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GUIDE TO BOUNDARY VALUE PROBLEMS
FOR DIRAC-TYPE OPERATORS

CHRISTIAN BÄR AND WERNER BALLMANN

Dedicated to the memory of Friedrich Hirzebruch

ABSTRACT. We present an introduction to boundary value problems for Dirac-
type operators on complete Riemannian manifolds with compact boundary. We
introduce a very general class of boundary conditions whichcontains local el-
liptic boundary conditions in the sense of Lopatinskij and Shapiro as well as the
Atiyah-Patodi-Singer boundary conditions. We discuss boundary regularity of
solutions and also spectral and index theory. The emphasis is on providing the
reader with a working knowledge.

INTRODUCTION

Boundary value problems for elliptic differential equations of second order, such
as the Dirichlet problem for harmonic functions, have been the object of intense
investigation since the 19th century. For a large class of such problems, the analysis
is by now classical and well understood. There are numerous applications in and
outside mathematics.

The situation is much less satisfactory for boundary value problems for first-order
elliptic differential operators such as the Dirac operator. Let us illustrate the phe-
nomena that arise with the elementary example of holomorphic functions on the
closed unit diskD ⊂ C. Holomorphic functions are the solutions of the elliptic
equation∂̄ f = 0. The real and imaginary parts off are harmonic and they deter-
mine each other up to a constant. Thus for most smooth functions g : ∂D → C,
the Dirichlet problem∂̄ f = 0, f |∂D = g, is not soluble. Hence such a boundary
condition is too strong for first-order operators.

Ideally, a “good” boundary condition should ensure that theequation ∂̄ f = h
has a unique solution for givenh. At least we want to have that the kernel and
the cokernel of∂̄ become finite dimensional, more precisely, that∂̄ becomes a
Fredholm operator. If we expand the boundary values off in a Fourier series,
f (eit ) = ∑∞

k=−∞ akeikt , then we seea−1 = a−2 = . . .= 0 because otherwisef would
have a pole atz= 0. Therefore it suffices to imposea0 = a1 = a2 = . . .= 0 to make
the kernel trivial. Similarly, imposingak = ak+1 = ak+2 = . . .= 0 would make the
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kernelk-dimensional. These are typical examples for the nonlocal boundary con-
ditions that one has to consider when dealing with elliptic operators of first order.

A major break-through towards a general theory was achievedin the seminal arti-
cle [APS], where Atiyah, Patodi and Singer obtain an index theorem for a certain
class of first order elliptic differential operators on compact manifolds with bound-
ary. This work lies at the heart of many investigations concerning boundary value
problems andL2-index theory for first order elliptic differential operators.

The aim of the present paper is to provide an introduction to the general theory of
boundary value problems for Dirac-type operators and to give the reader a sound
working knowlegde of this material. To a large extent, we follow [BB] where all
details are worked out but, due to its length and technical complexity, that article
may not be a good first start. Results which we only cite here are marked by a�.
The present paper also contains new additions to the resultsin [BB]; they are given
full proofs, terminated by a�.

After some preliminaries on differential operators in Section 1, we discuss Dirac-
type operators in Section 2. An important class consists of Dirac operators in the
sense of Gromov and Lawson [GL, LM] associated to Dirac bundles. In Section 3,
we introduce boundary value problems for Dirac-type operators as defined in [BB].
We discuss their regularity theory. For instance, Theorem 3.9 applied to∂̄ tells us,
that, for givenh ∈ C∞(D,C), any solution f of ∂̄ f = h satisfying the boundary
conditions described above will be smooth up to the boundary. We explain that the
classical examples, like local elliptic boundary conditions in the sense of Lopatin-
sky and Shapiro and the boundary conditions introduced by Atiyah, Patodi, and
Singer, belong to our class of boundary value problems. There are also examples
which cannot be described by pseudo-differential operators. The index theory for
boundary value problems is the topic of Section 4. In general, we assume that the
underlying manifoldM is a complete, not necessarily compact, Riemannian man-
ifold with compact boundary. We discuss coercivity conditions which ensure the
Fredholm property also for noncompactM. In Section 5, we investigate the spectral
theory associated to boundary conditions.

1. PRELIMINARIES

Let M be a Riemannian manifold with compact boundary∂M and interior unit
normal vector fieldν along∂M. The Riemannian volume element onM will be
denoted by dV, the one on∂M by dS. Denote the interior part ofM by M̊.

For a vector bundleE over M denote byC∞(M,E) the space of smooth sections
of E and byC∞

c (M,E) andC∞
cc(M,E) the subspaces ofC∞(M,E) which consist of

smooth sections with compact support inM andM̊, respectively. LetL2(M,E) be
the Hilbert space (of equivalence classes) of square-integrable sections ofE and
L2

loc(M,E) be the space of locally square-integrable sections ofE. For any integer
k≥ 0, denote byHk

loc(M,E) the space of sections ofE which have weak derivatives
up to orderk (with respect to some or any connection onE) that are locally square-
integrable.
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1.1. Differential operators. Let E andF be Hermitian vector bundles overM and

D : C∞(M,E)→C∞(M,F)

be a differential operator of order (at most)ℓ from E to F . For simplicity, we only
consider the case of complex vector bundles. IfD acts on real vector bundles one
can complexify and thus reduce to the complex case.

Denote byD∗ the formal adjointof D. This is the unique differential operator of
order (at most)ℓ from F to E such that

∫

M
〈DΦ,Ψ〉dV =

∫

M
〈Φ,D∗Ψ〉dV,

for all Φ ∈C∞
cc(M,E) andΨ ∈C∞(M,F). We say thatD is formally selfadjointif

E = F andD = D∗.

ConsiderD as an unbounded operator,Dcc, from L2(M,E) to L2(M,F) with do-
main domDcc = C∞

cc(M,E), and similarly forD∗. Theminimal extension Dmin of
D is obtained by taking the closure of the graph ofDcc in L2(M,E)⊕ L2(M,F).
In other words,Φ ∈ L2(M,E) belongs to the domain domDmin of Dmin if there is
a sequence(Φn) in C∞

cc(M,E) which converges toΦ in L2(M,E) such that(DΦn)
is a Cauchy sequence inL2(M,F); then we setDminΦ := limn DΦn. By defini-
tion, C∞

cc(M,E) is dense in domDmin with respect to the graph norm ofDmin. The
maximal extension Dmax of D is defined to be the adjoint operator ofD∗

cc, that
is, Φ in L2(M,E) belongs to the domain domDmax of Dmax if there is a section
Ξ ∈ L2(M,F) such thatDΦ = Ξ in the sense of distributions:

∫

M
〈Ξ,Ψ〉dV =

∫

M
〈Φ,D∗Ψ〉dV,

for all Ψ ∈ C∞
cc(M,F); then we setDmaxΦ := Ξ. In other words,(Φ,−Ξ) is per-

pendicular to the graph ofD∗
cc in L2(M,E)⊕ L2(M,F). Equivalently,(Φ,−Ξ) is

perpendicular to the graph ofD∗
min in L2(M,E)⊕L2(M,F). It is easy to see that

Dmin ⊂ Dmax

in the sense that domDmin ⊂ domDmax andDmax|domDmin = Dmin. By definition,
Dmin andDmaxareclosed operators, meaning that their graphs are closed subspaces
of L2(M,E)⊕L2(M,F). Hence thegraph norm, that is, the norm associated to the
scalar product

(Φ,Ψ)D :=
∫

M
(〈Φ,Ψ〉+ 〈DmaxΦ,DmaxΨ〉)dV,

turns domDmin and domDmax into Hilbert spaces. Boundary value problems in our
sense are concerned with closed operators lying betweenDmin andDmax.

1.2. The principal symbol. For a differential operatorD from E to F of order (at
most)ℓ as above, there is a fieldσD : (T∗M)ℓ → Hom(E,F) of symmetricℓ-linear
maps, theprincipal symbolσD of D, defined by theℓ-fold commutator1

σD(d f1, . . . ,d fℓ) :=
1
ℓ!
[. . . [D, f1], . . . , fℓ],

for all f1, . . . , fℓ ∈C∞(M,R). In the caseℓ= 1, this means that

D( f Φ) = σD(d f)Φ+ f DΦ,

1Here[D, f ] = D◦ ( f · idE)− ( f · idF)◦D.
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for all f ∈ C∞(M,R) andΦ ∈ C∞(M,E). The principal symbolσD vanishes pre-
cisely at those points where the order ofD is at mostℓ−1. The principal symbol
of D∗ is

σD∗(ξ1, . . . ,ξk) = (−1)ℓσD(ξ1, . . . ,ξℓ)∗, (1)

for all ξ1, . . . ,ξℓ ∈ T∗M. SinceσD is symmetric inξ1, . . . ,ξℓ, it is determined by its
values along the diagonal; we useσD(ξ ) as a shorthand notation forσD(ξ , . . . ,ξ ).
Then we have, for allξ ∈ T∗M,

σD1D2(ξ ) = σD1(ξ )◦σD2(ξ ) (2)

for the principal symbol of the composition of differentialoperatorsD1 of orderℓ1

andD2 of orderℓ2.

The Riemannian metric induces a vector bundle isomorphismTM → T∗M, X 7→
X♭, defined by〈X,Y〉 = X♭(Y) for all Y. The inverse isomorphismT∗M → TM is
denoted byξ 7→ ξ ♯.

Proposition 1.1(Green’s formula). Let D be a differential operator from E to F of
order one. Then we have, for allΦ ∈C∞

c (M,E) andΨ ∈C∞
c (M,F),

∫

M
〈DΦ,Ψ〉dV =

∫

M
〈Φ,D∗Ψ〉dV−

∫

∂M
〈σD(ν♭)Φ,Ψ〉dS. �

For a proof see e.g. [Ta, Prop. 9.1, p. 160].

Examples 1.2.By definition, a connection∇ on E is a differential operator from
E to T∗M⊗E of order one such that[∇, f ](Φ) = d f ⊗Φ. We obtain

σ∇(ξ )(Φ) = ξ ⊗Φ and σ∇∗(ξ )(Ψ) =−Ψ(ξ ♯). (3)

Hence all connections onE have the same principal symbol reflecting the fact that
the difference of two connections is of order zero.

There are two natural differential operators of order two associated to∇, the second
covariant derivative∇2 with principal symbol

σ∇2(ξ )(Φ) = ξ ⊗ξ ⊗Φ (4)

and the connection Laplacian∇∗∇ with principal symbol

σ∇∗∇(ξ )(Φ) =−|ξ |2Φ, (5)

and both, (4) and (5), are in agreement with (2) and (3).

1.3. Elliptic operators. We say thatD is elliptic if σD(ξ ) : Ex → Fx is an isomor-
phism, for allx∈ M and nonzeroξ ∈ T∗

x M. In the above examples,∇, ∇∗, and∇2

are not elliptic; in fact, the involved bundles have different rank. On the other hand,
the connection Laplacian is elliptic, by (5).

Suppose thatD is elliptic. Then interior elliptic regularity says that, for any
given integerk ≥ 0, Φ ∈ domDmax is contained inHk+ℓ

loc (M̊,E) if DmaxΦ belongs
to Hk

loc(M̊,F). In particular, if Φ ∈ domDmax satisfiesDmaxΦ ∈ C∞(M̊,F), then
Φ ∈C∞(M̊,E).

If M is closed andD is elliptic and formally selfadjoint, then the eigenspacesof D
are finite-dimensional, contained inC∞(M,E), pairwise perpendicular with respect
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to theL2-product, and spanL2(M,E). As an example, the connection Laplacian is
elliptic and formally selfadjoint.

For any differential operatorD : C∞(M,E)→C∞(M,F) of order one, consider the
fiberwise linear bundle map

AD : T∗M⊗Hom(E,E)→ Hom(E,F), V 7→ ∑ j
σD(e

∗
j )◦V(ej).

Here (e1, . . . ,en) is any local tangent frame and(e∗1, . . . ,e
∗
n) its associated dual

cotangent frame ofM. Note thatAD does not depend on the choice of frame.

Proposition 1.3. Let D: C∞(M,E)→C∞(M,F) be a differential operator of order
one such thatAD is onto. Then there exists a connection∇ on E such that

D = ∑ j
σD(e

∗
j )◦∇ej ,

for any local tangent frame(e1, . . . ,en) and the associated dual cotangent frame
(e∗1, . . . ,e

∗
n) of M.

The proof can be found in Appendix B.

If D is elliptic, AD is onto: givenU ∈ Hom(E,F) putV(e2) = . . .=V(en) = 0 and
V(e1) = σD(e∗1)

−1◦U , for instance. Hence Proposition 1.3 applies and we have

Corollary 1.4. Let D : C∞(M,E)→C∞(M,F) be an elliptic differential operator
of order one. Then there exists a connection∇ on E such that

D = ∑ j
σD(e

∗
j )◦∇ej ,

for any local tangent frame(e1, . . . ,en) and the associated dual cotangent frame
(e∗1, . . . ,e

∗
n) of M. �

In the special case of Dirac-type operators (see definition below), this corollary
is [AT, Lemma 2.1]. Proposition 1.3 is also useful for nonelliptic operators. For
instance, it applies to Dirac-type operators on Lorentzianmanifolds; these are hy-
perbolic instead of elliptic.

2. DIRAC-TYPE OPERATORS

From now on we concentrate on an important special class of first-order elliptic
operators.

2.1. Clifford relations and Dirac-type operators. We say that a differential op-
eratorD : C∞(M,E)→C∞(M,F) of order one is ofDirac typeif its principal sym-
bol σD satisfies theClifford relations,

σD(ξ )∗σD(η)+σD(η)∗σD(ξ ) = 2〈ξ ,η〉 · idEx, (6)

σD(ξ )σD(η)∗+σD(η)σD(ξ )∗ = 2〈ξ ,η〉 · idFx, (7)

for all x∈ M andξ ,η ∈ T∗
x M.

The classical Dirac operator on a spin manifold is an important example. More gen-
erally, the class of Dirac-type operators contains Dirac operators on Dirac bundles
as in [LM, Ch. II,§ 5].
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By (1), if D is of Dirac type, then so isD∗. Furthermore, by (6) and (7), Dirac-type
operators are elliptic with

σD(ξ )−1 = |ξ |−2σD(ξ )∗, for all nonzeroξ ∈ T∗M. (8)

If D is a formally selfadjoint operator of Dirac type onE, then the endomorphisms
σD(ξ ) are skewhermitian,ξ ∈ T∗M. In this case, the Clifford relations (6) and (7)
may be spelled out as

σD(ξ )σD(η)+σD(η)σD(ξ ) =−2〈ξ ,η〉 · idEx,

for all x∈ M andξ ,η ∈ T∗
x M. In other words, the principal symbol turnsE into a

bundle of modules over the Clifford algebras Cliff(T∗M).

Proposition 2.1 (Weitzenböck formula). Let D : C∞(M,E) → C∞(M,F) be of
Dirac type. Then there exists a unique metric connection∇ on E with

D∗D = ∇∗∇+K , (9)

whereK is a field of symmetric endomorphisms of E.

See Appendix B for the proof. For special choices forD, this formula is also known
as Bochner formula, Bochner-Kodaira formula or Lichnerowicz formula.

In general, the connections in Corollary 1.4 and Proposition 2.1 do not coincide.

2.2. Adapted operators on the boundary. Suppose from now on thatD is of
Dirac type. Forx∈ ∂M, identify T∗

x ∂M with the space of covectorsξ in T∗
x M such

thatξ (ν(x)) = 0. Then, by (6) and (8),

σD(ν(x)♭)−1◦σD(ξ ) : Ex → Ex (10)

is skewhermitian, for allx∈ ∂M andξ ∈ T∗
x ∂M. Hence there exist formally self-

adjoint differential operatorsA : C∞(∂M,E)→C∞(∂M,E) of first order with prin-
cipal symbol

σA(ξ ) = σD(ν(x)♭)−1◦σD(ξ ). (11)

We call such operatorsadaptedto D. Note that such an operatorA is also of Dirac
type and that the zero order term ofA is only unique up to addition of a field of
hermitian endomorphisms ofE. By (1) and (10) applied toD∗, the principal symbol
of an operator̃A adapted toD∗ is

σÃ(ξ ) = (−σD(ν(x)♭)−1)∗ ◦ (−σD(ξ ))∗ = σD(ν(x)♭)◦σD(ξ )∗.

By (11), this implies

σÃ(ξ ) = σD(ν(x)♭)◦ (σD(ν(x)♭)◦σA(ξ ))∗

= σD(ν(x)♭)◦σA(ξ )∗ ◦σD(ν(x)♭)∗

= σD(ν(x)♭)◦σ−A(ξ )◦σD(ν(x)♭)−1.

Hence, ifA is adapted toD, then

Ã= σD(ν♭)◦ (−A)◦σD(ν♭)−1 (12)

is adapted toD∗. GivenA, this choice ofÃ is the most natural one.
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2.3. Formally selfadjoint Dirac-type operators. If the Dirac-type operatorD is
formally selfadjoint, then there is a particularly useful choice of adapted boundary
operatorA.

Lemma 2.2. Let D : C∞(M,E)→C∞(M,E) be a formally selfadjoint operator of
Dirac type. Then there is an operator A adapted to D along∂M such thatσD(ν♭)
anticommutes with A,

σD(ν♭)◦A=−A◦σD(ν♭). (13)

See Appendix B for the proof.

Remarks 2.3. 1) The operatorA in Lemma 2.2 is unique up to addition of a field
of symmetric endomorphisms ofE along∂M which anticommutes withσD(ν♭).
2) If A anticommutes withσD(ν♭), thenσD(ν♭) induces isomorphisms between the
±λ -eigenspaces ofA, for all λ ∈ R. In particular, kerA is invariant underσD(ν♭)
and theη-invariant ofA vanishes. Moreover,

ω(ϕ ,ψ) := (σD(ν♭)ϕ ,ψ)L2(∂M)

is a nondegenerate skewhermitian form on kerA (and also onL2(∂M,E)).

3. BOUNDARY VALUE PROBLEMS

In this section we will study boundary value problems. This will be done under the
following

Standard Setup 3.1.
⋄ M is a complete Riemannian manifold with compact boundary∂M;
⋄ ν is the interior unit normal vector field along∂M;
⋄ E andF are Hermitian vector bundles overM;
⋄ D : C∞(M,E)→C∞(M,F) is a Dirac-type operator;
⋄ A : C∞(∂M,E)→C∞(∂M,E) is a boundary operator adapted toD.

3.1. Spectral subspaces.If A is adapted toD, thenA is a formally selfadjoint
elliptic operator over the compact manifolds∂M. Hence we have, in the sense of
Hilbert spaces,

L2(∂M,E) =⊕ j C ·ϕ j ,

where(ϕ j) is an orthonormal basis ofL2(∂M,E) consisting of eigensections ofA,
Aϕ j = λ jϕ j . In terms of such an orthonormal basis, the Sobolev spaceHs(∂M,E),
s∈ R, consists of all sections

ϕ = ∑ j
a jϕ j such that ∑ j

|a j |2(1+λ 2
j )

s < ∞,

whereL2(∂M,E) = H0(∂M,E). The natural pairing

Hs(∂M,E)×H−s(∂M,E)→ C,
(
∑ j a jϕ j ,∑ j b jϕ j

)
= ∑ j ā jb j , (14)

is perfect, for alls∈ R. By the Sobolev embedding theorem,

C∞(∂M,E) =
⋂

s∈R
Hs(∂M,E).

Rellich’s embedding theorem says that fors1 > s2 the embedding

Hs1(∂M,E) →֒ Hs2(∂M,E)
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is compact. We also set

H−∞(∂M,E) :=
⋃

s∈R
Hs(∂M,E).

For I ⊂ R, let QI be the associated spectral projection,

QI : ∑ j a jϕ j 7→ ∑λ j∈I a jϕ j . (15)

ThenQI is orthogonal and mapsHs(∂M,E) to itself, for alls∈ R. Set

Hs
I (A) := QI(H

s(∂M,E))⊂ Hs(∂M,E).

For a∈ R, define the hybrid Sobolev spaces

Ȟ(A) := H1/2
(−∞,a)(A)⊕H−1/2

[a,∞) (A), (16)

Ĥ(A) := H−1/2
(−∞,a)(A)⊕H1/2

[a,∞)(A). (17)

Note that, as topological vector spaces,Ȟ(A) andĤ(A) do not depend on the choice
of a. In particular,

Ĥ(A) = Ȟ(−A).

Moreover, the natural pairing

Ȟ(A)× Ȟ(−A)→ C,
(
∑ j

a jϕ j ,∑ j
b jϕ j

)
=∑ j

ā jb j ,

is perfect, compare (14).

3.2. The maximal domain. Following [BB, Cor. 6.6, Thm. 6.7, Prop. 7.2], we
now discuss properties of the maximal domain ofD.

Theorem 3.2. Assume the Standard Setup 3.1. Then the domain of Dmax, equipped
with the graph norm topology, has the following properties:

1) C∞
c (M,E) is dense indomDmax;

2) the trace mapRΦ := Φ|∂M on C∞
c (M,E) extends uniquely to a continuous sur-

jectionR : domDmax→ Ȟ(A);

3) domDmin = {Φ ∈ domDmax | RΦ = 0}. In particular, R induces an isomor-
phism

Ȟ(A)∼= domDmax/domDmin;

4) for any closed subspace B⊂ Ȟ(A), the operator DB,max with domain

domDB,max= {Φ ∈ domDmax | RΦ ∈ B}
is a closed extension of D between Dmin and Dmax, and any closed extension of D
between Dmin and Dmax is of this form;

5) for all Φ ∈ domDmax andΨ ∈ domD∗
max,∫

M
〈DmaxΦ,Ψ〉dV =

∫

M
〈Φ,D∗

maxΨ〉dV−
∫

∂M
〈σD(ν♭)RΦ,RΨ〉dS. �

Remark 3.3. As a topological vector space,̌H(A) does not depend on the choice
of adapted operatorA, by Theorem 3.2.3. The pairing in Theorem 3.2.5 is well
defined becauseσD(ν♭) mapsȞ(A) to Ĥ(A) by (12).
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Theorem 3.4 (Boundary regularity I, [BB, Thm. 6.11]). Assume the Standard
Setup 3.1. Let k≥ 0 be an integer andΦ ∈ domDmax. Then

Φ ∈ Hk+1
loc (M,E)⇐⇒ DΦ ∈ Hk

loc(M,F) and Q[0,∞)RΦ ∈ Hk+1/2(∂M,E).

In particular,

Φ ∈ H1
loc(M,E)⇐⇒ Q[0,∞)RΦ ∈ H1/2(∂M,E). �

Note thatQ[0,∞)RΦ ∈ H1/2(∂M,E) if and only if RΦ ∈H1/2(∂M,E), by (16) and
Theorem 3.2.2.

3.3. Boundary conditions. Theorem 3.2.4 justifies the following

Definition 3.5. A boundary conditionfor D is a closed subspace ofȞ(A).

In the notation of Theorem 3.2.3, we writeDB,max for the operator with boundary
values in a boundary conditionB. This differs from the notation of Atiyah-Patodi-
Singer and others, who would use a projectionP with kerP= B to writePRΦ = 0.

Theorem 3.6 (The adjoint operator, [BB, Sec. 7.2]). Assume the Standard
Setup 3.1 and that B⊂ Ȟ(A) is a boundary condition. Let̃A be adapted to D∗.
Then

Bad := {ψ ∈ Ȟ(Ã) | (σD(ν♭)ϕ ,ψ) = 0, for all ϕ ∈ B}
is a closed subspace of̌H(Ã), that is, it is a boundary condition for D∗. Moreover,
the adjoint operator of DB,max is the operator D∗Bad,max. �

3.4. D-elliptic boundary conditions. ForV ⊂ H−∞(∂M,E) ands∈ R, let

Vs :=V ∩Hs(∂M,E)).

For subspacesV,W ⊂ L2(∂M,E), we say that a bounded linear operatorg : V →W
is of order zeroif

g(Vs)⊂Ws,

for all s≥ 0. For example, spectral projectionsQI as in (15) are of order zero.

Definition 3.7. A linear subspaceB ⊂ H1/2(∂M,E) is said to be aD-elliptic
boundary conditionif there is anL2-orthogonal decomposition

L2(∂M,E) =V−⊕W−⊕V+⊕W+ (18)

such that
B=W+⊕{v+gv | v∈V1/2

− },
where
1)W− andW+ are finite-dimensional and contained inC∞(∂M,E);
2)V−⊕W− ⊂ L2

(−∞,a](A) andV+⊕W+ ⊂ L2
[−a,∞)(A), for somea∈R;

3) g : V− →V+ and its adjointg∗ : V+ →V− are operators of order 0.

Remarks 3.8. 1) D-elliptic boundary conditions are closed iňH(A), and hence
they are boundary conditions in the sense formulated further up.
2) If B is aD-elliptic boundary condition anda∈R is given, then the decomposition
(18) can be chosen such that

V−⊕W− = L2
(−∞,a)(∂M,E) and V+⊕W+ = L2

[a,∞)(∂M,E).



10 CHRISTIAN BÄR AND WERNER BALLMANN

3) If B is aD-elliptic boundary condition, thenBad is D∗-elliptic. In fact, usingÃ
as in (12), we get

Bad= σD(ν♭)
(
W−⊕{v−g∗v | v∈V1/2

+ }
)
. (19)

Theorem 3.9 (Boundary regularity II, [BB, Thm. 7.17]). Assume the Standard
Setup 3.1 and that B⊂ Ȟ(A) is a D-elliptic boundary condition. Then

Φ ∈ Hk+1
loc (M,E)⇐⇒ DB,maxΦ ∈ Hk

loc(M,F),

for all Φ ∈ domDB,max and integers k≥ 0. In particular, Φ ∈ domDB,max is smooth
up to the boundary if and only if DΦ is smooth up to the boundary. �

Theorem 3.10. Assume the Standard Setup 3.1 and that B⊂ Ȟ(A) is a D-elliptic
boundary condition. Then

C∞
c (M,E;B) := {Φ ∈C∞

c (M,E) | R(Φ) ∈ B}
is dense indomDB,max with respect to the graph norm.

Proof. Choose a representation ofB as in Remark 3.8.2. SinceW− is finite dimen-
sional and contained inC∞(∂M,E), we get thatV− ∩C∞(∂M,E) is dense inV−,
and similarly forV+. Sinceg is of order 0, we conclude that

{v+gv | v∈V1/2
− }∩C∞(∂M,E)

is dense in{v+gv | v∈V1/2
− }. HenceB∩C∞(∂M,E) is dense inB.

Let Φ ∈ domDB,max and setϕ := RΦ. Choose an extension operatorE as in (43)
in [BB]. Then Ψ := Φ− E ϕ vanishes along∂M, and henceΨ ∈ domDmin, by
Theorem 3.2.3. ThereforeΨ is the limit of smooth sections inC∞

cc(M,E), by the
definition ofDmin.

It remains to show thatE ϕ can be approximated by smooth sections in
C∞(M,E;B). As explained in the beginning of the proof, there is a sequence (ϕn)
in B∩C∞(∂M,E) converging toϕ . ThenE ϕn ∈C∞(M,E;B) andE ϕn → E ϕ with
respect to the graph norm, by Lemma 5.5 in [BB]. �

3.5. Selfadjoint D-elliptic boundary conditions. Assume the Standard
Setup 3.1, thatE = F and thatD is formally selfadjoint. ChoosẽA as in (12). Let
B⊂ H1/2(∂M,E) be aD-elliptic boundary condition. ThenDBad,max is the adjoint
operator ofDB,max, whereBad is given by (19). In particular,DB,max is selfadjoint
if and only if B is selfadjoint, that is, if and only ifB= Bad.

Note thatBad is the image of theL2-orthogonal complement ofB in H1/2(∂M,E)
underσD(ν♭). HenceB = Bad if and only if σD(ν♭) interchangesB with its L2-
orthogonal complement inH1/2(∂M,E).

Theorem 3.11.Assume the Standard Setup 3.1, that E= F and that D is formally
selfadjoint. Let B be a selfadjoint D-elliptic boundary condition.

Then D is essentially selfadjoint on

C∞
c (M,E;B) = {Φ ∈C∞

c (M,E) | RΦ ∈ B},
and the closure of D on C∞c (M,E;B) is DB,max.
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Proof. By Theorem 3.10,C∞
c (M,E;B) is dense in domDB,max. �

The following result adapts and extends Theorem 1.83 in [BBC] to D-elliptic
boundary conditions as considered here.

Theorem 3.12(Normal form forB). Assume the Standard Setup 3.1, that E= F
and that D is formally selfadjoint. Suppose thatσD(ν♭) anticommutes with A. Then
a D-elliptic boundary condition B is selfadjoint if and onlyif there is

1) an orthogonal decomposition L2
(−∞,0)(A) = V ⊕W, where W is a finite dimen-

sional subspace of C∞(∂M,E),
2) an orthogonal decompositionkerA= L⊕σD(ν♭)L,
3) and a selfadjoint operator g: V ⊕L →V ⊕L of order zero such that

B= σD(ν♭)W⊕{v+σD(ν♭)gv | v∈V1/2⊕L}. �

Remarks 3.13. 1) In Theorem 3.12, the case kerA= {0} is not excluded. In this
latter case, the representation ofB as in Theorem 3.12 is unique sinceV =Q(−∞,0)B
andW is the orthogonal complement ofV in L2

(−∞,0)(A).
2) Theorem 3.12.2 excludes the existence of selfadjoint boundary conditions in
the case where kerA is of odd dimension. Conversely, if dimkerA is even and the
eigenvaluesi and−i of σD(ν♭) have equal multiplicity, then selfadjoint boundary

conditions exist. A simple example isH1/2
(−∞,0)(A)⊕ L, whereL is a subspace of

kerA as in Theorem 3.12.2.
3) Let E, D, andA be the complexification of a Riemannian vector bundle, a for-
mally selfadjoint real Dirac-type operator, and a real boundary operatorAR, respec-
tively. ThenσD(ν♭) turns the real kernel ker(AR) into a symplectic vector space.
It follows that the complexificationL of any Lagrangian subspace of ker(AR) will
satisfy kerA= L⊕σD(ν♭)L, and hence selfadjoint elliptic boundary conditions ex-
ist, by the previous remark.
4) First attempts have been made to relax the condition of compactness of∂M. The
results in [GN] apply to the Dirac operator associated with aspinc structure when
M and∂M are complete and geometrically bounded in a suitable sense.

3.6. Local and pseudo-local boundary conditions.Throughout this section, we
let M be a complete Riemannian manifold with compact boundary,E andF be
Hermitian vector bundles overM, andD be a Dirac-type operator fromE to F.

Definition 3.14. We say that a linear subspaceB⊂ H1/2(∂M,E) is a local bound-
ary conditionif there is a (smooth) subbundleE′ ⊂ E|∂M such that

B= H1/2(∂M,E′).

More generally, we say thatB is pseudo-localif there is a classical pseudo-
differential operatorP of order 0 acting on sections ofE over∂M which induces
an orthogonal projection onL2(∂M,E) such that

B= P(H1/2(∂M,E)).

Theorem 3.15 (Characterization of pseudo-local boundary conditions, [BB,
Thm. 7.20]). Assume the Standard Setup 3.1. Let P be a classical pseudo-
differential operator of order zero, acting on sections of Eover∂M. Suppose that P
induces an orthogonal projection in L2(∂M,E). Then the following are equivalent:
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(i) B = P(H1/2(∂M,E)) is a D-elliptic boundary condition.

(ii) For some (and then all) a∈ R,

P−Q[a,∞) : L2(∂M,E)→ L2(∂M,E)

is a Fredholm operator.

(iii) For some (and then all) a∈ R,

P−Q[a,∞) : L2(∂M,E)→ L2(∂M,E)

is an elliptic classical pseudo-differential operator of order zero.

(iv) For all ξ ∈ T∗
x ∂M \ {0}, x∈ ∂M, the principal symbolσP(ξ ) : Ex → Ex re-

stricts to an isomorphism from the sum of the eigenspaces forthe negative eigen-
values of iσA(ξ ) onto its imageσP(ξ )(Ex). �

Remark 3.16. The projectionP is closely related to the Calderón projectorP

studied in the literature, see e.g. [BW]. If the Calderón projector is chosen selfad-
joint as described in [BW, Lemma 12.8], thenP= id−P satisfies the conditions
in Theorem 3.15.

Our concept ofD-elliptic boundary conditions covers in particular that ofclassical
elliptic boundary conditions in the sense of Lopatinsky andShapiro [Gi, Sec. 1.9].

Corollary 3.17 ([BB, Cor. 7.22]). Let E′ ⊂E|∂M be a subbundle and P: E|∂M →E′

be the fiberwise orthogonal projection. If(D, id−P) is an elliptic boundary value
problem in the classical sense of Lopatinsky and Shapiro, then B= H1/2(∂M,E′)
is a local D-elliptic boundary condition. �

As a direct consequence of Theorem 3.15 (iv) we obtain

Corollary 3.18. Let E|∂M = E′ ⊕ E′′ be a decomposition such thatσA(ξ ) =
σD(ν♭)−1σD(ξ ) interchanges E′ and E′′, for all ξ ∈ T∗∂M. Then B′ :=
H1/2(∂M,E′) and B′′ := H1/2(∂M,E′′) are local D-elliptic boundary condi-
tions. �

This corollary applies, in particular, ifA itself interchanges sections ofE′ andE′′.

3.7. Examples. In this section, we discuss some important elliptic boundary con-
ditions.

Example 3.19(Differential forms). Let

E =
n⊕

j=0

Λ jT∗M = Λ∗T∗M

be the sum of the bundles ofC-valued alternating forms overM. The Dirac-type
operator is given byD = d+d∗, whered denotes exterior differentiation.

As before,ν is the interior unit normal vector field along the boundary∂M andν♭

the associated unit conormal one-form. For eachx∈ ∂M and 0≤ j ≤ n, we have a
canonical identification

Λ jT∗
x M =

(
Λ jT∗

x ∂M
)
⊕
(
ν♭(x)∧Λ j−1T∗

x ∂M
)
, ϕ = ϕ tan+ν♭∧ϕnor.
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The local boundary condition corresponding to the subbundle E′ := Λ∗∂M ⊂ E|∂M
is called theabsolute boundary condition,

Babs= {ϕ ∈ H1/2(∂M,E) | ϕnor = 0},

while E′′ := ν♭∧Λ∗∂M ⊂ E|∂M yields therelative boundary condition,

Brel = {ϕ ∈ H1/2(∂M,E) | ϕ tan= 0}.
Both boundary conditions are known to be elliptic in the classical sense, see
e.g. [Gi, Lemma 4.1.1]. Indeed, for anyξ ∈ T∗∂M, the symbolσD(ξ ) leaves the
subbundlesE′ andE′′ invariant, whileσD(ν♭) interchanges them. HenceσA(ξ ) in-
terchangesE′ andE′′. By Corollary 3.18, both, the absolute and the relative bound-
ary condition, are localD-elliptic boundary conditions.

Example 3.20 (Boundary chirality). Let χ be an orthogonal involution ofE
along ∂M and denote byE|∂M = E+ ⊕ E− the orthogonal splitting into the
eigenbundles ofχ for the eigenvalues±1. We say thatχ is a boundary chi-
rality (with respect toA) if χ anticommutes withA. The associated bound-
ary conditionsB±χ = H1/2(∂M,E±) are D-elliptic, by Corollary 3.18. In fact,

χH1/2
(−∞,0)(A) = H1/2

(0,∞)(A) sinceχ anticommutes withA, and hence

B±χ = {ϕ ∈ kerA | χϕ =±ϕ}⊕{ϕ ± χϕ | ϕ ∈ H1/2
(−∞,0)(A)}.

We haveB−χ = B⊥
χ and henceσD(ν♭)B−χ is the adjoint ofBχ = B+χ .

An example of a boundary chirality isχ = iσD(ν♭) in the case whereD is formally
selfadjoint andA has been chosen to anticommute withχ as in Lemma 2.2. This
occurs, for instance, ifD is a Dirac operator in the sense of Gromov and Lawson
andA is the canonical boundary operator forD; see Appendix A.

There is a refinement which is due to Freed [Fr,§2]: Enumerate the connected com-
ponents of∂M asN1, . . . ,Nk and associate a signε j ∈ {−1,1} to each component
Nj . Then

χϕ := ∑ j
iε jσD(ν♭)ϕ j ,

whereϕ j := ϕ j |Nj , is again a boundary chirality. It has the additional property that
it commutes withiσD(ν♭); compare Lemma 4.8 and Theorem 4.10.

Example 3.21(Generalized Atiyah-Patodi-Singer boundary conditions). Let D be
a Dirac-type operator andA an admissible boundary operator. Fixa∈R and let

V− := L2
(−∞,a)(A), V+ := L2

[a,∞)(A), W− =W+ := {0}, and g= 0.

Then theD-elliptic boundary condition

B(a) = H1/2
(−∞,a)(A).

is known as ageneralized Atiyah-Patodi-Singer boundary condition. The (non-
generalized) Atiyah-Patodi-Singer boundary condition asstudied in [APS] is the
special casea = 0. Generalized APS boundary conditions are not local. How-
ever, they are still pseudo-local, by [APS, p. 48] together with [Se] or by [BW,
Prop. 14.2].
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Example 3.22(Modified Atiyah-Patodi-Singer boundary conditions). The modi-
fied APS boundary condition, introduced in [HMR], is given by

BmAPS= {ϕ ∈ H1/2(∂M,E) | ϕ +σD(ν♭)ϕ ∈ H1/2
(−∞,0)(A)}.

It requires that the spectral partsϕ = ϕ(−∞,0)+ϕ0+ϕ(0,∞) of ϕ ∈ BmAPS satisfy

ϕ(0,∞) =−σD(ν♭)ϕ(−∞,0) and ϕ0 =−σD(ν♭)ϕ0.

SinceσD(ν♭)2 =−1, we getϕ0 = 0. ThusBmAPS is D-elliptic with the choices

V− = L2
(−∞,0)(A),V+ = L2

(0,∞)(A),W− = ker(A),W+ = {0}, andg=−σD(ν♭).

Example 3.23(Transmission conditions). Let M be a complete Riemannian man-
ifold. For the sake of simplicity, assume that the boundary of M is empty, even
though this is not really necessary.
Let N ⊂ M be a compact hypersur-
face with trivial normal bundle. Cut
M along N to obtain a Riemannian
manifoldM′ with compact boundary.
The boundary∂M′ consists of two
copiesN1 andN2 of N. We may write
M′ = (M \N)⊔N1⊔N2.
Let E,F → M be Hermitian vector
bundles andD be a Dirac-type op-
erator fromE to F. We get induced
bundlesE′ → M′ and F ′ → M′ and
a Dirac-type operatorD′ from E′ to
F ′. For Φ ∈ H1

loc(M,E), we getΦ′ ∈
H1

loc(M
′,E′) such thatΦ′|N1 = Φ′|N2.

We use this as a boundary condition
for D′ on M′. We set

M

N

b

b

M′

N2
N1

FIG. 1

B :=
{
(ϕ ,ϕ) ∈ H1/2(N1,E)⊕H1/2(N2,E) | ϕ ∈ H1/2(N,E)

}
,

where we identify

H1/2(N1,E) = H1/2(N2,E) = H1/2(N,E).

Let A= A0⊕−A0 be an adapted boundary operator forD′. HereA0 is a selfadjoint
Dirac-type operator onC∞(N,E) =C∞(N1,E′) and similarly−A0 onC∞(N,E) =
C∞(N2,E′). The sign is due to the opposite relative orientations ofN1 andN2 in M′.

To see thatB is aD′-elliptic boundary condition, put

V+ := L2
(0,∞)(A0⊕−A0) = L2

(0,∞)(A0)⊕L2
(−∞,0)(A0),

V− := L2
(−∞,0)(A0⊕−A0) = L2

(−∞,0)(A0)⊕L2
(0,∞)(A0),

W+ := {(ϕ ,ϕ) ∈ ker(A0)⊕ker(A0)},
W− := {(ϕ ,−ϕ) ∈ ker(A0)⊕ker(A0)},

and

g : V1/2
− →V1/2

+ , g=

(
0 id
id 0

)
.
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With these choicesB is of the form required in Definition 3.7. We call these bound-
ary conditionstransmission conditions. Transmission conditions are not pseudo-
local.

If M has a nonempty boundary andN is disjoint from∂M, let us assume that we are
given aD-elliptic boundary condition for∂M. Then the same discussion applies if
one keeps the boundary condition on∂M and extendsB to ∂M′ = ∂M ⊔N1⊔N2

accordingly.

4. INDEX THEORY

Throughout this section, assume the Standard Setup 3.1. In Theorem 5.3 we have
seen thatDB,max : domDB,max→ L2(M,F) is a Fredholm operator for anyD-elliptic
boundary condition providedD andD∗ are coercive at infinity. This is the case if
M is compact, for instance. The index is the number

indDB,max= dimkerDB,max−dimkerD∗
Bad,max∈ Z.

If B is aD-elliptic boundary condition, then,by Theorems 3.2.4 and 3.4,DB,max has
domain

domDB,max= {Φ ∈ domDmax | RΦ ∈ B} ⊂ H1
loc(M,E).

Since domDB,max is contained inH1
loc(M,E), we will briefly write DB instead of

DB,max.

4.1. Fredholm property and index formulas. As a direct consequence of Theo-
rem 5.3 we get

Corollary 4.1 ([BB, Cor. 8.7]). Assume the Standard Setup 3.1 and that D and
D∗ are coercive at infinity. Let B be a D-elliptic boundary condition and letČ be
a closed complement of B iňH(A). Let P̌ : Ȟ(A) → Ȟ(A) be the projection with
kernel B and imagěC. Then

Ľ : domDmax→ L2(M,F)⊕Č, ĽΦ = (DmaxΦ, P̌RΦ),

is a Fredholm operator with the same index as DB. �

Corollary 4.2 ([BB, Cor. 8.8]). Assume the Standard Setup 3.1 and that D and
D∗ are coercive at infinity. Let B1 ⊂ B2 ⊂ H1/2(∂M,E) be D-elliptic boundary
conditions for D. Thendim(B2/B1) is finite and

ind(DB2) = ind(DB1)+dim(B2/B1). �

Example 4.3. For the generalized Atiyah-Patodi-Singer boundary conditions as in
Example 3.21 anda< b, we have

indDB(b) = indDB(a)+dimL2
[a,b)(A).

The following result says that index computations forD-elliptic boundary con-
ditions can be reduced to the case of generalized Atiyah-Patodi-Singer boundary
conditions.
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Theorem 4.4([BB, Thm. 8.14]). Assume the Standard Setup 3.1 and that D and D∗

are coercive at infinity. Let B⊂ H1/2(∂M,E) be a D-elliptic boundary condition.
Then we have, in the representation of B as in Remark 3.8.2,

indDB = indDB(a)+dimW+−dimW−.

Sketch of proof.Replacingg by sg, s∈ [0,1], yields a continuous 1-parameter fam-
ily of D-elliptic boundary conditions. One can show that the index stays constant
under such a deformation of boundary conditions. Therefore, we can assume with-
out loss of generality thatg= 0, i.e.,B=W+⊕V1/2

− . Consider one further boundary
condition,

B′ :=W−⊕W+⊕V1/2
− = H1/2

(−∞,a)(A)⊕W+ = B(a)⊕W+.

Applying Corollary 4.2 twice we conclude

ind(DB) = ind(DB′)−dimW− = ind(DB(a))+dimW+−dimW−. �

4.2. Relative index theory. Assume the Standard Setup 3.1 throughout the sec-
tion. For convenience assume also thatM is connected and that∂M = /0. For what
follows, compare Example 3.23. LetN be a closed and two-sided hypersurface in
M. Cut M alongN to obtain a manifoldM′, possibly connected, whose boundary
∂M′ consists of two disjoint copiesN1 andN2 of N, see Figure 1 on page 14. There
are natural pull-backsE′, F ′, andD′ of E, F, andD from M to M′. Choose an
adapted operatorA for D′ alongN1. Then−A is an adapted operator forD′ along
N2 and will be used in what follows.

Theorem 4.5(Splitting Theorem, [BB, Thm. 8.17]). For M, M′, and notation as
above, D and D∗ are coercive at infinity if and only if D′ and(D′)∗ are coercive at
infinity. In this case, D and D′B1⊕B2

are Fredholm operators with

indD = indD′
B1⊕B2

,

where B1 = B(a) = H1/2
(−∞,a)(A) and B2 = H1/2

[a,∞)(A), considered as boundary con-
ditions along N1 and N2, respectively. More generally, we may choose any D-
elliptic boundary condition B1 ⊂ H1/2(N,E) and its L2-orthogonal complement
B2 ⊂ H1/2(N,E). �

Let M1 andM2 be complete Riemannian manifolds without boundary and

Di : C∞(Mi,Ei)→C∞(Mi,Fi)

be Dirac-type operators. LetK1 ⊂ M1 andK2 ⊂ M2 be compact subsets. Then we
say thatD1 outside K1 agrees with D2 outside K2 if there are an isometryf : M1\
K1 → M2\K2 and smooth fiberwise linear isometries

IE : E1|M1\K1
→ E2|M2\K2

and IF : F1|M1\K1
→ F2|M2\K2

such that

E1|M1\K1

��

IE
// E2|M2\K2

��

F1|M1\K1

��

IF
// F2|M2\K2

��

M1\K1
f

// M2\K2 M1\K1
f

// M2\K2
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commute and
IF ◦ (D1Φ)◦ f−1 = D2(IE ◦Φ◦ f−1)

for all smooth sectionsΦ of E1 overM1\K1.

Assume now thatD1 and D2 agree outside compact domainsKi ⊂ Mi. For i =
1,2, choose a decompositionMi = M′

i ∪M′′
i such thatNi = M′

i ∩M′′
i is a compact

hypersurface inMi, Ki is contained in the interior ofM′
i , f (M′′

1) =M′′
2 , and f (N1) =

N2. Denote the restriction ofDi to M′
i by D′

i. The following result is a general
version of theΦ-relative index theorem of Gromov and Lawson [GL, Thm. 4.35].

Theorem 4.6 ([BB, Thm. 1.21]). Under the above assumptions, let B1 ⊂
H1/2(N1,E1) and B2 ⊂ H1/2(N2,E2) be Di-elliptic boundary conditions which cor-
respond to each other under the identifications given by f andIE as above. As-
sume that D1 and D2 and their formal adjoints are coercive at infinity.

Then D1, D2, D′
1,B1

, and D′
2,B2

are Fredholm operators such that

indD1− indD2 = indD′
1,B1

− indD′
2,B2

=
∫

K1

αD1 −
∫

K2

αD2,

whereαD1 andαD2 are the index densities associated to D1 and D2. �

Remark 4.7. In Theorem 4.6, it is also possible to deal with the situationthatM1

andM2 have compact boundary and elliptic boundary conditionsB1 andB2 along
their boundaries are given. One then chooses the hypersurface N = Ni such that it
does not intersect the boundary ofMi and such that the boundary ofMi is contained
in M′

i . The same arguments as above yield

indD1,B1 − indD2,B2 = indD′
1,B1⊕B′

1
− indD′

2,B2⊕B′
2
,

whereB′
i andB′

2are elliptic boundary condition alongN1 andN2 which correspond
to each other under the identifications given byf andIE as further up. A similar
remark applies to Theorem 4.5.

4.3. Boundary chiralities and index.

Lemma 4.8. Assume the Standard Setup 3.1 and that M is connected. Let D be
formally selfadjoint and let A anticommute withσD(ν♭). Let χ be a boundary chi-
rality as in Example 3.20 which commutes withσD(ν♭). Let E= E+⊕E− be the
orthogonal splitting into the eigenbundles ofχ for the eigenvalues±1, and write

A=

(
0 A−

A+ 0

)

with respect to this splitting. Then, if D is coercive at infinity,

indDBχ = 1
2 indA+ =−1

2 indA−,

where Bχ = H1/2(∂M,E+) is as in Example 3.20.

Proof. LetB± = kerA⊕{ϕ±χϕ | ϕ ∈H1/2
(−∞)(A). ThenB± is aD-elliptic boundary

condition and, by Theorem 4.4,

indDB± = indDBAPS+dimkerA.

By Corollary 4.2, we have

indDB±χ = indDB± −dimkerA∓,
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whereB+χ = Bχ andB−χ = H1/2(∂M,E−). SinceB−χ = B⊥
χ andB−χ is invariant

underσD(ν♭), we get thatB−χ is the adjoint ofBχ . In conclusion

2indDBχ = indDBχ − indDB−χ

= indDB+ −dimkerA−− indDB− +dimkerA+

= indA+. �

Theorem 4.9 (Cobordism Theorem, [BB, Thm. 1.22]). Assume the Standard
Setup 3.1 and that M is connected. Let D be formally selfadjoint and let A anti-
commute withσD(ν♭). Thenχ = iσD(ν♭) is a boundary chirality. Moreover, if D is
coercive at infinity and with A± as in Theorem 4.8, then

indA+ = indA− = 0.

Originally, the cobordism theorem was formulated for compact manifoldsM with
boundary and showed the cobordism invariance of the index. This played an impor-
tant role in the original proof of the Atiyah-Singer index theorem, compare e.g. [Pa,
Ch. XVII] and [BW, Ch. 21]. In this case, one can also derive the cobordism in-
variance from Roe’s index theorem for partitioned manifolds [Ro, Hi]. We replace
compactness of the bordism by the weaker assumption of coercivity of D.

Sketch of proof of Theorem 4.9.We show that kerDBχ = kerDB−χ = 0, then the as-
sertion follows from Lemma 4.8. LetΦ ∈ kerDB±,max. By Theorem 3.2.5, we have

0= (DmaxΦ,Φ)L2(M)− (Φ,DmaxΦ)L2(M)

=−(σD(ν♭)RΦ,RΦ)L2(∂M)

=±i‖RΦ‖2
L2(∂M),

and henceRΦ = 0. Now an elementary argument involving the unique continua-
tion for solutions ofD impliesΦ = 0. �

As an application of Lemma 4.8 and Theorem 4.9, we generalizeFreed’s Theo-
rem B from [Fr] as follows:

Theorem 4.10. Assume the Standard Setup 3.1 and that M is connected. Let D
be formally selfadjoint and let A anticommute withσD(ν♭). Let χ be a bound-
ary chirality as in Example 3.20 which commutes withσD(ν♭). Let E= E++⊕
E+−⊕E−+⊕E−− be the orthogonal splitting into the simultaneous eigenbundles
of iσD(ν♭) andχ for the eigenvalues±1.

Then A maps E++ to E−− and E+− to E−+ and conversely. Moreover, with the
corresponding notation for the restrictions of A, we have, if D is coercive at infinity,

indDBχ = indA++ =− indA−−.

Proof. By Theorem 4.9, we have

indA+++ indA+− = indA−−+ indA−+ = 0.

On the other hand,A−− is adjoint toA++, hence Lemma 4.8 gives

2indDBχ = indA+++ indA−+ = indA++− indA−− = 2indA++. �
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5. SPECTRAL THEORY

Throughout htis section we assume the Standard Setup 3.1.

5.1. Coercivity at infinity. For spectral and index theory we will also need bound-
ary conditions at infinity ifM is noncompact. Such conditions go under the name
coercivity at infinity.

Definitions 5.1. For κ > 0, we say thatD is κ-coercive at infinityif there is a
compact subsetK ⊂ M such that

κ‖Φ‖L2(M) ≤ ‖DΦ‖L2(M),

for all smooth sectionsΦ of E with compact support inM \K. If D is κ-coercive
at infinity for someκ > 0, then we callD coercive at infinity.

Boundary conditions are irrelevant for coercivity at infinity because the compact
setK can always be chosen such that it contains a neighborhood of∂M.

Examples 5.2.1) If M is compact, thenD is κ-coercive at infinity, for anyκ > 0.
Simply chooseK = M.
2) If D is formally selfadjoint and, outside a compact subsetK ⊂M, all eigenvalues
of the endomorphismK in the Weitzenböck formula (9) are bounded below by a
constantκ > 0, then we have, for allΦ ∈C∞

cc(M,E) with support disjoint fromK,

‖DΦ‖2
L2(M) = ‖∇Φ‖2

L2(M)+(K Φ,Φ)L2(M) ≥ κ‖Φ‖2
L2(M).

HenceD is
√

κ-coercive at infinity in this case.
3) Let M = Sn× [0,∞), endowed with the product metricg0+dt2, whereg0 is the
standard Riemannian metric of the unit sphere andt is the standard coordinate on
[0,∞). Consider the usual Dirac operatorD acting on spinors, and denote by∇ the
Levi-Civita connection on the spinor bundle. The Lichnerowicz formula gives

D2 = ∇∗∇+R/4,

whereR= n(n− 1)/2 is the scalar curvature ofM (andSn). It follows that D is√
n(n−1)/8-coercive at infinity.

4) Consider the same manifoldM = Sn× [0,∞), but now equipped with the warped
metrice−2tg0+dt2. The scalar curvature is easily computed to be

R= R(t) =
n(n+1)

2
e2t − n(n+3)

2
→ ∞.

It follows that this time the Dirac operatorD is κ-coercive at infinity, for anyκ > 0.

Theorem 5.3([BB, Thm. 8.5]). Assume the Standard Setup 3.1. Then the following
are equivalent:

(i) D is coercive at infinity;

(ii) DB,max : domDB,max→ L2(M,F) has finite dimensional kernel and closed im-
age forsomeD-elliptic boundary condition B;

(iii) D B,max : domDB,max→ L2(M,F) has finite dimensional kernel and closed im-
age forall D-elliptic boundary conditions B.
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In particular, D and D∗ are coercive at infinity if and only if DB,max and D∗
Bad,max

are Fredholm operators for some/all D-elliptic boundary conditions B. �

Extending the notion of Fredholm operator, we say that a closed operatorT be-
tween Banach spacesX andY is a left- or right-Fredholm operatorif the image
of T is closed and, respectively, the kernel or the cokernel ofT is of finite dimen-
sion. We say thatT is asemi-Fredholm operatorif it is a left- or right-Fredholm
operator, compare [Ka, Section IV.5.1]. In this terminology, Theorem 5.3 says that
DB,max is a left-Fredholm operator for some/allB if and only if D is coercive at
infinity. For more on this topic, see [Ka, IV.4 and IV.5], [BBC, Appendix A], and
[BB, Appendix A].

In the caseX = Y, we get correspondingessentialparts of the spectrum ofT,
compare [Ka, Section IV.5.6] (together with footnotes). Welet

specessT ⊂ specnlf T ⊂ specnf T ⊂ specT

be the set ofλ ∈ C such thatT − λ is not a semi-Fredholm operator, not a left-
Fredholm operator, not a Fredholm operator, and not an isomorphism from domT
to X, respectively, whereessstands foressential. In the case whereX is a Hilbert
space and whereT is selfadjoint, kerT = (imT)⊥ and specT ⊂ R so that, in par-
ticular, specessT = specnf T. Moreover, in this case, specT \ specessT consists of
eigenvalues with finite multiplicities, see Remark 1.11 in [Ka, Section X.1.2].

Corollary 5.4. Assume the Standard Setup 3.1 and E= F. Let B⊂ H1/2(∂M,E)
be a D-elliptic boundary condition. Letκ > 0 and assume that D isκ-coercive at
infinity. Then

{z∈ C | |z|< κ}∩specnlf DB,max= /0.

If D and D∗ are κ-coercive at infinity, then

{z∈ C | |z|< κ}∩specnf DB,max= /0.

Proof. For anyz∈ C, the operatorsD−z and(D−z)∗ = D∗− z̄ are of Dirac type
such that(D− z)max = Dmax− z and (D∗ − z̄)max = D∗

max− z̄. Moreover,B is a
(D− z)-elliptic andBad a (D∗− z̄)-elliptic boundary condition, one the adjoint of
the other. By the triangle inequality, ifD is κ-coercive and|z| < κ , thenD− z is
(κ −|z|)-coercive, and similarly forD∗− z̄. Thus Theorem 5.3 applies. �

Corollary 5.5. Assume the Standard Setup 3.1, that E= F, and that D is formally
selfadjoint. Let B⊂ H1/2(∂M,E) be a selfadjoint D-elliptic boundary condition. If
D is κ-coercive at infinity forsomeκ > 0, then DB,max is selfadjoint with

(−κ ,κ)∩specessDB,max= /0. �

Corollary 5.6. Assume the Standard Setup 3.1, that E= F, and that D is formally
selfadjoint. Let B⊂ H1/2(∂M,E) be a selfadjoint D-elliptic boundary condition. If
D is κ-coercive at infinity forall κ > 0, then DB,max is selfadjoint with

specessDB,max= /0.

In particular, the eigenspaces of D are finite dimensional, pairwise L2-orthogonal,
and their sum spans L2(M,E) in the sense of Hilbert spaces. Moreover, eigensec-
tions of D are smooth on M (up to the boundary). �
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Remark 5.7. If M is compact, thenD is κ-coercive at infinity for allκ > 0. Hence
Corollary 5.6 applies ifM is compact with boundary. On the other hand, the resol-
vent ofDB,max is compact in this case so that the decomposition ofL2(M,E) into
finite dimensional eigenspaces is also clear from this perspective.

5.2. Coercivity with respect to a boundary condition. Now we discuss spectral
gaps ofD about 0. We get interesting results for Dirac operators in the sense of
Gromov and Lawson, see Appendix A.

Definition 5.8. For κ > 0, we say thatD is κ-coercive with respect to a boundary
condition Bif

κ‖Φ‖L2(M) ≤ ‖DΦ‖L2(M),

for all Φ ∈C∞
c (M,E;B).

In contrast to coercivity at infinity, the boundary condition B is now crucial for the
concept of coercivity.

Corollary 5.9. Assume the Standard Setup 3.1, that E= F, and that D is formally
selfadjoint. Let B⊂ H1/2(∂M,E) be a selfadjoint D-elliptic boundary condition. If
D is κ-coercive with respect to B, forκ > 0, then DB,max is selfadjoint with

(−κ ,κ)∩specDB,max= /0. �

Theorem 5.10.Assume the Standard Setup 3.1 with E= F and that
⋄ D is a Dirac operator in the sense of Gromov and Lawson;
⋄ B is a D-elliptic boundary condition;
⋄ the canonical boundary operator A: C∞(∂M,E)→C∞(∂M,E) for D satisfies

(
(A− n−1

2 H)ϕ ,ϕ
)
≤ 0

for all ϕ ∈ B, where H is the mean curvature H along∂M with respect to the
interior unit normal vector fieldν ;
⋄ the endomorphism fieldK in the Weitzenb̈ock formula(9) satisfiesK ≥ κ > 0.

Then D is
√

nκ
n−1-coercive with respect to B. In particular, if B is selfadjoint, then

(
−
√

nκ
n−1,

√
nκ

n−1

)
∩specDB,max= /0.

Proof. For anyΦ∈C∞
c (M,E;B)we have by (26) and (27), again writingϕ =Φ|∂M ,

n−1
n ‖DΦ‖2 ≥

∫

M
〈K Φ,Φ〉dV−

∫

∂M
(A− n−1

2 H)|ϕ |2dS≥ κ‖Φ‖2. (20)

This proves
√

nκ
n−1-coerciveness with respect toB. The statement on the spectrum

now follows from Corollary 5.9. �

Here are some boundary conditions for which Theorem 5.10 applies:

Example 5.11. Let χ be a boundary chirality with associatedD-elliptic boundary
conditionB±χ = H1/2(∂M,E±) as in Example 3.20. Forϕ ,ψ ∈ Bχ , we have

(Aϕ ,ψ) = (Aχϕ ,ψ) =−(χAϕ ,ψ) =−(Aϕ ,χψ) =−(Aϕ ,ψ).



22 CHRISTIAN BÄR AND WERNER BALLMANN

Hence(Aϕ ,ψ) = 0, for all ϕ ,ψ ∈ Bχ , and similarly forB−χ . If χ anticommutes
with σD(ν♭), thenBχ andB−χ are selfadjoint boundary conditions2. Hence Theo-
rem 5.10 applies ifH ≥ 0. In the case of the classical Dirac operatorD acting on
spinors, this yields the eigenvalue estimate in [HMR, Thm. 3].

Example 5.12.The Atiyah-Patodi-Singer boundary condition

BAPS= H1/2
(−∞,0)(A)

is D-elliptic with adjoint boundary condition

Bad
APS= BAPS⊕kerA.

HenceDBAPS,max is symmetric with(dimkerA,dimkerA) as index of deficiency.
If kerA is trivial, thenDBAPS is selfadjoint and specDBAPS ⊂ R. By definition of
BAPS, we have(Aϕ ,ϕ)≤−µ1‖ϕ‖2

L2(∂M)
for all ϕ ∈ BAPS where−µ1 is the largest

negative eigenvalue ofA. Hence Theorem 5.10 applies ifH ≥− 2
n−1µ1.

In the case of the classical Dirac operatorD acting on spinors, this yields the eigen-
value estimate for the APS boundary condition in [HMR, Thm. 2]. Note that the
assumption kerA= 0 is missing in Theorem 2 of [HMR]. In fact, if kerA is nontriv-
ial, thenDBAPS is not selfadjoint and specDBAPS= C, compare [Ka, Section V.3.4].

If we can choose a subspaceL⊂ kerA as in Theorem 3.12.2, thenB=H1/2
(−∞,0)(A)⊕

L is a selfadjointD-elliptic boundary condition. We have(Aϕ ,ϕ)≤ 0 for all ϕ ∈ B
and Theorem 5.10 applies ifH ≥ 0.

Example 5.13.The modified APS boundary condition

BmAPS= {ϕ ∈ H1/2(∂M,E) | ϕ +σD(ν♭)ϕ ∈ H1/2
(−∞,0)(A)}

as in Example 3.22 isD-elliptic with adjoint condition

Bad
mAPS= {ϕ ∈ H1/2(∂M,E) | ϕ(0,∞) =−σD(ν♭)ϕ(−∞,0)}

= BmAPS⊕kerA.

HenceDBmAPS,max is symmetric. The remaining part of the discussion is as in the
previous example, except that we have(Aϕ ,ψ) = 0, for all ϕ ,ψ ∈ Bad

mAPS. In par-
ticular, Theorem 5.10 applies if kerA = 0 andH ≥ 0. In the case of the classical
Dirac operatorD acting on spinors, this yields the eigenvalue estimate in [HMR,
Thm. 5]. As in the case of the APS boundary condition, the requirement kerA= 0
needs to be added to the assumptions of Theorem 5 in [HMR].

Next we discuss under which circumstances the “extremal values”±
√

nκ
n−1 actually

belong to the spectrum. For this purpose, we make the following

Definition 5.14. Let D be a formally selfadjoint Dirac operator in the sense of
Gromov and Lawson with associated connection∇. A sectionΦ ∈ C∞(M,E) is
called aD-Killing sectionif

∇XΦ = α ·σD(X
♭)∗Φ (21)

for some constantα ∈ R and all X ∈ TM. The constantα is called theKilling
constantof Φ.

2If χ commutes withσD(ν♭), thenBχ andB−χ are adjoint to each other.
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Remarks 5.15. 1) If D is the classical Dirac operator, then spinors satisfying (21)
are called Killing spinors. This motivates the terminology.
2) Equation (21) is overdetermined elliptic. Hence the existence of a nontrivial
solution imposes strong restrictions on the underlying geometry. For instance, if a
Riemannian spin manifold carries a nontrivial Killing spinor, it must be Einstein
[Fri, Thm. B]. See [B] for a classification of manifolds admitting Killing spinors.
3) Any D-Killing section with Killing constantα is an eigensection ofD for the
eigenvaluenα :

DΦ =
n

∑
j=1

σD(e
♭
j)∇ej Φ = α ·

n

∑
j=1

σD(e
♭
j)σD(e

♭
j)
∗Φ = nαΦ.

4) Any D-Killing section satisfies the twistor equation (28):

∇XΦ = α ·σD(X
♭)∗Φ =

1
n
·σD(X

♭)∗DΦ.

5) SinceσD(X♭) is skewhermitian, the connection̂∇X = ∇X −α ·σD(X♭)∗ is also
a metric connection. SinceD-Killing sections are preciselŷ∇-parallel sections, we
conclude that anyD-Killing sectionΦ has constant length|Φ|.

Theorem 5.16. In addition to the assumptions in Theorem 5.10 assume that M is
compact and that the boundary condition B is selfadjoint.

Then
√

nκ
n−1 ∈ spec(D) or −

√
nκ

n−1 ∈ spec(D) if and only if there is a nontrivial D-

Killing sectionΦ with ϕ = Φ|∂M ∈ B and Killing constant
√

κ
n(n−1) or −

√
κ

n(n−1) ,

respectively.

Proof. Let
√

nκ
n−1 ∈ spec(D), the case−

√
nκ

n−1 ∈ spec(D) being treated similarly.

SinceM is compact, the spectral value
√

nκ
n−1 must be an eigenvalue by Corol-

lary 5.5. LetΦ be an eigensection ofD for the eigenvalue
√

nκ
n−1 satisfying the

boundary condition. Then we must have equality everywhere in the chain of in-
equalities (20). In particular,Φ must solve the twistor equation (28). Hence

∇XΦ = 1
nσD(X♭)∗DΦ =

√
κ

n(n−1)σD(X♭)∗Φ.

Conversely, ifΦ is aD-Killing section with Killing constant
√

κ
n(n−1) , thenΦ is an

eigensection ofD for the eigenvalue
√

nκ
n−1, by Remark 5.15.3. �

Example 5.17. Let M be the closed geodesic ball of radiusr ∈ (0,π) aboute1 in
the unit sphereSn. The sectional curvature ofM is identically equal to 1, its scalar
curvature ton(n−1). The boundary∂M is a round sphere of radius sin(r). Its mean
curvature with respect to the interior unit normal is given by H = cot(r).
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We consider the classical Dirac operator act-
ing on spinors. The restriction of the spinor
bundle to the boundary yields the spinor bun-
dle of the boundary ifn is odd and the sum of
two copies of the spinor bundle of the bound-
ary if n is even. Accordingly, the canonical
boundary operator is just the classical Dirac
operator of the boundary ifn is odd and the
direct sum of it and its negative ifn is even.
The kernel of the boundary operator is trivial.

b

b
e1

1
sin(r)

r

FIG. 2
Theorem 5.10 applies with all the boundary conditions described in Exam-
ples 5.11–5.13 ifr ≤ π

2 because thenH ≥ 0. Therefore the spectrum of the Dirac op-
erator onM subject to any of these boundary conditions does not intersect (−n

2,
n
2).

The largest negative Dirac eigenvalue of the boundary is given by−µ1 =− n−1
2sin(r) .

Since we have
n−1

2 H = n−1
2 cot(r)≥−n−1

2 sin(r) =−µ1,

Theorem 5.10 applies in the case of APS boundary conditions (Example 5.12) for
all r ∈ (0,π).

The sphereSn and henceM do possess nontrivial Killing spinors for both Killing
constants±1

2. The restriction of such a Killing spinor to∂M never satisfies the
APS boundary conditions. Thus the equality case in Theorem 5.10 does not occur
and±n

2 cannot lie in the spectrum ofD on M subject to APS conditions. Hence,
under APS boundary conditions and for anyr ∈ (0,π), the spectrum ofD on M
does not intersect[−n

2,
n
2].

The modified APS boundary conditions are satisfied by the restrictions of the
Killing spinors only if r = π

2 . In this case,n2 is an eigenvalue ofD onM.

APPENDIX A. D IRAC OPERATORS IN THE SENSE OFGROMOV AND LAWSON

Here we discuss an important subclass of Dirac-type operators. Note that the con-
nection in Corollary 1.4 is not metric, in general.

Definition A.1. A formally selfadjoint operatorD : C∞(M,E) → C∞(M,E) of
Dirac type is called aDirac operator in the sense of Gromov and Lawsonif there
exists a metric connection∇ onE such that

1) D = ∑ j σD(e∗j )◦∇ej , for any local orthonormal tangent frame(e1, . . . ,en);

2) the principal symbolσD of D is parallel with respect to∇ and to the Levi-Civita
connection.

This is equivalent to the definition ofgeneralized Dirac operatorsin [GL, Sec. 1]
or to Dirac operators on Dirac bundlesin [LM, Ch. II, § 5].

Remark A.2. For a Dirac operator in the sense of Gromov and Lawson, the con-
nection∇ in Definition A.1 and the connection in the Weitzenböck formula (9)
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coincide and is uniquely determined by these properties. Wewill call ∇ the con-
nectionassociated with the Dirac operator D. Moreover, the endomorphism field
K in the Weitzenböck formula takes the form

K =
1
2∑

i, j

σD(e
∗
i )◦σD(e

∗
j )◦R∇(ei ,ej)

whereR∇ is the curvature tensor of∇. See [GL, Prop. 2.5] for a proof.

Next, we show how to explicitly construct an adapted operator on the boundary
satisfying (13) for a Dirac operator in the sense of Gromov and Lawson. Let∇ be
the associated connection. Along the boundary we define

A0 := σD(ν♭)−1D−∇ν = σD(ν♭)−1
n

∑
j=2

σD(e
∗
j )∇ej . (22)

Here (e2, . . . ,en) is any local tangent frame for∂M. Then A0 is a first order
differential operator acting on section ofE|∂M → ∂M with principal symbol
σA0(ξ ) = σD(ν♭)−1σD(ξ ) as required for an adapted boundary operator. From the
Weitzenböck formula (9) we get, using Proposition 1.1 twice, once forD and once
for ∇, for all Φ,Ψ ∈C∞

c (M,E):

0=

∫

M

(
〈D2Φ,Ψ〉− 〈∇∗∇Φ,Ψ〉− 〈K Φ,Ψ〉

)
dV

=
∫

M

(
〈DΦ,DΨ〉− 〈∇Φ,∇Ψ〉− 〈K Φ,Ψ〉

)
dV

+
∫

∂M

(
−〈σD(ν♭)DΦ,Ψ〉+ 〈σ∇∗(ν♭)∇Φ,Ψ〉

)
dS. (23)

For the boundary contribution we have

−〈σD(ν♭)DΦ,Ψ〉+ 〈σ∇∗(ν♭)∇Φ,Ψ〉= 〈σD(ν♭)−1DΦ,Ψ〉− 〈∇Φ,σ∇(ν♭)Ψ〉
= 〈σD(ν♭)−1DΦ,Ψ〉− 〈∇Φ,ν♭⊗Ψ〉
= 〈σD(ν♭)−1DΦ,Ψ〉− 〈∇νΦ,Ψ〉
= 〈A0Φ,Ψ〉. (24)

Inserting (24) into (23) we get

∫

M

(
〈DΦ,DΨ〉− 〈∇Φ,∇Ψ〉− 〈K Φ,Ψ〉

)
dV =−

∫

∂M
〈A0ϕ ,ψ〉dS (25)

whereϕ := Φ|∂M andψ := Ψ|∂M . Since the left hand side of (25) is symmetric in
Φ andΨ, the right hand side is symmetric as well, henceA0 is formally selfadjoint.
This shows thatA0 is an adapted boundary operator forD.

In general,A0 does not anticommute withσD(ν♭) however. We will rectify this by
adding a suitable zero-order term. First, let us compute theanticommutator ofA0
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andσD(ν♭):

{σD(ν♭),A0}ϕ =
n

∑
j=2

σD(e
∗
j )∇ej ϕ +σD(ν♭)−1

n

∑
j=2

σD(e
∗
j )∇ej (σD(ν♭)ϕ)

=
n

∑
j=2

(
σD(e

∗
j )∇ej ϕ +σD(ν♭)−1σD(e

∗
j )σD(ν♭)∇ej ϕ

+σD(ν♭)−1σD(e
∗
j )σD(∇ej ν

♭)ϕ
)

= σD(ν♭)−1
n

∑
j=2

σD(e
∗
j )σD(∇ej ν

♭)ϕ .

Now ∇·ν is the negative of the Weingarten map of the boundary with respect to the
normal fieldν . We choose the orthonormal tangent frame(e2, . . . ,en) to consist of
eigenvectors of the Weingarten map. The corresponding eigenvaluesκ2, . . . ,κn are
theprincipal curvaturesof ∂M. We get

n

∑
j=2

σD(e
♭
j)σD(∇ej ν

♭) =−
n

∑
j=2

σD(e
♭
j)σD(κ je

♭
j) =

n

∑
j=2

κ j = (n−1)H,

whereH is themean curvatureof ∂M with respect toν . Therefore,

{σD(ν♭),A0}= (n−1)HσD(ν♭)−1 =−(n−1)HσD(ν♭).

Since clearly
{σD(ν♭),(n−1)H}= 2(n−1)HσD(ν♭),

the operator

A := A0+
n−1

2
H = σD(ν♭)−1D−∇ν +

n−1
2

H

is an adapted boundary operator forD satisfying (13). From (25) we also have
∫

M

(
〈DΦ,DΨ〉− 〈∇Φ,∇Ψ〉− 〈K Φ,Ψ〉

)
dV =

∫

∂M
〈(n−1

2 H −A)ϕ ,ψ〉dS. (26)

Definition A.3. For a Dirac operatorD in the sense of Gromov and Lawson as
above, we callA thecanonical boundary operatorfor D.

Remark A.4. The canonical boundary operatorA is again a Dirac operator in the
sense of Gromov and Lawson. Namely, define a connection onE|∂M by

∇∂
Xϕ := ∇Xϕ + 1

2σD(ν♭)−1σD(∇Xν♭)ϕ .

The Clifford relations (6) show that the termσD(ν♭)−1σD(∇Xν♭) =

σD(ν♭)∗σD(∇Xν♭) is skewhermitian, hence∇∂ is a metric connection. By
(22),A0 = ∑n

j=2σA0(e
∗
j )◦∇ej . This,σA0 = σA, and
n

∑
j=2

σA0(e
∗
j )σD(ν♭)∗σD(∇ej ν

♭) =
n−1

2
H

show that

A=
n

∑
j=2

σA(e
∗
j )◦∇∂

ej
.

Moreover, a straightforward computation using the Gauss equation for the Levi-
Civita connections∇Xξ = ∇∂

Xξ −ξ (∇Xν)ν♭ shows thatσA is parallel with respect
to the boundary connections∇∂ .
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Remark A.5. The triangle inequality and the Cauchy-Schwarz inequalityshow

|DΦ|2 =
∣∣

n

∑
j=1

σD(e
♭
j)∇ej Φ

∣∣2 ≤
( n

∑
j=1

|σD(e
♭
j)∇ej Φ|

)2

≤ n·
n

∑
j=1

|σD(e
♭
j)∇ej Φ|2 = n·

n

∑
j=1

〈σD(e
♭
j)
∗σD(e

♭
j)∇ej Φ,∇ej Φ〉

= n·
n

∑
j=1

|∇ej Φ|2 = n· |∇Φ|2, (27)

for any orthonormal tangent frame(e1, . . . ,en) and allΦ ∈C∞(M,E).

When does equality hold? Equality in the Cauchy-Schwarz inequality implies that
all summands|σD(e♭j)∇ej Φ| are equal, i.e.,|σD(e♭j)∇ej Φ|= |σD(e♭1)∇e1Φ|. Equal-

ity in the triangle inequality then impliesσD(e♭j)∇ej Φ=σD(e♭1)∇e1Φ for all j. Thus

σD(e
♭
1)∇e1Φ =

1
n

n

∑
j=1

σD(e
♭
j)∇ej Φ =

1
n

DΦ,

hence∇e1Φ = 1
nσD(e♭1)

∗DΦ. Sincee1 is arbitrary, this shows thetwistor equation

∇XΦ = 1
nσD(X♭)∗DΦ, (28)

for all vector fieldsX on M. Conversely, ifΦ solves the twistor equation, one sees
directly that equality holds in (27).

Inserting (27) into (26) yields

n−1
n

∫

M
|DΦ|2 dV ≥

∫

M
〈K Φ,Φ〉dV+

∫

∂M
〈(n−1

2 H −A)ϕ ,ϕ〉dS,

for all Φ ∈C∞
c (M,E), whereϕ := Φ|∂M. Moreover, equality holds if and only ifΦ

solves the twistor equation (28).

APPENDIX B. PROOFS OF SOME AUXILIARY RESULTS

In this section we collect the proofs of some of the auxiliaryresults.

Proof of Proposition 1.3.We start by choosing an arbitrary connection∇̄ onE and
define

D̄ : C∞(M,E)→C∞(M,F), D̄Φ := ∑ j
σD(e

∗
j )∇̄ej Φ.

Then D̄ has the same principal symbol asD and, therefore, the differenceS :=
D− D̄ is of order 0. In other words,S is a field of homomorphisms fromE to F.

SinceAD is onto, the restrictionA of AD to the orthogonal complement of the
kernel ofAD is a fiberwise isomorphism. We putV := A −1(S) and define a new
connection by

∇ := ∇̄+V.

We compute

∑ j
σD(e

∗
j )◦∇ej = ∑ j

σD(e
∗
j )◦ ∇̄ej +∑ j

σD(e
∗
j )◦V(ej)

= D̄+AD(V)

= D̄+S= D. �
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Proof of Proposition 2.1.Let ∇̃ be any metric connection onE. ThenF := D∗D−
∇̃∗∇̃ is formally selfadjoint. Since both,D∗D and ∇̃∗∇̃, have the same principal
symbol−|ξ |2 · id, the operatorF is of order at most one. Any other metric con-
nection ∇ on E is of the form∇ = ∇̃ +B whereB is a 1-form with values in
skewhermitian endomorphisms ofE. Hence

D∗D = (∇−B)∗(∇−B)+F = ∇∗∇−∇∗B−B∗∇+B∗B+F︸ ︷︷ ︸
=:K

.

In general,K is of first order and we need to show that there is a uniqueB such
thatK is of order zero. SinceB∗B is of order zero,K is of order zero if and only
if F −∇∗B−B∗∇ is of order zero, i.e., if and only ifσF(ξ ) = σ∇∗B+B∗∇(ξ ) for all
ξ ∈ T∗M. We compute, using a local tangent framee1, . . . ,en,

〈σ∇∗B+B∗∇(ξ )ϕ ,ψ〉=
〈(

σ∇∗(ξ )◦B+B∗ ◦σ∇(ξ )
)
ϕ ,ψ

〉

=−〈Bϕ ,σ∇(ξ )ψ〉+ 〈σ∇(ξ )ϕ ,Bψ〉
=−〈Bϕ ,ξ ⊗ψ〉+ 〈ξ ⊗ϕ ,Bψ〉
=−

〈
∑

i

e∗i ⊗Bei ϕ ,ξ ⊗ψ
〉
+
〈
ξ ⊗ϕ ,∑

i

e∗i ⊗Bei ψ
〉

=−∑
i
〈e∗i ,ξ 〉〈Bei ϕ ,ψ〉+∑

i
〈e∗i ,ξ 〉〈ϕ ,Bei ψ〉

=−
〈
Bξ ♯ϕ ,ψ

〉
+
〈
ϕ ,Bξ ♯ψ

〉

=−2
〈
Bξ ♯ϕ ,ψ

〉
.

Hence,σ∇∗B+B∗∇(ξ ) =−2Bξ ♯ . Thus,K is of order 0 if and only if

BX =−1
2 σF(X

b)

for all X ∈ TM. Note thatσF(ξ ) is indeed skewhermitian becauseF is formally
selfadjoint. �

Proof of Lemma 2.2.SinceD is formally selfadjoint and of Dirac type,

−σD(ν♭) = σD(ν♭)∗ = σD(ν♭)−1, (29)

by (1) and (8). LetA0 be adapted toD along∂M andξ ∈ T∗
x ∂M, as usual extended

to T∗
x M by ξ (ν(x)) = 0. Then, again using (6) and (11),

σA0(ξ )+σD(ν(x)♭)σA0(ξ )σD(ν(x)♭)∗

= σD(ν(x)♭)−1σD(ξ )+σD(ξ )σD(ν(x)♭)∗

= σD(ν(x)♭)∗σD(ξ )+σD(ξ )∗σD(ν(x)♭)

= 2〈ν(x)♭,ξ 〉 · idE

= 0.

Hence 2S := A0+σD(ν♭)A0σD(ν♭)∗ is of order 0, that is,S is a field of endomor-
phisms ofE along∂M. SinceA0 is formally selfadjoint so isSand, by (29),

σD(ν♭)2S= σD(ν♭)A0+A0σD(ν♭) = 2SσD(ν♭).
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HenceA := A0−S is adapted toD along∂M and

σD(ν♭)A+AσD(ν♭) = σD(ν♭)A0+A0σD(ν♭)−σD(ν♭)S−SσD(ν♭)

= σD(ν♭)
(
A0−σD(ν♭)A0σD(ν♭)−2S

)

= σD(ν♭)
(
A0+σD(ν♭)A0σD(ν♭)∗−2S

)

= 0. �
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