C); NSLy(C) of positive definite Hermitian matrices in SLy(C);
it identifies with the 3-dimensional hyperbolic space H?. The compact form X;; of X¢
can be realized either as

Xy = {(wl,xg,\/—1x3,\/—1x4) rx; € R, :v%—i—:v%—i—xg—i—:vz = 1}

or as the subgroup SU(2) of SLy(C); it identifies with the 3-dimensional real sphere
S3. The following diagram summarizes the different realizations of X, X¢, and X
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X =G/H ~ SL2(R) — R*
N N N
~ (9.3) 4
X(C = Gc/H(C ? SLQ(C) — C
U U U
X4 =qgi/ae ~ Herm(2,C)4+ NSL2(C) «— Rxy/—IRxRxR
zTe« %
SL2(C)/SU(2),

Here we set
' (gHc) = g195 "

for all g = (g1,92) € Gc = SLa(C) x SLa(C). In the rest of the chapter, we always
identify G* with SLa(C) using the isomorphism ® of (9.12).

9.7. Eigenfunctions on X% ~ H? and the Poisson transform

Let P? be any Borel subgroup of G¢ = SLy(C), let N be the unipotent radical
of P4, and let j be any maximal split abelian subalgebra of g¢ with expj c P?. For
instance, we could take P? to be the group of upper triangular matrices of determi-
nant 1, so that N¢ is the group of unipotent upper triangular matrices, and take j
to be the set of real diagonal matrices of trace 0 (in the next section we are going to
make another choice).

The boundary at infinity 0,cX? ~ P!C of X? ~ H? identifies with G¢/P%; we
denote the image of P? by z. Let yd be the image of K% in X% = G?/K% and let
L be the geodesic line (expj) - yg. The Iwasawa decomposition G¢ = K?(expj)N?
holds; this means that any point y € X% can be reached from yd by first applying
some translation along the line £, then traveling along some horosphere centered at
20 € 0o X . The Iwasawa projection ¢¢ : G — j measures this translation: we can
identify j with R so that ¢%(g) is the signed distance between yg and the horosphere
through g~!- yd centered at zy for any g € G%; the sign of (?(g) is negative if the
horosphere intersects the geodesic ray R := (expjy) - yd and nonnegative otherwise.
For all k € K% and g € G¥,

¢“g™ k) = Brr(g- i),

where Bz : X¢ — R is the Busemann function associated with the geodesic ray kR.
Recall that by definition

BkR(:E) = lim (dXd (:Z?, kR(t)) - t),

t——+o0

where dya is the metric on the Riemannian symmetric space X = G¢/K?.
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We note that the group K¢ acts transitively on d,,X? The classical Poisson
transform, defined by

(Ph)(y) = / Flhozp) e 2Brm ) g
keKd/Kanpd

for all f € C(0X?) and y € X? = G¢/K 4, induces a bijection between the continu-
ous functions on dso X and the harmonic functions on X? that extend continuously
t0 Joo X % the function P f is the unique solution to the Dirichlet problem on X ¢ ~ H3
with boundary condition f (see [Hel, Ch.II, §4]). If we extend the domain of defi-
nition of P to the space of all hyperfunctions on ds, X9, then we obtain all harmonic
functions on X% in a unique way. For \ € it ~ C (where p € j& corresponds to 2 € C),
the “twisted Poisson transform”

Pr: B(KY/KInPY = AXE My)
of Section 5.1 is given by

(Paf)(y) = / F(k-20) e~ AFDBLR®) g,

keKd/KInpd
for y € X9 its image consists of eigenfunctions of the Laplacian on X with eigenvalue
AN +2)/4.

The action of H? = SO(2,C) on 0, X? corresponds to the action of C* by mul-
tiplication on P*C, hence there are three H%orbits: two closed ones Zy = {zp} and
Zso = {w-zp} (where w is the nontrivial element of the Weyl group W = W (gc, jc) ~
Z/27), corresponding respectively to {0} and {co}, and an open one, corresponding
to C*.

9.8. Meromorphic continuation of the Iwasawa projection

We now assume that j is a maximal semisimple abelian subspace of v/—1(¢Nq), as
in Section 3.3. If we still identify G¢ with SLy(C) by (9.12), this means that

j:\/__lR(—Ol (1)>

Thus j is a maximal split abelian subalgebra of g¢ as in Section 9.7. It is readily seen

that
nt.=C ( ! \/__1>
V-1 -1
is a root space for j, hence the Iwasawa decomposition G¢ = K%(expj)N? holds
for N? := expn®. This Iwasawa decomposition can be recovered from the usual
decomposition

ow e (x() ) es(e() )
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by conjugating by

1 1+v-1 14++v-1 d
9.15 k== K.
(9.15) 2(—1+\/—1 1-v—1) <
We note that

kSLy(R) k™! = SU(1,1) = {g €SLy(C): g ((1) é) 9= ((1) t1>> }

and that Ad(k) induces an identification (“Cayley transform”) between the up-
per half-plane model SLy(R)/SO(2) of H? and the unit disk model SU(1,1)/
S(U(1) x U(1)). An elementary computation shows that the Iwasawa projection
corresponding to (9.14) is given by

1
(9.16) geGi— B log(*gg)11 € R,

where (*gg)1,1 denotes the upper left entry of ‘gg € SL2(C). We now go back to
the quadric realization (9.13) of X¢. Using (9.16) and the explicit correspondence
(9.3), we see that if (¢ : G — R is the Iwasawa projection corresponding to G¢ =
K%(expj)N, then for A € j* ~ R the map &) : X¢ — R induced by g — e ™)
is given by

(9.17) & (2) = (s +V=12)"*

for all z = (21, 29,23,24) € X C C*. When \ € 2Z, the map &Y extends mero-
morphically to X¢ = {z € C* : Q(2) = 1} and restricts to an analytic function
on X.

9.9. Proof of Claim 9.12

We now combine the elementary computations of Sections 9.6 to 9.8 to obtain an
explicit formula of the Flensted-Jensen functions v for X = AdS®.

We choose j and N¢ as in Section 9.8 and let P? be the Borel subgroup of G¢ ~
SL2(C) containing expj and N<. By Section 9.7, the two closed H%orbits in G¢/P?
are Zg = HIP? and Z., = H%wP?. If we identify G¢/P¢ with K¢/Ke N P4 ~
SU(2)/SO(2), then

Zy={K'nP% and  Z ={w(K NP}

For A € j* ~ R, the Flensted-Jensen function 1/19 : X4 - C associated with Zj is the
Poisson transform Py (dz,) of the Dirac delta function dz,, hence
YR(gK?) = el AT — Yy (g)
for all g € G¢. Similarly, the Flensted-Jensen function ¥5° : X4 — C associated
with Z. is given by
P (gR ) = el Al — oYy (),
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Therefore, by (9.17),

WO (z) = (21 + /—_122)—(/\+2)/2 and ¥ (z) = (21 _ lez)—(/\w)/z
for all 2 € X%, in the quadric realization (9.13). As observed at the end of Section 9.8,
the functions 99 and ¢ on X< induce analytic functions on X as soon as (A\+2)/2 €
Z, i.e. as soon as A € 27Z; this corresponds to the integrality condition (5.12) (we have
ps =y = A+ 2). The proof of Claim 9.12 is now complete.






CHAPTER 10

SOME OTHER ILLUSTRATIVE EXAMPLES

In this chapter we present some higher-dimensional examples of non-Riemannian
locally symmetric spaces to which our theorems apply, namely higher-dimensional
anti-de Sitter manifolds and group manifolds, as well as certain indefinite K&hler
manifolds.

10.1. Anti-de Sitter manifolds of arbitrary dimension

As a generalization of Chapter 9, we consider the discrete spectrum of complete
anti-de Sitter manifolds of arbitrary dimension > 3.

For m > 2, the anti-de Sitter space X = AdS™"! := SO(2,m)0/SO(1,m)o is a
model space for all Lorentzian manifolds of dimension m + 1 and constant negative
curvature. It can be realized as the quadric of R™*2 of equation Q = 1, endowed
with the Lorentzian structure induced by —@), where

2, 2 2 2
Q) =a7+a5 =25~ — T ia;

the sectional curvature is then —1 (see [Wo)).

By the general construction of [Kol], we see that AdS™ " admits proper actions
by reductive subgroups L of G := SO(2,m), of real rank 1 such as:

— L =U(1,[%]), where [%] denotes the largest integer < 7;

— L = PSLy(R), via a real 5-dimensional irreducible representation 75 of PSLy(R)

when m > 3.

Standard Clifford—Klein forms X1 of X can be obtained by taking I' to be any torsion-
free discrete subgroup inside L (for instance an infinite cyclic group, a nonabelian free
group, a lattice of L, an embedded surface group, etc.).

In particular, since U(1, %) acts transitively on X for m even, we can obtain com-
pact (resp. noncompact but finite-volume) standard Clifford—Klein forms of Ads™*!
for m even by taking T to be any torsion-free uniform (resp. nonuniform) lattice
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in U(1, %). This construction of compact Clifford-Klein forms of AdS™*! is (conjec-
turally) the only one for m > 2 since

— compact Clifford-Klein forms do not exist when m is odd [Kul],

— Zeghib [Z] has conjectured that for m even > 2, all compact Clifford-Klein
should be standard, with I' € U(1, %) up to conjugation (this conjecture is still
open).

We recall from Chapter 9 that the case m = 2 is different, as AdS® admits many
nonstandard compact Clifford—Klein forms.

Since all compact anti-de Sitter manifolds are complete [Kl1], small deformations of
the anti-de Sitter structure on a compact Clifford-Klein form F\AdSerl correspond
to small deformations of I' inside G = SO(2,m)o. When I' C L is standard, nontrivial
deformations exist as soon as the first Betti number of T' is nonzero [Ko5], which
can happen by work of Kazhdan [Kz]. For m > 2, small deformations of standard
compact Clifford Klein forms of AdS™"! can never give rise to nonstandard forms
(see Section 2.3). However, standard noncompact Clifford-Klein forms I'\AdS™ !
can, typically if T' is a convex cocompact subgroup of L that is a free group (Schottky
group). By [Ka2], if " is an arbitrary convex cocompact subgroup of L, then it keeps
acting properly discontinuously on AdS™" after any small (possibly nonstandard)
deformation inside G. Nonstandard noncompact Clifford-Klein forms of AdS™'!
were also constructed by Benoist [Bn] without using any deformation.

As a symmetric space, X = AdS™"! has rank one, hence the algebra D(X) of G-
invariant differential operators on X is generated by the Laplacian (x. For standard
Clifford-Klein forms of X, Theorem 3.8.(2) yields the following (explicit eigenfunc-
tions can be constructed as in Chapter 9).

Proposition 10.1. — There is an integer o such that for any standard Clifford—
Klein form Xp of X = AdS™" with T ¢ L =U(1,[2]) and I N Z(L) = {e},

(10.1) Specy(Oxp.) D {¢(—m): L€N, > {y},

and (10.1) still holds after a small deformation of T' inside G. A similar statement

holds for L = PSLa(R), embedded in SO(2,m)q via 7s.

For the reader who would not be very familiar with reductive symmetric spaces,
we now explicit the notation of the previous chapters for X = AdS™™. We see
H :=S0(1,m)p as SO(2,m)oNSLy4+1(R), where SL,, 11 (R) is embedded in the lower
right corner of SL,,2(R); the involution o defining H is thus given by

1 1
-1 -1

. —1 ' -1
for g € G = SO(2,m)o.
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e Cartan and generalized Cartan decompositions. — The Cartan decompo-
sition G = K AK holds, where K = SO(2) x SO(m) and the Lie algebra a of A is the
set of block matrices of the form

for s,t € R, where
Es ;= _ € s50(4).
T
The generalized Cartan decomposition G = K BH holds, where the Lie algebra b of B
is the set of elements a, ¢ for s € R.

e The Flensted-Jensen duality. — The set of inclusions (5.4) is given by
K =50(2) x SO(m) C G =8S0(2,m)o > H=S50(1,m)o

N N N
Ke =S0(2,C) x SO(m,C) C Gc=80(m+2,C) > He=S80(m+1,C)
U U U

H?=80(1,1)0 x SO(m) C G*=S0(1,m+1)y D> K*=S0(m+1).

In particular, X¢ = G?/K¢ = SO(1,m + 1)o/SO(m + 1) is the real hyperbolic
space H™.

e Closed H%orbits Z and the parameter )\ of discrete series representations.
— A maximal abelian subspace of v/—1 (¢Nq) is given by j := /—1s0(2), where s0(2)
is the first factor of ¢ = s0(2) @ so(m). We note that j is also maximal abelian in
v —1¢q, hence
rankG/H =rank K/H N K = 1 = dimj.
Since j is centralized by ¢, the restricted root system X(€c,jc) is empty. Let Y be the
1
generator /—1 ( 01 O) of j = v/—1s0(2) and let e; € j* be defined by (e1,Y) = 1.
There are two possible choices of positive systems 3 (gc, jc), namely {e;} and {—e;}.
By (5.6), the set Z of closed H%orbits in the real flag variety G¢/P? has exactly two
elements. They are actually singletons, the “North and South poles” of G¢/P? ~ §™.
Take X1 (gc,jc) to be {e1} (resp. {—e1}). If we identify j with R by sending e; (resp.
—e1) to 1, then ji identifies with R, and we have p = % and p. = 0, hence
m
MA=A+p—2pc=/\+5.
Condition (5.12) on uy) amounts to A € Z. The two discrete series representations
with parameter £\ are dual to each other.
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e Eigenvalues of the Laplacian. — By Fact 3.4, the action of the Laplacian Ox
on L?(X, M,) is given by multiplication by the scalar

2

(AN = (pp) = N — R

which can be written as (¢ —m) if we set £ := A+ 7. This explains Proposition 10.1.

10.2. Group manifolds

In this section we consider symmetric spaces of the form X = (‘G x'G)/Diag(*G)
where ‘G is any reductive linear Lie group. As mentioned in Section 2.2, the rank
condition (3.3) is here equivalent to rank‘G = rank ‘K, where ‘K is a maximal com-
pact subgroup of ‘G. This condition is satisfied for ‘G = SLy(R), in which case X is
the 3-dimensional anti-de Sitter space AdS® examined in Chapter 9. More generally,
it is satisfied for all simple groups ‘G with Lie algebra in the list (2.2). It is equivalent
to the fact that the Cartan involution of ‘G is an inner automorphism.

e Infinite stable spectrum in real rank one.— Assume that ‘G has real rank 1.
Then the structural results of Section 9.1 generalize: by [Kal, Th.1.3] (improving an
earlier result of [Ko2]), if a torsion-free discrete subgroup I' of ‘G x‘G acts properly
discontinuously on X, then it is of the form

(10.2) T ={(j(7);p(y)) : v €'T},

where 'T" is a discrete subgroup of ‘G and j, p € Hom('T','G) are two representations
with j injective and discrete (up to switching the two factors). Moreover, the Clifford—
Klein form Xr is compact if and only if j(‘\T')\G is. Standard Clifford-Klein forms
correspond to the case when p(‘T") is bounded.

There exist standard compact Clifford—Klein forms X that can be deformed into
nonstandard ones if and only if ‘G has a simple factor that is locally isomorphic
to SO(1,2n) or SU(1,n) [Ko5, Th.A]. On the other hand, for conver cocompact
Clifford-Klein forms Xp, i.e. for T of the form (10.2) with j injective and j('T")
convex cocompact in ‘G up to switching the two factors (see Definition 9.1), there
is much more room for deformation: for instance, I' could be a free group of any
rank m, in which case the deformation space has dimension m - 2dim(*G). Similarly
to Corollary 9.10, we can extend Theorem 1.7 to nonstandard convex cocompact
Clifford-Klein forms (in particular that do not identify with ‘T'\'G).

Theorem 10.2. — Let ‘G be a semisimple linear Lie group of real rank 1 satisfying
rank‘'G = rank‘K. All convex cocompact Clifford-Klein forms Xt have an infinite
stable discrete spectrum.

We note that most semisimple groups ‘G of real rank 1 satisfy the condition
rank'G = rank‘K: the only exception is if the Lie algebra ‘g is so(1,n) for some
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odd n up to a compact factor. Theorem 10.2 relies on the following two properties,
which generalize Facts 9.3 and 9.4 and corroborate Conjecture 4.12.

Fact 10.3 ([GGKW]). — Let ‘G be a semisimple linear Lie group of real rank 1.
All convex cocompact Clifford-Klein forms of X = (‘G x'G)/Diag(‘G) are sharp.

Fact 10.4 ([GGKW]). — Let ‘G be a semisimple linear Lie group of real rank 1
and let Xr be a (c,C)-sharp, convex cocompact Clifford-Klein form of X = (‘G x
‘G)/Diag(*G). For any e > 0, there is a neighborhood U. C Hom(T','G x ‘G) of the
natural inclusion such that p(T) is discrete in ‘G x'G and (¢ — &,C + €)-sharp for all
v EU..

For ‘G = SO(1,n), Facts 10.3 and 10.4 were first established in [GK], using the
Lipschitz approach of Section 9.3. In this case, Fact 10.3 actually holds for a larger
class of Clifford—Klein forms Xr, namely all those that are geometrically finite (in the
sense that the hyperbolic manifold j(‘\T")\H" is geometrically finite, allowing for cusps)
[GK]. This implies that the discrete spectrum of any geometrically finite Clifford—
Klein form of X = (SO(1,n) x SO(1,n))/Diag(SO(1,n)) is infinite for n even.

e “Exotic” Clifford—Klein forms in higher real rank. — As we have seen in
Section 2.2, for several families of groups ‘G of higher real rank, the space X = (‘G x
‘G)/Diag(‘G) admits standard compact Clifford-Klein forms Xp of a more general
form than ‘T'\'G. More precisely, let ‘G; and ‘G2 be two reductive subgroups of ‘G
such that ‘G acts properly and cocompactly on ‘G/'Ga: we can then take I of the
form T' = 'I'y x ‘T3, where ‘I'; (resp. ‘T'2) is a uniform lattice of ‘G (resp. of ‘G2).
Theorem 1.5 and Proposition 2.1 apply to the discrete spectrum of these “exotic”
standard compact Clifford-Klein forms Xt ~ ‘I'1\'G/'T's when rank‘G = rank ‘K.

A list of examples is given in Table 2.2 of Chapter 2. Among them, the example
(\G,"G1,'G2) = (SO(2,2n)p,S0(1,2n)p, U(1,n)) has the property that certain uni-
form lattices ‘I'1 of ‘G'i admit nonstandard deformations inside ‘G, for which there
exists an infinite stable discrete spectrum by Proposition 2.1. For n = 1, manifolds of
the form Xt = ‘I'1\'G/'T's have dimension 6 and are locally modeled on AdS® x AdS?;
the ring D(XT) is generated by the Laplacians of the two factors. The following table,
for general n, shows that these Clifford—Klein forms Xr = ‘T'1\'G/'T'y are very differ-
ent from the anti-de Sitter manifolds ‘\G;\'\G/'\I'y ~ ‘T'5\'G/'G = ‘T'2\AdS?""! which
we examined in Section 10.1 and from the indefinite Kéhler manifolds ‘T'1\'G/'G2 =
‘I'1\SO(2,2n)/U(1,n) which we shall examine in Section 10.3.
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Type of Clifford Klein form || ‘I4\\G/'Ty ['Gi\'\G/'Ty| 'T1\'G/'G, |
Model space X SO(2,2n)o AdS™ T [ SO(2,2n)0/U(1,n)
Dimension 2n? +3n+1 2n+1 nn+1)
Signature (4n,2n% —n +1) (2n,1) (2n,n% —n)
rank(X) n+1 1 n
Degrees of generators of D(X) || 2,4,...,2n,n+1 2 2,4,...,2n
#Z 2(n+1) 2 1

More generally, whenever ‘G has real rank > 1, there always exist two nontrivial
reductive subgroups ‘G and ‘G5 of ‘G such that ‘G acts properly (but not necessarily
cocompactly) on ‘G/'G2 [Ko2, Th.3.3]. When rank‘'G = rank‘K, Theorem 1.5
and Propositions 2.1 and 2.2 apply to the standard Clifford—Klein forms (possibly of
infinite volume) Xr = ‘I';\'G/'T'g, where I' = 'T'; x ‘I's is the product of any discrete
subgroup ‘I'; of ‘G with any discrete subgroup ‘I's of ‘Gs.

e Link between the discrete series representations of X and ‘G. — We now
assume that ‘G is connected and that rank ‘G = rank ‘K. Flensted-Jensen’s construc-
tion of discrete series representations Vz y for X = (\G x'G)/A(*'G) (as described in
Section 5.3) yields all of Harish-Chandra’s discrete series representations my for ‘G.
This is well-known, but for the reader’s convenience we briefly recall the Harish-
Chandra discrete series and make the link with our previous notation.

Let ‘9 be a Cartan involution of ‘G and let ‘K = (\G)"? be the corresponding
maximal compact subgroup of ‘G. For simplicity, suppose that ‘0 extends to a holo-
morphic involution of some complexification ‘G¢ of ‘G. As in Section 9.6, we define
a holomorphic embedding @ : ‘\G¢ — ‘G¢ x‘'Gc by

®(g) := (9.'0(g))-
Then the set of inclusions (5.4) is given by
K="Kx'K C G='Gx'G > H=Diag('G)

N N N
K¢ = \K(C X\K(C c Gec= \G(c X\GC D He= Diag(‘GC)
U U U

Hi=®('Ke) C Gi=d(Ge) DO Ki=9o(Gy),

where ‘Gy is the compact real form of ‘G¢ defined similarly to Section 5.2. As in
Section 9.6, the group H? identifies with ‘K¢ and G¢/P? with the full complex flag
variety ‘G¢/'Be, where ‘Bg is a Borel subgroup of ‘G¢. Fix a Cartan subalgebra ‘t
of ‘¢ and a positive system AT (‘ec, tc). We note that ‘t is also a Cartan subalgebra
of ‘g since rank'G = rank‘'K. The set Z of closed H%orbits in G?/P? identifies
with the set of positive systems AT (‘gc,‘tc) containing the fixed positive system
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AT (¢, ‘tc). In particular, the cardinal of Z is easily computable as the quotient of
the cardinals of two Weyl groups. For instance, for ‘G = SO(1, 2n)g, we have

#W(Bn)
yz =20 o
#W (Dn)

Let ‘p. be half the sum of the elements of AT (¢, tc). Any choice of a positive
system A™(‘gc, ‘tc) containing AT (“c, ‘tc) determines a positive Weyl chamber “t*.
in ‘t*, an element ‘p € ‘t}, defined as half the sum of the elements of A*(‘gc, ‘tc),
and an element Z € Z. For any ‘A € ‘t! such that

) = ‘A + \p - 2\pc

lifts to the torus ‘' C ‘K with Lie algebra ‘t, Harish-Chandra proved the existence
of an irreducible unitary representation my of ‘G with square-integrable matrix co-
efficients, with infinitesimal character ‘A (Harish-Chandra parameter) and minimal
‘K-type vy (Blattner parameter). With the notation of the previous chapters, we
can take

i={CY,=Y):'Y €'t}.
For A= ('\,—'\) € j* and Y = ('Y, -'Y) €, we have

(A\Y) =20A"Y),
and if \d : ‘t* — R, denotes the “weighted distance to the walls” defined as in
Section 3.3, then
d(N\) =Yd(*N).

Since K/HN K = (K x'K)/Diag(*\K) ~ ‘K, the set AL = A, (K/H N K) of (3.4)
is here equal to {(*\, —'A) : ‘A € *K}, which naturally identifies with the set ‘K of
irreducible representations of ‘K. For A = (*A, ='A) € j*_, we have an isomorphism of
(‘g,"K) x (‘g, K )-modules:

Vza > (ma)ix B (1) k.
e Regular representation on L?('I'\'G). — Let 'T" be a discrete subgroup of ‘G.
The action of ‘G on ‘T'\'G from the right defines a unitary representation of ‘G on

L?('T'\'G). With the previous notation, here is a consequence of Proposition 8.1.(2)
applied to the special case

G ='G x'G, H =Diag('G), T ='T x {e},
where the Clifford-Klein form Xr = I'\G/H identifies with ‘T'\'G.

Proposition 10.5. — Let ‘G be a reductive linear group with rank‘G = rank ‘K.

1. There is a constant R > 0 (depending only on ‘\G) such that for any torsion-free
discrete subgroup ‘T’ of ‘G and any discrete series representation my of ‘G with
(‘M) > R,

Homig (ma, L*(T\'G)) # {0}.
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2. The same statement holds without the “torsion-free” assumption on T' if ‘G has
no compact factor.

Proof. — Consider ‘X € ‘. such that s lifts to a maximal torus in ‘K. Then X :=
‘A, ='A) €% belongs to 2p.—p+A and d(A) =d(*A). Applying Proposition 8.1.(2),
together with (8.1) and (8.2), to

G ='G x'G, H =Diag('G), T ='T x {e},

we obtain the existence of a constant R > 0 such that if ‘d(*A) > R and ‘G has no
compact factor (resp. ‘G has compact factors), then for any discrete (resp. torsion-free
discrete) subgroup ‘I" of ‘G, the summation operator

SF : LQ(\G,MA)\KIX\}Q — LQ(\F\\G,MA)

is well-defined and nonzero for some conjugates ‘K; = g;'Kg; ' and ‘Ko = g2' K g, *
of ‘K (where g; € ‘G). In our specific setting, for ¢ € L?*(‘\G, M)k, x'Kk,, the
function Sr(y) is nothing but the classical Poincaré series

Y e(v) € LA(T\'G, M),

ye'l’

and St respects the action of (g, K>) from the right. Therefore,
Hom(g. i) ((Ta) sy, L2 (TV'G)). i, # {0}

if *d(*\) > R. Since m, is an irreducible unitary representation of ‘G, this is equivalent
to

Hom (m, L*(‘'T\'G)) # {0}. O

Remark 10.6. — For arithmetic ‘T’, we may consider a tower of congruence sub-
groups 'I' D 'I'y D 'I'y D ---. In the work of DeGeorge-Wallach [DW] (cocom-
pact case), Clozel [Cl], Rohlfs—Speh [RS], and Savin [Sv] (finite covolume case), the
asymptotic behavior of the multiplicities Hom\g (mw, L?('I';\'G)) for a discrete series
representation my, was studied as j goes to infinity, under the condition rank‘G =
rank ‘K. Then one could deduce from their result that any discrete series representa-
tion my with ‘d(*\) large enough occurs in L?(“I'\'G) for some congruence subgroup
“TI" of ‘T, where T possibly depends on 7. The approach of [DW, Cl, Sv] uses the
Arthur-Selberg trace formula. There is another approach for classical groups ‘G and
arithmetic subgroups ‘I" using the theta-lifting, see [BW, Kz, Li]. Proposition 10.5
is stronger in three respects:

1. 'T is not necessarily arithmetic and ‘T'\'G can have infinite volume,
2. we do not need to replace ‘I" by some finite-index subgroup “'T’,

3. the constant R is independent of the discrete group ‘I
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10.3. Indefinite Kihler manifolds

We now consider the symmetric space X = SO(2,2m)o/U(1,m) for m > 2. Later
we will assume m to be even for the rank condition (3.3) to be satisfied. We see the
group O(2,2m) as the set of linear transformations of R?™*+2 preserving the quadratic

form
2,2 2 2 2 2
TIHYT T =Y~ T Tl — Yt
and the subgroup H := U(1,m) of G := SO(2,2m)o as the set of linear trans-
formations of C™*! preserving the Hermitian form [21]? — |22]? — -+ — |24 |

The involution o of G defining H is given by o(g) = JgJ !, where J is the diagonal
block matrix with all diagonal blocks equal to ((1) _01>

The natural G-invariant pseudo-Riemannian metric ¢ on X has signature
(2m,m(m — 1)). We note that here X carries some additional structures, due
to the fact that H is the centralizer of a one-dimensional compact torus (namely its
center Z(H) ~U(1)):

1. X can be identified with an adjoint orbit (namely Ad(G)v where v is any gen-
erator of the Lie algebra of Z(H)), hence also with a coadjoint orbit via the
isomorphism g* ~ g induced by the Killing form; thus, X carries a Kostant—
Souriau symplectic form w (see [Ki, Ch. 1, Th.1));

2. X can be realized as an open subset of the flag variety G¢ /P for some maximal
proper parabolic subgroup Pc of G¢ = SO(2m + 2,C), as a generalized Borel
embedding (see [KO] for instance); in particular, X has a G-invariant complex
structure and ¢ + v—1w is a G-invariant indefinite Kéahler form on X if ¢ is
normalized by the Killing form.

The existence of the complex structure can easily be seen for m = 2, since
SO(2,4)p/U(1,2) identifies with SU(2,2)/U(1,2), which can be realized as an open
subset of P3C (see Section 1.4).

Standard Clifford—Klein forms X of X that are compact (resp. noncompact but
of finite volume) were constructed in [Kol]. They can be obtained by taking torsion-
free uniform (resp. nonuniform) lattices I' inside L := SO(1,2m)y. We note that the
group L acts properly and transitively on X. An elementary explanation for this is to
observe that U(m+1) acts transitively on the sphere S*™*+1 = SO(2m+2)/SO(2m+1);
by duality, so does SO(2m + 1) on SO(2m + 2)/U(m + 1); in turn, L acts properly
and transitively on X = SO(2,2m)o/U(1,m). (For a general argument, we refer to
[Ko3, Lem.5.1].)

If T is a free discrete subgroup of L, then the noncompact standard Clifford—Klein
form Xr has a large deformation space. There are also examples of compact stan-
dard Clifford-Klein forms that admit interesting small deformations. Indeed, certain
arithmetic uniform lattices I' of L = SO(1,m)o have the following property: there is
a continuous 1-parameter group (p:):er of homomorphisms from I" to G such that for
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any ¢t # 0 small enough, the group ¢;(I") is discrete in G and Zariski-dense in G this
1-parameter group can be obtained by a bending construction due to Johnson—Millson
(see [Ka2, §6]). As we have seen in Example 4.11, any discrete subgroup I' of L is
(‘/75 ,0)-sharp for X; by [Ka2], if T' is cocompact or convex cocompact in L, then
for any € > 0 there is a neighborhood U, C Hom(T", G) of the natural inclusion such
that for any ¢ € U,, the group ¢(T') is discrete in G and (@ — ¢g,¢)-sharp for X (see
Lemma 4.22).

We now assume that m = 2n is even, so that the rank condition (3.3) is satisfied.
We start by examining the case n = 1, in which we give explicit formulas for the
Flensted-Jensen eigenfunctions of Section 7.1; we then explicit the notation of the
previous chapters for general n.

e The case n = 1. — The group G = SO(2, 4), admits SU(2, 2) as a double covering,
and the preimage of H = U(1,2) in SU(2,2) is S(U(1) x U(1,2)) ~ U(1,2). For an
actual computation, in this paragraph we set G := SU(2,2) and H := S(U(1) x
U(1,2)) ~ U(1,2), and we consider the maximal compact subgroup K := S(U(2) x
U(2)). The symmetric space X ~ SU(2,2)/U(1,2) identifies with the open subset
of P3C of equation h > 0, where

h(z) = |21]* + |z2|® — |23]* — |2a]?
for z = (2;)1<i<a € C*. The Laplacian Ox has been made explicit in Section 1.4. For

any ¢ € N, we consider the following harmonic polynomial of degree (¢, ¢) on C?:

4

O iy i, g
Pg(zl,ZQ) = Z <z> (_1)1|21|26 2 |2’2|2.

i=0
Up to a multiplicative scalar, it is the unique harmonic polynomial of degree (¢,¢)
that is fixed by U(1) x U(1) ~ H N K; we normalize it so that Py(1,0) = 1. The
function
(10.3) VYo 2= (2i)1<i<a — Pu(z1,22) h(z)* ! (|21|2 + |22|2)
on C* \ {0} satisfies the following differential equation:

h(z) Ocz22 e = (€+ 1)(€ — 2) e

Since v, is homogeneous of degree 0, we may regard it as a function on X = {h >
0} C P3C. Using these properties, we obtain the following (we omit the details).

—20—-1

Claim 10.7. — For any { € Ny, the function ¢y : X — C is a Flensted-Jensen
Junction on X = SU(2,2)/U(1,2), with parameter A = 20 —1 € Ry ~j* and with

Ox e = 2(£+ 1)(£ — 2) tbe.

The (g, K)-modules V; generated by v, for £ € Ny form the complete set of discrete
series representations for X.
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We note that the (g, K)-module Vy is irreducible and isomorphic to the Zuckerman-—
Vogan derived functor module V5(2¢ — 1,1) in algebraic representation theory,
with notation as in [Ko3, §4]; in particular, V, has infinitesimal character
%(26 —1,1,-1,-2¢ + 1) in the Harish-Chandra parameterization and minimal
K-type parameter (¢,—¢,0,0).

For the symmetric pair (G, H) ~ (SU(2,2),U(1,2)), the polar decomposition G =
K BH holds, where the Lie algebra b of B is generated by

If we identify b with R by sending Yy to 1, then

|21]” + [22/?
h(z)

for all z = [z1 : 22 : 23 : z4] € X. Here are the analytic estimates of Propositions 5.1
and 7.1 for the Flensted-Jensen functions )y of (10.3).

v(z) = arccosh € R>g

Lemma 10.8. — For any z € X = SU(2,2)/U(1,2),
e (2)] < (coshi(z)) 2T < 92040 =200+ 10(e),

This estimate follows immediately from the definition (10.3) of 1)y, in light of the
inequality |Py(21,22)| < (|21] + |22/?)* for all (z1,22) € C2. Using (5.16), one can
show that the function ¢y is square integrable on X if and only if ¢ > 1/2.

e The general case. — We now consider G = SO(2,4n)o and H = U(1,2n) for
an arbitrary integer n > 1. The Cartan decomposition G = KAK holds, where
K = S0(2) x SO(4n) and A is the maximal split abelian subgroup of G whose Lie
algebra a is the set of elements

............................

for s,t € R. The generalized Cartan decomposition G = K BH holds, where the Lie
algebra b of B is the set of elements a5 _s with s € R. The set of inclusions (5.4) is
given by
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K =S0(2) xS0(dn) C  G=8S0(24n)y O H =U(1,2n)
N N N
Kc=S0(2,C) x SO(4n,C) C Ge=S0(2+4n,C) > He=GL(1+2n,C)
U U U

H?*=80(2) xSO*(4n) C G*=S0"(2+4n) > K '=U(1+2n).

We recall that for any m > 1, the group SO*(2m) is a real form of SO(2m,C) with
maximal compact subgroup U(m).
A maximal abelian subspace j of v/—1(¢€N q) is given by the set of block matrices

0 0
....... Sny
Yv(sl ..... Sn)
0:
—snY- ...................................
for s1,...,8, € R, where
Ve 0 v-1
: — 0 )

In particular, the rank of the symmetric space X is dimj = n.
Let {fi,..., fn} be the basis of j* that is dual to {Y{1,0,....0),---, Y{0,...0,1)}- The
set
Yt (¢, ic) ={fixfi:1<i<ji<n}U{2fp:1<k<n}
is a positive system of restricted roots of jc in €c. There is a unique positive system
¥ *(gc,ic) that contains it, namely

{fixfi:1<i<j<ntU{2fr:1<k<n}U{fr:1<Ek<n}

By (5.6), for any minimal parabolic subgroup P? of G?, there is a unique closed
H4-orbit in G¢/P?, i.e. the set Z has only one element. The multiplicities of the
restricted roots £f; & f; and £ f; are four, and those of +2f; are one. Identifying j*
with R™ wvia the basis {f1,..., fn}, we obtain

ji:{/\:()\l,...,An)3)\1>)\2>"'>)\n>0}7
1
d(/\): imin{/\l—)\2,/\2—)\3,...,)\n_1—)\7“2)\”},
p=(4n—1,4n—5,...,7,3),
pe= (4n—3,4n—17,...,5,1),
pa=A+p—2pc= (A —4n+5X 2 —4n+9,..., A1 — 3, A, + 1).



10.3. INDEFINITE KAHLER MANIFOLDS 123

The integrality condition (5.12) on p) amounts to
A;j+1€2N forall1<j<n
and )\j_AjJrlZZl fOI‘&HlS]STL—l

Since the restricted root system X(gc,jc) is of type BC,,, the Weyl group W is iso-
morphic to the semidirect product S, X (Z/2Z)"™ and we have C-algebra isomorphisms

D(X) ~ C[wl,...,xn]s"“(z/zz)n ~ C[Dy,...,Dy],

where Dy, D, ..., D, are algebraically independent invariant polynomials of homo-
geneous degrees 2,4, ...,2n. If we normalize the pseudo-Riemannian metric g on X
by g(Y,Y) =1forY := &L|,_o exp(as,—s) w0 € Ty, X (Where 2o denotes the image of
H in X = G/H, as usual), then the Laplacian Oy is 16n times the Casimir operator
defined by the Killing form (for n = 1, this is twice the Laplacian that we defined in
Section 1.4 with respect to the “indefinite Fubini-Study metric” h). By Fact 3.4, the
action of the Laplacian (x on L?(X, M,) is given by multiplication by the scalar

1
M) = (p,p) = AT+ 4+ 22 — 5(16n3+12n2—n).

We mnote that the center Z(SO(2,4n)o) is contained in U(1,2n), hence
ATNZ(Gs) = A for all I' by Remark 3.6; this shows that the choice of T' does
not impose any additional integrality condition on the discrete spectrum for
X =S0(2,4n)0/U(1,2n) when we apply Theorems 3.8 and 3.11.

Remark 10.9. — In Sections 10.1 and 10.3, the isometry group of X is in the same
family O(2,2m), with m € N in Section 10.1 and m € 2N in Section 10.3. However,
the representations Vz » of G = SO(2,2m), that are involved are different: they are
all highest-weight modules if X = AdS*™ "' and never highest-weight modules if X
is the indefinite K&hler manifold SO(2,4n)y/U(1, 2n).
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