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To Vadim Schechtman, most cordially

ABSTRACT. It is well known that the so called Bianchi IX spacetimes with
SO(3)–symmetry in a neighbourhood of the Big Bang exhibit a chaotic behaviour of
typical trajectories in the backward movement of time. This behaviour (Mixmaster
Model of the Universe) can be encoded by the shift of two–sided continued fractions.

Exactly the same shift encodes the sequences of intersections of hyperbolic geodesics
with purely imaginary axis in the upper complex half–plane, that is geodesic flow on
an appropriate modular surface.

A physical interpretation of this coincidence was suggested in [MaMar14]: namely,
that Mixmaster chaos is an approximate description of the passage from a hot quan-
tum Universe at the Big Bang moment to the cooling classical Universe. Here we
discuss and elaborate this suggestion, looking at the Mixmaster Model from the per-
spective of the second class of Bianchi IX spacetimes: those with SU(2)–symmetry
(self–dual Einstein metrics). We also extend it to the more general context related
to Painlevé VI equations.

1. Introduction, background and notation

1.1. Plan of the paper. The Mixmaster Model of the early Universe with
SO(3)–symmetry in a neighbourhood of the Big Bang predicts a chaotic behaviour
of “typical” trajectories (in the backward movement of time) encoded by the shift
of two–sided continued fractions: cf. [KLKhShSi85], [BoNo73], [May87], and refer-
ences therein.

The same shift encodes the sequence of intersections with purely imaginary axis
of hyperbolic geodesics in the upper complex half–plane, see [Se85].
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This coincidence invites a closer attention, because the accepted mathematical
source of the classical Mixmaster chaos involves the behaviour of separatrices on
the real boundary of the respective dynamical system (cf. [Bo85]). Geometry of
these separatrices and approximate dynamics that it encodes are not visibly related
to hyperbolic geodesics.

A physical interpretation of this coincidence was suggested in [MaMar14]. Here
we discuss and elaborate this suggestion, looking at the Mixmaster model from the
perspective of Bianchi IX model with SU(2)–symmetry.

More precisely, according to [MaMar14], the Mixmaster “classical chaos” should
be considered as an approximation to an unknown quantum description of the tran-
sition from the infinitely hot quantum Universe at the moment of Big Bang to the
cooling Universe gradually fitting a classical Einsteinian model. Time axis at the
moment of Big Bang is purely imaginary, and it becomes real during the observable
history of Universe.

We argued that a mathematical model of such a transition explaining Mixmaster
chaos consists in inverse Wick rotation of time axesmediated by a move of time along
random geodesics in the complex hyperbolic half–plane or rather its appropriate
modular quotient. This passage to the modular quotient was critically important
for our argument. It was suggested by two initially disjoint evidences. The first
one was P. Tod’s remark that a conformal version of cosmological time in the
Friedman–Robertson–Walker models has a natural structure of the elliptic integral
(cf. [MaMar14], sec. 4.2). The second evidence was a well known formal coincidence
of two encodings: of Kasner’s trajectories, on the one hand, and of hyperbolic
geodesics with ideal ends, on the other hand.

In this paper we develop and present further details of this picture. Namely, we
now look at such a transition from the side of “gravitational instantons” that is,
self–dual Einstein spacetimes with SU(2)–symmetry. Many such spacetimes have
a natural complexification, in particular, time axis can be extended to the complex
half–plane, whereas the instantons themselves are defined by restricting time to the
imaginary semi–axis.

Following the behaviour of the respective models along oriented geodesics in time
connecting imaginary half–axis with real half–axis, we get the new aspect of the
Mixmaster picture. This is the main content of this note.

Structure of the paper. In the remaining part of section 1, we introduce some
basic notation and constructions.
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Sec. 2 compares (and shows a satisfying agreement) the sequences of Kasner
eras in the classical Mixmaster models with sequences of geodesic distances between
consecutive intersection of a geodesic with sides of the Farey tessellation. Finally, in
sec. 3 and 4 we study an “instanton analogue” of the sequences of Kasner solutions
determining chaotic behaviour in the classical Mixmaster model.

1.2. Continued fractions. We denote by Z, resp. Z+, the set of integers,
resp. positive integers; Q, resp. R is the field of rational, resp. real numbers. For
x ∈ R, we put [x] := max {m ∈ Z |m ≤ x}.

Irrational numbers x > 1 admit the canonical infinite continued fraction repre-
sentation

x = k0 +
1

k1 +
1

k2+...

=: [k0, k1, k2, . . . ], ks ∈ Z+ (1.1)

in which k0 := [x], k1 = [1/x] etc. Notice that our convention differs from that of
[KLKhShSi85]: their [k1, k2, . . . ] means our [0, k1, k2, . . . ].

1.3. Transformation T . The (partial) map T̃ : [0, 1]2 → [0, 1]2 is defined by

T̃ : (x, y) 7→

(
1

x
−

[
1

x

]
,

1

y + [1/x]

)
, (1.2)

If both coordinates (x, y) ∈ [0, 1]2 are irrational (the complement is a subset of
measure zero), we have for uniquely defined ks ∈ Z+:

x = [0, k0, k1, k2, . . . ], y = [0, k−1, k−2, . . . ].

Then

1

x
−

[
1

x

]
= [0, k1, k2, . . . ],

1

y + [1/x]
=

1

k0 + y
= [0, k0, k−1, k−2, . . . ].

On this subset, T̃ is bijective and has invariant density

dx dy

ln 2 · (1 + xy)2

(cf. [May87]).
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Thus we may and will bijectively encode irrational pairs (x, y) ∈ [0, 1]2 by doubly
infinite sequences

(k) := [. . . k−2, k−1, k0, k1, k2, . . . ], ki ∈ Z+

in such a way that the map T̃ above becomes the shift of such a sequence denoted
T :

T (k)s = ks+1. (1.3)

1.4. Continued fractions and chaos in Einsteinian Bianchi IX type

models. Bianchi classified metric space-times with a Lie group action transitive
on space sections. In particular 4–dim Bianchi IX models of space–time can be
of two types: with the symmetry group SO(3) or else SU(2). In the first case,
metric has Minkowski’s signature, whereas in the second case it is Riemannian. In
sec. 1 we survey the now classical results about chaotic behaviour in the SO(3)–case
(Mixmaster Universe) and prepare ground for the treatment of SU(2)–models. Sec.
2 and 3 are dedicated to the SU(2)–case.

Consider the real circle defined in R3 by equations

pa + pb + pc = 1, p2a + p2b + p2c = 1. (1.4)

Each point of this circle defines a 4–dimensional space–time with metric of Minkowski
signature dt2 − a(t)dx2 − b(t)dy2 − c(t)dz2 with scaling factors a, b, c:

a(t) = tpa , b(t) = tpb , c(t) = tpc , t > 0.

Such a metric is called the Kasner metric with exponents (pa, pb, pc).

Any point (pa, pb, pc) can be obtained by choosing a unique u ∈ [1,∞], putting

p
(u)
1 := −

u

1 + u+ u2
∈ [−1/3, 0], p

(u)
2 :=

1 + u

1 + u+ u2
∈ [0, 2/3],

p
(u)
3 :=

u(1 + u)

1 + u+ u2
∈ [2/3, 1] (1.5)

and then rearranging the exponents p
(u)
1 ≤ p

(u)
2 ≤ p

(u)
3 by a bijection (1, 2, 3) →

(a, b, c).
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The main result of a series of physical papers dedicated to the Mixmaster Uni-
verse can be roughly summarized as follows.

A “typical” solution γ of Einstein equations (vacuum, but also with various
energy momentum tensors) with SO(3)–symmetry of the Bianchi IX type, followed
from an arbitrary (small) value t0 > 0 in the reverse time direction t → +0,
oscillates close to a sequence of Kasner type solutions. (See subsection 2.3 below
qualifying the use of adjective “typical” in this context).

Somewhat more precisely, introduce the local logarithmic time Ω along this tra-

jectory with inverted orientation. Its differential is dΩ := −
dt

abc
, and the time itself

is counted from an arbitrary but fixed moment. Then Ω → +∞ approximately as
−log t as t→ +0, and we have the following picture.

As Ω ∼= −log t→ +∞, a “typical” solution γ of the Einstein equations determines
a sequence of infinitely increasing moments Ω0 < Ω1 < · · · < Ωn < . . . and a
sequence of irrational real numbers un ∈ (1,+∞), n = 0, 1, 2, . . . .

The time semi–interval [Ωn,Ωn+1) is called the n–th Kasner era (for the trajec-
tory γ). Within the n–th era, the evolution of a, b, c is approximately described by
several consecutive Kasner’s formulas. Time intervals where scaling powers (pi) are
(approximately) constant are called Kasner’s cycles.

The evolution in the n–th era starts at time Ωn with a certain value u = un > 1
which determines the sequence of respective scaling powers during the first cycle
(1.5):

p1 = −
u

1 + u+ u2
, p2 =

1 + u

1 + u+ u2
, p3 =

u(1 + u)

1 + u+ u2

The next cycles inside the same era start with values u = un − 1, un − 2, . . . , and
scaling powers (1.5) corresponding to these numbers, rearranged corresponding to
a bijection (1, 2, 3) → (a, b, c) which is in turn identical to the previous one, or
interchanges b and c (see [MaMar02]).

After kn := [un] cycles inside the current era, a jump to the next era comes, with
parameter

un+1 =
1

un − [un]
. (1.6)

Moreover, ensuing encoding of γ’s and respective sequences (ui)’s by continued
fractions (1.1) of real irrational numbers x > 1 is bijective on the set of full measure.
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Finally, when we want to include into this picture also the sequence of logarithmic
times Ωn starting new eras, we naturally pass to the two–sided continued fractions
and the transformationn T . See some details in the next section.

1.5. Doubly infinite sequences and modular geodesics. Let H :=
{z ∈ C, Im z > 0} be the upper complex half–plane with its Poincaré metric
|dz|2/|Im z|2. Denote also by H := H ∪ {Q∪ {∞}} this half–plane completed with
cusps.

The vertical lines Re z = n, n ∈ Z, and semicircles in H connecting pairs of
finite cusps (p/q, p′/q′) with pq′ − p′q = ±1, cut H into the union of geodesic ideal
triangles which is called the Farey tessellation.

Following [Se85], consider the set of oriented geodesics β’s in H with ideal irra-
tional endpoints in R. Let β−∞, resp. β∞ be the initial, resp. the final point of β.
Let B be the set of such geodesics with β−∞ ∈ (−1, 0), β∞ ∈ (1,∞). Put

β−∞ = −[0, k0, k−1, k−2, . . . ], β∞ = [k1, k2, k3, . . . ], ki ∈ Z+, (1.7)

and encode β by the doubly infinite continued fraction

[. . . k−2, k−1, k0, k1, k2, . . . ]. (1.8)

The geometric meaning of this encoding can be explained as follows. Consider the
intersection point x = x(β) of β with the imaginary semiaxis in H. Moving along
β from x to β∞, one will intersect an infinite sequence of Farey triangles. Each
triangle is entered through a side and left through another side, leaving the ideal
intersection point (a cusp) of these sides either to the left, or to the right. Then
the infinite word in the alphabet {L,R} encoding the consecutive positions of these
cusps wrt β will be Lk1Rk2Lk3Rk4 . . . Similarly, moving from β−∞ to x, we will
get the word (infinite to the left) . . . Lk−1Rk0 .

We can enrich the new notation . . . Lk−1Rk0Lk1Rk2Lk3Rk4 . . . (called cutting
sequence of our geodesic in [Se85]) by inserting between the consecutive powers of
L,R notations for the respective intersection points of β with the sides of Farey
triangles. So x0 := x = x(β) will be put between Rk0 and Lk1 , and generally we
can imagine the word

. . . Lk−1x−1R
k0x0L

k1x1R
k2x2L

k3x3R
k4 . . . (1.9)
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We will essentially use this enrichment in the next section.

2. Hyperbolic billiard, geodesic distance, and cosmological time

2.1. Hyperbolic billiard. We will first present a version of the geometric
description of geodesic flow: an equivalent dynamical system which is the triangular
hyperbolic billiard with infinitely distant corners (“pockets”).

Here we use the term “hyperbolic” in order to indicate that sides (boards) of
the billiard and trajectories of the ball (“particle”) are geodesics with respect to
the hyperbolic metric of constant curvature −1 of the billiard table. This is not
the standard meaning of the hyperbolicity in this context, where it usually refers
to non–vanishing Lyapunov exponents.

2.2. Proposition. a) All hyperbolic triangles of the Farey tessellation of H are
isomorphic as metric spaces.

b) For any two closed triangles having a common side there exists unique metric
isomorphism of them identical along this side. It inverts orientation induced by H.
Starting with the basic triangle ∆ with vertices {0, 1, i∞} and consecutively using
these identifications, one can unambiguously define the map b : H → ∆.

c) Any oriented geodesic on H with irrational end–points in R is sent by the
map b to a billiard ball trajectory on the table ∆ never hitting corners.

All this is essentially well known.

It is also worth noticing that although all three sides of ∆ are of infinite length,
this triangle is equilateral in the following sense: there exists a group S6 of hyper-
bolic isometries of ∆ acting on vertices by arbitrary permutations. This group has
a unique fixed point ρ := exp(πi/3) in ∆, the centroid of ∆.

In fact, this group is generated by two isometries: z 7→ 1 − z−1 and symmetry
with respect to the imaginary axis.

Three finite geodesics connecting the centre ρ with points i, 1+i, 1+i
2

respectively,
subdivide ∆ into three geodesic quadrangles, each having one infinite (cusp) corner.
We will call these points centroids of the respective sides of ∆, and the geodesics
(ρ, i) etc. medians of ∆.

Each quadrangle is the fundamental domain for PSL(2,Z).

2.3. Billiard encoding of oriented geodesics. Consider the first stretch of
the geodesic β encoded by (1.9) that starts at the point x0 in (0, i∞). If k0 = 1,the
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ball along β reaches the opposite side (1, i∞) and gets reflected to the third side
(0, 1). If k0 = 2, it reaches the opposite side, then returns to the initial side (0, i∞),
and only afterwards gets reflected to (0, 1).

More generally, the ball always spends k0 unobstructed stretches of its trajectory
between (0, i∞) and (1, i∞), but then is reflected to (0, 1) either from (1, i∞) (if
k0 is odd), or from (0, i∞) (if k0 is even). We can encode this sequence of stretches
by the formal word ∞k0 showing exactly how many times the ball is reflected “in
the vicinity” of the pocket i∞, that is, does not cross any of the medians.

A contemplation will convince the reader that this allows one to define an alter-
native encoding of β by the double infinite word in three letters , say a, b, c, serving
as names of the vertices {0, 1, i∞}.

2.4. Kasner’s eras in logarithmic time and doubly infinite continued

fractions. Now we will explain, how the double infinite continued fractions enter
the Mixmaster formalism when we want to mark the consecutive Kasner eras upon
the t–axis, or rather upon the Ω–axis, where Ω := −log

∫
dt/abc

In the process of construction, these continued fractions will also come with their
enrichments, and the first new result of this note will compare this enrichment with
the one described by (1.9).

We start with fixing a “typical” space–time γ whose evolution with t→ +0 un-
dergoes (approximately) a series of Kasner’s eras described by a continued fraction
[k0, k1, k2, . . . ], where ks is the number of Kasner’s cycles within s–th era [Ωs,Ωs+1).
We have enriched this encoding by introducing parameters us which determine the
Kasner exponents within the first cycle of the era number s by (1.5). A further en-
richment comes with putting these eras on the Ω–axis. According to [KLKhShSi85],
[BoNo73], [Bo85], if one defines the sequence of numbers δs from the relations

Ωs+1 = [1 + δsks(us + 1/{us})]Ωs,

then complete information about these numbers can be encoded by the extension
to the left of our initial continued fraction:

[. . . , k−1, k0, k1, k2, . . . ] (2.1)

in such a way that
δs = x+s /(x

+
s + x−s )
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where

x+s = [0, ks, ks+1, . . . ], x−s = [0, ks−1, ks−2, . . . ]. (2.2)

2.5. Theorem. Let a “typical” Bianchi IX Mixmaster Universe be encoded by
the double–sided sequence (2.1). Consider also the respective geodesic in H with its
enriched encoding (1.9).

Then we have “asymptotically” as s→ ∞, s ∈ Z+:

logΩ2s/Ω0 ≃ 2

s−1∑

r=0

dist (x2r, x2r+1), (2.3)

where dist denotes the hyperbolic distance between the consecutive intersection points
of the geodesic with sides of the Farey tesselation as in (1.9).

Proof. According to the formulas (5.1) and (5.5) in [KLKhShSi85], and our
notation (2.2), we have

logΩ2s/Ω0 ≃ −

2s∑

p=1

log (x+p x
−
p ) =

2s∑

p=1

log ([kp−1, kp−2, kp−3, . . . ])·[kp, kp+1, kp+2, . . . ]).

(2.4)
On the other hand, according to the formula (3.2.1) in [Se85], we have

dist (x0, x1) =
1

2
log([k0, k−1, k−2, . . . ] · [k1, k2, . . . ] · [k1, k0, k−1, . . . ] · [k2, k3, . . . ])

and hence, more generally,

dist (x2r, x2r+1) =

1

2
log([k2r, k2r−1, k2r−2, . . . ]·[k2r+1, k2r+2, . . . ]·[k2r+1, k2r, k2r−1, . . . ]·[k2r+2, k2r+3, . . . ]).

(2.5)
Inserting (2.5) into the r.h.s. of (2.3), we will see that it agrees with the r.h.s. of
(2.4). This completes the proof.

The formula (2.3) justifies identification of distance measured along a geodesic
with (doubly) logarithmic cosmological time in the next section.
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During the stretch of time/geodesic length which such a geodesic spends in the
vicinity of a vertex of ∆, the respective space–time in a certain sense can be ap-
proximated by its degenerate version, corresponding to the vertex itself, and this
justifies considering the respective segments of geodesics as the “instanton Kasner
eras”.

3. Mixmaster chaos in complex time and Painlevé VI

3.1. Painlevé VI. Contrary to the separatrix approximation methods, the
results about encoding of geodesics β with irrational ends and formulas for the dis-
tances between consecutive cutting points are exact, but we did not yet introduce
analogs of space–times fibered over geodesics as theirs time axes. We will do it
in this section. The respective space–times are (complexified) versions of Bianchi
IX models with SU(2) (rather than SO(3)) action, the so called gravitational in-
stantons. An important class of them is described by solutions of the Painlevé VI
equation corresponding to a particular point in the space of parameters of these
equations: for us, the main references will be [To94], [Hi95], and [BaKo98].

However, the hyperbolic billiard’s picture of sec. 2 can be lifted to essentially ar-
bitrary Painlevé VI equations, and we will start this section with a brief explanation
of the relevant formalism.

Equations of the type Painlevé VI form a four–parametric family. If the param-
eters (α, β, γ, δ) are chosen, the corresponding equation for a function X(t) looks
as follows:

d2X

dt2
=

1

2

(
1

X
+

1

X − 1
+

1

X − t

)(
dX

dt

)2

−

(
1

t
+

1

t− 1
+

1

X − t

)
dX

dt
+

+
X(X − 1)(X − t)

t2(t− 1)2

[
α + β

t

X2
+ γ

t− 1

(X − 1)2
+ δ

t(t− 1)

(X − t)2

]
. (3.1)

In 1907, R. Fuchs has rewritten (3.1) in the form

t(1− t)

[
t(1− t)

d2

dt2
+ (1− 2t)

d

dt
−

1

4

] ∫ (X,Y )

∞

dx√
x(x− 1)(x− t)

=

= αY + β
tY

X2
+ γ

(t− 1)Y

(X − 1)2
+ (δ −

1

2
)
t(t− 1)Y

(X − t)2
(3.2)
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Here he enhanced X := X(t) to (X, Y ) := (X(t), Y (t)) treating the latter pair
as a section P := (X(t), Y (t)) of the generic elliptic curve E = E(t) : Y 2 =
X(X − 1)(X − t). The section can be local and/or multivalued.

In this form, the left hand side of (3.2) which we denote µ(P ) has a beautiful
property: it is a non–linear differential expression (additive differential character)
in coordinates of P such that µ(P +Q) = µ(P )+µ(Q) where P +Q means addition
of points of the generic elliptic curve E, with infinite section as zero. In particular,
µ(Q) = 0 for points of finite order.

To see it, notice that the integral in the l.h.s. of (3.2) is additive modulo periods
of our elliptic curve, considered as multivalued functions of t. These periods are
annihilated by the Gauss differential operator which is put before the integral sign
in (3.2).

The right hand side of (3.2) looks more mysterious. In order to clarify its mean-
ing, notice that µ(P ) is defined up to multiplication by an invertible function of
t.

If we choose a differential of the first kind ω on the generic curve and the symbol
of the Picard–Fuchs operator of the second order annihilating periods of ω, the
character will be defined uniquely. Moreover, it is functorial with respect to base
changes (cf. [Ma96], sec. 0.2, 1.2, 1.3). In particular, if we pass to the analytic
picture replacing the algebraic family of curves E(t) by the analytic one Eτ :=
C/(Z + Zτ) 7→ τ ∈ H, and denote by z a fixed coordinate on C, then (3.1) and
(3.2) can be equivalently written in the form

d2z

dτ2
=

1

(2πi)2

3∑

j=0

αj℘z(z +
Tj
2
, τ) (3.3)

where (α0, . . . , α3) := (α,−β, γ, 1
2
− δ) and (T0, T1, T2, T3) := (0, 1, τ, 1+ τ), and

℘(z, τ) :=
1

z2
+

∑

(m,n)6=(0,0)

(
1

(z −mτ − n)2
−

1

(mτ + n)2

)
. (3.4)

Moreover, we have

℘z(z, τ)
2 = 4(℘(z, τ)− e1(τ))(℘(z, τ)− e2(τ))(℘(z, τ)− e3(τ)) (3.5)
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where

ei(τ) = ℘(
Ti
2
, τ), (3.6)

so that e1 + e2 + e3 = 0.

The family Painlevé VI was written in this form in [Ma06]. It was considerably
generalised by K. Takasaki in [Ta01], in particular, he found its versions for other
families of Painlevé equations.

Now, any multivalued solution z = z(τ) of (3.3) defines a multi–section of the
family which is a covering of H. In particular, if we can control its ramification
and monodromy, then we may consider its behavior over geodesics with ideal ends
in H and study the relevant statistical properties. The most accessible examples
are algebraic solutions classified in [Boa08], [LiTy08] and other works.

However, here we will return to Bianchi IX models, which according to [Hi98]
correspond to the equation with parameters (α, β, γ, δ) = ( 18 ,−

1
8 ,

1
8 ,

3
8 ), solvable in

elliptic functions. We will skip the beautiful twistor geometry bridging Painlevé VI
and Bianchi IX and simply reproduce the relevant results from [To94] and [Hi95],
somewhat reworked and simplified in [BaKo98].

3.2. SU(2) Bianchi IX metric and scaling factors. Consider the SU(2)
Bianchi IX model with metric of the form

g = F

(
dµ2 +

σ2
1

W 2
1

+
σ2
2

W 2
2

+
σ2
3

W 2
3

)
. (3.7)

Here µ is cosmological time, (σj) are SU(2)–invariant forms along space–sections
with dσi = σj ∧ σk for all cyclic permutations of (1, 2, 3), and F is a conformal
factor.

By analogy with the SO(3) case and metric dt2−a(t)2dx2− b(t)2dy2− c(t)2dz2,
we may and will treat Wi (as well as some natural monomials in Wi and F ) as
SU(2)–scaling factors.

However, contrary to the SO(3)–case, generic solutions of Einstein equations
in the SU(2)–case can be written explicitly in terms of elliptic modular functions,
whereas their chaotic behaviour along geodesics in the complex half–plane of time is
only a reflection of the chaotic behaviour of the respective billiard ball trajectories.

3.3. Theta–functions with characteristics. Explicit formulas in [BaKo98]
use the following basic function of the complex arguments iµ ∈ H, z ∈ C, with
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parameters (p, q) called theta–characteristics:

ϑ[p, q](z, iµ) :=
∑

m∈Z

exp{−π(m+ p)2µ+ 2πi(m+ p)(z + q)}. (3.8)

It can be expressed through the theta–function with vanishing characteristics:

ϑ[p, q](z, iµ) = exp {−πp2µ+ 2πipq} · ϑ[0, 0](z + piµ+ q, iµ). (3.9)

All these functions satisfy classical automorphy identities with respect to the action
of PGL(2,Z).

3.4. Theorem. ([To94], [Hi95], [BaKo98].) Put

ϑ[p, q] := ϑ[p, q](0, iµ) (3.10)

and
ϑ2 := ϑ[1/2, 0], ϑ3 := ϑ[0, 0], ϑ4 := ϑ[0, 1/2]. (3.11)

(A) Consider the following scaling factors as functions of µ with parameters
(p, q):

W1 := −
i

2
ϑ3ϑ4

∂
∂qϑ[p, q + 1/2]

eπipϑ[p, q]
, W2 :=

i

2
ϑ2ϑ4

∂
∂qϑ[p+ 1/2, q + 1/2]

eπipϑ[p, q]
,

W3 := −
1

2
ϑ2ϑ3

∂
∂q
ϑ[p+ 1/2, q]

ϑ[p, q]
, (3.12)

Moreover, define the conformal factor F with non–zero cosmological constant Λ by

F :=
2

πΛ

W1W2W3

( ∂∂q logϑ[p, q])
2

(3.13)

The metric (3.7) with these scaling factors for real µ > 0 is real and satisfies the
Einstein equations if either

Λ < 0, p ∈ R, q ∈
1

2
+ iR, (3.14)
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or

Λ > 0, q ∈ R, p ∈
1

2
+ iR. (3.15)

(B) Consider now a different system of scaling factors

W ′
1 :=

1

µ+ q0
+ 2

d

dµ
logϑ2, W

′
2 :=

1

µ+ q0
+ 2

d

dµ
log ϑ3,

W ′
3 :=

1

µ+ q0
+ 2

d

dµ
logϑ4, (3.16)

and
F ′ := C(µ+ q0)

2W ′
1W

′
2W

′
3, (3.17)

where q0, C ∈ R, C > 0.

The metric (3.7) with these scaling factors for real µ > 0 is real and satisfies the
Einstein equations with vanishing cosmological constant.

We will now consider values of iµ ∈ ∆ ⊂ H in the vicinity of i∞ but not
necessarily lying on the imaginary axis. Since we are interested in the instanton
analogs of Kasner’s solutions, we will collect basic facts about asymptotics of scaling
factors for iµ→ i∞.

For brevity, we will call a number r ∈ R general, if r /∈ Z ∪ (1/2 + Z).

For such r, denote by 〈r〉 ∈ (−1/2, 0)∪(0, 1/2) such real number that r+m0 = 〈r〉
for a certain (unique) m0 ∈ Z.

3.5. Theorem. The scaling factors of the Bianchi IX spaces listed in Theorem
3.4 have the following asymptotics near µ = +∞:

(i) For Λ = 0:

W ′
1 ∼

π

2
, W ′

2 ∼W ′
3 ∼

1

µ+ q0
. (3.18)

(ii) For Λ < 0 and general p:

W1 ∼ π〈p〉 exp{πi(〈p〉 − p)}, W2 ∼ ±W3,

W3 ∼ −2πi 〈p+ 1/2〉 · exp {πi sgn 〈p〉q} · exp{πµ(|〈p〉| − 1/2)}. (3.19)
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(iii) For Λ > 0, real q and p = 1/2 + ip0, p0 ∈ R:

−W1 ∼ πp0 tan{π(q − p0µ)} −
1

2
, W2 ∼ −W3,

W3 ∼ 2πp0 · (cosπ(q − p0µ))
−1. (3.20)

Comments. Theorem 3.5 shows that for general members of all solution families
from [BaKo98], after eventual sign changes of some Wi’s and outside of the pole
singularities on the real time axis, we have asymptotically W2 =W3, W1 6=W2.

In the next section, we will show that such condition, when it is satisfied exactly
rather than asymptotically, allows one to quantize the respective geometric picture
in terms of Connes–Landi ([CoLa01]. This gives additional substance to our vi-
sion that chaotic Mixmaster evolution along hyperbolic geodesics reflects a certain
“dequantization” of the hot quantum early Universe.

Sign changes alluded to above are allowed, since Babich and Korotkin get their
much simpler formulas by cleverly extracting square roots from expressions given
in [Hi95]. Moreover, in the second version of their paper posted in arXiv in March
2014, they corrected the signs of W1 and C (cf. their Lemma 2). For our purposes,
this is not essential.

Proof of Theorem 3.5. Directly from (3.9)–(3.11), we obtain:

ϑ2 =
∑

m∈Z

exp{−π(m+
1

2
)2µ} ∼ 2 exp{−πµ/4}, (3.21)

ϑ3 =
∑

m∈Z

exp{−πm2µ} ∼ 1 + 2 exp{−πµ}, (3.22)

ϑ4 =
∑

m∈Z

exp{−πm2µ}(−1)m ∼ 1− 2 exp{−πµ}. (3.23)

Therefore

d

dµ
logϑ2 ∼ −

π

4
,

d

dµ
log ϑ3 ∼ −2π exp{−πµ},

d

dµ
logϑ4 ∼ 2π exp{−πµ}.
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From this and (3.16), (3.17) one gets (3.18) for Λ = 0.

Now consider the case Λ < 0, p general.

Then from (3.8), (3.10), and (3.14) one gets

ϑ[p, q] =
∑

m∈Z

exp{−π(m+ p)2µ+ 2πi(m+ p)q} ∼

∼ exp{2πi〈p〉q} · exp{−π〈p〉2µ}, (3.24)

because for general p, the leading term of ϑ[p, q] corresponds to the unique value of
m for which (m+ p)2 is minimal, that is, equals 〈p〉2.

Hence
∂

∂q
ϑ[p, q] ∼ 2πi 〈p〉exp{2πi〈p〉q} · exp{−π〈p〉2µ}. (3.25)

Thus, from (3.12), and (3.21)–(3.25) we obtain

−W1 =
i

2
ϑ3ϑ4

∂
∂q
ϑ[p, q + 1/2]

eπipϑ[p, q]
∼
i

2
· 2πi 〈p〉exp{2πi〈p〉(q + 1/2)} · exp{−π〈p〉2µ}×

exp {−πip} · exp{−2πi〈p〉q} · exp{π〈p〉2µ} = −π〈p〉 exp {πi(〈p〉 − p)}.

Furthermore,

W2 =
i

2
ϑ2ϑ4

∂
∂qϑ[p+ 1/2, q + 1/2]

eπipϑ[p, q]
∼

∼
i

2
·2 exp{−πµ/4}·2πi 〈p+1/2〉·exp{2πi〈p+1/2〉(q+1/2)}·exp{−π〈p+1/2〉2µ}×

exp {−πip} · exp{−2πi〈p〉q} · exp{π〈p〉2µ} ∼

−2π 〈p+ 1/2〉exp {πi[〈p+ 1/2〉 − p− sgn〈p〉q]} · exp{πµ(|〈p〉| − 1/2)}.

Notice that exponential terms were rewritten using the identity

〈p+ 1/2〉 = 〈p〉 −
1

2
sgn〈p〉.
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Similarly,

W3 := −
1

2
ϑ2ϑ3

∂
∂qϑ[p+ 1/2, q]

ϑ[p, q]
∼

∼ −
1

2
· 2 exp{−πµ/4} · 2πi 〈p+ 1/2〉 · exp{2πi〈p+ 1/2〉q} · exp{−π〈p+ 1/2〉2µ}×

exp{−2πi〈p〉q} · exp{π〈p〉2µ} ∼

−2πi 〈p+ 1/2〉 · exp {πi sgn 〈p〉q} · exp{πµ(|〈p〉| − 1/2)}.

Comparing expressions for W2 and W3, one easily sees that W2 = ±W3, where
the exact sign can be expressed through p and q.

For the conformal factor (3.13) we then get the following asymptotic:

F =
2

πΛ

W1W2W3

( ∂∂q logϑ[p, q])
2
∼

2i
〈p+ 1/2〉2

Λ〈p〉2
· exp {〈p+ 1/2〉+ 〈p〉+ 2 sgn 〈p〉 q} · exp{πµ (2 |〈p〉| − 1)}.

Finally, pass to the case Λ > 0. Put p = 1
2
+ ip0, p0 ∈ R. We have again to

locate first the leading terms as µ→ +∞ in

ϑ[p, q] =
∑

m∈Z

exp{−π(m+ p)2µ+ 2πi(m+ p)q},

and also respective terms when p and/or q are shifted by 1/2. Obviously, they
correspond to the minimal values of Re (m + p)2, resp. Re (m + p + 1/2)2, for
m ∈ Z. Since

Re (m+ p)2 = (m+
1

2
)2 − p20, Re (m+ p+

1

2
)2 = (m+ 1)2 − p20,

in the first case there are two leading terms, for m = 0 and m = −1, and in the
second case just one, for m = −1.

Thus, for Λ > 0, we have

ϑ[p, q] ∼ exp{πµ(p20 − 1/4)} · [exp{2πipq − πip0µ}+ exp{2πi(p− 1)q + πip0µ}].



18

The sum of two terms in square brackets can be rewritten so that in the end we
obtain

ϑ[p, q] ∼ exp{πµ(p20 − 1/4)} · exp {−2πp0q} · cosπ(q − p0µ). (3.26)

ϑ[p+ 1/2, q] ∼ exp{πµp20} · exp{−2πp0q}. (3.27)

When we have to replace a real q by q + 1/2, we may do it formally in the right
hand side expressions in (3.26), (3.27).

Therefore, we have from (3.12), (3.22) and (3.27):

W2

W3
= −i ·

ϑ4
ϑ3

·

∂
∂qϑ[p+ 1/2, q + 1/2]

eπip ∂
∂q
ϑ[p+ 1/2, q]

∼

i ·
exp{−2πp0(q + 1/2)}

exp{πi(1/2 + ip0)} · exp{−2πp0q}
= −1.

Now,

W3 := −
1

2
ϑ2ϑ3

∂
∂qϑ[p+ 1/2, q]

ϑ[p, q]
∼

exp{−πµ/4} · (2πp0) · exp{πµp
2
0} · exp{−2πp0q}

exp{πµ(p20 − 1/4)} · exp {−2πp0q} · cosπ(q − p0µ)
∼

2πp0 · (cosπ(q − p0µ))
−1.

Furthermore,

−W1 =
i

2
ϑ3ϑ4

∂
∂qϑ[p, q + 1/2]

eπipϑ[p, q]
∼

i

2
·
exp{πµ(p20 − 1/4)} · ∂

∂q [exp {−2πp0(q + 1/2)} · cosπ(q + 1/2− p0µ)]

exp {π(i/2− p0)} · exp{πµ(p20 − 1/4)} · exp {−2πp0q} · cosπ(q − p0µ)
∼

i

2
·

∂
∂q [exp {−2πp0(q + 1/2)} · cosπ(q + 1/2− p0µ)]

exp {π(i/2− p0)} · exp {−2πp0q} · cosπ(q − p0µ)
∼

−
1

2
·

∂
∂q
[exp {−2πp0(q + 1/2)} · sinπ(q − p0µ)]

exp {−2πp0(q + 1/2)} · cosπ(q − p0µ)
∼



19

πp0 tan{π(q − p0µ)} −
1

2
.

This completes the proof of Theorem 3.5.

4. Theta deformations of gravitational instantons

4.1. Theta deformations. In Section 5 of [MaMar14] we showed that the
gluing of space–times across the singularity using an algebro-geometric blowup can
be made compatible with the idea of spacetime coordinates becoming noncommu-
tative in a neighborhood of the initial singularity where quantum gravity effects
begin to dominate.

This compatibility is described there in terms of Connes–Landi theta deforma-
tions ([CoLa01]) and Cirio–Landi–Szabo toric deformations ([CiLaSz13]) of Grass-
mannians.

Here we consider the same problem in the case of the Bianchi IX models with
SU(2)-symmetry, namely whether they can be made compatible with the hypothesis
of noncommutativity at the Planck scale, using isospectral theta deformations.

The metrics on the S3 sections, in this case, are only left SU(2)–invariant. We
show that among all the SU(2) Bianchi IX spacetime, the only ones that admit
isospectral theta–deformations of their spatial S3–sections are those where the met-
ric tensor

g = w1w2w3 dµ
2 +

w2w3

w1
σ2
1 +

w1w3

w2
σ2
2 +

w1w2

w3
σ2
3 (4.1)

is of the special form satisfying w1 6= w2 = w3 (the two directions σ2 and σ3
have equal magnitude). In these metrics, the S3 sections are Berger spheres. This
class includes the general Taub-NUT family ([Taub51], [NUT63]), and the Eguchi–
Hanson metrics ([EgHa79a], [EgHa79b]). The theta–deformations are obtained, as
in the case of the deformations S3

θ of [CoLa01] of the round 3-sphere, by deforming
all the tori of the Hopf fibration to noncommutative tori.

4.2. Proposition. A Bianchi IX Euclidean spacetime X with SU(2)–symmetry
admits a noncommutative theta-deformation Xθ, obtained by deforming the tori of
the Hopf fibration of each spacial section S3 to noncommutative tori, if and only if
its metric has the SU(2)× U(1)–symmetric form

g = w1w
2
3 dµ

2 +
w2

3

w1
σ2
1 + w1 (σ

2
2 + σ2

3). (4.2)
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Proof. In appropriate local coordinates the SU(2)–invariant forms (σi) satis-
fying relations dσi = σj ∧ σk for all cyclic permutations (i, j, k) have the explicit
form

σ1 = x1 dx2 − x2 dx1 + x3 dx0 − x0 dx3 =
1

2
(dψ + cos θ dφ),

σ2 = x2 dx3 − x3dx2 + x1 dx0 − x0 dx1 =
1

2
(sinψ dθ − sin θ cosψ dφ),

σ3 = x3 dx1 − x1 dx3 + x2 dx0 − x0 dx2 =
1

2
(− cosψ dθ − sin θ sinψ dφ),

with Euler angles 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and 0 ≤ ψ ≤ 4π (for the SU(2) case).

The Hopf coordinates (ξ1, ξ2, η) are defined by

z1 := x1 + ix2 = ei(ψ+φ) cos
θ

2
= eiξ1 cos η,

z2 := x3 + ix0 = ei(ψ−φ) sin
θ

2
= eiξ2 sin η.

Equivalently, identifying S3 with unit quaternions, we write q ∈ SU(2) as

q :=

(
z1 z2
−z̄2 z̄1

)
=

(
eiξ1 cos η eiξ2 sin η

−e−iξ2 sin η e−iξ1 cos η

)
,

where |z1|
2 + |z2|

2 = 1 and (ξ1, ξ2, η) are the Hopf coordinates as above.

The noncommutative θ–deformations ([CoLa01]) of the 3–sphere S3 are obtained
by deforming all the 2–tori of the Hopf fibration to noncommutative 2–tori T 2

θ .
Namely, replace q with (

U cos η V sin η
−V ∗ sin η U∗ cos η

)
,

where U, V are the generators of the noncommutative 2–torus T 2
θ .

Then one obtains the algebra generated by α = U cos η and β = V sin η with
αβ = e2πiθβα, α∗β = e−2πiθβα∗, α∗α = αα∗, β∗β = ββ∗ and αα∗ + ββ∗ = 1.
It is shown in [CoLa01] that this deformation is isospectral with respect to the bi-
invariant round metric on S3, in the sense that the data of the Hilbert space of



21

square integrable spinors H = L2(S3, S) and the Dirac operator D for the round
metric on S3 give rise to spectral triples on the deformed algebras S3

θ .

In fact, the general result of [CoLa01] shows that isospectral theta–deformations
can be constructed whenever there is an isometric torus action. In particular, in
our case the question reduces to whether the action of T 2 that rotates the tori of
the Hopf fibration preserves the Bianchi IX metric.

In Hopf coordinates the action of T 2 is given by (t1, t2) : (ξ1, ξ2) 7→ (ξ1+ t1, ξ2+
t2), or in terms of the Euler angles, (u, v) : (φ, ψ) 7→ (φ + u, ψ + v), with t1 =
(u + v)/2 and t2 = (v − u)/2. It is immediate to check that the U(1)–action
u : φ 7→ φ + u leaves the 1-forms σi invariant. This is the U(1)-action of the Hopf
fibration S1 →֒ S3 → S2. The form σ1 is also invariant under the other U(1)-action
v : ψ 7→ ψ + v, while the other forms σ2, σ3 transform as

v∗σ2 =
1

2
(sin(ψ + β) dθ − cos(ψ + β) sin θ dφ)

v∗σ3 =
1

2
(− cos(ψ + β) dθ − sin(ψ + β) sin θ dφ),

hence it is clear that we have v∗g = g for a Bianchi IX metric

g = dµ2 + a2 σ2
1 + b2 σ2

2 + c2 σ2
3 (4.3)

if and only if b = c. In the case b = c, with

g = dµ2 +
a2

4
(dψ + cos θ dφ)2 +

c2

4
(dθ2 + sin2 θ dφ2),

the T 2 action is isometric and the resulting theta-deformations are therefore isospec-
tral, with spectral triples (A,H,D), with A = C∞(S3

θ ), and spinors H = L2(S3, S)
and Dirac operator D with respect to the Bianchi IX metric with b = c.

This is in stark contrast with the situation described in [EsMar13], where (Lorentzian
and Euclidean) Mixmaster cosmologies of the form

∓dt2 + a(t)2dx2 + b(t)2dy2 + c(t)2dz2

were considered, with T 3-spatial sections, which always admit isospectral theta-
deformations.
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We have recalled in the previous section how the self–duality equations for the
SU(2) Bianchi IX models can be described in terms of Painlevé VI equations [To94],
[Hi95], [Ok98], and how the general solutions (with w1 6= w2 6= w3) can be written
explicitly in terms of theta constants [BaKo98], and are obtained from a Darboux–
Halphen type system [PeVa12], [Tak92]. In the case of the family of Bianchi IX
models with SU(2)×U(1)-symmetry, considered in Proposition 42, this system has
algebraic solutions that give

w2 = w3 =
1

µ− µ0
, w1 =

µ− µ∗

(µ− µ0)2
, (4.4)

with singularities at µ∗ (curvature singularity), µ0 (Taubian infinity) and ∞ (nut).
The condition µ∗ < µ0 avoids naked singularities, by hiding the curvature singular-
ity at µ∗ behind the Taubian infinity, see the discussion in Section 5.2 of [PeVa12].

Consider the operator

DB = −i

(
1
λX1 X2 + iX3

X2 − iX3 − 1
λX1

)
+
λ2 + 2

2λ
, (4.5)

where {X1, X2, X3} constitute a basis of the Lie algebra orthogonal for the bi–
invariant metric. Assume moreover that the left–invariant metric on S3 is diagonal
in this basis, with eigenvalues {w2/w1, w1, w1}, with w = w2 = w3 and λ = w/w1,
and where the wi are as in (4.4). Consider also the operator

D =
1

w
1/2
1 w

(
γ0
(
∂

∂µ
+

1

2
(
ẇ

w
+

1

2

ẇ1

w1
)

)
+ w1 DB |λ= w

w1

)
. (4.6)

4.2. Proposition. The operators D of (4.6) give Dirac operators for isospec-
tral theta deformations of the SU(2) × U(1)-symmetric spacetimes of Proposition
4.2.

Proof. We consider the frame θi with i ∈ {0, 1, 2, 3}, given by

θ0 = uw dµ, θ1 = uλσ1, θ2 = uσ2, θ3 = uσ3,

where u = w
1/2
1 and λ = w/w1, for w = w2 = w3. Since the σi satisfy dσi = σj ∧σk

for cyclic permulations {i, j, k} of {1, 2, 3}, we have dθ0 = 0, and furthermore

dθ1 = (u̇λ+ uλ̇) dµ ∧ σ1 + uλσ2 ∧ σ3 =
1

uw
(
u̇

u
+
λ̇

λ
) θ0 ∧ θ1 +

1

uλ
λ2 θ2 ∧ θ3,
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dθ2 = u̇ dµ ∧ σ2 + uσ3 ∧ σ1 =
1

uw

u̇

u
θ0 ∧ θ2 +

1

uλ
θ3 ∧ θ1,

dθ3 = u̇ dµ ∧ σ3 + uσ1 ∧ σ2 =
1

uw

u̇

u
θ0 ∧ θ3 +

1

uλ
θ1 ∧ θ2

where dot denotes the time derivative.

Proceeding then as in [ChCo12], we use the dθi to write the spin connection and
we obtain a Dirac operator of the form

D = γ0
1

w
1/2
1 w

(
∂

∂µ
+

1

2
(
ẇ

w
+

1

2

ẇ1

w1
)

)
+
w

1/2
1

w
DB |λ= w

w1

,

or equivalently of the form (4.6), where DB is the Dirac operator on a Berger
3–sphere. The explicit form of Dirac operator on a Berger 3–sphere with metric
λ2σ2

1 + σ2
2 + σ2

3 was computed in [Hi74], and it is given by the operator (4.5).

As in [EsMar13], the Dirac operator of Proposition 4.3 can be seen as involving
an anisotropic Hubble parameter H. In the case of the metrics (4.3) of [EsMar]13
this was of the form

H =
1

3

(
ȧ

a
+
ḃ

b
+
ċ

c

)

with a, b, c the scaling factors in (4.3).

In the case of the SU(2) Bianchi IX models, the anisotropic Hubble parameter
is again of the form H = 1

3(H1 +H2 +H3), where now the Hi correspond to the
three directions of the vectors dual to the SU(2)-forms σi in (4.1). For a metric of
the form (4.2), or equivalently

g = uw dµ2 + u2λ2 σ2
1 + u2σ2

2 + u2σ2
3 ,

with u, λ, w as in Proposition 4.2, we take the anisotropic Hubble parameter to be

H =
1

3

(
u̇λ+ uλ̇

uλ
+ 2

u̇

u

)
=

1

3

(
3
u̇

u
+
λ̇

λ

)
,

where
u̇

u
=

1

2

ẇ1

w1
,

λ̇

λ
=
ẇ

w
−
ẇ1

w1
,
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so that

H =
1

3

(
ẇ

w
+

1

2

ẇ1

w1

)
,

as in (4.6), so that we can write the 4-dimensional Dirac operator in the form

D = γ0
1

uw

(
∂

∂µ
+

3

2
H

)
+DB ,

where DB = (w
1/2
1 /w) DB |λ= w

w1

is the Dirac operator on the spatial sections S3

with the left SU(2)-invariant metric.

Notice that in the construction above we have considered the same modulus θ
for the noncommutative deformation of all the spatial sections S3 of the Bianchi IX
spacetime, but one could also consider a more general situation where the parameter
θ of the deformation is itself a function of the cosmological time µ.

This would allow the dependence of the noncommutativity parameter θ on the
energy scale (or on the cosmological timeline), with θ = 0 away from the singularity
where classical gravity dominates and noncommutativity only appearing near the
singularity. Since a non–constant, continuously varying parameter θ crosses rational
and irrational values, this would give rise to a Hofstadter butterfly type picture, with
both commutativity (up to Morita equivalence, as in the rational noncommutative
tori) and true noncommutativity (irrational noncommutative tori).

Another interesting aspect of these noncommutative deformations is the fact
that, when we consider a geodesic in the upper half plane encoding Kasner eras
in a mixmaster dynamics, the points along the geodesic also determine a family of
complex structures on the noncommutative tori T 2

θ of the theta–deformation of the
respective spatial section.
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