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GUIDE TO BOUNDARY VALUE PROBLEMS
FOR DIRAC-TYPE OPERATORS
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Dedicated to the memory of Friedrich Hirzebruch

ABSTRACT. We present an introduction to boundary value problems foad
type operators on complete Riemannian manifolds with camipaundary. We
introduce a very general class of boundary conditions whatitains local el-
liptic boundary conditions in the sense of Lopatinskij atéfiro as well as the
Atiyah-Patodi-Singer boundary conditions. We discussnioewy regularity of
solutions and also spectral and index theory. The emph&sis providing the
reader with a working knowledge.

INTRODUCTION

Boundary value problems for elliptic differential equaisoof second order, such
as the Dirichlet problem for harmonic functions, have bédendbject of intense
investigation since the 19th century. For a large classdf suoblems, the analysis
is by now classical and well understood. There are numerpplcations in and

outside mathematics.

The situation is much less satisfactory for boundary vahablems for first-order
elliptic differential operators such as the Dirac operatet us illustrate the phe-
nomena that arise with the elementary example of holomorfhictions on the
closed unit diskD c C. Holomorphic functions are the solutions of the elliptic
equationd f = 0. The real and imaginary parts 6fare harmonic and they deter-
mine each other up to a constant. Thus for most smooth furectio 6D — C,
the Dirichlet problemd f = 0, f|;p = g, is not soluble. Hence such a boundary
condition is too strong for first-order operators.

Ideally, a “good” boundary condition should ensure that #dggiationdf = h
has a unique solution for givem At least we want to have that the kernel and
the cokernel ofd become finite dimensional, more precisely, tAabecomes a
Fredholm operator. If we expand the boundary valued dfi a Fourier series,

fle')=sp aeN, thenwesea ; =a ,=...=0 because otherwisewould
have a pole at= 0. Therefore it suffices to imposg = a; = ap = ... = 0 to make
the kernel trivial. Similarly, imposingk = ax+1 = a2 = ... = 0 would make the
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kernelk-dimensional. These are typical examples for the nonlocahdary con-
ditions that one has to consider when dealing with ellipfierators of first order.

A major break-through towards a general theory was achigvédte seminal arti-
cle [APS], where Atiyah, Patodi and Singer obtain an indexotem for a certain
class of first order elliptic differential operators on canpmanifolds with bound-
ary. This work lies at the heart of many investigations comicg boundary value
problems and ?-index theory for first order elliptic differential operaso

The aim of the present paper is to provide an introductiomeogeneral theory of
boundary value problems for Dirac-type operators and te fie reader a sound
working knowlegde of this material. To a large extent, wédkwl [BB] where all
details are worked out but, due to its length and technicaipiexity, that article
may not be a good first start. Results which we only cite hezaraarked by 4.
The present paper also contains new additions to the res(B8]; they are given
full proofs, terminated by &l.

After some preliminaries on differential operators in $@¢fl, we discuss Dirac-
type operators in Sectidd 2. An important class consistsigdDperators in the
sense of Gromov and Lawsdn [GL, [LM] associated to Dirac kemdh Sectiof]3,
we introduce boundary value problems for Dirac-type omesads defined in [BB].
We discuss their regularity theory. For instance, Thedrérapplied tad tells us,
that, for givenh € C*(D,C), any solutionf of df = h satisfying the boundary
conditions described above will be smooth up to the bound&eyexplain that the
classical examples, like local elliptic boundary conditan the sense of Lopatin-
sky and Shapiro and the boundary conditions introduced lyahAt Patodi, and
Singer, belong to our class of boundary value problems. &heg also examples
which cannot be described by pseudo-differential opesafbine index theory for
boundary value problems is the topic of Secfidn 4. In gengralassume that the
underlying manifoldM is a complete, not necessarily compact, Riemannian man-
ifold with compact boundary. We discuss coercivity cormis which ensure the
Fredholm property also for noncompadt In Sectiori 5, we investigate the spectral
theory associated to boundary conditions.

1. PRELIMINARIES

Let M be a Riemannian manifold with compact boundai and interior unit
normal vector fieldv alongdM. The Riemannian volume element dhwill be
denoted by dV, the one a®M by dS. Denote the interior part M by M.

For a vector bundl& over M denote byC”(M,E) the space of smooth sections
of E and byCZ (M, E) andC(M,E) the subspaces &~ (M, E) which consist of
smooth sections with compact supporﬂ\jhandl\7l, respectively. Let?(M,E) be
the Hilbert space (of equivalence classes) of squareribdg sections oE and
L%C(M, E) be the space of locally square-integrable sectioris.dfor any integer
k> 0, denote bHK (M, E) the space of sections Bfwhich have weak derivatives
up to orderk (with respect to some or any connectionBrthat are locally square-
integrable.
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1.1. Differential operators. LetE andF be Hermitian vector bundles ovist and
D:C”(M,E) —» C*(M,F)
be a differential operator of order (at moétyom E to F. For simplicity, we only

consider the case of complex vector bundle® Hcts on real vector bundles one
can complexify and thus reduce to the complex case.

Denote byD* the formal adjointof D. This is the unique differential operator of
order (at mosty from F to E such that

/M (DO, W)dV = /M (®,D*W)aV,

for all ® € C,(M,E) and¥ € C*(M,F). We say thaD is formally selfadjointif
E =F andD = D*.

ConsiderD as an unbounded operat@gc, from L>(M,E) to L?(M,F) with do-
main donD¢. = C3(M, E), and similarly forD*. Theminimal extension Rin of
D is obtained by taking the closure of the graphDgf in L2(M,E) @ L2(M,F).
In other words® < L2(M, E) belongs to the domain dob,in of D, if there is
a sequencéd,) in CZ(M, E) which converges t& in L>(M, E) such that D®,,)
is a Cauchy sequence IF(M,F); then we seDyin® := lim, DP,,. By defini-
tion, Cit(M, E) is dense in dor®mn with respect to the graph norm Byin. The
maximal extension fux of D is defined to be the adjoint operator Bf., that
is, @ in L?(M,E) belongs to the domain dobBax of Dmax if there is a section
= € L2(M,F) such thaD® = = in the sense of distributions:

/M<z,w>dvz/M<q>,D*w>dv,

for all W € C%(M,F); then we seDna® = =. In other words,(®, —=) is per-
pendicular to the graph dd}, in L2(M,E) @ L?(M,F). Equivalently,(®, =) is
perpendicular to the graph 8. in L2(M,E) @ L?(M,F). Itis easy to see that

Dmin C Dmax
in the sense that doBy,in € domDmax and Dmax|dombd,;; = Dmin. By definition,
Dmin andDynax areclosed operatorsmeaning that their graphs are closed subspaces
of L2(M,E) @ L2(M, F). Hence thegraph norm that is, the norm associated to the
scalar product

(®,W)p 1= /M ((®, W) + (Dmax®, Dinanc?)) dV,

turns donDnin and donDhax into Hilbert spaces. Boundary value problems in our
sense are concerned with closed operators lying bet®ggrandDmax.

1.2. The principal symbol. For a differential operatdd from E to F of order (at
most)/ as above, there is a fielth : (T*M)’ — Hom(E,F) of symmetric/-linear
maps, theprincipal symbolop of D, defined by the-fold commutatdt
1
O'D(d f]_,...,dfg) = E[ [D, fl],..., fg],
forall fq,..., f, € C*(M,R). In the case = 1, this means that

D(f®) = op(d f)d + fDD,

IHere[D, f] = Do (f-idg) — (f -idg)oD.
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for all f € C*(M,R) and® € C*(M,E). The principal symbobp vanishes pre-
cisely at those points where the orderidis at most/ — 1. The principal symbol
of D* is

oo+ (&1,...,&) = (-1)'0p(&1,...,&)", (1)
forall &4,...,& € T*M. Sincegp is symmetric inéy, ..., &, itis determined by its
values along the diagonal; we ugg(&) as a shorthand notation fop (¢, ...,§).
Then we have, for af € T*M,

O-DlDZ(f) = O-Dl(f)OO-Dz(E) 2

for the principal symbol of the composition of different@beratord, of ordersy
andD» of order/,.

The Riemannian metric induces a vector bundle isomorpHidm— T*M, X —
X’, defined by(X,Y) = X"(Y) for all Y. The inverse isomorphisi*M — TM is
denoted by — &,

Proposition 1.1(Green’s formula) Let D be a differential operator from E to F of
order one. Then we have, for &l € CZ(M,E) andW¥ € CZ(M,F),

/M(D¢,w>dV:/M(qa,D*w>dv—/aM<aD(vb)q>,w>ds. |

For a proof see e.d. [Ta, Prop. 9.1, p. 160].

Examples 1.2.By definition, a connectiof] on E is a differential operator from
E to T*M ® E of order one such that], f|(®) = d f @ ®. We obtain

on(E)(P)=E@® and op- (&) (W) = —W(E). ©)

Hence all connections d& have the same principal symbol reflecting the fact that
the difference of two connections is of order zero.

There are two natural differential operators of order twsnagted td], the second
covariant derivativél? with principal symbol

0p2(§)(P) =ERERP (4)
and the connection Laplaciari'(J with principal symbol
000 (€)(®) = — €7, ®)

and both,[(#) and{5), are in agreement with (2) and (3).

1.3. Elliptic operators. We say thaD is elliptic if op(&) : Ex — Fx is an isomor-
phism, for allx € M and nonzerd € T;M. In the above example§], 0%, and[1?
are not elliptic; in fact, the involved bundles have difigreank. On the other hand,
the connection Laplacian is elliptic, byl (5).

Suppose thaD is elliptic. Theninterior elliptic regularity says that, for any
given integelk > 0, @ € domDax is contained irHI'th(M, E) if Dmax® belongs

to Hl'f)C(I\7I,F). In particular, if ® € domDpax satisfiesDmax® € C°°(I\7I,F), then
® cC*(M,E).

If M is closed and is elliptic and formally selfadjoint, then the eigenspaoéd
are finite-dimensional, contained@? (M, E), pairwise perpendicular with respect



BOUNDARY VALUE PROBLEMS 5

to theL?-product, and spab?(M,E). As an example, the connection Laplacian is
elliptic and formally selfadjoint.

For any differential operatdd : C*(M,E) — C*(M, F) of order one, consider the
fiberwise linear bundle map

b : T"M@HOm(E,E) — Hom(E,F), V% op(ef)oV(e).

Here (ey,...,ey) is any local tangent frame an@;,...,€)) its associated dual
cotangent frame dfl. Note thate; does not depend on the choice of frame.

Proposition 1.3. Let D: C*(M,E) — C*(M, F) be a differential operator of order
one such thatz is onto. Then there exists a connectidron E such that

D= .0p(€]) o,

for any local tangent framéey, ..., e,) and the associated dual cotangent frame
(e],...,65) of M.

The proof can be found in AppendiX B.

If D is elliptic, @4 is onto: giverld € Hom(E,F) putV(e;) = ... =V(e,) =0 and
V(e1) = op(€})toU, for instance. Hence Propositibn1l.3 applies and we have

Corollary 1.4. Let D:C*(M,E) — C*(M,F) be an elliptic differential operator
of order one. Then there exists a connectionon E such that
D =75 0p(e) oM,

for any local tangent frameey,...,e,) and the associated dual cotangent frame
(€],...,€,) of M. O

In the special case of Dirac-type operators (see definit@ow), this corollary

is [AT} Lemma 2.1]. Propositioh 1.3 is also useful for noipit operators. For
instance, it applies to Dirac-type operators on Lorentaemifolds; these are hy-
perbolic instead of elliptic.

2. DIRAC-TYPE OPERATORS

From now on we concentrate on an important special classstfdider elliptic
operators.

2.1. Clifford relations and Dirac-type operators. We say that a differential op-
eratorD : C*(M,E) — C*(M, F) of order one is oDirac typeif its principal sym-
bol op satisfies theClifford relations
op(&)"op(n)+0p(n)*op(&) =2(&,n)-idg,, (6)
ob(&)op(n)"+0op(n)on(§)” =2(&,n)-idg, (7)
forallxe M andé,n € T/M.

The classical Dirac operator on a spin manifold is an impabeaample. More gen-
erally, the class of Dirac-type operators contains Diragrafors on Dirac bundles
asin [LM, Ch. II, § 5].
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By (1), if D is of Dirac type, then so iB*. Furthermore, by (6) an@](7), Dirac-type
operators are elliptic with

op(&) 1 =|&|%0p(&)*, for all nonzerof € T*M. (8)

If D is a formally selfadjoint operator of Dirac type &) then the endomorphisms
op (&) are skewhermitiané € T*M. In this case, the Clifford relationkl(6) arid (7)
may be spelled out as

op(&)op(n)+0p(n)op(§) = —2(&,n)-idg,,

for all xe M andé,n € T;"M. In other words, the principal symbol turisinto a
bundle of modules over the Clifford algebras GIiffM).

Proposition 2.1 (Weitzenbock formula) Let D: C*(M,E) — C*(M,F) be of
Dirac type. Then there exists a unique metric conneciian E with

DD =0+ .7, 9)

where %" is a field of symmetric endomorphisms of E.

See AppendikB for the proof. For special choicesDothis formula is also known
as Bochner formula, Bochner-Kodaira formula or Lichne@xformula.

In general, the connections in Corollaryl1.4 and Propasiid do not coincide.

2.2. Adapted operators on the boundary. Suppose from now on thdd is of
Dirac type. Fox € dM, identify T,”dM with the space of covectoésin T,"M such
thaté (v(x)) = 0. Then, by[(6) and (8),

GD(V(X)b)ilO op(&) 1 Ex — Ex (20)

is skewhermitian, for alk € dM and ¢ < T,dM. Hence there exist formally self-
adjoint differential operatora: C*(dM,E) — C*(dM, E) of first order with prin-
cipal symbol

oa(&) = ap(v(x)’)"toap(&). (11)
We call such operatoadaptedto D. Note that such an operatéris also of Dirac
type and that the zero order term Afis only unique up to addition of a field of

hermitian endomorphisms &. By (1) and [(10) applied tB*, the principal symbol
of an operatoA adapted td* is

03(&) = (—op(v(X)") 1)* o (~0p(&))* = 0p(V(x)") 0 Op (&)".
By (11), this implies
0x(&) = o (V(x)") o (0p(V(X)") 0 OA(£))"
b (V(X)’) 0 0a(E) 0 Op(V(X)’)"
0o(V(x)’) 0 0_a(&)oap(V(X)’) L.
Hence, ifAis adapted td®, then
A= 0p(V’)o(—A)oap(V’)? (12)

is adapted t®*. GivenA, this choice ofA is the most natural one.
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2.3. Formally selfadjoint Dirac-type operators. If the Dirac-type operatoD is
formally selfadjoint, then there is a particularly usefhibice of adapted boundary
operatorA.

Lemma 2.2. Let D: C*(M,E) — C*(M,E) be a formally selfadjoint operator of
Dirac type. Then there is an operator A adapted to D aléid such thatop (V°)
anticommutes with A,

op(V’)oA= —Aocap(V). (13)

See Appendik B for the proof.

Remarks 2.3. 1) The operatoA in Lemmd2.2 is unique up to addition of a field
of symmetric endomorphisms & alongdM which anticommutes witlop (V).

2) If Aanticommutes wittop (v°), thenop (v°) induces isomorphisms between the
+A-eigenspaces d&, for all A € R. In particular, keA is invariant undeiop (V")
and then-invariant ofA vanishes. Moreover,

w(¢7 LhU) = (O-D(Vb)(pv LIJ)Lz(ﬁM)

is a nondegenerate skewhermitian form onkéand also on.?(dM, E)).

3. BOUNDARY VALUE PROBLEMS

In this section we will study boundary value problems. Thiklve done under the
following

Standard Setup 3.1.

¢ M is a complete Riemannian manifold with compact boundhvl;
¢ v is the interior unit normal vector field alontM;

o E andF are Hermitian vector bundles ovit;

o D:C*(M,E) — C”(M,F) is a Dirac-type operator;

o A:C*(dM,E) — C*(dM,E) is a boundary operator adapteddo

3.1. Spectral subspaceslf A is adapted td, thenA is a formally selfadjoint
elliptic operator over the compact manifold®. Hence we have, in the sense of
Hilbert spaces,
L2(0M,E) =@ C- ¢;,
where(¢;) is an orthonormal basis &f(dM, E) consisting of eigensections Af
A¢; = Aj9;. In terms of such an orthonormal basis, the Sobolev sp&téM, E),
se R, consists of all sections
$=>5a¢; suchthat ) |aj[*(1+Af)° < oo,

whereL?(dM,E) = H%(dM, E). The natural pairing

H(OM,E) x H™S(0M,E) = C, (3 ay¢;, > ;bjd;) =3 ab;, (14
is perfect, for alls € R. By the Sobolev embedding theorem,

C”(dM,E) = (| H%(0M,E).
scR

Rellich’s embedding theorem says that $pr> s, the embedding
H (M, E) — H%(dM,E)
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is compact. We also set
H™®(dM,E) := | JH%dM,E).

seR
Forl C R, let Q, be the associated spectral projection,
Q :Zjaj¢j»—>ZAj€|aj¢j. (15)

ThenQ is orthogonal and mapss(dM, E) to itself, for alls € R. Set
HS(A) := Q (H%(dM,E)) C H%(dM,E).
Fora € R, define the hybrid Sobolev spaces

H(A) == H2 (A @H LA, (16)
H(A) == H L (A eHLE (A). 17)

Note that, as topological vector spadd$A) andH (A) do not depend on the choice
of a. In particular,
H(A) = H(-A).
Moreover, the natural pairing
HV(A)Xl:l(—A)—)(C, (Zjajd)j’Zjbjd)j):Zjaijj’
is perfect, comparé_(14).

3.2. The maximal domain. Following [BB, Cor. 6.6, Thm. 6.7, Prop. 7.2], we
now discuss properties of the maximal domairDof

Theorem 3.2. Assume the Standard Sefup 3.1. Then the domaig,gf Bquipped
with the graph norm topology, has the following properties:

1) & (M, E) is dense irdomDmax;

2) the trace map?Z® := ®|yy on G (M, E) extends uniquely to a continuous sur-
jectionZ : domDmax — H(A);

3) domDpin = {® € domDpax | ZP = 0}. In particular, #Z induces an isomor-
phism
4) for any closed subspace®H (A), the operator [3 max with domain

is a closed extension of D betweep,;pand Dyax and any closed extension of D
between Rin and Dyax is of this form;

5) for all ® € domDpaxand¥ € domDy,, 4
/ (Dima®, W) dV — / (®,D% W) dV — / (0o (V') 2D, 2¥)dS. W
M M oM

Remark 3.3. As a topological vector spacEI,(A) does not depend on the choice
of adapted operatoh, by Theoreni 3]2]3. The pairing in Theoréml32.5 is well
defined becausep(v’) mapsH (A) to H(A) by (12).



BOUNDARY VALUE PROBLEMS 9

Theorem 3.4 (Boundary regularity 1,[[BB, Thm. 6.11])Assume the Standard
Setu 3.1L. Let & 0 be an integer an@® € domDp,ax. Then
® € HEEY M, E) <= DO € H (M, F) and Qg Z® € H*/2(dM, E).
In particular,
® € HE(M,E) <= Qo) ZP € HY2(dM,E). ]

Note thatQy .., Z® € HY2(dM, E) if and only if Z® € HY/2(dM, E), by (18) and
Theoreni 3.212.

3.3. Boundary conditions. Theoreni 3.2J4 justifies the following

Definition 3.5. A boundary conditiorfor D is a closed subspace Hf(A).

In the notation of Theoreiln 3[2.3, we wribg max for the operator with boundary
values in a boundary conditidd This differs from the notation of Atiyah-Patodi-
Singer and others, who would use a projectowith kerP = B to write PZ® = 0.

Theorem 3.6 (The adjoint operator,[[BB, Sec. 7.2])Assume the Standard
Setud 3.1 and that B H(A) is a boundary condition. Lef be adapted to D
Then

B:— {y e H(A) | (op(V’)¢, ) =0, for all ¢ € B}
is a closed subspace 5If(A), that is, it is a boundary condition for D Moreover,

the adjoint operator of B max is the operator R4 .. [ |

3.4. D-elliptic boundary conditions. ForV c H™*(dM,E) ands<€ R, let
VS:=VNHSIM,E)).

For subspaceg, W c L?(dM, E), we say that a bounded linear operagol/ — W
is of order zeroif

g(V®) c We,
for all s> 0. For example, spectral projectio@ as in [15) are of order zero.

Definition 3.7. A linear subspace c HY2(dM,E) is said to be aD-elliptic
boundary conditiorif there is anL?-orthogonal decomposition

L2(OM,E) =V_aW_ a3V, &W, (18)
such that
B=W, @ {v+gv|veV?},
where
1)W_ andW, are finite-dimensional and containedGfi(dM, E);
2)V_.oW._ C Lf_wa] (A) andV, W, C L2_a’w) (A), for somea € R;
3)g:V_ =V, and its adjoing* : V. — V_ are operators of order 0.

Remarks 3.8. 1) D-elliptic boundary conditions are closed Iﬁ1(A), and hence
they are boundary conditions in the sense formulated futthe

2) If Bis aD-elliptic boundary condition and< R is given, then the decomposition
(d18) can be chosen such that

VoOW. =L7 ,(dME) and Vi &W, =Lf , (OM,E).
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3) If B is aD-elliptic boundary condition, theB2® is D*-elliptic. In fact, usingA
asin[12), we get

B = op(V')(W._ @ {v—g'v|veV]?}). (19)

Theorem 3.9 (Boundary regularity II,[[BB, Thm. 7.17])Assume the Standard
Setup 3.1 and that B H(A) is a D-elliptic boundary condition. Then

® € HEH M, E) <= D max® € HE (M, F),

ocC

for all ® € domDg maxand integers k> 0. In particular, ® € domDg max iS sSmooth
up to the boundary if and only if ® is smooth up to the boundary. [ |

Theorem 3.10. Assume the Standard Sefupl 3.1 and that B(A) is a D-elliptic
boundary condition. Then

CZ(M,E;B) :={®eCJ(M,E) | Z(®P) € B}
is dense irdomDg max With respect to the graph norm.

Proof. Choose a representation ®fas in Remark 3]B12. Sind¥_ is finite dimen-
sional and contained i8”(JdM,E), we get thav_ NC*(JdM,E) is dense inv_,
and similarly forV,.. Sinceg is of order 0, we conclude that

{v+gv|ve VY2 nC® (oM, E)

isdense ifv+gv|ve V,l/z}. HenceBNC”(JdM,E) is dense irB.

Let ® € domDg max and setp := Z®. Choose an extension operatdras in (43)
in [BB]. ThenW¥ := ® — &¢ vanishes alongM, and hencé! € domD,, by
TheorenT3213. Thereford is the limit of smooth sections i68%.(M,E), by the
definition of Dpjin.

It remains to show that’¢ can be approximated by smooth sections
C”(M,E;B). As explained in the beginning of the proof, there is a seqe¢f)
in BNC®(dM, E) converging top. Then& ¢, € C*(M,E; B) and& ¢, — &¢ with
respect to the graph norm, by Lemma 5.5in [BB]. O

3.5. Selfadjoint D-elliptic boundary conditions. Assume the Standard
Setud 3.1, thaE = F and thatD is formally selfadjoint. Choos@ as in [12). Let
B C HY/2(9M,E) be aD-elliptic boundary condition. TheBgad s is the adjoint

operator 0Dg max, WhereB2d is given by [I9). In particulabg max is selfadjoint
if and only if B is selfadjoint, that is, if and only i = B2,

Note thatB? is the image of thé.2-orthogonal complement & in HY/2(dM, E)
underop(v’). HenceB = B2 if and only if op (V") interchangesB with its L?-
orthogonal complement iHY/2(dM,E).

Theorem 3.11. Assume the Standard Sefupl 3.1, that E and that D is formally
selfadjoint. Let B be a selfadjoint D-elliptic boundary cliton.

Then D is essentially selfadjoint on
CZ(M,E;B) ={® e CJ(M,E) | Z® € B},
and the closure of D onTM, E;B) is Dg max-
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Proof. By Theoren:3.I0C2 (M, E; B) is dense in dor®g max- O

The following result adapts and extends Theorem 1.83 in_[BRCD-elliptic
boundary conditions as considered here.

Theorem 3.12(Normal form forB). Assume the Standard Sefupl3.1, that E
and that D is formally selfadjoint. Suppose tlm#(v”) anticommutes with A. Then
a D-elliptic boundary condition B is selfadjoint if and orifithere is

1) an orthogonal decomposition(z_Lmlo) (A) =V ®W, where W is a finite dimen-
sional subspace of7dM,E), '

2) an orthogonal decompositiderA = L @ ap (V)L

3) and a selfadjoint operator gv &L — V & L of order zero such that

B=0p(V )W {v+ap(V')gv|veVY2aL}. |

Remarks 3.13. 1) In Theoreni-3.12, the case Wee= {0} is not excluded. In this
latter case, the representatiorBudis in Theorerh 3.12 is unique singe= Q(_ B
andW is the orthogonal complement &fin '—%700,0) (A).

2) Theoren_3.1P]2 excludes the existence of selfadjoinh@ary conditions in
the case where kéris of odd dimension. Conversely, if dimk&ris even and the

eigenvalues and —i of op(v”) have equal multiplicity, then selfadjoint boundary
conditions exist. A simple example H(l_/folo) (A) @ L, whereL is a subspace of
kerA as in Theorerh 3.12.2. '

3) LetE, D, andA be the complexification of a Riemannian vector bundle, a for-
mally selfadjoint real Dirac-type operator, and a real liamg operatoAg, respec-
tively. Thenap(v°) turns the real kernel kéhg) into a symplectic vector space.
It follows that the complexificatioh of any Lagrangian subspace of k&g) will
satisfy ke = L @ gp(v”)L, and hence selfadjoint elliptic boundary conditions ex-
ist, by the previous remark.

4) First attempts have been made to relax the condition opeatness odM. The
results in[GN] apply to the Dirac operator associated witipif structure when

M anddM are complete and geometrically bounded in a suitable sense.

3.6. Local and pseudo-local boundary conditions.Throughout this section, we
let M be a complete Riemannian manifold with compact boundargnd F be
Hermitian vector bundles ovéM, andD be a Dirac-type operator frofto F.

Definition 3.14. We say that a linear subspaBe_ HY/2(dM, E) is alocal bound-
ary conditionif there is a (smooth) subbund C E;gy such that

B=HY2(oM,E').

More generally, we say thaB is pseudo-localif there is a classical pseudo-
differential operatoP of order O acting on sections & over dM which induces
an orthogonal projection ol?(dM, E) such that

B=P(HY2(dM,E)).

Theorem 3.15 (Characterization of pseudo-local boundary conditiofBBi[
Thm. 7.20]) Assume the Standard Setlpl3.1. Let P be a classical pseudo-
differential operator of order zero, acting on sections ai\erdM. Suppose that P
induces an orthogonal projection irf(dM, E). Then the following are equivalent:
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(i) B=P(HY?(dM,E)) is a D-elliptic boundary condition.
(i) For some (and then all) & R,

P—Qpw) : L?(OM,E) — L*(dM,E)
is a Fredholm operator.

(iii) For some (and then all) & R,
P— Qpaw) : L%(OM,E) — L%(dM,E)
is an elliptic classical pseudo-differential operator afler zero.
(iv) Forall & € T oM\ {0}, x € M, the principal symbobp(&) : Ex — E re-

stricts to an isomorphism from the sum of the eigenspacethéonegative eigen-
values of o (&) onto its imageop (&) (Ey). |

Remark 3.16. The projectionP is closely related to the Calderon projectef
studied in the literature, see elg.[BW]. If the Calderbaojgctor is chosen selfad-
joint as described i [BW, Lemma 12.8], thén= id — &2 satisfies the conditions
in Theoreni-3.15.

Our concept oD-elliptic boundary conditions covers in particular thattdssical
elliptic boundary conditions in the sense of Lopatinsky &hapiro [Gi, Sec. 1.9].

Corollary 3.17 ([BB] Cor. 7.22]) Let E' C E|g\ be a subbundle and fEgyy — E’
be the fiberwise orthogonal projection.(D,id — P) is an elliptic boundary value
problem in the classical sense of Lopatinsky and Shapiem 8= HY2(dM,E’)
is a local D-elliptic boundary condition. [ |

As a direct consequence of Theorem 3[15 (iv) we obtain

Corollary 3.18. Let Egy = E' ©E” be a decomposition such thata(&) =
ob(V*)top(&) interchanges E and E/, for all £ € T*d0M. Then B =
HY2(dM,E’) and B’ := HY2(dM,E") are local D-elliptic boundary condi-
tions. O

This corollary applies, in particular, A itself interchanges sections &f andE”.

3.7. Examples. In this section, we discuss some important elliptic boupdan-
ditions.

Example 3.19(Differential forms) Let
n
E=PANTM=ATM
j=0
be the sum of the bundles &f-valued alternating forms ovévl. The Dirac-type
operator is given byp = d 4+ d*, whered denotes exterior differentiation.

As before,v is the interior unit normal vector field along the boundaiy andv’
the associated unit conormal one-form. For eachdM and 0< j < n, we have a
canonical identification

NTM = (NTOM) & (V () ANTITIIM), ¢ = 9B+ v A ¢
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The local boundary condition corresponding to the subleitii= A*dM C E yy
is called theabsolute boundary conditign

Babs= {¢ € HY?(OM,E) | "' =0},
while E” := vV’ AA*OM C Eom Yields therelative boundary conditign

Brel = {¢ € HY2(dM,E) | $'@" = 0}.

Both boundary conditions are known to be elliptic in the sieasl sense, see
e.g.[Gl, Lemma 4.1.1]. Indeed, for adye T*JdM, the symbolop (&) leaves the
subbundle€’ andE” invariant, whileap (v°) interchanges them. Heneg (&) in-
terchange&’ andE”. By Corollary{3.I8, both, the absolute and the relative lbeun
ary condition, are locdD-elliptic boundary conditions.

Example 3.20 (Boundary chirality) Let x be an orthogonal involution oE
along M and denote byE|s, = E* @ E~ the orthogonal splitting into the
eigenbundles ofy for the eigenvaluestl. We say thaty is a boundary chi-
rality (with respect toA) if x anticommutes withA. The associated bound-
ary conditionsB., = HY2(dM,E*) are D-elliptic, by Corollary[3.I8. In fact,

XH(lf/fo‘O) (A) = H(léfo) (A) sincey anticommutes withh, and hence

Bix={p ckerA| xp =£p}e{p+x¢ |9 cHZ (A}
We haveB_ = By and hencesp(v’)B_ is the adjoint 0By = B, .

An example of a boundary chirality jg=igp (V") in the case wherB is formally
selfadjoint andA has been chosen to anticommute wjtlas in Lemma 2]2. This
occurs, for instance, B is a Dirac operator in the sense of Gromov and Lawson
andA is the canonical boundary operator @y see Appendik_A.

There is a refinement which is due to Freled f21; Enumerate the connected com-
ponents oM asNy, ..., Nk and associate a sign € {—1,1} to each component
Nj. Then

X9 =Y igjop(v')9;,
whereg; := ¢j|v;, is again a boundary chirality. It has the additional propérat
it commutes withiop (v”); compare Lemm@a4.8 and TheorEm 4.10.

Example 3.21(Generalized Atiyah-Patodi-Singer boundary conditionst D be
a Dirac-type operator antlan admissible boundary operator. Bix R and let
Voi=L12 (A, Vi=L2_ (A, W.=W,:={0}, and g=0.

(—oo7a) [a.’oo)

Then theD-elliptic boundary condition
B(a)=H"2 (A).

(70078-)

is known as ageneralized Atiyah-Patodi-Singer boundary conditidime (non-
generalized) Atiyah-Patodi-Singer boundary conditiorstaglied in [APS] is the
special casea = 0. Generalized APS boundary conditions are not local. How-
ever, they are still pseudo-local, by [APS, p. 48] togethéhJ§€] or by [BW,
Prop. 14.2].



14 CHRISTIAN BAR AND WERNER BALLMANN

Example 3.22(Modified Atiyah-Patodi-Singer boundary conditiongjhe modi-
fied APS boundary condition, introduced in [HMR], is given by

Bmaps={$ € HY2(M,E) | ¢ + ap(v")$ € H''Z ) (A)}.
It requires that the spectral pagis= ¢_., o) + $o + @(0,«) Of ¢ € Bmapssatisfy

P0m) = —00(V)P_wo and ¢o=—0p(v’)do.
SinceaD(vb)2 = —1, we getdg = 0. ThusBmapsis D-elliptic with the choices
Vo= L(z—oo,O) (A), V4 = L( ,00) (A), W_ = Kker(A), W, = {0}, andg = _O-D(Vb)'

Example 3.23(Transmission conditions)Let M be a complete Riemannian man-
ifold. For the sake of simplicity, assume that the bounddrviois empty, even
though this is not really necessary.
Let N C M be a compact hypersur-
face with trivial normal bundle. Cut
M along N to obtain a Riemannian
manifold M’ with compact boundary.
The boundarydM’ consists of two
copiesN; andN, of N. We may write
M’ = (M\N) LN UNp.

Let E,F — M be Hermitian vector
bundles and be a Dirac-type op-
erator fromE to F. We get induced
bundlesE’ — M’ andF’ — M’ and

a Dirac-type operatod’ from E’ to
F'. For® € HL.(M,E), we getd’ €
HL (M’ E’) such that® |y, = |, N1 N
We use this as a boundary condition Fic. 1
for D’ onM’. We set

B:= {(¢,¢) € HY2(Ny,E) @ HY2(N,E) | ¢ € Hl/Z(N,E)},

where we identify
HY2(Ny, E) = HY?(Ng, E) = HY/2(N, E).

Let A= Ay@® —Ag be an adapted boundary operatorBor HereA is a selfadjoint
Dirac-type operator o€~ (N,E) = C*(Ny,E’) and similarly—Ag onC*(N,E) =
C”(Ng,E’). The sign is due to the opposite relative orientationslodndN, in M'.

To see thaB is aD’-elliptic boundary condition, put
V+ :: L(ZO’OO) (AO @ _AO) == L(207oo) (AO) @ L(Zfoo,o) (AO)7
Vo 1= LE g (Po® —Ao) = L, 0)(A0) & L{y ) (o),
W, = {(9.9) € ker(Ao) © ker(Ag)},
W_ = {(¢,—¢) € ker(Ao) D ker(Ao)},

and
12 1/2 (0 id
g:VI'T =V, g_<id 0>.
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With these choiceB is of the form required in Definition 3.7. We call these bound-
ary conditionstransmission conditionsTransmission conditions are not pseudo-
local.

If M has a nonempty boundary aNds disjoint fromdM, let us assume that we are
given aD-elliptic boundary condition fodM. Then the same discussion applies if
one keeps the boundary condition 8M and extend® to dM’ = dM LIN; LIN,
accordingly.

4. INDEX THEORY

Throughout this section, assume the Standard Seflip 3. hdarén{ 5.8 we have
seen thaDg max: d0MDpg max— L2(M, F) is a Fredholm operator for ariy-elliptic
boundary condition provide® andD* are coercive at infinity. This is the case if
M is compact, for instance. The index is the number

ind Dg max = dimkerDg max— dimkerDjaq 0 € Z.

If Bis aD-elliptic boundary condition, then,by Theoremsli32.4[a@ll Bg max has
domain
Since donmDg max is contained irngc(M,E), we will briefly write Dg instead of
DB7max-

4.1. Fredholm property and index formulas. As a direct consequence of Theo-
rem[5.3 we get

Corollary 4.1 ([BB] Cor. 8.7]) Assume the Standard Sefup/3.1 and that D and
D* are coercive at infinity. Let B be a D-elliptic boundary cdiwt and letC be

a closed complement of B H(A). LetP : H(A) — H(A) be the projection with
kernel B and imag€. Then

L : domDmax— L2(M,F)&C, L® = (Dma@®,PZD),
is a Fredholm operator with the same index as. D O

Corollary 4.2 (BB Cor. 8.8]) Assume the Standard Sefupl3.1 and that D and
D* are coercive at infinity. Let BC B, ¢ HY?(dM,E) be D-elliptic boundary
conditions for D. Therlim(B,/B;) is finite and

ind(Dg,) = ind(Dg, ) + dim(B,/By). ]

Example 4.3. For the generalized Atiyah-Patodi-Singer boundary comitas in
Exampld3.2Il and < b, we have

ind DB(b) =ind DB(a) +dim Léb) (A)
The following result says that index computations Eelliptic boundary con-

ditions can be reduced to the case of generalized AtiyabeR&inger boundary
conditions.
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Theorem 4.4([BB] Thm. 8.14]) Assume the Standard Sefug 3.1 and that D ahd D
are coercive at infinity. Let B- H/2(dM,E) be a D-elliptic boundary condition.
Then we have, in the representation of B as in Remaikl]3.8.2,

indDg = indDg(g) + dimW, —dimW._.

Sketch of proofReplacingg by sg s€ [0, 1], yields a continuous 1-parameter fam-
ily of D-elliptic boundary conditions. One can show that the indays constant
under such a deformation of boundary conditions. Theref@escan assume with-
out loss of generality thag=0, i.e.,B=W, aVY2. Consider one further boundary
condition,

B :=W_aW, oVY2= H(l_/ia)(A) BW, = B(a) ®W,.

Applying Corollaryl4.2 twice we conclude
ind(Dg) = ind(Dg') —dimW_ = ind(Dgy)) +dimW, —dimW_. O

4.2. Relative index theory. Assume the Standard Setup]3.1 throughout the sec-
tion. For convenience assume also thiais connected and thatM = 0. For what
follows, compare Example 3.23. LBtbe a closed and two-sided hypersurface in
M. CutM alongN to obtain a manifoldV’, possibly connected, whose boundary
dM’ consists of two disjoint copied; andN, of N, see Figure 1 on pagel14. There
are natural pull-backg&’, F/, andD’ of E, F, andD from M to M’. Choose an
adapted operatok for D’ alongN;. Then—A is an adapted operator f&’ along

N, and will be used in what follows.

Theorem 4.5(Splitting Theorem,[[BB, Thm. 8.17])For M, M/, and notation as
above, D and D are coercive at infinity if and only if Dand (D’)* are coercive at
infinity. In this case, D and B..5, are Fredholm operators with

indD = indDg_4p,,

where B = B(a) = H(lffo a(A) and B = H[Zi)(A), considered as boundary con-

ditions along N and N, respectively. More generally, we may choose any D-
elliptic boundary condition Bc HY/2(N,E) and its [?-orthogonal complement
B, C HY2(N,E). u

Let M; andM; be complete Riemannian manifolds without boundary and
Di : C*(M;,E) — C*(M;, F)
be Dirac-type operators. L& C M; andKy € M, be compact subsets. Then we
say thatD; outside K agrees with 3 outside K if there are an isometry : Mz \
K1 — M\ K> and smooth fiberwise linear isometries
JE 1 Eilmpky = E2lmpk,  @nd Ik DFfvpk = Rk,
such that

y 7
Exlvy\k — E2lmy\k, Filmyk, — Felwak

SR S

f
M1\ Ky —— M2\ Kz M1\ Ky — = Mo\ K>
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commute and
Fro(D1®)o ft=Dy(Fodof ™t
for all smooth section® of E; overM; \ Kj.

Assume now thaD; and D, agree outside compact domaiisC M;. Fori =
1,2, choose a decompositidvli = M{ UM, such thatN; = M/ "M/ is a compact
hypersurface iM;, K is contained in the interior &/, f(M7) = M7, andf(N;) =
N,. Denote the restriction ob; to M/ by D;. The following result is a general
version of thed-relative index theorem of Gromov and Lawson [GL, Thm. 4.35]

Theorem 4.6 ([BB, Thm. 1.21]) Under the above assumptions, let B
HY2(Ny,E;) and B ¢ HY/2(Ny, Ez) be D-elliptic boundary conditions which cor-
respond to each other under the identifications given by f #@adas above. As-
sume that @ and D, and their formal adjoints are coercive at infinity.

Then O, Dz, Dy g , and B, 5, are Fredholm operators such that

indD; — indD; = indDY, g, — indD}, :/ ao, —/ o,
’ ’ Ky Ko
whereap, and ap, are the index densities associated tpdhd D,. [ |

Remark 4.7. In Theoreni 4B, it is also possible to deal with the situathuat M,

andM, have compact boundary and elliptic boundary conditiBnsndB, along
their boundaries are given. One then chooses the hypereiNfa: N; such that it
does not intersect the boundaryMifand such that the boundary M is contained
in M/. The same arguments as above yield

ind D;|_7|3l —ind Dz‘B2 =ind D,l BB, ind DIZ,BZEBB’Z’
whereB[ andBare elliptic boundary condition alorg; andN, which correspond

to each other under the identifications givenfognd . as further up. A similar
remark applies to Theorelm 4.5.

4.3. Boundary chiralities and index.

Lemma 4.8. Assume the Standard Sefupl3.1 and that M is connected. Let D be
formally selfadjoint and let A anticommute witiy (v°). Let x be a boundary chi-
rality as in Examplé-3.20 which commutes with(v°). Let E= E* ® E~ be the
orthogonal splitting into the eigenbundles yfor the eigenvalues-1, and write

S
with respect to this splitting. Then, if D is coercive at iitfin
indDg, = 3indA" = —3indA",
where B, = HY/2(dM,E*) is as in Examplg3.20.

1

Proof. LetB, =kerA®{¢p L x| ¢ € H(ffo)(A). ThenB.. is aD-elliptic boundary

condition and, by Theorem 4.4,

indDg, = indDg,¢+ dimkerA.
By Corollary(4.2, we have

indDg,, = indDg, — dimkerA¥,
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whereB, , = By andB_y = H?(dM,E"). SinceB_y = By andB_y, is invariant
underap(v’), we get thaB_, is the adjoint ofB,. In conclusion
2indDBX =ind DBX —ind DB*X
=indDg, —dimkerA~ —indDg_+ dimkerA*
=indAt. O
Theorem 4.9 (Cobordism Theorem, [BB, Thm. 1.22])Assume the Standard
Setud 3.1l and that M is connected. Let D be formally selfatjand let A anti-

commute wittop (v°). Theny = iop(v?) is a boundary chirality. Moreover, if D is
coercive at infinity and with Aas in Theoreri 418, then

iNndA* =indA~ =0.
Originally, the cobordism theorem was formulated for contpaanifoldsM with
boundary and showed the cobordism invariance of the indas.played an impor-
tant role in the original proof of the Atiyah-Singer indexetitem, compare e.d. [Pa,
Ch. XVII] and [BW, Ch. 21]. In this case, one can also derive timbordism in-

variance from Roe’s index theorem for partitioned manidigd, Hi]. We replace
compactness of the bordism by the weaker assumption ofieiteraf D.

Sketch of proof of Theordm #.We show that keDp, = kerDg_, =0, then the as-
sertion follows from Lemmga 418. L&k € kerDg: max. By Theoreni 3J2]5, we have

0 == (DmanD, CD)LZ(M) - (q), Dmaqu)LZ(M)
= —(0p(V)ZD, ZD) 2 9m)
= +il| 2P| P2 o)

and henceZ® = 0. Now an elementary argument involving the unique continua
tion for solutions oD implies® = 0. O

As an application of Lemmia_4.8 and Theoreml 4.9, we gener&lieed’s Theo-
rem B from [Fi] as follows:

Theorem 4.10. Assume the Standard Sefupl3.1 and that M is connected. Let D
be formally selfadjoint and let A anticommute with(v°). Let x be a bound-

ary chirality as in Exampl€_3.20 which commutes wii(v"). Let E= E** @

E*~ @ E T @®E "~ be the orthogonal splitting into the simultaneous eigemtes
ofiop(v’) and for the eigenvalues-1.

Then A maps E" to E-~ and E"~ to E~ " and conversely. Moreover, with the
corresponding notation for the restrictions of A, we hat/B, is coercive at infinity,

indDg, = indA™" = —indA™".

Proof. By Theoreni 4.9, we have
indA™" +indA"~ =indA”~ +indA" " =0.
On the other hand)™ ~ is adjoint toA* ", hence Lemm@a4l8 gives
2indDg, = indA*™" +indA™" =indA"™" —indA™" = 2indA"™". O
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5. SPECTRAL THEORY

Throughout htis section we assume the Standard $etup 3.1.

5.1. Coercivity atinfinity. For spectral and index theory we will also need bound-
ary conditions at infinity ifM is noncompact. Such conditions go under the name
coercivity at infinity.

Definitions 5.1. For k > 0, we say thaD is k-coercive at infinityif there is a
compact subsdéf C M such that

K[| ®llzgm) < [DPl|L2(m),

for all smooth section® of E with compact support itV \ K. If D is k-coercive
at infinity for somex > 0, then we calD coercive at infinity

Boundary conditions are irrelevant for coercivity at infjnbecause the compact
setK can always be chosen such that it contains a neighborhodiof

Examples 5.2.1) If M is compact, thei is k-coercive at infinity, for ank > 0.
Simply choose&K = M.

2) If D is formally selfadjoint and, outside a compact sulbset M, all eigenvalues

of the endomorphisniz” in the Weitzenbdck formuld{9) are bounded below by a
constant > 0, then we have, for atb € C3(M, E) with support disjoint fronK,

IDP[IE2 ) = DP|[F2(py + (H P, P) 2 > K[| Pl[2)-

HenceD is v/k-coercive at infinity in this case.

3) LetM = S x [0,), endowed with the product metrgg + dt?, whereg, is the
standard Riemannian metric of the unit sphere taisthe standard coordinate on
[0,0). Consider the usual Dirac operaracting on spinors, and denote bythe
Levi-Civita connection on the spinor bundle. The Lichnei@formula gives

D?=0'0+R/4,

whereR = n(n—1)/2 is the scalar curvature &fl (andS"). It follows thatD is
\/n(n— 1)/8-coercive at infinity.
4) Consider the same manifad = S x [0, ), but now equipped with the warped
metrice %gg + dt?. The scalar curvature is easily computed to be
n+1) n(n+3)

IR S
It follows that this time the Dirac operat@ris k-coercive at infinity, for anyk > 0.

Theorem 5.3([BB] Thm. 8.5]) Assume the Standard Sefup 3.1. Then the following
are equivalent:

R=R(t) = ™

() D is coercive at infinity;

(i) Dgmax: domDg max — L%(M, F) has finite dimensional kernel and closed im-
age forsomeD-elliptic boundary condition B;

(iii) D gmax: domDg max — L?(M, F) has finite dimensional kernel and closed im-
age forall D-elliptic boundary conditions B.
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In particular, D and D' are coercive at infinity if and only if Bmax and Dg.q .,
are Fredholm operators for some/all D-elliptic boundarynclitions B. |

Extending the notion of Fredholm operator, we say that aedasperatoiT be-
tween Banach spacésandy is aleft- or right-Fredholm operatorif the image
of T is closed and, respectively, the kernel or the cokerndl o of finite dimen-
sion. We say thal is asemi-Fredholm operatoif it is a left- or right-Fredholm
operator, comparé [Ka, Section IV.5.1]. In this terminglogheoreni 5.8 says that
Dg max is @ left-Fredholm operator for some/&lif and only if D is coercive at
infinity. For more on this topic, seé [Ka, V.4 and IV.5], [BB&ppendix A], and
[BB! Appendix A].

In the caseX =Y, we get correspondingssentialparts of the spectrum of,
compare([Ka, Section IV.5.6] (together with footnotes). Mte

spegssT C speg; T C speg; T C specl

be the set ofA € C such thatfT — A is not a semi-Fredholm operator, not a left-
Fredholm operator, not a Fredholm operator, and not an igamsm from donT

to X, respectively, wheressstands foressential In the case wher¥ is a Hilbert
space and wher€ is selfadjoint, ke = (imT)+ and sped@ C R so that, in par-
ticular, spegs T = speg; T. Moreover, in this case, sp&c\ spegsT consists of
eigenvalues with finite multiplicities, see Remark 1.11Ka] Section X.1.2].

Corollary 5.4. Assume the Standard Sefupl3.1 ang&-E. Let Bc HY/2(dM,E)
be a D-elliptic boundary condition. Let > 0 and assume that D is-coercive at
infinity. Then

{ze C| |2 < K} Nspegy Dgmax= 0.
If D and D* are k-coercive at infinity, then

{ze C| |7 < k} Nspeg;Dgmax=0.

Proof. For anyz € C, the operator® —zand(D — z)* = D* — zare of Dirac type
such that(D — Z)max = Dmax— Z and (D* — Z)max = Dj,ax— Z Moreover,B is a
(D — 2)-elliptic andB2? a (D* — Z)-elliptic boundary condition, one the adjoint of
the other. By the triangle inequality, D is k-coercive andz| < K, thenD — zis
(k — |z|)-coercive, and similarly fob* — z Thus Theorerh 513 applies. O

Corollary 5.5. Assume the Standard Sefupl 3.1, that E, and that D is formally
selfadjoint. Let B- HY/2(dM, E) be a selfadjoint D-elliptic boundary condition. If
D is k-coercive at infinity forsomek > 0, then Dy max is selfadjoint with

(—K,K)NspegsDp max= 0. O

Corollary 5.6. Assume the Standard Sefupl 3.1, that E, and that D is formally
selfadjoint. Let B- HY2(dM, E) be a selfadjoint D-elliptic boundary condition. If
D is k-coercive at infinity forall kK > O, then O max is selfadjoint with

spegssDB max= 0.

In particular, the eigenspaces of D are finite dimensionalpnpise L?-orthogonal,
and their sum spans?(M, E) in the sense of Hilbert spaces. Moreover, eigensec-
tions of D are smooth on M (up to the boundary). O
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Remark 5.7. If M is compact, thei is k-coercive at infinity for alk > 0. Hence
Corollary[5.6 applies iM is compact with boundary. On the other hand, the resol-
vent of Dg max IS compact in this case so that the decompositiohzoM,E) into
finite dimensional eigenspaces is also clear from this petie.

5.2. Coercivity with respect to a boundary condition. Now we discuss spectral
gaps ofD about 0. We get interesting results for Dirac operators engbnse of
Gromov and Lawson, see Appendix A.

Definition 5.8. For k > 0, we say thabD is k-coercive with respect to a boundary
condition Bif

K| Pl 2m) < [[DP]| 2wy,
for all ® € CZ(M,E;B).
In contrast to coercivity at infinity, the boundary conditiB is now crucial for the
concept of coercivity.

Corollary 5.9. Assume the Standard Sefupl 3.1, that E, and that D is formally
selfadjoint. Let B- HY2(dM, E) be a selfadjoint D-elliptic boundary condition. If
D is k-coercive with respect to B, far > 0, then Dz max is selfadjoint with

(—K,K)Nspedp max=0. O

Theorem 5.10. Assume the Standard Sefupl 3.1 with-FE and that

¢ D is a Dirac operator in the sense of Gromov and Lawson;

© B is a D-elliptic boundary condition;

¢ the canonical boundary operator AL (dM,E) — C*(dM, E) for D satisfies

for all ¢ € B, where H is the mean curvature H aloadM with respect to the
interior unit normal vector field/;
o the endomorphism field” in the Weitzeniick formula(9) satisfies#” > k > 0.

Then D is, / 1%;-coercive with respect to B. In particular, if B is selfadjbithen

(_ \/ %’ \/ %) mspeCDB,max: 0.
Proof. Forany® € CZ°(M, E; B) we have by[(26) and (27), again writigg= ®|yy,
"D [ (#o.B)av- [ (A-TH)9RdS> k|02 (20)
M oM

This proves, / 2 -coerciveness with respect B The statement on the spectrum
now follows from Corollary 5.B. O

Here are some boundary conditions for which Thedreml! 5.10espp

Example 5.11. Let x be a boundary chirality with associatBdelliptic boundary
conditionB., = HY2(dM,E*) as in Exampl€3.20. Fap, ¢ € By, we have
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Hence(A¢,y) =0, for all ¢,y € By, and similarly forB_y. If x anticommutes
with ap(v"), thenBy andB_, are selfadjoint boundary conditi¢hs-ence Theo-
rem[5.10 applies iH > 0. In the case of the classical Dirac operdibacting on
spinors, this yields the eigenvalue estimate in [HMR, Thin. 3

Example 5.12. The Atiyah-Patodi-Singer boundary condition

1/2
Baps = H(_/oo’o) (A)

is D-elliptic with adjoint boundary condition
Ba%s = Baps @ kerA.

HenceDg,,s max iS symmetric with(dimkerA, dimkerA) as index of deficiency.
If kerA is trivial, thenDg,, is selfadjoint and spdgg,.. C R. By definition of
Baps, We have(Ad, ¢) < —IJ1H¢HEz(,;M) for all ¢ € BapsWhere—p; is the largest
negative eigenvalue @. Hence Theorem 5.10 appliesHf > — % ;.

In the case of the classical Dirac operdioacting on spinors, this yields the eigen-
value estimate for the APS boundary conditionlin [HMR, Thiji.Nbte that the

assumption kel = 0 is missing in Theorem 2 of [HMRY]. In fact, if kéris nontriv-
ial, thenDg,,, is not selfadjoint and spé&¥s,. = C, compare[[Ka, Section V.3.4].

If we can choose a subspace kerAas in Theorern 3.12.2, thé&= H(lffo o(A)®

L is a selfadjoinD-elliptic boundary condition. We hav@¢,¢) <Oforall¢ € B
and Theorern 5.10 applieshf > 0.

Example 5.13. The modified APS boundary condition
Bmaps= {¢ € HY2(OM,E) | ¢ + ap(v')¢ € H'Z o (A)}
as in Examplé_3.22 iB-elliptic with adjoint condition
Bithps = {¢ € HY2(OM,E) | §(00) = —0b(V")P(_wo0) }
= Bmaps® kerA.

HenceDg, ,»smax iS Symmetric. The remaining part of the discussion is asén th
previous example, except that we have, @) =0, for all ¢, € Bﬁ]dAPS. In par-
ticular, Theoreni 5.10 applies if kAr= 0 andH > 0. In the case of the classical
Dirac operatoD acting on spinors, this yields the eigenvalue estimatée R
Thm. 5]. As in the case of the APS boundary condition, theirequent keA =0
needs to be added to the assumptions of Theorem 5 in [HMR].

Next we discuss under which circumstances the “extremabeil- | / 1 actually
belong to the spectrum. For this purpose, we make the fatigwi

Definition 5.14. Let D be a formally selfadjoint Dirac operator in the sense of
Gromov and Lawson with associated connectionA section® € C*(M,E) is
called aD-Killing sectionif

Ox®=a-op(X°)'® (21)

for some constantr € R and allX € TM. The constantr is called theKilling
constantof ®.

2If x commutes withop (v”), thenBy andB_y are adjoint to each other.
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Remarks 5.15.1) If D is the classical Dirac operator, then spinors satisfyidg) (2
are called Killing spinors. This motivates the terminology

2) Equation [(2l1) is overdetermined elliptic. Hence the texise of a nontrivial
solution imposes strong restrictions on the underlyinghggtoy. For instance, if a
Riemannian spin manifold carries a nontrivial Killing spinit must be Einstein
[Eril Thm. B]. Seel[B] for a classification of manifolds adtimg Killing spinors.

3) Any D-Killing section with Killing constanta is an eigensection dd for the
eigenvaluena:

DO = JZIGD(eﬁ)Dejqa —q- leao(Eﬁ)aD(eﬁ)*qn .

4) Any D-Killing section satisfies the twistor equatidn [28):
by * 1 by *
DXCD:G-O'D(X ) o= H-O'D(X ) Do.

5) Sinceap(X”) is skewhermitian, the connectidii = Cx — o - 0p(X’)* is also
a metric connection. Sind®-Killing sections are precisely-parallel sections, we
conclude that anfp-Killing section® has constant lengtj®|.

Theorem 5.16. In addition to the assumptions in Theorem 5.10 assume that M i
compact and that the boundary condition B is selfadjoint.

Then, /¥ € spe¢D) or —, /-%; € spe¢D) if and only if there is a nontrivial D-

Killing section® with ¢ = @[y € B and Killing constant, /2 or — /gy

respectively.

Proof. Let , /% € spe¢D), the case-, /% € spe¢D) being treated similarly.

n— n—

SinceM is compact, the spectral valug -*; must be an eigenvalue by Corol-

-
lary[5.5. Let® be an eigensection db for the eigenvalue /-*; satisfying the

boundary condition. Then we must have equality everywhere chain of in-
equalities[(Z2D). In particularP must solve the twistor equation (28). Hence

Ox® = $0p(X°)" DP = /7<g;0p(X")*®.

Conversely, if®d is aD-Killing section with Killing constan ﬁ then®is an

eigensection ob for the eigenvalug / 2%, by Remark5.1613. O

Example 5.17. Let M be the closed geodesic ball of radius (0O, 1) aboute; in
the unit spher&". The sectional curvature ™ is identically equal to 1, its scalar
curvature taa(n—1). The boundaryM is a round sphere of radius éin. Its mean
curvature with respect to the interior unit normal is givertb= cot(r).
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We consider the classical Dirac operator act-
ing on spinors. The restriction of the spinor
bundle to the boundary yields the spinor bun-
dle of the boundary ifiis odd and the sum of
two copies of the spinor bundle of the bound-
ary if nis even. Accordingly, the canonical
boundary operator is just the classical Dirac
operator of the boundary if is odd and the
direct sum of it and its negative if is even.
The kernel of the boundary operator is trivial.

Fic. 2

Theorem[5.10 applies with all the boundary conditions desdr in Exam-
pled5.11EL.T3 if < J because theH > 0. Therefore the spectrum of the Dirac op-
erator orM subject to any of these boundary conditions does not intefse), 3).
The largest negative Dirac eigenvalue of the boundary isrghw — i, = —%n(lr).
Since we have

AH = & cot(r) > — L sin(r) = —p,
Theoren 5.10 applies in the case of APS boundary conditiéraniple 5.1P) for
allr € (0,m).

The sphereS' and henceM do possess nontrivial Killing spinors for both Killing
constantsi%. The restriction of such a Killing spinor t8M never satisfies the
APS boundary conditions. Thus the equality case in Theardfh &oes not occur
and+3 cannot lie in the spectrum @ on M subject to APS conditions. Hence,
under APS boundary conditions and for ang (0, 1), the spectrum oD on M
does not intersedt-3, J].

The modified APS boundary conditions are satisfied by theicgehs of the
Killing spinors only ifr = Z. In this casej is an eigenvalue db on M.

APPENDIXA. DIRAC OPERATORS IN THE SENSE OKGROMOV AND LAWSON
Here we discuss an important subclass of Dirac-type opstdtimte that the con-
nection in Corollary 114 is not metric, in general.

Definition A.1. A formally selfadjoint operatoD : C*(M,E) — C*(M,E) of
Dirac type is called ®irac operator in the sense of Gromov and Lawsbtinere
exists a metric connection on E such that

1) D=3 ;op(€]) o U, for any local orthonormal tangent franie, . .. , &n);

2) the principal symbobp of D is parallel with respect tal and to the Levi-Civita
connection.

This is equivalent to the definition gfeneralized Dirac operators [GL| Sec. 1]
or to Dirac operators on Dirac bundlei [LM] Ch. Il, § 5].

Remark A.2. For a Dirac operator in the sense of Gromov and Lawson, the con
nection in Definition[A.d and the connection in the Weitzenbock fatan(9)
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coincide and is uniquely determined by these propertieswiWesall O the con-
nectionassociated with the Dirac operator.Moreover, the endomorphism field
¢ in the Weitzenbodck formula takes the form

I\)IH

Z o O'D RD(Q,EJ')
1
whereR" is the curvature tensor @f. See([GL, Prop. 2.5] for a proof.

Next, we show how to explicitly construct an adapted operatothe boundary
satisfying [1B) for a Dirac operator in the sense of Gromay laawson. Let] be
the associated connection. Along the boundary we define

Ao :=0op(V’) D -0, = op(v ;aD ) e, (22)

Here (ey,...,e,) is any local tangent frame fodM. Then Aq is a first order
differential operator acting on section &y, — JdM with principal symbol
op, (&) = op(V’)Lap(&) as required for an adapted boundary operator. From the
Weitzenbodck formula{9) we get, using Proposition 1.1 &yience foD and once

for O, for all ®,W € CT(M,E):

O:/M (D%, W) — (00, W) — (£ D,W)) dV
:/M ((DP,DW) — (0, W) — (D, W) dV

+ | (={o(v")D®,W) + (o5 (V) I®, ) dS. (23)

For the boundary contribution we have

—(0p(V")DP, W) + (0 (V) 0P, W) = (0p (V') DD, W) — (0P, o (V') W)
= (0p(V")ID®, W) — (Od, V" @ W)

= (0p(V’)ID®, W) — (0, D, W)

= (Ag®,W). (24)

Inserting [(24) into[(23) we get
/ ((D®,DW) — (000, OW) — (£, W)) dV = —/ (Aod,w)dS  (25)
M oM

where¢ := ®|5y andy := W|,u. Since the left hand side df (P5) is symmetric in
® and¥, the right hand side is symmetric as well, heAgas formally selfadjoint.
This shows tha#y is an adapted boundary operator Er

In general Ag does not anticommute witbip (v*) however. We will rectify this by
adding a suitable zero-order term. First, let us computeathieommutator of\g
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andap (V°):

{op(V"), Ao}t = ;O-D )0, ® + op(V’ EZGD )Oe; (0b(V’) )

- ;(omepmejqb+oD<vb>-1aD<e}*>aD<vb>Dej¢
=
+aD(vb)*loo(e]f)aD(Dejvb)¢)

1iaD(e]‘)oD(Dej V).
J:

Now [.v is the negative of the Weingarten map of the boundary witheetsto the
normal fieldv. We choose the orthonormal tangent frafeg .. ., &,) to consist of
eigenvectors of the Weingarten map. The correspondingheddigesks, . .., K, are
the principal curvaturesof dM. We get

S oo (€ De.b:—n e -eb-:n-:n—lH,
J;UD( 1)0p (O V) J;UD( 1)0p(Kj€) J;KJ (n—1)

whereH is themean curvaturef dM with respect tos. Therefore,

{op(V"),Aq} = (n—1)Hop(V’) "t = —(n—1)Hap (V).
Since clearly
{op(V"),(n—=1)H} =2(n—1)Hap(V’),
the operator
n—1

n—1
Ai=Po+—=H=0p(v') 'D—Dy+—H

is an adapted boundary operator Bbsatisfying [18). From(25) we also have
/ (DD, DY) — (b, OW) — (£ D, W)) dV :/ ("5EH — A)$,w)dS. (26)
M oM
Definition A.3. For a Dirac operatob in the sense of Gromov and Lawson as
above, we calA the canonical boundary operatdor D.

Remark A.4. The canonical boundary operatlis again a Dirac operator in the
sense of Gromov and Lawson. Namely, define a connectids| g by

0% == Ox¢ + 30p(v") Lop(Oxv)9.
The Clifford relations [(6) show that the termop(v’) top(0OxV’) =

ap (V') UD(DxV) is skewhermitian, henceél’ is a metric connection. By
(22), Ao = 3 ]_» 0n,(€]) 0 g, This, ga, = 0p, and

;0%(6T)Go(vb)*aD(Dej V) = — H
i=

A= EZO'A oDa

Moreover, a straightforward computation using the Gausston for the Levi-
Civita connectionglyx & = DQE —&(Ox v)vb shows thatp is parallel with respect
to the boundary connections’.

show that
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Remark A.5. The triangle inequality and the Cauchy-Schwarz inequaliiyw

n
DO = | Zl Dejq>| Z \UD DeJCD]
n ) n
Sn-Z’ ( Dejq)’ —n z )Dejq) Dejq)>
=1 =1
n
- |Oe,®° =n- |00|?, (27)
=1

for any orthonormal tangent frantey, ..., e,) and all® € C*(M,E).

When does equality hold? Equality in the Cauchy Schwarqdaéty implies that
all summandsop (€ 1 )Oe; @| are equal, i.eop( )Dejd)] |0b(€,)0e, ®@|. Equal-
ity in the triangle mequahty then |mpI|est(e*’)DeJ b= aD(eb)Deldbfor all j. Thus

(eb)DeldJ_ ZGD )0 @ == ch,

hencele, ® = 1ap(€])*D®. Sincee; is arbitrary, this shows thievistor equation
Ox® = Lop(X")* D, (28)

for all vector fieldsX on M. Conversely, if® solves the twistor equation, one sees
directly that equality holds in(27).

Inserting [(27) into[(26) yields
22 [ DoPav [ (#o.@)av [ (%5H-).9)ds

for all @ € CZ(M,E), where¢ := ®|,y. Moreover, equality holds if and only
solves the twistor equation (28).

APPENDIX B. PROOFS OF SOME AUXILIARY RESULTS
In this section we collect the proofs of some of the auxilisgults.

Proof of Propositio 13 We start by choosing an arbitrary connectioon E and
define _

D:C”(M,E) - C*(M,F), D®:= Y op(e ) Oe, P
ThenD has the same principal symbol Bsand, therefore, the difference:=

D — D s of order 0. In other wordsSis a field of homomorphisms frofa to F.

Since o is onto, the restrictions’ of o to the orthogonal complement of the
kernel of. is a fiberwise isomorphism. We put:= o7 ~1(S) and define a new
connection by

O:=0+V.
We compute
ZJ ODeJ Z op(e ODeJ+ZJUD JoV(e)
—D—Hsz( )

=D+S=D. O
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Proof of Propositio 21 L et O be any metric connection da. ThenF :=D*D —

00 is formally selfadjoint. Since bottD*D and 00, have the same principal
symbol —|&|?-id, the operatofF is of order at most one. Any other metric con-

nectiond on E is of the form O = 0 + B whereB is a 1-form with values in
skewhermitian endomorphisms Bf Hence

D'D=(0-B)"(0-B)+F=0'0-0B—-B'0+B*B+F.
=X

In general, 7" is of first order and we need to show that there is a unBsech
that.#" is of order zero. SincB*B is of order zero,”#" is of order zero if and only
if F —O0*B—B*0 is of order zero, i.e., if and only ¢ (§) = op+g.g-(&) for all
& € T*M. We compute, using a local tangent frame. .., e,,

(opgren(E), ) = ((00-(§)oB+B oan(é)) ¢, ¢)
=—(Bo,on(§)Y) +(on(§)9.ByY)
=—(Bp, s y)+ ({2 ¢,BY)
= (Y &®Beh.E DY) +(E@ 0, & Bay)

=—>(e,§)(Badb, )+ (&, &) (¢,Ba )
| |
=—(Bg:, ) +(9,Bg:p)
Hence,on-g48:0(&) = —2B;:. Thus, %" is of order O if and only if
Bx = —:—2L OF (Xb)
for all X € TM. Note thatog () is indeed skewhermitian becauBes formally
selfadjoint. a
Proof of Lemm&2Z]2SinceD is formally selfadjoint and of Dirac type,
—op(V") = 0p (V)" = op(v) "t (29)
by (T) and[(8). Le#\ be adapted t® alongdM andé € T dM, as usual extended
to T;M by &(v(x)) = 0. Then, again usin@1(6) and {(11),
Ono(&) + 0p(V(X)") 0 (§) T (V(X)’)*
= 0p(V(X)") *0p(&) + 0 (&) ap(V(X)")"
= 0p(V(X)’)*0p(&) + (&) o (V(X))
=2(v(x)’,&) -ide
=0.

Hence B:= A+ dp(V°)Aqop(V’)* is of order 0, that isSis a field of endomor-
phisms ofE alongdM. SinceAy is formally selfadjoint so iSand, by [29),

0p(V*)2S = 0p(V*)Ag+ Ag0p (V) = 2Sap (V).
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HenceA := Ag — Sis adapted t@® alongdM and

[AT]
[APS]
(B]
[BB]
[BB1]
[BB2]
[BBC]
[BW]
[Fr]
[Fri]
[Gi]
[GL]
[GN]

[Hi]
[HMR]

[Ka]
[LM]

[Pa]

[Ro]

[Se]

[Ta]

0p(V’)A+ Adp(V’) = 0p(V")Ag+ Agp (V) — 0p(V*)S— Sop (V’)
= 0p(V") (Ao — 0p(V")Ag0p (V") — 25)

= 0p (V") (Ao + 0p (V") Ao (V)" — 29)
=0. U
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