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DEFORMATIONS OF POLARIZED AUTOMORPHIC GALOIS REPRESENTATIONS

AND ADJOINT SELMER GROUPS

PATRICK B. ALLEN

Abstract. We prove the vanishing of the geometric Bloch–Kato Selmer group for the adjoint representation
of a Galois representation associated to regular algebraic polarized cuspidal automorphic representations
under an assumption on the residual image. Using this, we deduce that the localization and completion of
a certain universal deformation ring for the residual representation at the characteristic zero point induced
from the automorphic representation is formally smooth of the correct dimension. We do this by employing
the Taylor–Wiles–Kisin patching method together with Kisin’s technique of analyzing the generic fibre of
universal deformation rings. Along the way we give a characterization of smooth closed points on the generic
fibre of Kisin’s potentially semistable local deformation rings in terms of their Weil–Deligne representations.
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Introduction

Let F be a number field, S a finite set of finite places of F containing all those above a fixed rational
prime p, and let F (S) be the maximal extension of F unramified outside of S and the Archimedean places.
Given a p-adic representation V of Gal(F (S)/F ), Bloch and Kato [BK] defined certain subspaces

H1
f (F (S)/F, V ) ⊆ H1

g (F (S)/F, V ) ⊆ H1(F (S)/F, V )

of the Galois cohomology group H1(F (S)/F, V ), known as the Bloch–Kato Selmer group and geometric
Bloch–Kato Selmer group, respectively. If V is de Rham, resp. crystalline, then H1

g (F (S)/F, V ), resp.

H1
f (F (S)/F, V ), is the subspace of H1(F (S)/F, V ) = Ext1Qp[Gal(F (S)/F )](Qp, V ) of extensions of the trivial

representation by V that are de Rham, resp. crystalline. When V is absolutely irreducible and de Rham,
the Fontaine–Mazur conjecture together with the philosophy of motives predict that V should be the p-adic
realization of some pure motive. Inputting this into the conjectures of Beilinson–Bloch and Bloch–Kato,
one obtains a conjectural relation between the dimension of H1

f (F (S)/F, V ) and the order of vanishing of
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the L-function of the dual representation of V at the point s = 1 [FPR, II, §3.4.5]. One prediction of this
conjecture is that if the representation V is pure of motivic weight zero, then

H1
f (F (S)/F, V ) = H1

g (F (S)/F, V ) = 0.

This is in accordance with a philosophy of Grothendieck that in a conjectural category of mixed motives,
there should be no nontrivial extensions of pure motives of the same weight.

Let E be a finite extension of Qp. Given any absolutely irreducible pure de Rham representation

ρ : Gal(F (S)/F ) −→ GLd(E),

one naturally obtains a pure weight zero representation called the adjoint representation: ad(ρ) = gld(E), the
Lie algebra of GLd(E), with Gal(F (S)/F )-action given by composing ρ with the adjoint action of GLd(E).
Then the Bloch–Kato conjecture predicts

H1
g (F (S)/F, ad(ρ)) = 0.

In the case where ρ is the representation arising from an elliptic curve over Q, this prediction was first proved
by Flach [Fla92] by a method using Euler systems, assuming that the elliptic curve has good reduction at
p, that p ≥ 5, and that the associated residual representation surjects onto GL2(Fp). A corollary of the
breakthrough work of Wiles and Taylor–Wiles is this vanishing in the case that ρ is the representation
coming certain modular forms. This results from their so-called R = T theorem that equates a certain
universal deformation ring of ρ to a Hecke algebra. On way to think about this is that the tangent space
of the deformation ring they consider at the characteristic zero point corresponding to the modular form is
equal to its adjoint Bloch–Kato Selmer group, while the tangent space of the Hecke algebra at that point is
trivial, since the Hecke algebra is reduced. Their work also had assumptions on the level of the modular form
and on the residual representation. In [Kis04], Kisin showed the vanishing of H1

g (GQ,S , ad(ρ)) for modular
forms of weight k ≥ 2 and arbitrary level, assuming only a mild condition on the residual representation, and
his proof uses some of the ideas of Taylor–Wiles. We mention also the result of Weston [Wes04] which applies
to non-CM forms with certain hypotheses on the level, but has no restriction on the residual representation.
For general totally real, resp. CM fields, but still in dimension two, one can deduce results of this form
from the R[1/p] = T[1/p] theorems [Kis09a, Theorem 3.4.11] and [KW09, Propositions 9.2 and 9.3], resp.
[GK14, Corollary 3.4.3], whenever the assumptions of those theorems are satisfied.

In higher dimensions, one is naturally led to consider the Galois representations associated to regular
algebraic polarized cuspidal automorphic representations of GLd over CM fields. These adjoint representa-
tions have a natural extension to a representation of the Galois group of the maximal totally real subfield,
and this adjoint Selmer group has a natural interpretation as the tangent space of a polarized deformation
ring. Although there has been great progress in modularity lifting in this context, almost all of the results
prove only Rred = T and do not imply vanishing of the adjoint Selmer groups, although some cases can be
deduced using the R = T theorem of Clozel–Haris–Taylor [CHT08, Theorem 3.5.1]. Using a completely dif-
ferent method, namely the theory of eigenvarieties, Chenevier [Che11, Theorem F] proved that the vanishing
of this adjoint Selmer group is equivalent to the vanishing of the H2 of this adjoint representation under
some local hypotheses. This is applicable, in particular, when the deformation problem is unobstructed (for
example, see [Che11, Appendix]).

The main observation used in this paper is that one can still use the Taylor–Wiles–Kisin patching method
to deduce vanishing of the corresponding adjoint Selmer groups for automorphic Galois representations
provided one knows that the induced points on local deformation rings are smooth. Indeed, the method
yields a ring R∞, an R∞-module M∞, and a control theorem that relates them to our deformation ring
and a space of automorphic forms. The most subtle point in proving modularity lifting theorems is to
understand the components of R∞ and how they relate to congruences between automorphic forms. But if
we are only interested in the infinitesimal deformation theory of the characteristic zero point coming from
our automorphic Galois representation ρ, we can localize and complete at this point, and if we know that
ρ determines a smooth point on the local deformation rings, it also determines a smooth point on R∞.
Then we can apply the Auslander–Buchsbaum formula to the completion and deduce that the localized and
completed deformation ring acts freely on a finite dimensional vector space of cusp forms, from which we can
deduce vanishing of the adjoint Selmer group. Before stating the main theorems, we set up some notation.

Let E be a finite extension of Qp with ring of integers O and residue field F. Let F be a CM field with

maximal totally real subfield F+. Let F be some fixed algebraic closure of F , and let c ∈ Gal(F/F+) be
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a choice of complex conjugation. Let S be a finite set of finite places of F+ containing all places above p.
Let F (S) be the maximal extension of F unramified outside of the places in F above those in S. Note that
F (S) is Galois over F+. Let

ρ : Gal(F (S)/F ) −→ GLd(E)

be a continuous, absolutely irreducible representation, and let ad(ρ) denote the Lie algebra gld(E) of GLd(E)
with the adjoint action ad ◦ ρ of Gal(F (S)/F ).

We assume there is a continuous totally odd character µ : GF+ → E× and an invertible symmetric matrix
P such that the pairing 〈a, b〉 = taP−1b on Ed is perfect and satisfies

〈ρ(σ)a, ρ(cσc)b〉 = µ(σ)〈a, b〉,

for all σ ∈ Gal(F (S)/F ). Since ρ is absolutely irreducible, P is unique up to scalar. We can then extend
the action of Gal(F (S)/F ) on ad(ρ) to an action of Gal(F (S)/F+) by letting c act by X 7→ −P tXP−1, and
this is independent of the choice of c and of P .

Finally, we recall that we can choose a Gal(F (S)/F )-stable O-lattice in the representation space of
ρ, so after conjugation we may assume that ρ takes values in GLd(O). The semisimplification of its re-
duction modulo the maximal ideal of O does not depend on the choice of lattice, and we denote it by
ρ : Gal(F (S)/F ) → GLd(F).

Theorem A. Assume p > 2. Assume there is a finite extension L/F of CM fields, a regular algebraic

polarizable cuspidal automorphic representation Π of GLd(AL), and an isomorphism ι : Qp
∼
−→ C such that

the following hold:

(a) ρ|GL ⊗Qp
∼= ρΠ,ι, where ρΠ,ι is the Galois representation attached to Π and ι;

(b) ζp /∈ L and ρ(GL(ζp)) is adequate.

Then

1. the geometric Bloch–Kato Selmer group

H1
g (F (S)/F+, ad(ρ)) := ker

(
H1(F (S)/F+, ad(ρ)) →

∏

v|p

H1(F+
v , BdR ⊗Qp ad(ρ))

)

is trivial.

Moreover,

2. H2(F (S)/F+, ad(ρ)) = 0;
3. letting H1

g (F
+
v , ad(ρ)) := ker(H1(F+

v , ad(ρ)) → H1(F+
v , BdR ⊗Qp ad(ρ))) for each v|p in F+, the

natural map

H1(F (S)/F+, ad(ρ)) −→
∏

v|p

H1(F+
v , ad(ρ))/H1

g (F
+
v , ad(ρ))

is an isomorphism.

We refer the reader to the notation section below for any of the notation with which the reader is not
familiar, to §2.1 for a discussion of regular algebraic polarizable cuspidal automorphic representations and
their associated Galois representations, and to 3.1.1 for the definition of an adequate subgroup of GLd(F).
If p > 2(d+ 1), then any subgroup of GLd(F) acting absolutely irreducibly on Fd is adequate by a theorem
of Guralnick–Herzig–Taylor–Thorne [Tho12, Theorem A,9], and the assumption of potential automorphy
is satisfied in many cases by work of Barnet-Lamb–Gee–Geraghty–Taylor [BLGGT14, Theorem 4.5.1]. As
an example, in §3.3 we apply this to certain twists of even symmetric powers of Galois representations
associated to elliptic modular forms. Parts 2 and 3 of Theorem A follow from part 1, using an argument of
Kisin (see 1.3.5), and this relies on the “numerical coincidence” discussed in [CHT08, §1]. It seems likely that
the assumption that p > 2 can be removed using recent work of Thorne [Tho15], but we have not checked
the details. Theorem A will follow (see 3.2.1) from a slight variant (3.1.3).

A similar result (as well as a result similar to Theorem C below) was independently obtained by Breuil–
Hellmann–Schraen [BHS15, Corollaires 4.12 and 4.13]. Our results on the Bloch–Kato Selmer group (and on
universal deformation rings, c.f. Theorem C) are more general, as we make no assumption on the local factors
πv of the automorphic representation at places v|p, whereas they assume πv is unramified when v|p. On the
other hand, they deduce their results as an application of the construction and study of an interesting object
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they call a patched eigenvariety, and this construction has other applications; for example, to a conjecture
of Breuil on locally analytic vectors in completed cohomology [BHS15, Corollaire 4.4].

For ρ as in the statement of the theorem, Hg(F
+
v , ad(ρ)) = H1

f (F
+
v , ad(ρ)) for any v|p in F+, where

H1
f (F

+
v , ad(ρ)) := ker(H1(F+

v , ad(ρ)) → H1(F+
v , Bcr ⊗Qp ad(ρ)))

is the more common local Bloch–Kato Selmer group (see 1.2.9), so Theorem A remains unchanged replacing
H1

g with H1
f everywhere. With this in mind, the reader should compare Theorem A with the results of

[Che11, §6]. In particular, note that we make no assumption on the restriction of ρ to decomposition groups
above p (besides what is naturally implied by assumption (a)).

In §3.1, using cyclic base change we deduce from Theorem A a similar theorem for totally real fields. To
state it, we set up some notation. Let F+(S) be the maximal extension of F+ unramified outside S and all
places above ∞. Let

ρ : Gal(F+(S)/F+) −→ GLd(E)

be a continuous, absolutely irreducible representation. We assume that ρ satisfies one of the following:

(GO) ρ factors through a map Gal(F+(S)/F+) → GOd(E), that we again denote by ρ, with totally even
multiplier character;

(GSp) d is even and ρ factors through a map Gal(F+(S)/F+) → GSpd(E), that we again denote by ρ, with
totally odd multiplier character.

We will refer to the first as the GO-case, and the second as the GSp-case. If we are in the GO-case, then we
let ad(ρ) and ad0(ρ) denote the Lie algebra god(E) of GOd(E) and sub-Lie algebra sod(E), respectively, with

the adjoint Gal(F+(S)/F+)-action ad◦ρ. If we are in the GSp-case, then we let ad(ρ) and ad0(ρ) denote the
Lie algebra gspd(E) of GSpd(E) and sub-Lie algebra spd(E), respectively, with the adjoint Gal(F+(S)/F+)-
action ad ◦ ρ.

Theorem B. Assume p > 2. Assume there is a finite extension L+/F+ of totally real fields, a regular

algebraic polarizable cuspidal automorphic representation π of GLd(AL+), and an isomorphism ι : Qp
∼
−→ C

such that:

(a) ρ|GL+ ⊗Qp
∼= ρπ,ι, where ρπ,ι is the Galois representation attached to π and ι;

(b) ρ(GL+(ζp)) is adequate.

Then

1. the geometric Bloch–Kato Selmer group

H1
g (F

+(S)/F+, ad(ρ)) := ker
(
H1(F+(S)/F+, ad(ρ)) →

∏

v|p

H1(F+
v , BdR ⊗Qp ad(ρ))

)

is trivial.

Moreover,

2. H2(F+(S)/F+, ad0(ρ)) = 0;
3. letting H1

g (F
+
v , ad0(ρ)) := ker(H1(F+

v , ad0(ρ)) → H1(F+
v , BdR ⊗Qp ad0(ρ))) for each v|p in F+, the

natural map

H1(F+(S)/F+, ad0(ρ)) −→
∏

v|p

H1(F+
v , ad0(ρ))/H1

g (F
+
v , ad0(ρ))

is an isomorphism.

As in [Kis04, §8], we use vanishing of the geometric Bloch–Kato adjoint Selmer group to deduce smoothness
of a certain universal deformation ring at automorphic points, something we now explain. Let Gd denote the
group scheme over Z that is the semidirect product

G0
d ⋊ {1, } = (GLd ×GL1)⋊ {1, },

where (g, a) = (a tg−1, a). There is a character ν : Gd → GL1 defined by by ν(g, a) = a and ν() = −1. Fix
a continuous homomorphism

r : Gal(F (S)/F+) −→ Gd(F)

inducing an isomorphism Gal(F/F+)
∼
−→ Gd(F)/G0

d(F), as well as a totally odd de Rham character µ :
Gal(F (S)/F+) → O× such that ν ◦ r = µ mod mO. Let ρ : Gal(F (S)/F ) → GLd(F) be the composite of
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r|GF : Gal(F (S)/F ) → G0
d(F) with the projection G0

d(F) → GLd(F), and assume ρ is absolutely irreducible.
If p > 2, then with this data S = (F/F+, S,O, r, µ), there is a complete Noetherian local commutative O-
algebra RS with residue field F, such that RS represents the set-valued functor on the category of complete
Noetherian local commutative O-algebras A with residue field F, that sends A to the set deformations of r
to A with multiplier µ, i.e. the set of 1 +Md(mA)-conjugacy classes of homomorphisms

r : Gal(F (S)/F+) −→ Gd(A)

satisfying r mod mA = r and ν ◦ r = µ (see §1.3).

Theorem C. Assume p > 2. Let x be a closed point of SpecRS [1/p] with residue field k, and let

rx : Gal(F (S)/F+) −→ Gd(k)

be the pushforward of (some homomorphism representing) the universal deformation of r via RS [1/p]
x
−→ k.

Let ρ denote the composite of r|GL : Gal(F (S)/F ) → G0
d(k) with the projection G0

d(k) → GLd(k).
Assume there is a finite extension L/F of CM fields, a regular algebraic polarizable cuspidal automorphic

representation Π of GLd(AL), and an isomorphism ι : Qp
∼
−→ C such that the following hold:

(a) ρ|GL ⊗Qp
∼= ρΠ,ι;

(b) ζp /∈ L and ρ(GL(ζp)) is adequate.

Then the localization and completion (RS)
∧
x is formally smooth over k of dimension d(d+1)

2 [F+ : Q].

Theorem C is deduced in 3.2.4 as an immediate consequence of 3.1.3 and 1.3.13.
A related application of Theorem A is to the geometry of unitary eigenvarieties. Belläıche and Ch-

enevier showed that at certain classical automorphic points on a unitary eigenvariety (see [BC09, §7.6.2]),
the weight map is étale and that a “refined deformation ring” (see [BC09, Definition 7.6.2 and Proposition
7.6.3]) is isomorphic to the completed local ring of the structure sheaf of the eigenvariety at these points
[BC09, Corollary 7.6.11], provided that [BC09, Conjecture 7.6.5 (C1)] holds. Theorem A implies [BC09, Con-
jecture 7.5.6 (C1)] if the representation denoted V there further satisfies the assumptions of Theorem A.
Thus, Theorem A establishes the conjectures of [BC09, §7.6] at points satisfying the assumptions of Theo-
rem A. We refer the reader to [BC09, §7.6] for more details and for precise statements. These conjectures
of Belläıche–Chenevier were also proved by Breuil–Hellmann–Schraen [BHS15, Corollaire 4.11], under es-
sentially the same hypotheses. We also note that many cases of this were proved by completely different
methods by Chenevier [Che11, Theorems 4.8 and 4.10].

An important step in the proofs of our main theorems is the fact that the points coming from regular
algebraic polarizable cuspidal automorphic representations on certain local deformation rings are smooth.
By local-global compatibility, the Weil–Deligne representations attached to their local factors satisfy the
property that they do not admit any nontrivial morphisms to their Tate twist. We say below (1.1.2) that
such Weil–Deligne representations are generic. We show (see 1.2.7) that this property characterizes smooth
points on local potentially semistable deformation rings. As this may be of independent interest, we state it
here.

Theorem D. Let K be a finite extension of Qp, let

ρ : Gal(K/K) −→ GLd(F)

be a continuous homomorphism, and let R�
ρ be the universal framed deformation ring for ρ. Fix a Galois type

τ and a p-adic Hodge type v. Let R�
ρ (τ,v) denote Kisin’s O-flat potentially semistable framed deformation

ring with fixed Galois type τ and p-adic Hodge type v. Let x be a closed point of SpecR�
ρ (τ,v)[1/p] with

residue field k. Let ρx : Gal(K/K) → GLd(k) be the pushforward of the universal lift via R�
ρ [1/p] →

R�
ρ (τ,v)[1/p]

x
−→ k, and let WD(ρx) be its associated Weil–Deligne representation.

Then R�
ρ (τ,v)[1/p] is smooth at x if and only if there is no nonzero map WD(ρx) → WD(ρx)(1) of

Weil–Deligne representations.

We refer the reader to §§1.1 and 1.2 for the definitions of any of the terms or object in the statement of
Theorem D with which the reader is not familiar. The idea of the proof of Theorem D is quite simple: mimic
the ℓ 6= p case. If K is a finite extension of Qℓ with ℓ 6= p, then the smooth closed points in the generic fibre
of the universal framed deformation ring are precisely the ones whose Weil–Deligne representation satisfy
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this genericity hypothesis (as observed in [BLGGT14, Lemma 1.3.2], see also 1.2.2 below). Indeed, a result
of Gee [Gee11, Theorem 2.1.6] gives the dimension of the generic fibre of this framed deformation ring, so
it suffices to check when the tangent space, which is related to an H1, has strictly larger dimension, and
this can be related to our genericity condition using local Euler characteristic and local Tate duality. The
proof of Theorem D is similar, replacing Gee’s dimension result with Kisin’s [Kis08, Theorem 3.3.4], the H1

with the local geometric Bloch–Kato Selmer group H1
g , and local Euler characteristic and local Tate duality

with Bloch and Kato’s local dimension formulae and local duality results [BK, §3]. In fact, for the proofs of
Theorems A, B, and C, we will only need the direction “generic implies smooth”, but the author has decided
to include the converse here because he finds it interesting in its own right: the criterion is the same as in the
ℓ 6= p case, exhibiting a sort of “independence of p” phenomena for the geometry of potentially semistable
deformation rings.

Outline. The paper is organized as follows.
In §1, we recall and prove the relevant facts regarding the deformation theory of Galois representations.

We first recall some properties of Weil–Deligne representations in 1.1; namely the construction of Weil–
Deligne representations attached to local Galois representations and their connection with smooth admissible
representations of GLd. In §1.2, we treat the local theory of Galois deformations with an emphasis on
describing the smooth points in the generic fibre of local deformation rings; in particular, we prove Theorem D
(1.2.7). The global theory is then discussed in §1.3, the main point being to use Kisin’s technique of analyzing
the generic fibre of deformation rings to connect them to the Bloch–Kato Selmer group (1.3.12), and to prove
some dimension and smoothness results that are necessary for the proof of Theorem C (1.3.13).

We discuss the automorphic theory necessary in §2; everything here is standard. We first recall the proper-
ties of Galois representations associated to regular algebraic polarized cuspidal automorphic representations
of CM and totally real fields in §2.1. We then describe their connection to automorphic forms on definite
unitary groups in §2.2, the main point being to show how one can construct a certain module of automorphic
forms with an action of a certain Galois deformation ring, and that the vanishing of the Bloch–Kato Selmer
group in question is implied by a freeness property (2.2.7).

We conclude our efforts in §3, proving the main theorem (3.1.3) in §3.1, and deducing Theorems A, B,
and C from the introduction in §3.2. Finally, in §3.3 we given an application to certain twists of symmetric
powers of modular Galois representations.
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Notation and conventions

If F is a number field and v is a place of F , we denote by Fv the completion of F at v, and if v is
non-Archimedean we denote the ring of integers by OFv . We let AF denote the ring of adeles of F , and A∞

F

the ring of finite adeles.
If K is any field with a fixed algebraic closure K, we denote by GK the absolute Galois group Gal(K/K).

If K is a non-Archimedean local field, we denote by IK the inertia subgroup, by WK the Weil group, and
by FrobK the geometric Frobenius in GK/IK ∼= WK/IK . In the case that K is the completion of a number
field F at a finite place v, we write Gv, Iv, and Frobv for GFv , IFv , and FrobFv , respectively. If L/F is a
Galois extension of number fields inside some fixed algebraic closure F of F , and S is a finite set of finite
places of F , we let L(S) denote the maximal extension of L that is unramified outside of any of the places in
L above those in S and the Archimedean places. A CM extension of a totally real field is always assumed to
be imaginary. Given a CM field F with maximal totally real subfield F+, we denote by δF/F+ the nontrivial

{±1}-valued character of Gal(F/F+). Given a finite separable extension of fields L/F , we write NmL/F for
the norm from L to F .
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If K is a non-Archimedean local field, we let ArtK : K× ∼
−→ WK be the Artin reciprocity map normalized

so that uniformizers are sent to geometric Frobenius elements. For a number field F , we let ArtF : F×\A×
F →

Gab
F be ArtF =

∏
v ArtFv . For any d ≥ 1, we let recK be the Local Langlands reciprocity map that takes

irreducible admissible representations of GLd(K) to Frobenius semi-simple Weil–Deligne representations,

normalized as in [HT01] and [Hen00]. We then let recTK be given by recTK(π) = recK(π ⊗ |·|
1−d
2 ).

If we are given an isomorphism ι : K
∼
−→ L of fields, and F →֒ K is an embedding of fields, we write ιλ

for ι ◦ λ. If λ = (λi)i∈I is a tuple of field embeddings Fi →֒ K, then we write ιλ for the tuple (ιλi)i∈I . If
r : G → AutK(V ) is a representation of a group G on a K-vector space V , then we will denote by ιr the
representation of G on the L-vector space V ⊗K,ι L.

If G is a group, A is a commutative ring, and ρ : G → GLn(A) is a homomorphism, then we will let Vρ

denote the representation space of ρ, i.e. Vρ = An with the A[G]-module structure coming from ρ.
We denote by ǫ the p-adic cyclotomic character. We let Bcr, Bst, and BdR denote Fontaine’s rings

of crystalline, semistable, and de Rham periods, respectively. We will frequently use the Berger–André–
Kedlaya–Mebkhout Theorem [Ber02, Théorème 0.7], that de Rham representation are potentially semistable,
without comment. We use covariant p-adic Hodge theory, and normalize our Hodge–Tate weights so that the
Hodge–Tate weight of ǫ is −1. If K and E are two algebraic extensions of Qp with K/Qp finite, τ : K →֒ E is
a continuous embedding, and ρ : GK → GL(V ) ∼= GLd(E) is a de Rham representation, we will write HTτ (ρ)
for the multiset of d Hodge–Tate weights with respect to τ . Specifically, an integer i appears in HTτ (ρ) with
multiplicity equal to the E-dimension of the ith graded piece of the d-dimensional filtered E-vector space
DdR(ρ)⊗(K⊗QpE) E, where DdR(ρ) = (BdR ⊗Qp Vρ)

GK and we view E as a K ⊗Qp E-algebra via τ ⊗ 1. We

will say a continuous representation ρ : GF → GL(V ) ∼= GLd(E) of the Galois group of a number field F is
de Rham, resp. semistable, resp. crystalline, if ρ|Gv is so for every v|p in F .

If A is a commutative local ring, we will denote by mA its maximal ideal. If A is a commutative ring and
x : A → D is a homomorphism with D a domain, then we denote by Ax the localization of A at ker(x), and
A∧

x the localization and completion of A at ker(x). If A is a commutative ring and x ∈ SpecA has residue
field kx, we again denote by x the map x : A → kx.

If k is a characteristic 0 field and R is a commutative k-algebra, we will say x ∈ SpecR is formally smooth
if k → Rx is formally smooth. This is equivalent to k → R∧

x being formally smooth, which is equivalent to
R∧

x being isomorphic to a power series ring over it’s residue field, since k has characteristic 0. We will use
these equivalences without further comment.

If B is a local commutative Noetherian ring, we let CNLB be the category of complete local commutative
Noetherian B-algebras A such that the structure map B → A induces an isomorphism B/mB

∼
−→ A/mA, and

whose morphisms are local B-algebra morphisms. We will refer to an object, resp. a morphism, in CNLB

as a CNLB-algebra, resp. a CNLB-morphism. The full subcategory of Artinian objects is denoted ArB.
If G is a topological group, and W is a topological G-module, the cohomology groupsHi(G,W ) are always

assumed to be the continuous cohomology groups, i.e. the cohomology groups computed with continuous
cochains. If M/L is a Galois extension, and W is a topological Gal(M/L)-module, we write Hi(M/L,W )
for Hi(Gal(M/L),W ). If L is an algebraic closure of L, we write Hi(L,W ) for Hi(L/L,W ). If K is a finite
extension of Qp, and W is a finite dimensional Qp-vector space with a continuous Qp-linear GK-action, we
set

H1
g (K,W ) := ker(H1(K,W ) → H1(K,BdR ⊗Qp W )).

If F is a number field, M is Galois extension of F , and W is a finite dimensional Qp-vector space with a
continuous Qp-linear Gal(M/F )-action, we set

H1
g (M/F,W ) := ker

(
H1(M/F,W ) →

∏

v|p

H1(Fv , BdR ⊗Qp W )
)
.

1. Deformation theory

Throughout this section E will denote a finite extension of Qp with ring of integers O and residue field F.

1.1. Weil–Deligne representations. Let ℓ be a rational prime, and let K be a finite extension of Qℓ with
ring of integers OK and uniformizer ̟K . Let q denote the cardinality of the residue field of K, Let |·| denote
the absolute value on K normalized so that |̟K | = q−1. For w ∈ WK , we will write |w| for |Art−1

K (w)|. If
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k is a field, and ρ : GK → GLd(k) is a homomorphism, we let ad(ρ) denote gld(k) with the adjoint action
ad ◦ ρ of GK . Note that ad(ρ) ∼= Homk(Vρ, Vρ) and ad(ρ)(1) ∼= Homk(Vρ, Vρ(1)) as k[GK ]-modules.

1.1.1. We recall some basics of Weil–Deligne representations (see [Tat77, §4]). Given a characteristic 0
field Ω, a Weil–Deligne representation over Ω is a pair (r,N), where r : WK → GL(V ) ∼= GLd(Ω) is a
representation of WK on a finite dimensional Ω-vector space V with open kernel, and N ∈ EndΩ(V ) is
nilpotent, such that r(w)Nr(w)−1 = |w|N for all w ∈ WK . A morphism of Weil–Deligne representations
(r1, N1) → (r2, N2) is a an Ω-linear morphism that intertwines the ri and the Ni. A Weil–Deligne rep-
resentation (r,N) is called Frobenius-semisimple if r is semisimple (equivalently, if r(Φ) is semisimple for
Φ ∈ WK a lift of the Frobenius). Given a Weil–Deligne representation (r,N), we will denote by (r,N)F -ss

its Frobenius-semisimplification, i.e. (r,N)F -ss = (rss, N). Given a Weil–Deligne representation (r,N), we
let (r,N)(1) = (r(1), N) be the Weil–Deligne representation with r(1)(w) = |w|r(w). If ι ∈ Aut(Ω), we let

ι(r,N) = (ιr, ιN) denote the Weil Deligne representation obtained by change of scalars via ι : Ω
∼
−→ Ω (this

is again a Weil–Deligne representation since |w| ∈ Q for all w ∈ WK).

Definition 1.1.2. We say a Weil–Deligne representation (r,N) is generic if there is no nontrivial morphism
(r,N) → (r(1), N).

If π is an irreducible admissible representation of GLd(K) over C and ι ∈ Aut(C), then recTK(ιπ) =
ιrecTK(π) (this is explained when d = 2 in [BH06, §35] and the argument there generalizes using [BH00, The-
orem 3.2] and the converse theorems of [Hen93]). If Ω is field isomorphic to C (as abstract fields), we get
a bijection, again denoted by recTK , between isomorphism classes of irreducible admissible representations
of GLd(K) over Ω and isomorphism classes of d-dimensional Frobenius semi-simple Weil–Deligne repre-

sentations over Ω by fixing any isomorphism ι : Ω
∼
−→ C and setting recTK(π) = ι−1recTK(ιπ), and this is

independent of the choice of ι.

Lemma 1.1.3. Let π be an irreducible smooth admissible representation of GLd(K) on an Ω-vector space,
with Ω a field (abstractly) isomorphic to C. Then recTK(π) is generic if and only if π is generic.

Proof. This is essentially identical to [BLGGT14, Lemma 1.3.2(1)]. We give the details. It suffices to consider

the case Ω = C. Since π is generic if and only if π⊗|·|
1−d
2 is generic, it is equivalent to show that π is generic

if and only if recK(π) is generic. Note that if (r,N) = recK(π), then (r(1), N) = recK(π ⊗ |·|).
We will use the notation and terminology of [HT01, §1.3]. There are positive integers si, di for i = 1, . . . , t

with d = d1s1 + · · ·+ dtst and irreducible supercuspidal representations πi of GLdi(K) such that

π ∼= Sps1(π1)⊞ · · ·⊞ Spst(πt),

and the multiset {(s1, π1), . . . , (st, πt)} is uniquely determined by π. By abuse of notation, we also denote by
Sps the s-dimensional Weil–Deligne representation (r,N) on a complex vector space with basis e0, . . . , es−1,
where r(w) = |w|iei for each i = 0, . . . , s− 1, and Nei = ei+1 for each i = 0, . . . , s− 2 and Nes−1 = 0. Then
(see [HT01, Theorem VII.2.20] and the discussion preceding it)

recK(π) = (recK(π1)⊗ Sps1)⊕ · · · ⊕ (recK(πt)⊗ Spst),

and recK(π) is nongeneric if and only if

(1) HomWD(recK(πi)⊗ Spsi , recK(πj ⊗ |·|)⊗ Spsj ) 6= 0

for some i, j. Since recK(πi) is absolutely irreducible (as πi is supercuspidal), it is easy to check that (1)
holds if and only if πi

∼= πj ⊗ |·|a with sj − si < a ≤ sj . In the notation and terminology of [Zel80] (see
[Zel80, §3.1 and §4.1]), this happens if and only if the segments [πi, . . . , πi ⊗ |·|si−1] and [πj , . . . , πj ⊗ |·|sj−1]
are linked, which happens if and only if π is non-generic by [Zel80, Theorem 9.7] (note generic is called
non-degenerate in [Zel80]). �

1.1.4. Assume that ℓ 6= p, and let

ρ : GK −→ GLd(E)

be a continuous representation. Following [Tat77, §4.2], we can attach a Weil–Deligne representation to our
fixed ρ, that we will denote WD(ρ), as follows. Fix Φ ∈ GK mapping to the geometric Frobenius in GK/IK .
Fix a surjection tp : IK → Zp, and let τp ∈ IK be such that tp(τp) = 1. The homomorphism tp necessarily
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factors through tame inertia. Write ρ(τp) = ρ(τp)
ssρ(τp)

u with ρ(τp)
ss semisimple and ρ(τp)

u unipotent. Set
N = log(ρ(τp)

u). Then the map r : WK → GLd(E) given by

(2) r(Φnσ) = ρ(Φnσ)e−tp(σ)N

for n ∈ Z and σ ∈ IK , is well-defined with open kernel, and (r,N) is a Weil–Deligne representation. The
isomorphism class does not depend on the choices made, and we denote any element in this isomorphism
class by WD(ρ). Moreover, this assignment (which depends on Φ and tp) gives an equivalence of categories
from the category of continuous representations ρ : GK → GLd(E) to the full subcategory of Weil–Deligne
representations (r,N) on Ed such that r has bounded image. From this we deduce the following lemma.

Lemma 1.1.5. Let ρ : GK → GLd(E) be a continuous representation. The Weil–Deligne representation
WD(ρ) is generic if and only if HomE[GK ](Vρ, Vρ(1)) = 0.

1.1.6. Assume ℓ = p, and let

ρ : GK −→ GLd(E)

be a continuous potentially semistable representation. Following Fontaine, [Fon94b, §1.3 and §2.3], we can
also associate a Weil–Deligne representation to ρ, again denoted WD(ρ), as follows.

Let L/K be a finite extension, let GL/K = Gal(L/K), and let L0 be the maximal subfield of L unramified
over Qp. We assume that E contains all embeddings of L0 into an algebraic closure of E. A (ϕ,N,GL/K)-
module D over E is a finite free L0 ⊗Qp E-module together with operators ϕ and N , and an action of
Gal(L/K), satisfying the following:

– N is L0 ⊗Qp E-linear;
– ϕ is E-linear and satisfies ϕ(ax) = σ(a)ϕ(x) for any x ∈ D and a ∈ L0, where σ ∈ Gal(L0/Qp) is
the absolute arithmetic Frobenius;

– Nϕ = pϕN ;
– the Gal(L/K)-action is E-linear and L0-semilinear, and commutes with ϕ and N .

Extend the action of Gal(L/K) to WK by letting IL act trivially. For w ∈ WK , we let v(w) ∈ Z be such that
the image of w in WK/IK is σ−v(w). We then define an L0⊗Qp E-linear action, that we denote rD, of WK on

D by rD(w) = wϕv(w). Writing L0 ⊗Qp E =
∏

τ :L0 →֒E E, we get a decomposition D =
∏

τ :L0 →֒E Dτ and an
induced d-dimensional Weil–Deligne representation (rτ , Nτ ) over E on each factorDτ . The isomorphism class
of (rτ , Nτ ) is independent of τ : L0 →֒ E (see [BM02, §2.2.1]), and we denote any element in its isomorphism
class by WD(D). Moreover, by [BS07, Proposition 4.1], this assignment induces an equivalence of categories
from (ϕ,N,GL/K)-modules over E to Weil–Deligne representations over E on which IL acts trivially. Given a
(ϕ,N,GL/K)-module D over E, we let D(1) be the (ϕ,N,GL/K)-module with the same underlying L0⊗QpE-

module, operator N , and GL/K-action, but with ϕD(1) = p−1ϕD. Note that WD(D(1)) = WD(D)(1).
Now choose L/K such that ρ|GL is semistable and such that E contains all embeddings of L into an

algebraic closure of E (enlarging E if necessary). We get a (ϕ,N,GL/K)-module

Dst,L(ρ) := (Bst ⊗Qp Vρ)
GL .

The isomorphism class of WD(Dst,L(ρ)) does not depend on the choice of L (see [BM02, §2.2.1]), and we set
WD(ρ) = WD(Dst,L(ρ)).

Lemma 1.1.7. Let ρ : GK → GLd(E) be a potentially semistable representation. Let L/K be a finite
extension such that ρ|GL is semistable.

1. The Weil–Deligne representation WD(ρ) is generic if and only if there are no nonzero morphisms
Dst,L(ρ) → Dst,L(ρ)(1) of (ϕ,N,GL/K)-modules over E.

2. Let Dcr(ad(ρ)(1)) = (Bcr ⊗Qp ad(ρ)(1))
GK with its induced crystalline Frobenius ϕ. Then WD(ρ) is

generic if and only if Dcr(ad(ρ)(1))
ϕ=1 = 0.

Proof. Part 1 follows from [BS07, Proposition 4.1]. We use this to derive part 2. By [Fon94a, §5.6], the
(ϕ,N,GL/K)-module Dst,L(HomQp(Vρ, Vρ(1))) over Qp is identified with the (ϕ,N,GL/K)-module over Qp

consisting of the L0-vector space of morphisms Dst,L(ρ) → Dst,L(ρ(1)) with (ϕ,N,GL/K)-module structure
by

– ϕf = ϕ ◦ f ◦ ϕ−1,
– Nf = N ◦ f − f ◦N ,
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– γf = γ ◦ f ◦ γ−1, for γ ∈ GL/K .

This identification takes the subspace of elements that commute with E to the subspace of elements that
commute with E, and we have an isomorphism Dst,L(ad(ρ)(1)) with the space of L0 ⊗Qp E-morphisms
Dst,L(ρ) → Dst,L(ρ(1)) with the (ϕ,N,GL/K)-module structure as above. This together with part 1 implies
that WD(ρ) is generic if and only if

{f ∈ Dst,L(ad(ρ)(1))
GL/K | Nf = 0 and ϕf = f} = 0.

The left hand side of this expression is exactly the subspace of Dcr(ad(ρ)(1)) on which ϕ = 1. �

We note that one may have HomE[GK ](Vρ, Vρ(1)) = 0, but WD(ρ) nongeneric, for example if ρ is a nonsplit
crystalline extension of the trivial character by the cyclotomic character.

1.2. Local Galois deformation rings. We keep the notation and terminology of the previous subsection.
Fix a continuous representation

ρ : GK −→ GLd(F).

A lift of ρ to a CNLO-algebra A is a continuous homomorphism

ρ : GK −→ GLd(A)

such that ρ mod mA = ρ. The set valued functor that sends a CNLO-algebra to its set of lifts is representable
(see [Böc, Proposition 1.3]). We call the representing object the universal lifting ring for ρ and denote it by
R�

ρ . We let ρ� : GK → GLd(R
�
ρ ) denote the universal lift.

In what follows, if R is a quotient of R�
ρ , and x ∈ SpecR[1/p] has residue field k, we let ρx : GK → GLd(k)

denote the specialization of ρ� via R�[1/p] → R[1/p]
x
−→ k. We then define a lift of ρx to a CNLk-algebra A

to be a homomorphism
ρ : GK −→ GLd(A)

such that ρ mod mA = ρx and such that the induced map GK → GLd(A/m
n
A) is continuous for all n ≥ 1,

where we give A/mn
A the topology as a finite dimensional k-vector space.

The proof of our main theorems will rely crucially on Kisin’s method for analyzing the generic fibre of
universal deformation rings, the linchpin of which is the following result.

Theorem 1.2.1. Let x be a closed point of R�
ρ [1/p] with residue field k.

1. The set valued functor that sends a CNLk-algebra to the set of lifts of ρx is represented by the the
localization and completion (R�

ρ )
∧
x of Rρ at x.

2. The tangent space of SpecR�
ρ [1/p] at x is canonically isomorphic to the space of 1-cocyles Z1(K, ad(ρx))

of GK with coefficients in ad(ρx).

Proof. Part 1 is [Kis09a, Lemma 2.3.3 and Proposition 2.3.5]. In fact, [Kis09a, Proposition 2.3.5] goes further
by identifying certain groupoids, which implies what we want (see [Kis09a, §A.5]).

Using part 1, it is straightforward to check that the map Z1(K, ad(ρx)) → HomCNLk
((R�

ρ )
∧
x , k[ε]) given

by κ 7→ (1 + εκ)ρx is an isomorphism of k-vector spaces. �

Proposition 1.2.2. Assume ℓ 6= p.

1. SpecR�
ρ [1/p] is equidimensional of dimension d2.

2. A closed point x of SpecR�
ρ [1/p] is smooth if and only if WD(ρx) is generic.

Proof. The fact that SpecR�
ρ [1/p] is equidimensional of dimension d2 is a result of Gee [Gee11, Theo-

rem 2.1.6] (see also the discussion preceding Proposition 2.1.4 of [Gee11]). Let k denote the residue field of
x. Then 1.2.1 implies that x is a smooth point if and only if dimk Z

1(K, ad(ρx)) = d2. By the local Euler
characteristic formula,

dimk Z
1(K, ad(ρx)) = dimk H

1(K, ad(ρx)) + d2 − dimk H
0(K, ad(ρx))

= d2 + dimk H
2(K, ad(ρx)),

so (R�
ρ )

∧
x is formally smooth over k if and only if H2(K, ad(ρx)) = 0. The trace pairing on ad(ρx) is perfect,

so Tate local duality implies that H2(K, ad(ρx)) = 0 if and only if H0(K, ad(ρx)(1)) = 0. This is equivalent
to Homk[GK ](Vρx , Vρx(1)) = 0, which is equivalent to WD(ρx) being generic by 1.1.5. �
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1.2.3. Assume that ℓ = p. A d-dimensional Galois type over E is a representation τ : IK → GL(V ) ∼=
GLd(E) of IK on a d-dimensional E-vector space V with open kernel that extends to a representation of WK .

An d-dimensional p-adic Hodge type over E is a pair v = (D, {Fili}i∈Z), where D is a free K ⊗Qp E-module

of rank d, and {Fili}i∈Z is a decreasing, separated, exhaustive filtration on D by K ⊗Qp E-submodules.

We set ad(D) = End(K⊗QpE)(D) and ad(D)+ = {f ∈ ad(D) | f(Fili) ⊆ Fili for all i ∈ Z}. We will say

that a p-adic Hodge type v = (D, {Fili}i∈Z) over E is regular if, writing K ⊗Qp E ∼=
∏

iKi as a product
of fields, the d-dimensional filtered Ki-vector space D ⊗K⊗E Ki has graded pieces of dimension at most 1.

It is straightforward to check that if v is regular, then dimE ad(D)/ad(D)+ = d(d−1)
2 [K : Qp], and this is

maximal.
Let τ : IK → GL(V ) and v = (D, {Fili}i∈Z) be a d-dimensional Galois type and p-adic Hodge type,

respectively, over E. Let A be a finite E-algebra and let VA be a free A-module of rank d with a continuous
A-linear GK-action such that VA is a potentially semistable representation. Let (rA, NA) be the Weil–Deligne
representation attached to VA (viewed as a representation ofGK on a d(dimE A)-dimensionalE-vector space).
We say that VA has Galois type τ if rA|IK ∼= τ ⊗E A. Let DdR(VA) = (BdR ⊗Qp VA)

GK together with its
natural filtration induced from the filtration on BdR. We say that VA has p-adic Hodge type v if for each
i ∈ Z, there is an isomorphism of K ⊗Qp A-modules

griDdR(VA) ∼= gri(D)⊗E A.

We can now state the following fundamental result of Kisin, [Kis08, Theorem 3.3.4].

Theorem 1.2.4. Fix a d-dimensional Galois type τ , and a d-dimensional p-adic Hodge type v = (D, {Fili}i∈Z)
over E. There is an O-flat quotient R�

ρ (τ,v) of R�
ρ such that if A is any finite E-algebra, an E-algebra

morphism x : R�
ρ [1/p] → A factors through R�

ρ (τ,v)[1/p] if and only if ρx is potentially semistable with
Galois type τ and p-adic Hodge type v.

Moreover, if nonzero, then SpecR�
ρ (τ,v)[1/p] is equidimensional of dimension d2+dimE ad(D)/ad(D)+,

and admits a open dense formally smooth subscheme.

We now wish to show the analogue of part 2 of 1.2.2 for the rings R�
ρ (τ,v). For global applications, we will

actually only need the fact that WD(ρx) generic implies R�
ρ (τ,v)

∧
x is formally smooth, but for completeness

we include the converse. Our proof will rely on the following standard lemma, which we will also need for
other purposes later.

Lemma 1.2.5. Let x be a closed point of SpecR�
ρ (τ,v)[1/p]. The tangent space of R�

ρ (τ,v)[1/p] at x is
canonically isomorphic to

Z1
g (K, ad(ρx)) := ker

(
Z1(K, ad(ρx)) → H1(K,BdR ⊗Qp ad(ρx))

)
.

Proof. Let k denote the residue field of x. Using 1.2.1, the tangent space of (R�
ρ )

∧
x is canonically isomorphic

to Z1(K, ad(ρx)). Take κ ∈ Z1(K, ad(ρx)), and let ρκ = (1 + εκ)ρx : GK → GLd(k[ε]) be the corresponding
lift. The cocycle κ dies in H1(K,BdR ⊗Qp ad(ρx)) if and only if there is a GK-equivariant isomorphism

BdR ⊗Qp Vρκ
∼= BdR ⊗Qp (Vρx ⊗k k[ε]) ∼= (BdR ⊗Qp Vρx)⊗k k[ε],

and this happens if and only if ρκ is potentially semistable with p-adic Hodge type v. Choosing an extension
L/K for which ρκ is semistable and using the exactness of Dst,L (see [Fon94a, Théorèm 5.1]), we see
that the Galois type of ρκ is an extension of τ by itself. Since τ is a representation of a finite group in
characteristic 0, it necessarily splits and ρκ has Galois type τ . Hence, κ lies in the kernel of Z1(K, ad(ρx)) →
H1(K,BdR ⊗Qp ad(ρx)) if and only if the lift ρκ is potentially semistable of Galois type τ and p-adic Hodge

type v. By 1.2.4, the subspace of such elements is the tangent space of R�
ρ (τ,v)

∧
x . �

Lemma 1.2.6. Let k be a finite extension of Qp and let ρ : GK → GLd(k) be a de Rham representation.
There is an isomorphism DdR(ad(ρ)) ∼= ad(DdR(ρ)) of filtered K ⊗Qp k-modules.
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Proof. Indeed, from ad(ρ) ∼= Endk(Vρ) and the fact that ρ and ad(ρ) are de Rham, we have isomorphisms
of filtered K ⊗Qp k-modules

DdR(ad(ρ)) ∼= (BdR ⊗Qp Endk(Vρ))
GK

∼= (End(BdR⊗Qpk)
(BdR ⊗Qp Vρ))

GK

∼= (End(BdR⊗Qpk)
(BdR ⊗K DdR(ρ)))

GK

∼= (BdR ⊗K EndK⊗k(DdR(ρ)))
GK

= BGK

dR ⊗K ad(DdR(ρ))

= ad(DdR(ρ)). �

Theorem 1.2.7. A closed point x of SpecR�
ρ (τ,v)[1/p] is formally smooth if and only if WD(ρx) is generic.

Proof. Let k denote the residue field of x. By 1.2.4, R�
ρ (τ,v)

∧
x has dimension d2 + dimE ad(D)/ad(D)+.

Since ρx has p-adic Hodge type v, this is equal to d2 + dimk ad(DdR(ρx))/ad(DdR(ρx))
+, which equals

d2 + dimk DdR(ad(ρx))/DdR(ad(ρx))
+ by 1.2.6.

We now analyze the dimension of the tangent space of R�
ρ (τ,v)

∧
x . By 1.2.5, the tangent space of R�

ρ (τ,v)
∧
x

has dimension

dimk Z
1
g(K, ad(ρx)) = d2 + dimk H

1
g (K, ad(ρx))− dimk H

0(K, ad(ρx)).

So, R�
ρ (τ,v)

∧
x is smooth if and only if

dimk H
1
g (K, ad(ρx))− dimk H

0(K, ad(ρx)) = dimk DdR(ad(ρx))/DdR(ad(ρx))
+,

equivalently,

(3) dimQp H
1
g (K, ad(ρx))− dimQp H

0(K, ad(ρx)) = dimQp DdR(ad(ρx))/DdR(ad(ρx))
+.

Before proceeding, we introduce some notation. IfW is a finite dimensionalQp-vector space with a continuous
Qp-linear GK -action, define the Qp-vector spaces as in [BK, §3]:

H1
e (K,W ) := ker(H1(K,W ) → H1(K,Bϕ=1

cr ⊗Qp W )),

H1
f (K,W ) := ker(H1(K,W ) → H1(K,Bcr ⊗Qp W )).

The pairing (X,Y ) 7→ trk/Qp
(tr(XY )) is perfect on ad(ρx), so induces an isomorphism

ad(ρx)(1) ∼= HomQp(ad(ρx),Qp(1)).

Then, by [BK, Proposition 3.8],

dimQp H
1
g (K, ad(ρx))− dimQp H

0(K, ad(ρx))

= dimQp H
1(K, ad(ρx))− dimQp H

1
e (K, ad(ρx)(1))− dimQp H

0(K, ad(ρx))

= dimQp H
1
f (K, ad(ρx)) + dimQp H

1
f (K, ad(ρx)(1))− dimQp H

1
e (K, ad(ρx)(1))− dimQp H

0(K, ad(ρx)).

Using [BK, Corollary 3.8.4], this last expression equals

dimQp DdR(ad(ρx))/DdR(ad(ρx))
+ + dimQp Dcr(ad(ρx)(1))

ϕ=1.

Plugging this into (3), we see that R�
ρ (τ,v)

∧
x is formally smooth if and only if Dcr(ad(ρx)(1))

ϕ=1 = 0. This

happens if and only if WD(ρx) is generic by part 2 of 1.1.7. �

More thorough investigations of the smooth and singular loci in the case d = 2 and the case d = 3 and
K0 = Qp are carried out in [Kis09b, (A.1)] and [Bel14, §7]. In particular, when d = 2 Kisin shows in

[Kis09b, (A.1)] that SpecR�
ρ (τ,v)[1/p] is reduced, and is either smooth or is the union of 2 smooth closed

subspaces. When d = 3 and K0 = Qp, Bellovin shows in [Bel14, §7.3] that SpecR�
ρ (1,v)[1/p] is the union

of 3 closed subspaces, two of which are smooth, and one of which is singular.
In practice it is often important to know that given a representation ρ of GK , the restriction ρ|GL defines a

smooth point for any finite extension L/K. For example, ρ = ǫ⊕χ with χ a nontrivial finite order character
defines a smooth point on the corresponding potentially semistable deformation ring, but the restriction
ρ|GL to any GL that trivializes χ will not. It is not hard to see that any (mixed) pure Galois representation
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(i.e. one that satisfies the conclusion of the Weight–Monodromy Conjecture) will define a smooth point after
any finite base change. A similar sufficient condition was noticed by Calegari [Cal12, Lemma 2.6]. However,
as the following example illustrates, the condition that WD(ρ|GL) is generic for any finite extension L/K is
strictly weaker than either of these.

Example 1.2.8. Choose a cocycle κ of GQp valued in Qp(1) such that the cohomology class of κ does not lie

in H1
f (Qp,Qp(1)). Then the representation

ρ =



1

1 κ
ǫ−1




is semistable noncrystalline, and if L/Qp is any finite extension, the Weil–Deligne representationWD(ρ|GL) =
(r,N) is given by

r(FrobL) =



1

1
pf


 and N =




0
1


 ,

where f denotes the residue degree of L. A straightforward check shows that WD(ρ|GL) is generic, so letting
v denote the p-adic Hodge type of ρ, the restriction ρ|GL defines a smooth point on SpecR�

ρ|GL
(1,vL)[1/p]

for any finite extension L/Qp (where vL := L ⊗K v). Some related and more detailed computations are
carried out in [Bel14, §7.3].

Remark 1.2.9. Let ρ : GK → GLd(E) a potentially semistable representation. We saw in the proof of 1.2.7
that [BK, Proposition 3.8] and [BK, Corollary 3.8.4] imply

dimQp H
1
g (K, ad(ρ)) = dimQp H

1
f (K, ad(ρ)) + dimQp Dcr(ad(ρ)(1))

ϕ=1.

So part 2 of 1.1.7 shows H1
f (K, ad(ρ)) = H1

g (K, ad(ρ)) if and only if WD(ρ) is generic.

We can generalize one direction of this slightly. Let W be a representation of GK on a d2-dimensional
E-vector space such that it’s restriction to GL, for some L/K finite, is isomorphic to ad(ρ) with ρ : GL →
GLd(E) a potentially semistable representation. Then H1

f (K,W ) = H1
g (K,W ) if WD(ρ) is generic. Indeed,

the commutative diagram

H1(K,W ) H1(K,Bcr ⊗Qp W ) H1(K,BdR ⊗Qp W )

H1(L,W ) H1(L,Bcr ⊗Qp W ) H1(L,BdR ⊗Qp W )

has injective vertical arrows by restriction-corestriction. It easily follows that H1
f (K,W ) = H1

g (K,W ) if

H1
f (L,W ) = H1

g (L,W ). We mention this slight generalization because in our global applications we do not

wish to restrict ourselves to CM extensions F/F+ such that every v|p in F+ splits in F .

1.3. Global Galois deformation rings. Throughout this subsection we assume p > 2.
We recall the Clozel–Harris–Taylor group scheme Gd, which is the group scheme over Z defined as the

semidirect product

(GLd ×GL1)⋊ {1, } = G0
d ⋊ {1, },

where (g, a) = (a tg−1, a), and the homomorphism ν : Gd → GL1 given by ν(g, a) = a and ν() = −1. We
let gld = LieGLd ⊂ LieGd, and let ad denote the adjoint action of Gd on gld, i.e

ad(g, a)(x) = gxg−1 and ad()(x) = −tx.

If Γ is a group, A is a commutative ring and

r : Γ −→ Gd(A)

is a homomorphism, we write ad(r) for gld(A) with the adjoint action ad ◦ r of Γ.
The following is (part of) [CHT08, Lemma 2.1.1].

Lemma 1.3.1. Let Γ be a topological group with an open subgroup ∆ of index 2. Fix some γ0 ∈ Γr∆. Let
A be a topological ring. There is a natural bijection between the following two sets.
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1. Continuous homomorphisms r : Γ → Gd(A) inducing an isomorphism Γ/∆
∼
−→ Gd(A)/G0

d(A).
2. Triples (ρ, µ, 〈·, ·〉), where ρ : ∆ → GLd(A) and µ : Γ → A× are continuous homomorphisms and

〈·, ·〉 is a perfect A-linear pairing on Ad satisfying

〈ρ(δ)a, ρ(γ0δγ
−1
0 )b〉 = µ(δ)〈a, b〉 and 〈a, ρ(γ2

0)b〉 = −µ(γ0)〈b, a〉

for all a, b ∈ Ad and δ ∈ ∆.

Under this bijection, µ(γ) = (ν ◦ r)(γ) for all γ ∈ Γ, and 〈a, b〉 = taP−1b for r(γ0) = (P,−µ(γ0)).

If Γ is a group, A is a commutative ring, r : Γ → Gd(A) is a homomorphism, and B is an A-algebra, we
will write r ⊗A B for the composite of r with the map Gd(A) → Gd(B). If [r] is a 1 + Md(mA)-conjugacy
class of such homomorphisms, we will write [r] ⊗A B for the 1 +Md(mB)-conjugacy class [r ⊗A B].

If Γ is a group, A is a commutative ring, r : Γ → Gd(A) is a homomorphism, and ∆ is a subgroup of Γ
such that r(∆) ⊆ G0

d(A), we will write r|∆ for the composite of the restriction of r to ∆ with the projection
G0
d(A) → GLd(A). In particular, we view Ad as an A[∆]-module via r|∆.
We recall [CHT08, Definition 2.1.6]:

Definition 1.3.2. Let Γ be a group with index two subgroup ∆. Fix γ0 ∈ Γ r ∆. Let k be a field and
let r : Γ → Gd(k) be a homomorphism with ∆ = r−1(G0

d(k)). We say that r is Schur if all ∆-irreducible
subquotients of kn are absolutely irreducible and for all ∆-invariant subspaces kn ⊃ W1 ⊃ W2 such that
kn/W1 and W2 are irreducible, we have (kn/W1)

γ0 6∼= W∨
2 ⊗ (ν ◦ r).

Note that if r|∆ is absolutely irreducible, then r is Schur.

1.3.3. Before proceeding with deformation theory, we prove some results on the cohomology of the adjoint
representation valued in a finite extension of Qp. Let F be a CM field with maximal totally real subfield
F+. Let S be a finite set of finite places of F+ containing all those above p. Let k be a finite extension of
Qp, let

r : Gal(F (S)/F+) −→ Gd(k)

be a continuous homomorphism inducing an isomorphism Gal(F/F+)
∼
−→ Gd(k)/G0

d(k), and let µ = ν ◦ r.
For each v|∞ in F , let cv ∈ GF+ be a choice of complex conjugation. Recall we have assumed p > 2.

Lemma 1.3.4. Let the notation and assumptions be as in 1.3.3 above. Then

2∑

i=0

(−1)i dimk H
i(F (S)/F+, ad(r)) = −d2[F+ : Q] +

∑

v|∞

d(d+ µ(cv))

2
.

Proof. An easy computation (see [CHT08, Lemma 2.1.3]) shows dimk H
0(F+

v , ad(r)) = d(d+µ(cv))
2 for each

v|∞. Using [CHT08, Lemma 2.1.5], we may assume r takes values in Gd(Ok), where Ok is the ring of integers
of k. The lemma now follows from [CHT08, Lemma 2.3.3] by an argument as in [Kis03, Lemma 9.7]. �

Lemma 1.3.5. Let the assumptions and notation be as in 1.3.3 above. Assume further that r|Gw is de Rham
with regular p-adic Hodge type for every w|p in F , that µ(cv) = −1 for every v|∞, and that ad(r)GF+ = 0.
If H1

g (F (S)/F+, ad(r)) = 0, then the following hold.

1. dimk H
1(F (S)/F+, ad(r)) = d(d+1)

2 [F+ : Q].

2. H2(F (S)/F+, ad(r)) = 0.
3. The natural map

H1(F (S)/F+, ad(r)) −→
∏

v|p

H1(F+
v , ad(r))/H1

g (F
+
v , ad(r))

is an isomorphism.

Proof. The argument is exactly as in the proof of [Kis04, Theorem 8.2]. We give the details.
Using our assumption that µ(cv) = −1 for every v|∞, and that ad(r)GF+ = 0, 1.3.4 implies

dimk H
1(F (S)/F+, ad(r)) − dimk H

2(F (S)/F+, ad(r)) =
d(d+ 1)

2
[F+ : Q],
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so parts 1 and 2 are equivalent. Using the assumption H1
g (F (S)/F+, ad(r)) = 0, there is an injection

H1(F (S)/F+, ad(r)) −→
∏

v|p

H1(F+
v , ad(r))/H1

g (F
+
v , ad(r)),

and all three parts of the lemma will follow from showing

dimk H
1(F+

v , ad(r))/H1
g (F

+
v , ad(r)) ≤

d(d+ 1)

2
[F+

v : Qp]

for each v|p in F+. Equivalently, it suffices to show that for each v|p in F+, the image of

H1(F+
v , ad(r)) −→ H1(F+

v , BdR ⊗Qp ad(r))

has k-dimension ≤ d(d+1)
2 [F+

v : Qp]. The k-vector space H1(F+
v , BdR ⊗Qp ad(r)) has a filtration induced by

the filtration on BdR, and the image of H1(F+
v , ad(r)) is contained in the Fil0. It thus suffices to show that

for each v|p in F+,

dimk Fil
0H1(F+

v , BdR ⊗Qp ad(r)) ≤
d(d+ 1)

2
[F+

v : Qp].

From the filtered Gv-equivariant isomorphism BdR ⊗Qp ad(r) ∼= BdR ⊗F+
v
DdR(ad(r)), and the fact that

H1(F+
v , BdR) ∼= F+

v (see [Tat, §3]), we have filtered isomorphisms

H1(F+
v , BdR ⊗Qp ad(r))

∼= H1(F+
v , BdR ⊗F+

v
DdR(ad(r)))

∼= H1(F+
v , BdR)⊗F+

v
DdR(ad(r))

∼= DdR(ad(r)).

So, we are reduced to showing that dimk Fil
0DdR(ad(r)) =

d(d+1)
2 [F+

v : Qp] for each v|p in F+. For any w|p
in F , since r|Gw is de Rham, there is an isomorphism of filtered Fw ⊗Qp k-modules (see 1.2.6)

(BdR ⊗Qp ad(r))Gw ∼= ad((BdR ⊗Qp Vr|Gw
)Gw),

and since r|Gw has regular p-adic Hodge type,

dimk Fil
0ad((BdR ⊗Qp Vr|Gw

)Gw) =
d(d + 1)

2
[Fw : Qp].

If v splits in F as wwc, then the choice of w induces an isomorphism F+
v

∼= Fw, and

dimk Fil
0DdR(ad(r)) =

d(d+ 1)

2
[F+

v : Qp].

If v does not split in F , then letting w denote the unique place dividing v in F , we have [Fw : F+
v ] = 2, and

there is a filtered isomorphism

(BdR ⊗Qp ad(r))
Gw ∼= Fw ⊗F+

v
DdR(ad(r)),

and we have

dimk Fil
0DdR(ad(r)) =

1

2
dimk Fil

0(BdR ⊗Qp ad(r))
Gw =

d(d+ 1)

2
[F+

v : Qp]. �

We now recall the Gd-valued deformation theory of [CHT08].

Definition 1.3.6. Let k be either a finite extension of Fp or of Qp. Let Γ be a topological group and let
r : Γ → Gd(k) be a continuous homomorphism. Let A be a pro-Artinian local ring with a fixed isomorphism

A/mA
∼
−→ k.

A lift of r to A is a homomorphism r → Gd(A) such that r ⊗A k = r and such that for any Artinian
quotient A → A′, the homomorphism r ⊗A A′ is continuous, where we give A′ the discrete topology if k is
a finite extension of Fp, and the topology as a finite dimensional k-vector space if k is a finite extension of
Qp. A deformation of r to A is a 1 +Md(mA)-conjugacy class of lifts.

For a finite set T , a T -framed lift of r to A is a tuple (r, {αv}v∈T ) where r is a lift of r to A and
αv ∈ ker(GLd(A) → GLd(k)). We say two T -framed lifts (r, {αv}v∈T ) and (r′, {α′

v}v∈T ) to A are equivalent
if there is g ∈ ker(GLd(A) → GLd(k)) such that grg−1 = r′ and gαv = α′

v for each v ∈ T . A T -framed
deformation of r to A is an equivalence class of T -framed lifts.
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If r is a lift, we will write [r] for the corresponding deformation. If (r, {αv}) is a T -framed lift, we will
write [r, {αv}] for the corresponding T -framed deformation.

We will introduce a slight variation of the global deformation problem of [CHT08, §2.3].

Definition 1.3.7. A global deformation datum is a tuple

S = (F/F+, S, S̃,O, r, µ, {Rw}w∈S̃)

where

– F is a CM field with maximal totally real subfield F+;
– S is a finite set of finite places of F+;

– S̃ is a finite set of finite places of F such that every w ∈ S̃ is split over some v ∈ S, and S̃ contains
at most one place above any v ∈ S;

– O is the ring of integers of some finite extension of Qp with residue field F;
– r : Gal(F (S)/F+) → Gd(F) is a continuous homomorphism;
– µ : Gal(F (S)/F+) → O× is a continuous character with µ mod mO = ν ◦ r;

– for each w ∈ S̃, Rw is a quotient of R�
w := R�

r|Gw
satisfying the following property: if ρ : Gw →

GLd(A) is a lift of r|Gw to A and g ∈ 1 + Md(mA), then the map R�
w → A induced by ρ factors

through Rw if and only if the map R�
w → A induced by gρg−1 factors through Rw.

This differs from the definition in [CHT08, §2.3] in that our ramification set S may contain places that

do not split in F/F+, and S̃ is not required to contain a place above every v ∈ S. When proving modularity
of Galois representations, one can use base change and descent to reduce to the case that the ramification
set splits in F/F+, and for the proof of 3.1.3, which implies Theorems A, B, and C from the introduction, it
would also suffice to consider this situation because we may also use base change in its proof. But we wish to
have the statement of Theorem C in the above level of generality for other applications where it is not obvious
(at least not to the author) how to apply base change and descent. One such application is to the density
of automorphic points in deformation rings. Böckle’s strategy [Böc01] for proving density of modular points
in universal deformation rings is to show that every irreducible component of the universal deformation ring
contains a smooth modular point, and then to use the infinite fern of Gouvêa and Mazur starting at such
a smooth point to “fill out” the irreducible component. Chenevier [Che11] has constructed an infinite fern
in the 3-dimensional conjugate self-dual case, assuming p is totally split in the CM field F . If one knows a
priori that automorphic points always define smooth points on the universal deformation ring, then to prove
new cases of the density of automorphic points in 3-dimensional conjugate self-dual deformation rings, one
now just has to show that every irreducible component contains an automorphic point. These ideas will be
developed further in forthcoming work of the author, and as the results in [Che11] make no assumption on
the splitting behaviour in F of the places in S r {v|p}, we also wish to make no such assumption.

Definition 1.3.8. Let S = (F/F+, S, S̃,O, r, µ, {Rw}w∈S̃) be a global deformation datum, and let A be a
CNLO-algebra. We say a lift r : GF+ → Gd(A) of r to A is type S if

– r factors through Gal(F (S)/F+);
– ν ◦ r = µ;

– for each w ∈ S̃, the CNLO-morphism R�
w → A induced by the lift r|Gw of r|Gw , factors through Rw.

We say a deformation of r to A is type S if one (equivalently any) lift in its deformation class is type S. We
let DS be the set valued functor on CNLO that takes a CNLO-algebra A to the set of deformations of type
S. If DS is representable, we call the representing object the universal type S deformation ring and denote
it by RS .

For any T ⊆ S̃, we say a T -framed deformation [r, {αw}] of r to A is type S if [r] is a type S deformation

of r. We let D�T

S be the set valued functor on CNLO that takes a CNLO-algebra A to the set of T -framed

deformations of type S. If D�T

S is representable, we call the representing object the universal type S T -

framed deformation ring and denote it by R�T

S . If T = S̃, then we will write D�
S and R�

S for D�T

S and R�T

S ,

respectively, and call R�
S the universal type S framed deformation ring.

If S = (F/F+, S, S̃,O, r, µ, {Rw}w∈S̃) is a global deformation datum and T ⊆ S̃, we set

R�

T = ⊗̂w∈TR
�

w and Rloc
S,T = ⊗̂w∈TRw
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Note that Rloc
S,T is naturally a quotient of R�

T . If T = S̃, then we will write Rloc
S for Rloc

S,T .

The following proposition follows from [CHT08, Proposition 2.2.9].

Proposition 1.3.9. Let S = (F/F+, S, S̃,O, r, µ, {Rw}w∈S̃) be a global deformation datum, and let T ⊆ S̃.
Assume r is Schur.

The functors D�T

S and DS are representable. There is a canonical CNLO-morphism Rloc
S,T → R�T

S . There

is a canonical CNLO-morphism RS → R�T

S , and a choice of lift

runivS : Gal(F (S)/F+) −→ Gd(RS)

for the universal type S deformation [runivS ] determines an extension of this CNLO-morphism to an isomor-

phism RS [[X1, . . . , Xd2|T |]]
∼
−→ R�T

S .

1.3.10. For the remainder of this section, we fix a global deformation datum

S = (F/F+, S, S̃,O, r, µ, {Rw}w∈S̃),

with r Schur, where we will specify the rings Rw in the statements of the following propositions. Let RS be
the universal type S deformation ring and let x be a closed point of SpecRS [1/p] with residue field k. Let
Ok be the ring of integers of k, and let r be a type S lift of r to Ok such that the map RS → Ok induced
by [r] induces x : RS [1/p] → k. Set rx = r ⊗Ok

k.

Proposition 1.3.11. Let the notation and assumptions be as in 1.3.10 above, with Rw = R�
w for every

w ∈ S̃.

1. Let DS,rx be the functor on Ark that sends an Ark-algebra B to the set of deformations [rB ] of rx
to B that factor through Gal(F (S)/F+) and satisfy ν ◦ rB = µ. The functor DS,rx is prorepresented
by (RS)

∧
x .

2. The tangent space of RS [1/p] at x is canonically isomorphic to H1(F (S)/F+, ad(rx)).
3. Let S∞ be the set of infinite places in F+, and for every v ∈ S∞, let cv be a choice of complex conju-

gation at v. Then (RS)
∧
x is isomorphic to a power series over k in g = dimk H

1(F (S)/F+, ad(rx))
variables modulo r relations with r ≤ dimk H

2(F (S)/F+, ad(rx)), and

g − r ≥ d2[F+ : Q]−
∑

v∈S∞

d(d+ µ(cv))

2
.

Proof. The proof of 1 is almost identical to that of [Kis09a, Proposition 2.3.5]. We sketch the details. We
will not use the language of groupoids here, but the results we will reference from [Kis09a] stated in terms
of groupoids imply our results stated in terms of functors by [Kis09a, §A.5].

Since R�
w , for w ∈ S̃, imposes no condition on our lifts, it is easy to see that if S ′ is the deformation

datum
S ′ = (F/F+, S, ∅,O, r, µ, ∅),

then there is a canonical isomorphism RS
∼= RS′ . For the remainder of the proof, we assume S̃ = ∅.

For any Ark-algebra B, we let Int(B) be the set of all finite O-subalgebras A ⊂ B such that A[1/p] = B.
Note that any A ∈ Int(B) comes equipped with a canonicalO-algebra map A → Ok via A ⊂ B → B/mB = k.
Also note that Int(B) is naturally filtered. We let DS,(r) be the set valued functor on Ark defined by

DS,(r)(B) = lim
−→

A∈Int(B)

{[rA] is a type S deformation of r such that [rA]⊗A Ok = [r]}.

By [Kis09a, Lemma 2.3.3], the functor DS,(r) is prorepresented by (RS)
∧
x . There is a natural morphism of

functors DS,(r) → DS,rx that we wish to show is an isomorphism. For any Ark-algebra B, and continuous

homomorphism rB : Gal(F (S)/F+) → Gd(B), an argument as in [Kis03, Proposition 9.5] shows that there is
some A ∈ Int(B) and a continuous homomorphism rA : Gal(F (S)/F+) → Gd(A) such that rB = rA⊗AB. If
rB ∈ DS,rx(A), then such an rA must by type S, so DS,(r) → DS,rE is surjective. To see that it is injective,
note that for any Ark-algebra B and any g ∈ 1 + Md(mB), the O-algebra generated by the entries of g is
finite over O. Thus, any two lifts of rx to an Ark-algebra B defining the same deformation arise from lifts
to some A ∈ Int(B) that define the same deformation to A. This finishes the proof of part 1.

For part 2, letting Z1(F (S)/F+, ad(rx)) be the space of continuous 1-cocycles of Gal(F (S)/F+) with
values in ad(rx), the map κ 7→ rκ := (1 + εκ)rx defines an isomorphism from Z1(F (S)/F+, ad(rx)) to
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the k-vector space of lifts rε of rx to the dual numbers k[ε] that factor through Gal(F (S)/F+) and satisfy
ν◦rε = µ. Two such cocycles κ and κ′ are cohomologous if and only if rκ and rκ′ are conjugate by an element
of 1+εMd(k), so this map induces a canonical isomorphism from H1(F (S)/F+, ad(rx)) to the k-vector space
of deformations [rε] of rk to k[ε] with ν ◦ rε = µ, which is isomorphic to the tangent space of RS [1/p] at x
by part 1.

We now show part 3. By part 2, we can fix a surjection A := k[[X1, . . . , Xg]] → (RS)
∧
x with g =

dimk H
1(F (S)/F+, ad(rx)) that induces an isomorphism on tangent spaces. Let J denote its kernel. Choose

a lift runivx : Gal(F (S)/F+) → Gd((RS)
∧
x ) of rx in the universal (RS)

∧
x -valued deformation. We view A/mAJ

and (RS)
∧
x as topological rings with the topology as inverse limits of finite dimensional k-vector spaces.

We can choose a continuous set-theoretic section s0 : (RS)
∧
x → A/mAJ of the surjection A/mAJ → (RS)

∧
x

with the property that s0(a) = a for any a ∈ k. Then s = s0 ◦ runivx is a continuous set-theoretic lift
s : Gal(F (S)/F+) → Gd(A/mAJ) of r

univ
x with the property that ν ◦ s(σ) = µ(σ) for all σ ∈ Gal(F (S)/F+).

We can then define a 2-cocycle κ of Gal(F (S)/F+) valued in ad(rx)⊗k J/mAJ by

(κ(σ, τ), 1) = s(στ)s(σ)−1s(τ)−1 ∈ ker(G0
d(A/mAJ) → G0

d((RS)
∧
x )

∼= (ad(rx)⊗k J/mAJ)× (1 + J)/(1 +mAJ).

The cohomology class

[κ] ∈ H2(F (S)/F+, ad(rx)⊗k J/mAJ) ∼= H2(F (S)/F+, ad(rx))⊗k J/mAJ

does not depend on our choices. The argument of [Maz, §1.6] shows that the map Homk(J/mAJ, k) →
H2(F (S)/F+, ad(rx)) given by f 7→ (1 ⊗ f)([κ]) is injective. Hence, (RS)

∧
x is isomorphic to a power series

over k in g variables modulo r relations with r ≤ dimk H
2(F (S)/F+, ad(rx)). Since r is Schur, ad(r)

GF+ = 0
(see [CHT08, Lemma 2.1.7]), which implies ad(rx)

GF+ = 0. The final claim now follows from 1.3.4. �

Proposition 1.3.12. Let the assumptions and notation be as in 1.3.10. Assume that µ is de Rham. Assume

that for every v|p in F+, v splits in F and S̃p contains a place above v, which we will denote by ṽ. For each

ṽ ∈ S̃p, we fix a Galois type τṽ and a p-adic Hodge type vṽ over E (see 1.2.3). Take Rw = R�
ṽ (τṽ,vṽ) (see

1.2.4) for w = ṽ ∈ S̃p, and Rw = R�
w for each w ∈ S̃ r S̃p.

1. Let DS,rx be the functor on Ark that sends an Ark-algebra B to the set of deformations [rB ] of rx
to B that factor through Gal(F (S)/F+), satisfy ν ◦ rB = µ, and are such that rB |Gṽ is potentially

semistable with Galois type τṽ and p-adic Hodge type vṽ for each ṽ ∈ S̃p. The functor DS,rx is
prorepresented by (RS)

∧
x .

2. The tangent space of RS [1/p] at x is canonically isomorphic to H1
g (F (S)/F+, ad(rx)).

Proof. Since R�
w , for w ∈ S̃ r S̃p, imposes no condition on our lifts, it is easy to see that if S ′ is the

deformation datum

S ′ = (F/F+, S, S̃p,O, r, µ, {R�

ṽ (τṽ,vṽ)}ṽ∈S̃p
),

there is a canonical isomorphism RS
∼= RS′ , and we may assume S̃ = S̃p.

Let Sbig = (F/F+, S, S̃p,O, r, µ, {R�
ṽ }ṽ∈S̃p

), and let RSbig be the universal type Sbig deformation ring.

Note Rloc
Sbig = R�

S̃p
. By 1.3.9, choosing a lift runivSbig in the universal type Sbig deformation yields a morphism

R�

S̃p
→ RSbig . It is easy to see that RS

∼= RSbig ⊗R�

S̃p

Rloc
S , with R�

S̃p
→ Rloc

S the natural surjection. Using

this and part 1 of 1.3.11, we see that (RS)
∧
x prorepresents the functor on Ark that sends an Ark-algebra B

to the set of deformations [rB ] of rx to B that factor through Gal(F (S)/F+), satisfy ν ◦ rB = µ, and are
such that the induced map

R�

ṽ −→ RSbig −→ (RSbig )∧x −→ B

factors through R�
ṽ (τṽ,vṽ) for each ṽ ∈ S̃p, which happens if and only if rB |Gṽ is potentially semistable with

Galois type τṽ and p-adic Hodge type vṽ by 1.2.4. This shows part 1.
We now show part 2. Part 1 together with part 2 of 1.3.11, implies that the tangent space of RS [1/p] at x

is canonically isomorphic to the subspace of H1(F (S)/F+, ad(rx)) consisting of cohomology classes [κ] such
that for any cocycle κ in the class [κ], the local lift

rκ|Gṽ = ((1 + εκ)rx)|Gṽ = (1 + εκ|Gṽ)(rx|Gṽ )
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lies in the tangent space of R�
ṽ (τṽ,vṽ)[1/p] at x, for each ṽ ∈ S̃p. By 1.2.5, this happens if and only if [κ]

lies in the kernel of
H1(F (S)/F+, ad(rx)) →

∏

ṽ∈S̃p

H1(Fṽ, BdR ⊗Qp ad(rx)).

Since µ is de Rham, rκ|Gṽc
∼= (rκ|Gṽ )

c ∼= (rκ|Gṽ)
∨ ⊗ µ is de Rham for each ṽ ∈ S̃p. Thus, the tangent space

of RS [1/p] at x is canonically isomorphic to

ker
(
H1(F (S)/F+, ad(rx)) →

∏

ṽ∈S̃p

H1(Fṽ, BdR ⊗Qp ad(rx))
)

= ker
(
H1(F (S)/F+, ad(rx)) →

∏

w|p in F

H1(Fw, BdR ⊗Qp ad(rx))
)

= ker
(
H1(F (S)/F+, ad(rx)) →

∏

v|p in F+

H1(F+
v , BdR ⊗Qp ad(rx))

)
. �

We note that in 1.3.12 above, the existence of x ∈ SpecRS [1/p] implicitly assumes that RS [1/p] 6= 0,
which (at the very least) implies a certain compatibility between µ and the local p-adic Hodge theory data
τṽ and vṽ. In our applications, we will be given a potentially semistable p-adic representation ρ and we will
define S using ρ. The existence of this ρ will then imply RS [1/p] 6= 0.

Proposition 1.3.13. Let the notation and assumptions be as in 1.3.10, with Rw = R�
w for every w ∈ S̃.

Assume also that µ(c) = −1 for every choice of complex conjugation c ∈ GF+ , and that rx|Gw : Gw −→
GLd(k) is de Rham with regular p-adic Hodge type (see 1.2.3) for every w|p in F .

If H1
g (F (S)/F+, ad(rx)) = 0, then (RS)

∧
x is formally smooth of dimension d(d+1)

2 [F+ : Q].

Proof. Using our assumption that µ(c) = −1 for every complex conjugation c ∈ GF+ , part 3 of 1.3.11 implies

dim(RS)
∧
x ≥

d(d+ 1)

2
[F+ : Q].

Thus, it suffices to show the tangent space of (RS)
∧
x , which is isomorphic to H1(F (S)/F+, ad(rx)) by part 2

of 1.3.11, has k-dimension d(d+1)
2 [F+ : Q]. This follows from part 1 of 1.3.5. �

2. Automorphic theory

This section reviews the automorphic theory that we will use to prove our main theorems. We first
introduce some notation and assumptions that will be used throughout this section.

Let Zd
+ be the set of tuples of integers (λ1, . . . , λd) such that λ1 ≥ · · · ≥ λd. If F is a CM field with

maximal totally real subfield F+, and Ω is any characteristic 0 field containing all embeddings of F into an

algebraic closure of Ω, then we let (Zd
+)

Hom(F,Ω)
0 denote the subset of (Zd

+)
Hom(F,Ω) of tuples (λτ )τ∈Hom(F,Ω)

such that λτ◦c,i = −λτ,d+1−i, where c is the nontrivial element of Gal(F+/F ).
If F is a number field, χ : F×\A×

F → C× is a continuous character whose restriction to the connected

component of (F ⊗ R)× is given by x 7→
∏

τ∈Hom(F,C) x
λτ
τ for some integers λτ , and ι : Qp

∼
−→ C is an

isomorphism, we let χι : GF → Q
×

p be the continuous character given by

χι(ArtF (x)) = ι−1
(
χ(x)

∏

τ∈Hom(F,C)

x−λτ
τ

) ∏

σ∈Hom(F,Qp)

xλισ
σ .

2.1. Automorphic Galois representations. Let F be either a CM or totally real number field with
maximal totally real subfield F+. Let c ∈ GF+ be a choice of complex conjugation.

2.1.1. Following [BLGGT14, §2.1], we say that a pair (Π, χ) is a polarized automorphic representation of
GLd(AF ) if

– Π is an automorphic representation of GLd(AF );
– χ : (F+)×\A×

F+ → C× is a continuous character such that for all v|∞, the value χv(−1) is indepen-

dent of v, and equals (−1)d if F is CM;
– Πc ∼= Π∨ ⊗ (χ ◦NmF/F+ ◦ det).
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We say that an automorphic representation Π of GLd(AF ) is polarizable if there is a character χ such that
(Π, χ) is a polarized automorphic representation. If F is a totally real field and (Π, 1) is polarized, then we
say that Π is self-dual. If F is CM and (Π, δdF/F+) is polarized, then we say that Π is conjugate self-dual.

Recall that an automorphic representation Π of GLd(AF ) is called regular algebraic if Π∞ has the same
infinitesimal character as an irreducible algebraic representation of ResF/Q GLd. If λ = (λτ ) ∈ (Zd

+)
Hom(F,C),

then we let ξλ denote the irreducible algebraic representation of
∏

τ GLd which is the tensor product over
τ ∈ Hom(F,C) of the irreducible algebraic representations with highest weight λτ . We say a regular algebraic
automorphic representation Π of GLd(AF ) has weight λ ∈ (Zd

+)
Hom(F,C) if Π∞ has the same infinitesimal

character as ξ∨λ . We will say a polarized automorphic representation (Π, χ) of GLd(AF ) is cuspidal if Π is.
We will say a polarized automorphic representation (Π, χ) of GLd(AF ) is regular algebraic if Π is. In this
case χ is necessarily an algebraic character.

We have the following theorem, due to the work of many people. We refer the reader to [BLGGT14,
Theorem 2.1.1] and the references contained there (noting that the assumption of an Iwahori fixed vector in
part (4) of [BLGGT14, Theorem 2.1.1] can be removed by the main result of [Car14]).

Theorem 2.1.2. Let F be either a CM or totally real number field with maximal totally real subfield F+.
Let (Π, χ) be a regular algebraic, polarized, cuspidal automorphic representation of GLd(AF ), of weight

λ ∈ (Zd
+)

Hom(F,C). Fix a rational prime p and an isomorphism ι : Qp
∼
−→ C. Then there is a continuous

semisimple representation

ρΠ,ι : GF −→ GLd(Qp)

satisfying the following properties.

1. There is a perfect symmetric pairing 〈·, ·〉 on Q
d

p such that for any a, b ∈ Q
d

p and σ ∈ GF ,

〈ρΠ,ι(σ)a, ρΠ,ι(cσc)b〉 = (ǫ1−dχι)(σ)〈a, b〉.

2. For all w|p, ρΠ,ι|Gw is potentially semistable, and for any continuous embedding τ : Fw →֒ Qp,

HTτ (ρΠ,ι|Gw) = {λιτ,j + d− j}j=1,...,d.

3. For any finite place w,

ιWD(ρΠ,ι|Gw)
F -ss ∼= recTFw

(Πw).

We note that an argument using the Baire category theorem and the compactness of GF shows that we
can assume ρΠ,ι takes values in GLd(O) with O the ring of integers of some finite extension of Qp, and that
the perfect pairing 〈·, ·〉 descends to a perfect pairing on Od.

2.2. Definite unitary groups. In this subsection, we assume that p is odd. We recall some constructions
from [CHT08, §3.3] and [Gue11, §2] (see also [Tho12, §6]). Before doing so, we note that in [CHT08, §3.3]
there are running assumptions that a certain ramification set denoted S(B) there is nonempty, that (in
our notation) p > d, and that F is the composite of a quadratic imaginary field and F+. None of these
assumptions are necessary for what we need.

Let F be a CM field with maximal totally real subfield F+. Let c denote the nontrivial element of
Gal(F/F+). We assume that F/F+ is unramified at all finite places and that every place above p in F+

splits in F . We assume that F+ 6= Q and that if d is even, then

d[F+ : Q] ≡ 0 (mod 4).

We also fix a finite extension E of Qp with ring of integers O and residue field F. We assume E contains all
embeddings of F into an algebraic closure of E.

2.2.1. Let B = Md(F ), and let g 7→ g∗ be an involution of the second kind on B. Then the pair (B, ∗)
defines a reductive F+-group G by

G(R) = {g ∈ B ⊗F+ R | gg∗ = 1}

for any F+-algebra R. Since d[F+ : Q] ≡ 0 (mod 4) if d is even, we can choose the involution g 7→ g∗ on B
such that

(a) G⊗F+ F+
v is quasi-split for every finite place v of F+;

(b) G(F+
v ) ∼= Ud(R), the totally definite unitary group, for every infinite place v of F+.
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Since B = Md(F ), the data of ∗ is equivalent to a Hermitian form h on F d, and a choice of lattice L in F d

such that h(L×L) ⊆ OF yields a maximal order OB of B such that O∗
B = OB. This maximal order defines

a model of G over OF+ , that we again denote by G. For a finite place v of F+ that splits in F , we can find
an isomorphism ιv : OB,v

∼
−→ Md(OF )⊗O

F+
OF+

v
such that ιv(g

∗) = tιv(g)
c. Writing v = wwc, the choice of

w gives an isomorphism ιw : G(OF+
v
)

∼
−→ GLd(OFw ) by ι−1

v (g, t(gc)−1) 7→ g. This extends to an isomorphism

ιw : G(F+
v )

∼
−→ GLd(Fw), and ιwc = t(c ◦ ιw)−1.

Let Sp denote the set of places of F+ above p. For each v ∈ Sp, fix a choice ṽ of place of F dividing v,

and let S̃p = {ṽ | v ∈ Sp}. Let Jp be the set of embeddings F+ →֒ E, and let J̃p be the set of embeddings

F →֒ E that give rise to a place in S̃p. Thus, restriction to F+ gives a bijection J̃p
∼
−→ Jp. Given λ ∈ Zd

+,
we let

ξλ : GLd −→ GL(Wλ)

denote the irreducible algebraic representation defined over Q with highest weight

diag(t1, . . . , td) −→
d∏

i=1

tλi

i .

We choose a GLd(O)-stable lattice Mλ in Wλ ⊗Q E. Then for any λ = (λτ ) ∈ (Zd
+)

Hom(F,E)
0 , we define a

representation

ξλ : G(F+
p ) −→ GL(⊗τ∈J̃p

Wλτ )

g 7−→
⊗

τ∈J̃p

ξλτ (τιτ g),

where we have written ιτ for ιw if τ gives rise to the place w. The O-lattice Mλ := ⊗τ∈J̃p
Mλτ in the E-vector

space Wλ := ⊗τ∈J̃p
Wλτ is stable under G(OF+

p
).

If A is any O-algebra and U is an open compact subgroup of G(A∞
F+) such that Up ⊆ G(OF+

p
), then we

define a space of automorphic forms Sλ(U,A) to be the space of functions

f : G(F+)\G(A∞
F+) −→ Mλ ⊗O A

such that f(gu) = u−1
p f(g) for all g ∈ G(A∞

F+) and u ∈ U . If V is any compact subgroup of G(A∞
F+) such

that Vp ⊆ G(OF+
p
), then we define

Sλ(V,A) = lim
−→
V⊆U

Sλ(U,A),

with the limit over all open compact subgroups U containing V such that Up ⊆ G(OF+
p
). Note that if A is

flat over O, then Sλ(V,A) = Sλ(V,O)⊗O A.

Proposition 2.2.2. Fix an embedding ι : E →֒ C, and view C as an O-algebra via ι.

1. Sλ({1},C) is a semisimple admissible representation of G(A∞
F+).

2. Let Π be an regular algebraic conjugate self-dual representation of GLd(AF ) of weight ιλ. Then there
is an irreducible subrepresentation π = ⊗vπ of Sλ({1},C) such that the following hold.

– If v is a finite place of F+ that splits as v = wwc in F , then πv
∼= Πw ◦ ιw.

– If v is a finite place of F+ inert in F , and Πv is unramified, then πv has a fixed vector for some
hyperspecial maximal compact subgroup of G(F+

v ).

Proof. For part 1, see [CHT08, part 1 of Proposition 3.3.2]. For part 2, [Lab, Théorème 5.4] implies that there
is an irreducible subrepresentation π = ⊗vπ of Sλ({1},C) such that Π is a weak base change (see [Lab, §4.10])
of π. Then applying [Lab, Corollaire 5.3] and strong multiplicity one for GLd gives the result. �

2.2.3. Now fix an open compact subgroup U of G(A∞
F+) such that Up ⊆ G(OF+

p
). Fix a set of finite places

S of F+ containing Sp and all finite places at which U is not hyperspecial maximal compact. For each finite
place w of F split over v /∈ S of F+, the Hecke operators

T (j)
w = ι−1

w

([
GLd(OFw)

(
̟w1j

1d−j

)
GLd(OFw )

])
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for j ∈ {1, . . . , d}, as well as (T
(d)
w )−1, act on Sλ(U,A). Here̟w denotes a choice of uniformizer of Fw, and the

operators T
(j)
w do not depend in the choice of ̟w. We let TS

λ(U,A) be the A-subalgebra of EndA(Sλ(U,A))

generated by the T
(1)
w , . . . , T

(d)
w , (T

(d)
w )−1, for all w as above. If A = O, then we write TS

λ(U) for TS
λ(U,O).

Corollary 2.2.4. Let L/E be finite extension, and x : TS
λ(U)[1/p] → L be an E-algebra morphism. There

is a continuous absolutely semisimple representation

ρx : Gal(F (S)/F ) −→ GLd(L)

such that the following hold.

1. There is a perfect symmetric paring 〈·, ·〉 on Ld such that for any a, b ∈ Ld and σ ∈ GF ,

〈ρx(σ)a, ρx(cσc)b〉 = ǫ1−d(σ)〈a, b〉.

2. For any finite place w in F split over v /∈ S in F+, the characteristic polynomial of ρx(Frobw) is

Xd + · · · (−1)jNm(w)
j(j−1)

2 x(T (j)
w )Xd−j + · · ·+ (−1)dNm(w)

d(d−1)
2 x(T (d)

w ).

3. For all w|p in F , ρx|Gw is potentially semistable, and is semistable if ιw(Uv) contains the Iwahori

subgroup, where v denotes the place of F+ below w. For any τ ∈ J̃p,

HTτ (ρx|Gw) = {λτ,j + d− j}j=1,...,d.

In particular, ρx|Gw has regular p-adic Hodge type.

Proof. The finite flat O-algebra TS
λ(U) acts faithfully on

Sλ(U)⊗O Qp
∼= Sλ(U,Qp) =

⊕

π

πU ,

with the direct sum taken over irreducible subrepresentations of Sλ({1},Qp), and Tλ(U) acts on each πU by

some E-algebra morphism xπ : Tλ(U)[1/p] → Qp. Thus, x⊗LQp = xπ for some irreducible subrepresentation

π of Sλ({1},Qp). We now apply [Gue11, Theorem 2.3], letting ρx be the representation denoted rp(π) in
[Gue11, Theorem 2.3], noting that:

– We may assume that ρx takes values in L by Chebotarev density, since xπ(T
(j)
w ) = x(T

(j)
w ) ∈ L for

all w of F split over v /∈ S in F+ and j ∈ {1, . . . , d}.
– We may assume that the pairing is symmetric by applying [BC11, Theorem 1.2] to the construction

in the proof of [Gue11, Theorem 2.3]. More specifically, the construction in [Gue11, Theorem 2.3]
shows there is a partition d = d1 + · · ·+ dr and factorizations di = aibi, such that

ρx =

r⊕

i=1

̺i ⊗ ηi ⊗ (1 ⊕ ǫ⊕ · · · ⊕ ǫbi−1),

where ̺i is the Galois representation associated to a regular algebraic conjugate self-dual cuspidal
automorphic representation of GLai(AF ), and η is a character satisfying ηηc = ǫ1+ai−bi−d. There
is a symmetric perfect pairing for ̺i with multiplier ǫ1−ai by part 1 of 2.1.2 (which uses [BC11,
Theorem 1.2]). This defines a symmetric perfect pairing for ̺i ⊗ η with multiplier ǫ2−bi−d. Defining
the obvious symmetric pairing on (1 ⊕ · · · ⊕ ǫbi−1) with multiplier ǫbi−1, tensoring these two, and
taking the direct sum over i yields a symmetric perfect pairing for ρx with multiplier ǫ1−d. �

Recall the group scheme Gd and its canonical character ν : Gd → GL1 of §1.3. The following is a standard
application of 2.2.4 and 1.3.1.

Lemma 2.2.5. Let m be a maximal ideal of TS
λ(U). There is a continuous homomorphism

rm : Gal(F (S)/F+) −→ Gd(T
S
λ(U)/m)

with r−1
m

(G0
d(T

S
λ(U)/m)) = Gal(F (S)/F ), satisfying the following:

1. If w is a finite place of F split over v /∈ S of F+, then rm(Frobw) has characteristic polynomial

Xd + · · · (−1)jNm(w)
j(j−1)

2 T (j)
w Xd−j + · · ·+ (−1)dNm(w)

d(d−1)
2 T (d)

w mod m.

2. ν ◦ rm = ǫ1−dδdF/F+ mod mO.
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We now fix a maximal ideal m of TS
λ(U), and let

rm : Gal(F (S)/F+) −→ Gd(T
S
λ(U)/m)

be as in 2.2.5. Enlarging E if necessary, we may assume that TS
λ(U)/m = F. Arguing exactly as in the proof

of [CHT08, Proposition 3.4.4], we have the following lemma.

Lemma 2.2.6. Assume that rm|GF is absolutely irreducible. Then there is a continuous lift

rm : Gal(F (S)/F+) −→ Gd(T
S
λ(U)m)

of rm, unique up to conjugacy, satisfying the following:

1. If w is a finite place of F split over v /∈ S of F+, then rm(Frobw) has characteristic polynomial

Xd + · · · (−1)jNm(w)
j(j−1)

2 T (j)
w Xd−j + · · ·+ (−1)dNm(w)

d(d−1)
2 T (d)

w .

2. ν ◦ rm = ǫ1−dδdF/F+ .

For the remainder of this subsection we assume that rm|GF is absolutely irreducible. Fix an E-algebra
morphism x : TS

λ(U)m[1/p] → E. The representation ρx of 2.2.4 is de Rham, and for each w|p, we let
vw := DdR(ρx|Gw) be its p-adic Hodge type.

Let S̃ be a finite set of places in F each of which is split over some v ∈ S, containing S̃p, and such that

S̃ ∩ S̃c = ∅. We consider the global deformation datum

S = (F/F+, S, S̃,O, r, ǫ1−dδdF/F+ , {R�

ṽ (1,vṽ)}ṽ∈S̃p
∪ {R�

w}w∈S̃rS̃p
),

and let RS be the universal type S deformation ring (see 1.3.9).

Lemma 2.2.7. Assume that ιṽ(Uv) contains the Iwahori subgroup for each v ∈ Sp.

1. The lift

rm : Gal(F (S)/F+) −→ Gd(T
S
λ(U)m)

of r from 2.2.6 is of type S, and the induced CNLO-morphism RS → TS
λ(U)m is surjective.

2. Denote again by x the composite RS [1/p] → TS
λ(U)m[1/p]

x
−→ E. The localization and completion

(RS)
∧
x acts faithfully on Sλ(U)∧x if and only if (RS)

∧
x = E.

Proof. The fact that rm factors through Gal(F (S)/F+) and has ν ◦ rm = ǫ1−dδdF/F+ is contained in 2.2.6.

To show that rm is of type S, it remains to show that for every w ∈ S̃, the local lift rm|Gw factors through

the given local lifting ring Rw. For w ∈ S̃ r S̃p, this is automatic, so we only need to show it for ṽ ∈ S̃p.
Since TS

λ(U)m is reduced and finite flat over O, it suffices to show that for any finite extension L/E, and
any E-algebra morphism y : TS

λ(U)m[1/p] → L, that the representation

ρy : Gal(F (S)/F )
rm|GF−−−−→ GLd(T

S
λ(U)m)

y
−→ GLd(L)

induces an E-algebra morphism R�
ṽ [1/p] → L that factors through R�

ṽ (1,vṽ)[1/p] for every ṽ ∈ S̃p. This

happens if and only if for every ṽ ∈ S̃p, the local representation ρy|Gṽ is semistable with p-adic Hodge type
vṽ. This follows from part 3 of 2.2.4, since ιṽ(Uv) contains the Iwahori subgroup for each v ∈ Sp, and the
p-adic Hodge type of ρy|Gṽ depends only on its associated graded, which in turns depends only on λ. This
shows that rm is of type S. That the induced CNLO-algebra map is surjective follows from part 1 of 2.2.6
and Chebotarev density. For part 2, first note that since S contains all places at which U is not hyperspecial
maximal compact, the finite dimensional E-vector space Sλ(U)[1/p] is a faithful and semisimple TS

λ(U)[1/p]-
module. Then Sλ(U)x is a finite dimensional E-vector space spanned by the eigenforms with TS

λ(U)[1/p]-
eigensytem x, and TS

λ(U)x ∼= E. It follows that (RS)
∧
x acts on the E-vector space Sλ(U)∧x = Sλ(U)x through

the surjection to its residue field E. �

3. The main theorems

Throughout this section p will be an odd prime and E will be a finite extension of Qp with ring of integers
O and residue field F. Let F be a CM field with maximal totally real subfield F+. Let c ∈ GF+ be a fixed
choice of complex conjugation. Let S be a finite set of places of F+ containing all places above p.



24 PATRICK B. ALLEN

3.1. The main theorem. In this subsection we prove our main theorem on adjoint Selmer groups. Before
doing so, we first recall the definition of an adequate subgroup of GLd(F).

Let Γ be a subgroup of GLd(F), and assume that F contains all eigenvalues of all elements of Γ. Let
gld = gld(F) be the Lie algebra of GLd(F) with the adjoint Γ-action. Let z ⊂ gld be the centre of gld; note
z ∼= F. The following is [Tho15, Definition 2.20] (using [Tho12, Lemma A.1]).

Definition 3.1.1. We say Γ is adequate if the following hold:

1. H1(Γ,F) = 0 and H1(Γ, gld/z) = 0;
2. EndF(F

d) = Md(F) is spanned by the semisimple elements in Γ.

We note that this is slightly more general than the definition of adequate found in much of the literature
(e.g. [Tho12, Definition 2.3]). In particular, it allows p|d.

3.1.2. Let

r : Gal(F (S)/F+) −→ Gd(E)

be a continuous homomorphism. We recall that ad(r) denotes gld(E) with the adjoint Gal(F (S)/F+)-action
ad ◦ r. After conjugating, we can assume that r takes values in Gd(O), and we let r = r ⊗O F.

Theorem 3.1.3. Assume there is a finite extension L/F of CM fields, a regular algebraic polarizable cuspidal

automorphic representation Π of GLd(AL), and an isomorphism ι : Qp
∼
−→ C such that the following hold:

(a) r|GL⊗ Qp
∼= ρΠ,ι;

(b) ζp /∈ L and r|GL(ζp)
has adequate image.

Then the following hold.

1. H1
g (F (S)/F+, ad(r)) = 0.

2. H2(F (S)/F+, ad(r)) = 0.
3. The natural map

H1(F (S)/F+, ad(r)) −→
∏

v|p

H1(F+
v , ad(r))/H1

g (F
+
v , ad(r))

is an isomorphism.

Proof. Using 1.3.5, parts 2 and 3 are implied by 1. To prove H1
g (F (S)/F+, ad(r)) = 0, we first note that

we are free to enlarge S, so we can (and do) assume that S contains at least one finite place not above
p. We are also free to replace F with any finite extension L/F of CM fields Indeed, let L+ denote the
maximal totally real subfield of L and SL+ the set of places of L+ above S. Then F (S)L+ is Galois
over L+ and Gal(F (S)L+/L+) canonically isomorphic to an open subgroup H of Gal(F (S)/F+). The
restriction on cohomology to H is injective by considering restriction-corestriction, then via the isomorphism
H ∼= Gal(F (S)L+/L+) and inflation to Gal(L(SL+)/L+), we have an injection

H1(F (S)/F+, ad(r)) −→ H1(L(SL+)/L+, ad(r))

such that the following diagram commutes

H1(F (S)/F+, ad(ρ))
∏

v|p H
1(F+

v , BdR ⊗Qp ad(r))

H1(L(SL+)/L+, ad(r))
∏

w|p H
1(L+

w , BdR ⊗Qp ad(r)).

Thus H1
g (F (S)/F+, ad(r)) injects into H1

g (L(SL+)/L+, ad(r)), so the former is trivial if the latter is. In
particular, we may assume L = F in the statement of the theorem.

Note that if χ : Gal(F (S)/F ) → O× is any continuous character, then by 1.3.1 there is a continuous
homomorphism r⊗χ : Gal(F (S)/F+) → Gd(O) such that (r⊗χ)|GF = r|GF ⊗ χ and ν◦(r⊗χ) = (χχc)(ν◦r).
There is an isomorphism ad(r) ∼= ad(r ⊗ χ) of Gal(F (S)/F+)-modules, so using [CHT08, Lemma 4.1.4], we
can twist r and Π, and assume Π is conjugate self-dual.

Let Sp be the set of places above p in F+, and for each v ∈ Sp, choose some ṽ|v in F . Let S̃p = {ṽ | v ∈ Sp}.
Using cyclic base change [AC89, Theorem 4.2 of Chapter 3], further replacing F by a solvable extension, we
may assume that F/F+, r, r, and Π satisfy:



DEFORMATIONS AND ADJOINT SELMER GROUPS 25

(i) F/F+ is unramified at all finite places, and every v ∈ S splits in F ;
(ii) if d is even, then d[F+ : Q] ≡ 0 (mod 4);
(iii) r|GF ⊗ Qp

∼= ρΠ,ι, and Π is conjugate self-dual;
(iv) ζp /∈ F and r(GF (ζp)) is adequate;

(v) Πṽ has Iwahori fixed vectors for every ṽ ∈ S̃p.

Enlarging E if necessary, we assume that E contains all embedding of F into Qp, and that F contains the

eigenvalues of all elements in the image of r|GF . Let λ ∈ (Zd
+)

Hom(F,E) be such that ιλ is the weight of Π.
Let G be the OF+ -group scheme of 2.2.1. Recall that for any finite place w of F split over F+, we have an
isomorphism ιw : G(OF+

v
)

∼
−→ GLd(OFw ). For any O-algebra A, and compact subgroup V of G(A∞

F+) with

Vp ⊆ G(OF+
p
), we let Sλ(V,A) be the A-module of automorphic forms of 2.2.1. Viewing C as an O-algebra

via ι, by 2.2.2 there is an irreducible subrepresentation π of Sλ({1},C) such that

(vi) if v is a finite place of F+ that splits as v = wwc in F , then πv
∼= Πw ◦ ιw;

(vii) if v is a finite place of F+ inert in F , and Πv is unramified, then πv has a fixed vector for some
hyperspecial maximal compact subgroup of G(F+

v ).

Now choose an open compact subgroup U ⊆ G(A∞
F+) such that Up ⊆ G(OF+

p
) and satisfying the following:

(viii) ιṽ(Uv) is the Iwahori subgroup of GLd(OFṽ ) for each v ∈ Sp;
(ix) πU 6= 0;
(x) Uv is a hyperspecial maximal compact subgroup for every v /∈ S;
(xi) for all t ∈ G(A∞

F+), the group t−1G(F+)t ∩ U contains no element of order p.

Since we have assumed that S contains at least one finite place not above p, assumptions (viii), (x), and (xi)
can be satisfied simultaneously by letting Uu be sufficiently small for some u ∈ S r Sp. Let TS

λ(U) be the
Hecke algebra in 2.2.3. Since Sλ(U,C) ∼= Sλ(U)⊗O,ιC, there is an action of TS

λ(U) on πU and it acts via an
E-algebra morphism x : TS

λ(U) → E. Indeed, TS
λ(U) acts on πU via a homomorphism x : TS

λ(U)[1/p] → C

that factors through E by assumptions (iii) and (vii), local-global compatibility (i.e. part 3 of 2.1.2), and
that r|GF takes values in GLd(E). Moreover, the Galois representation ρx : Gal(F (S)/F+) → GLd(E) of
2.2.4 is isomorphic to r|GF .

Let m be the maximal ideal of TS
λ(U) containing ker(x). We can choose a continuous homomorphism

rm : Gal(F (S)/F+) −→ Gd(T
S
λ(U)/m) = Gd(F)

as in 2.2.5, such that rm = r. In particular, rm|GF is absolutely irreducible. Then 2.2.6 gives a lift

rm : Gal(F (S)/F+) −→ Gd(T
S
λ(U)m)

of rm, and letting rx be the composite

Gal(F (S)/F+)
rm−−→ Gd(T

S
λ(U)m)

x
−→ Gd(E),

the lifts rx and r of r define the same deformation.
For each v ∈ SrSp, let ṽ be a choice of place in F dividing v, and let S̃ = {ṽ | v ∈ S}. For each ṽ ∈ S̃p, let

vṽ = DdR(ρ|Gṽ ) be the p-adic Hodge type of ρ at ṽ. We consider the global deformation datum (see 1.3.7)

S = (F/F+, S, S̃,O, r, ǫ1−dδdF/F+ , {Rṽ}ṽ∈S̃)

where

– Rṽ = R�
ṽ (1,vṽ) if ṽ ∈ S̃p (see 1.2.4) and

– Rṽ = R�
ṽ if ṽ ∈ S̃ r S̃p.

We let RS be the universal type S deformation ring (see 1.3.8 and 1.3.9), and let Rloc
S = ⊗̂ṽ∈S̃Rṽ. By

part 1 of 2.2.7, the deformation [rm] of rm is of type S, and there is a surjective CNLO-algebra morphism

RS → Tλ(U)m. Again denote by x the E-algebra morphism RS [1/p] → Tλ(U)m[1/p]
x
−→ E. Make a choice

of lift for the universal type S deformation so that the specialization rx of this lift via x : RS [1/p] → E is
equal to r. Then, by 1.3.12,

H1
g (F (S)/F+, ad(r)) = 0

if and only if (RS)
∧
x = E, and this happens if and only if (RS)

∧
x acts faithfully on Sλ(U)∧x by part 2 of 2.2.7.
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Our choice of lift for the universal type S deformation gives a CNLO-morphism Rloc
S → RS . We denote

again by x the induced CNLO-morphisms

x : Rloc
S [1/p] → RS [1/p]

x
−→ E and x : Rṽ[1/p] → RS [1/p]

x
−→ E for each ṽ ∈ S̃.

Note that for each ṽ ∈ S̃, the morphism x : Rṽ[1/p] → E corresponds to the local representation r|Gṽ .
Since Π is a cuspidal representation of GLd(AF ), it is generic, and its local factors Πw at all finite places
are generic. Then 1.1.3 implies that WD(r|Gw )

∼= ι−1recTFw
(Πw) is generic for all finite places w. Then, by

1.2.2, 1.2.4, and 1.2.7,

– if ṽ ∈ S̃ r S̃p, then (Rṽ)
∧
x is formally smooth over E of dimension d2;

– if ṽ ∈ S̃p, then (Rṽ)
∧
x is formally smooth over E of dimension d2 + d(d−1)

2 [Fṽ : Qp] (here we used
that the p-adic Hodge type of r|Gṽ = rx|Gṽ is regular by part 3 of 2.2.4).

Then the proof of [Kis09a, Lemma 3.4.12] shows

(xii) (Rloc
S )x is formally smooth over E of dimension d2|S|+ d(d−1)

2 [F+ : Q].

We now use the argument of [Tho12, Theorem 6.8]. There are assumptions there that the local deformation

rings at places ṽ ∈ S̃p are crystalline deformation rings, and that Uv = G(OF+
v
) for v ∈ Sp, but these

assumptions are not used in what we need here. Since ζp /∈ F and r|GF (ζp)
has adequate image, the

proof of [Tho12, Theorem 6.8] using [Tho15, Proposition 7.1] in place of [Tho12, Proposition 4.4], c.f.
[Tho15, Proposition 7.2], shows there are nonnegative integers integers g and q, such that letting

– S∞ = O[[Z1, . . . , Zd2|S|, Y1, . . . , Yq]];
– a = (Z1, . . . , Zd2|S|, Y1, . . . , Yq) ⊆ S∞;

– R∞ = Rloc
S [[X1, . . . , Xg]];

there is an R∞-module M∞ with a commuting action of S∞ such that the following hold.

(xiii) There is a local O-algebra morphism S∞ → R∞ and a surjection R∞ → RS of Rloc
S -algebras with

aR∞ in its kernel.
(xiv) There is a surjection M∞ → Sλ(U)m of R∞ modules with kernel aM∞, where the R∞-module

structure of Sλ(U)m is via the surjection R∞ → RS of (xiii).
(xv) M∞ is a finite free S∞-module.

(xvi) g = q − d(d−1)
2 [F+ : Q].

We note that [Tho12, Theorem 6.8] does not state (xiii), but only that the action of S∞ on M∞ (denoted
H∞ there) factors through the action of R∞ on M∞. However, the patching patching part of the argument
in [Tho12, Theorem 6.8] is quoted (in [Tho12, Lemma 6.10]) from [BLGG11, Theorem 3.6.1], where (xiii) is
shown (in particular, see [BLGG11, Sublemma in the proof of Theorem 3.6.1]). Also, in (xvi) we have used
that the µm in [Tho12, Theorem 6.8] is d in our case.

Denote again by x the E-algebra morphism x : R∞[1/p] → RS [1/p]
x
−→ E and let p∞ = ker(x) ∈ SpecR∞.

Note that aR∞ ⊆ p∞. This together with the fact that M∞ is finite free over S∞ implies we can find an
M∞-regular sequence of length d2|S|+ q in p∞ and

depth(R∞)∧x
(M∞)∧x = depth(R∞)x(M∞)x ≥ depthR∞

(p∞,M∞) ≥ d2|S|+ q,

where the first equality follows from [Mat89, Theorem 23.3] and the middle inequality is [Mat89, Exer-
cise 16.5]. On the other hand, using (xii), (xiii), and (xvi) above, we deduce that (R∞)∧x

∼= (Rloc
S )∧x [[X1, . . . , Xg]]

is formally smooth over E of dimension

d2|S|+
d(d− 1)

2
[F+ : Q] + g = d2|S|+ q.

Since (R∞)∧x is regular, a theorem of Serre [Mat89, Theorem 19.2] and the Auslander–Buchsbaum formula
[Mat89, Theorem 19.1] imply that (M∞)∧x is a finite free (R∞)∧x -module. Then (M∞)∧x/a is a finite free
(R∞)∧x/a-module. But (M∞)∧x/a

∼= Sλ(U)∧x and the action of (R∞)∧x/a on it factors through (RS)
∧
x . This

shows (RS)
∧
x acts faithfully on Sλ(U)∧x , which completes the proof of the theorem. �

3.2. The proofs of Theorems A, B, and C. We now show how each of Theorems A, B, and C from the
introduction follow from 3.1.3.
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3.2.1. Proof of Theorem A. We recall the setup. We have a CM field F with maximal totally real subfield
F+ and a finite set of finite places S of F containing all places above p. We fix a choice of complex conjugation
c ∈ GF+ . We are given a continuous absolutely irreducible representation

ρ : Gal(F (S)/F ) −→ GLd(E).

We assume there is a continuous totally odd character µ : GF+ → E× and an invertible symmetric matrix
P such that the pairing 〈a, b〉 = taP−1b on Ed is perfect and satisfies

〈ρ(σ)a, ρ(cσc)b〉 = µ(σ)〈a, b〉.

Since ρ is absolutely irreducible, P is unique up to scalar. The adjoint representation of Gal(F (S)/F ) on
ad(ρ) = gld(E) extends to an action of Gal(F (S)/F+) by letting c act by X 7→ −P tXP−1, and this is
independent of the choice of c and of P .

By choosing a Gal(F (S)/F )-stable O-lattice in Vρ, we may assume that ρ takes values in GLd(O). The
semisimplification of its reduction modulo the maximal ideal of O does not depend on the choice of lattice,
and we denote it by ρ : Gal(F (S)/F ) → GLd(F). Assuming there is a finite extension L/F of CM fields,
a regular algebraic polarizable cuspidal automorphic representation Π of GLd(AL), and an isomorphism

ι : Qp
∼
−→ C such that:

(a) ρ|GL ⊗Qp
∼= ρΠ,ι;

(b) ζp /∈ L and ρ(GL(ζp)) is adequate;

we want to show H1
g (F (S)/F+, ad(ρ)) = 0.

By 1.3.1, we can define a continuous homomorphism r : Gal(F (S)/F+) → Gd(E) such that r|GF = ρ
and ν ◦ r = µ, and there is an isomorphism ad(r) ∼= ad(ρ) of Gal(F (S)/F+)-representations. We may also
assume r takes values in Gd(O) and letting r = r ⊗O F, that r|GF = ρ. Theorem A then follows from 3.1.3.

�

3.2.2. Proof of Theorem B. We have a totally real field F+ and a finite set of finite places S of F+ containing
all places above p. Let F+(S) be the maximal extension of F+ unramified outside S and all places above
∞. Let

ρ : Gal(F+(S)/F+) −→ GLd(E)

be a continuous, absolutely irreducible representation, and let Vρ denote the representation space of ρ. We
assume that ρ satisfies one of the following:

(GO) ρ factors through a map Gal(F+(S)/F+) → GOd(E), that we again denote by ρ, with totally even
multiplier character µ;

(GSp) d is even and ρ factors through a map Gal(F+(S)/F+) → GSpd(E), that we again denote by ρ, with
totally odd multiplier character µ.

We will refer to the first as the GO-case, and the second as the GSp-case.
If we are in the GO-case, then we let ad(ρ) and ad0(ρ) denote the Lie algebra god(E) of GOd(E) and

sub-Lie algebra sod(E), respectively, with the adjoint action ad ◦ ρ of Gal(F+(S)/F+). If we are in the
GSp-case, then we let ad(ρ) and ad0(ρ) denote the Lie algebra gspd(E) of GSpd(E) and sub-Lie algebra
spd(E), respectively, with the adjoint action ad ◦ ρ of Gal(F+(S)/F+).

There is a splitting god(E) = sod(E) ⊕ E, resp. gspd(E) = spd(E) ⊕ E, with E the Lie algebra of the
centre of GOd(E), resp. GSpd(E), that is stable under the adjoint action. We thus get a Gal(F+(S)/F+)-

equivariant splitting ad(ρ) = ad0(ρ) ⊕ E, where E has the trivial Gal(F+(S)/F+)-action. This gives a
decomposition

H1
g (F

+(S)/F+, ad(ρ)) = H1
g (F

+(S)/F+, ad0(ρ))⊕H1
g (F

+(S)/F+, E).

For each v|p in F+, the local group H1
g (F

+
v , E) = ker(H1(F+

v , E) → H1(F+
v , BdR ⊗Qp E)) is the one

dimensional E-subspace of Hom(Gv, E) corresponding to the unramified extension [BK, Example 3.9]. By
class field theory, H1

g (F
+(S)/F+, E) = 0. So, we want to show

1. H1
g (F

+(S)/F+, ad0(ρ)) = 0;

2. H2(F+(S)/F+, ad0(ρ)) = 0;
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3. for each v|p in F+, the following natural map is an isomorphism

H1(F+(S)/F+, ad0(ρ)) −→
∏

v|p

H1(F+
v , ad0(ρ))/H1

g (F
+
v , ad0(ρ)).

The adjoint action of GF+ on gld(E) ∼= HomE(Vρ, Vρ) decomposes as

(4) gld(E) ∼= HomE(Vρ, Vρ) ∼= Vρ ⊗ V ∨
ρ

∼= Vρ ⊗ Vρ ⊗ µ−1 ∼= Sym2 Vρ ⊗ µ−1 ⊕
∧2

Vρ ⊗ µ−1.

Under this decomposition, ad0(ρ) is identified with
∧2

Vρ ⊗ µ−1 in the GO-case, and with Sym2 Vρ ⊗ µ−1

in the GSp-case. Theorem B then follows from Theorem 3.2.3 below, noting that we may choose F in the
statement of Theorem 3.2.3 to be any quadratic CM extension of F+ not contained in the subfield of F fixed
by ρ|GL+(ζp)

.

Theorem 3.2.3. Let F/F+ be a quadratic CM extension, and let L+/F+ be a finite totally real extension.
Assume there is a regular algebraic polarizable cuspidal automorphic representation π of GLd(AL+), and an

isomorphism ι : Qp
∼
−→ C such that

(a) ρ|GL+ ⊗Qp
∼= ρπ,ι;

(b) ζp /∈ L := FL+ and ρ(GL(ζp)) is adequate;

If we are in the GO-case, let

W := Sym2 Vρ ⊗ µ−1δF/F+ or W :=
∧2Vρ ⊗ µ−1.

If we are in the GSp-case, let

W := Sym2 Vρ ⊗ µ−1 or W :=
∧2

Vρ ⊗ µ−1δF/F+ .

Then the following hold.

1. H1
g (F

+(S)/F+,W ) = 0.

2. H2(F+(S)/F+,W ) = 0.
3. The natural map

H1(F+(S)/F+,W ) −→
∏

v|p

H1(F+
v ,W )/H1

g (F
+
v ,W )

is an isomorphism.

Before proceeding with the proof, we note that results related to Theorem 3.2.3, as well as Theorem 3.3.1
below, were obtained by Chenevier [Che11, Theorems 6.11 and 6.12].

Proof. The closed subgroup Gal(F (S)/F+(S)) of Gal(F (S)/F+) is either trivial or has order 2, hence
Hi(F (S)/F+(S),W ) = 0. Inflation-restriction then gives Hi(F+(S)/F+,W ) ∼= Hi(F (S)/F+,W ) for all
i, and we can replace F+(S)/F+ with F (S)/F+ in each of 1, 2, and 3 above.

Let Π be the base change, using [AC89, Theorem 4.2 of Chapter 3], of π to GLd(AL). The automorphic
representation Π is regular algebraic and polarizable, and the fact that ρ|GL is absolutely irreducible implies
that it is cuspidal. Thus, ρ|GF satisfies the assumptions of Theorem A. Fix a choice c of complex conjugation.
If we are in the GO-case, set P = ρ(c). If we are in the GSp-case, set P = ρ(c)J−1, where J is the matrix
defining the symplectic pairing on Ed. Then P is an invertible symmetric matrix such that the pairing 〈a, b〉
on Ed given by taP−1b satisfies

〈ρ(σ)a, ρ(cσc)b〉 = µ(σ)〈a, b〉,

for all σ ∈ GF . As in 3.2.1, we can extend the adjoint action of GF on gld(E) to an action of GF+ by letting
c act as X 7→ −P tXP−1, and we let ad(ρ|GF ) denote gld(E) with this GF+ -action.

Then (4) gives a decomposition of GF -representations

(5) ad(ρ|GF )
∼= Sym2 Vρ ⊗ µ−1 ⊕

∧2Vρ ⊗ µ−1,

where

– in the GO-case, Sym2 Vρ ⊗ µ−1 is identified with the symmetric matrices, and
∧2Vρ ⊗ µ−1 with the

antisymmetric matrices.
– in the GSp-case, Sym2 Vρ ⊗ µ−1 is identified with the matrices X such that tXJ = −JX , and∧2

Vρ ⊗ µ−1 with the matrices X such that tXJ = JX ;
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Calculating the action of c on both sides of (5), we find

ad(ρ|GF )
∼= Sym2 Vρ ⊗ µ−1δF/F+ ⊕

∧2Vρ ⊗ µ−1,

as GF+ -representations in the GO-case, and

ad(ρ|GF )
∼= Sym2 Vρ ⊗ µ−1 ⊕

∧2
Vρ ⊗ µ−1δF/F+ ,

as GF+ -representations in the GSp-case. The theorem now follows from Theorem A. �

3.2.4. Proof of Theorem C. We recall the setup. Fix a continuous homomorphism

r : Gal(F (S)/F+) −→ Gd(F)

inducing an isomorphism Gal(F/F+)
∼
−→ Gd(F)/G

0
d(F), as well as a totally odd de Rham character µ :

Gal(F (S)/F+) → O× with ν ◦ r = µ mod mO. We assume r|GF is absolutely irreducible. The ring RS in
the statement of Theorem C is the universal type S deformation ring for the global deformation datum

S = (F/F+, S, ∅,O, r, µ, ∅).

Theorem C then follows immediately from 3.1.3 and 1.3.13. �

3.3. Symmetric powers. We finish by giving one application of our main result combined with potential
automorphy theorems.

Let f be an elliptic modular newform of weight k ≥ 2 and level Γ1(N). Fix a prime p, a sufficiently large
finite extension E/Qp, and an embedding of the coefficient field of f into E. Let S be a finite set of primes
of Q containing all primes dividing Np, and let

ρf : Gal(Q(S)/Q) −→ GL(Vf ) ∼= GL2(E)

be the associated p-adic Galois representation. We let F be the residue field of E, and let

ρf : Gal(Q(S)/Q) −→ GL2(F)

denote the (semisimple) residual representation of ρf . For any n ≥ 1, let

Symn(ρf ) : Gal(Q(S)/Q) −→ GL(Symn Vf ) ∼= GLn+1(E)

be the representation on the nth symmetric power Symn Vf of Vf . .

Theorem 3.3.1. Let F/Q be any imaginary quadratic field. Let n ≥ 1, and set

Wn := Sym2n Vf ⊗ det(ρf )
−nδn+1

F/Q.

Then H1
g (Q(S)/Q,Wn) = 0 under the following assumptions:

(a) p > n+ 4 and p /∈ {2n+ 1, 2n+ 3},
(b) the image of ρ contains SL2(Fp).

Proof. Let ρ := Symn(ρf ), and let ρ : Gal(Q(S)/Q) → GLn+1(F) be the (semisimple) residual representation.
Note that ρ is isomorphic to the semisimplification of Symn(ρf ). Set

W := Sym2(Symn Vf )⊗ det(ρf )
−nδn+1

F/Q.

There is a natural symmetric bilinear map Symn Vf × Symn Vf → Sym2n Vf , which induces a surjection

Sym2(Symn Vf ) −→ Sym2n Vf .

This map is GL2(E)-equivariant and has a GL2(E)-equivariant splitting. Thus, Wn is a GQ-equivariant
direct summand of W , so it suffices to show H1

g (Q(S)/Q,W ) = 0. To do this, we apply Theorem 3.2.3.
If n is even, then ρ is conjugate to a representation valued in GOn+1(E), and if n is odd, to one valued

in GSpn+1(E), and in either case the multiplier character is det(ρf )
n. Assumption (b) implies that f

does not have complex multiplication, so [BLGHT11, Theorem B] implies there is a totally real Galois
extension L+/Q, a regular algebraic polarizable cuspidal automorphic representation π of GLn+1(AL+), and

an isomorphism ι : Qp
∼
−→ C such that ρ|GL+ ⊗Qp

∼= ρπ,ι. Moreover, we may assume that L+ is disjoint from

the subfield of Q fixed by ρf |GF (ζp)
(for example, see [BLGGT14, Theorem 5.4.1]). Note that assumption

(a) implies p ≥ 5. So ζp /∈ F , and the image of the restriction ρf |GF (ζp)
still contains SL2(Fp). By choice

of L+, we have ζp /∈ L := FL+ and ρf (GL(ζp)) contains SL2(Fp). This implies, in particular, that the
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image of GL(ζp) under Symn(ρf ) acts absolutely irreducibly and ρ ∼= Symn(ρf ). Under assumption (a),
[GHT15, Corollary 1.5] implies ρ(GL(ζp)) is adequate. We’ve verified the assumptions of Theorem 3.2.3 for

ρ, so H1
g (Q(S)/Q,W ) = 0. �
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[GK14] Toby Gee and Mark Kisin, The Breuil–Mézard conjecture for potentially Barsotti–Tate representations, Forum of

Math. Pi 2 (2014), no. e1, 56 pp.
[Gue11] Lucio Guerberoff, Modularity lifting theorems for Galois representations of unitary type, Compos. Math. 4 (2011),

1022–1058.
[GHT15] Robert Guralnick, Florian Herzig, and Pham Huu Tiep, Adequate subgroups of low degree, Algebra Number Theory

9 (2015), no. 1, 77–147.
[HT01] Michael Harris and Richard Taylor, The geometry and cohomology of some simple Shimura varieties, with appendix

by Vladimir G. Berkovich, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ,
2001.
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