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SHEARER’S INEQUALITY AND INFIMUM RULE FOR

SHANNON ENTROPY AND TOPOLOGICAL ENTROPY

TOMASZ DOWNAROWICZ, BARTOSZ FREJ AND PIERRE-PAUL ROMAGNOLI

Abstract. We review subbadditivity properties of Shannon entropy, in par-
ticular, from the Shearer’s inequality we derive the “infimum rule” for actions
of amenable groups. We briefly discuss applicability of the “infimum formula”
to actions of other groups. Then we pass to topological entropy of a cover. We
prove Shearer’s inequality for disjoint covers and give counterexamples oth-
erwise. We also prove that, for actions of amenable groups, the supremum
over all open covers of the “infimum fomula” gives correct value of topological
entropy.

February 24, 2015

1. Introduction

This note is devoted to properties of entropy, both measure-theoretic and topo-
logical, treated as a function defined on subsets of the acting group. One such
property, called subadditivity, is popularly known and used. It implies, in particu-
lar, that when evaluating the dynamical entropy (of a partition or of an open cover)
in an action of Z, we can exchangeably apply lim sup, lim inf, lim or inf, of the terms
1
n
H({1, 2, . . . , n}) (where H({1, 2, . . . , n}) is appropriately understood), simply be-

cause the sequence 1
n
H({1, 2, . . . , n}) converges to its infimum. Similar statement

holds for actions of countable amenable groups, with {1, 2, . . . , n} replaced by ele-
ments Fn of a Følner sequence (and 1

n
replaced by 1

|Fn| ). But the measure-theoretic

entropy fulfills a stronger property, called strong subadditivity, which implies that
the same value will be obtained when taking infimum of the terms 1

|F |H(F ) over

all finite subsets F of the acting group. Notice that this “infimum rule” allows to
define (and evaluate) the entropy of a measure-preserving action of an amenable
group without referring to any Følner sequence. In other words, the simple form
infF

1
|F |H(F ) does not depend upon amenability of the group and can be used as a

definition of entropy of processes in actions of arbitrary groups. A natural question
arises: is this definition good (i.e., does it fulfill desirable postulates one expects
from a reasonable notion of entropy)? We will briefly discuss this question in the
section Beyond amenability.

For the moment, it is not known whether a similar “infimum rule” applies to
topological entropy of an open cover (even for the actions of Z). As one of our
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examples shows, the corresponding function is not strongly subadditive, but this
does not determine that the infimum rule fails. In fact, this rule is implied by
a property lying between subadditivity and strong subadditivity, called Shearer’s
inequality. We will show that if the open cover consists of disjoint sets, Shearer’s
inequality holds, hence, for actions of countable amenable groups, the infimum
rule does work. For non-disjoint covers, we show that Shearer’s inequality fails.
Moreover, we and give an example of a Z3-action in which the infimum does not
hold. We do not have an analogous example for Z—this open problem seems to be
difficult. On the other hand, we prove that for amenable groups the supremum over
all open covers of the “infimum formula” does yield the correct value of topological
entropy of the action.

We remark that all, presented in this note, results concerning measure-theoretic
entropy are well known. Novel are only the results concerning topological entropy
(in particular the examples).

2. Subadditivity and related notions

Let G be an abstract set and let F(G) be the collection of all nonempty finite
subsets of G. A k-cover of a set F ∈ F(G) is a family {K1,K2, . . . ,Kr} of elements
of F(G) (with possible repetitions) such that each element of F belongs to Ki for at
least k indices i ∈ {1, 2, . . . , r}. With slight abuse of precision, we will say “belongs
to at least k elements of K” and the sums and products over i ∈ {1, 2, . . . , r} will
be indexed by K ∈ K (we must remember that repeated terms K are counted
separately).

Let H be a nonnegative real function with domain F(G).

Definition 2.1. We say that:

(M) H is monotone if F ⊂ F ′ implies H(F ) ≤ H(F ′);
(S) H is subadditive if for any F, F ′ it holds that

H(F ∪ F ′) ≤ H(F ) +H(F ′);

(Sh) H satisfies Shearer’s inequality if for any F and any k-cover K of F ,

H(F ) ≤ 1

k

∑

K∈K
H(K);

(SS) H is strongly subadditive if for any F, F ′ ⊂ G,

H(F ∪ F ′) ≤ H(F ) +H(F ′)−H(F ∩ F ′).

Let us define the conditional value of H by the formula

(2.1) H(F |F ′) = H(F ∪ F ′)−H(F ′).

Using the conditional value we introduce two more notions:

(MC) H is monotone wrt. the condition if F ′ ⊂ F ′′ implies H(F |F ′) ≥ H(F |F ′′),
(CS) H is conditionally subadditive if for any F, F ′, F ′′ it holds that

H(F ∪ F ′|F ′′) ≤ H(F |F ′′) +H(F ′|F ′′).

Remark 2.2. If we extend H by setting H(∅) = 0, then H(F |∅) = H(F ) for every
F ∈ F(G) and monotonicity wrt. the condition includes that H(F |F ′) ≤ H(F ).

Lemma 2.3. If H is monotone then the conditions (SS), (MC) and (CS) are
equivalent.
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Proof. (SS) =⇒ (MC): For F ′ ⊂ F ′′,

H(F |F ′′) = H(F ∪ F ′′)−H(F ′′) = H(F ∪ F ′ ∪ F ′′)−H(F ′′)

≤ H(F ∪ F ′) +H(F ′′)−H((F ∪ F ′) ∩ F ′′)−H(F ′′)

≤ H(F ∪ F ′)−H(F ′) = H(F |F ′).

(MC) =⇒ (CS) (monotonicity is not used):

H(F ∪ F ′|F ′′) = H(F ∪ F ′ ∪ F ′′)−H(F ′′) +H(F ′ ∪ F ′′)−H(F ′ ∪ F ′′)

= H(F |F ′ ∪ F ′′) +H(F ′|F ′′) ≤ H(F |F ′′) +H(F ′|F ′′).

(CS) =⇒ (SS) (monotonicity is not used):

H(F ∪ F ′) = H(F ∪ F ′ ∪ (F ∩ F ′)) = H(F ∪ F ′|F ∩ F ′) +H(F ∩ F ′)

≤ H(F |F ∩ F ′) +H(F ′|F ∩ F ′) +H(F ∩ F ′) =

H(F )−H(F ∩F ′)+H(F ′)−H(F ∩F ′)+H(F ∩F ′) = H(F )+H(F ′)−H(F ∩F ′).

�

Proposition 2.4. If H is monotone then (SS) ⇒ (Sh) ⇒ (S) and none of the
implications may be reversed.

Proof. Assume that H is strongly subadditive. Let F = {f1, f2, ..., fm} and let K
be a k-cover of F . Using (2.1) we can write

H(F ) = H({f1})+H({f2}|{f1})+H({f3}|{f1, f2}) + ...+H({fm}|{f1, ..., fm−1})

and similarly, for each K ∈ K,

H(K) =
∑

{j:fj∈K}
H ({fj}|{fi ∈ K : i < j}) .

By the preceding lemma, H fulfills (MC), hence H({fj}|{fi ∈ K : i < j}) ≥
H({fj}|{f1, ..., fj−1}). Since each fj belongs to at least k elements of K, summing
over K, we obtain

∑

K∈K
H(K) ≥

m
∑

j=1

kH({fj}|{f1, ..., fj−1}) = kH(F ).

For the proof of (Sh) ⇒ (S) note that {F, F ′ \ F} is a 1-cover of F ∪ F ′, hence
H(F ∪ F ′) ≤ H(F ) +H(F ′ \ F ) ≤ H(F ) +H(F ′).

For counterexamples we ask the reader to see section 6. In Example 6.4 we show
that topological entropy of the standard time-zero partition (which is also a cover)
in the golden mean shift is not strongly subadditive. On the other hand, it satisfies
Shearer’s inequality, because the cover is disjoint (see Proposition 6.2).

In example 6.5 we present a Z3-action such that topological entropy of a certain
cover does not satisfy Shearer’s inequality (it does not even satisfy the infimum
rule, see below). On the other hand, it is known that topological entropy of a cover
is subadditive. �
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3. The infimum rule

Let G be an amenable group and let (Fn) be a selected Følner sequence. By |F |
we will denote the cardinality of F .

Definition 3.1. We will say that a nonnegative function H on F(G) satisfies the
infimum rule if

lim sup
n→∞

1

|Fn|
H(Fn) = inf

F∈F(G)

1

|F |H(F ).

Definition 3.2. We say that H is G-invariant if for any g ∈ G it holds that
H(Fg) = H(F ).

Proposition 3.3. If a nonnegative and G-invariant function H on F(G) satisfies
Shearer’s inequality then it also obeys the infimum rule.

Proof. Clearly, lim supn→∞
1

|Fn|H(Fn) ≥ infF∈F(G)
1
|F |H(F ).

For the converse inequality, fix an F ∈ F(G) and ǫ > 0. For n large enough the

Følner set Fn is (F−1, ǫ)-invariant, i.e., it satisfies
|Fn△F−1Fn|

|Fn| < ǫ. The family

K = {Fg : g ∈ G,Fg ∩ Fn 6= ∅}
is a k-cover of Fn with k = |F | (for g 6= g′, we treat the sets Kg and Kg′ as
different elements of the k-cover, even if they are equal as sets). Indeed, for f ∈ Fn,
the condition f ∈ Fg can be written as g ∈ F−1f so, it is fulfilled for exactly k
elements g. By the same calculation, Fg ∩ Fn 6= ∅ if and only if g ∈ F−1Fn, so
the cardinality of K equals that of F−1Fn, i.e., it is not more than |Fn|(1 + ǫ). By
invariance of H , H(K) = H(F ) for every K ∈ K. The Shearer’s inequality now
reads

H(Fn) ≤
1

k

∑

K∈K
H(K) ≤ 1

|F | |Fn|(1 + ǫ)H(F ),

which, after dividing by |Fn| and passing with n to infinity, ends the proof. �

4. Shannon entropy

Let (X,Σ, µ) be a probability space. A partition of X is a finite collection P of
pairwise disjoint measurable sets such that

⋃

A∈P A = X . By a join (or a common
refinement) of partitions P and P ′ we mean the partition P ∨ P ′ = {A ∩ B : A ∈
P , B ∈ P ′}. Now, let G be an amenable group acting on X via measurable maps,
which preserve the measure µ. If F is a finite subset of G we write PF for the
common refinement

∨

g∈F g
−1P , where g−1P = {g−1A : A ∈ P} . Recall that the

Shannon entropy of a partition P is defined by

Hµ(P) = −
∑

A∈P
µ(A) log µ(A)

and entropy of the action of G with respect to a partition P is defined as

hµ(G,P) = lim sup
n→∞

1

|Fn|
Hµ

(

PFn
)

((Fn) is a Følner sequence in G).

Proposition 4.1. The function H(F ) = Hµ(PF ) is

(1) nonnegative,
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(2) G-invariant,
(3) monotone,
(4) strongly subadditive.

These statements follow from standard properties of the entropy of a partition—
for the proofs we refer the reader to any handbook on ergodic theory, ((SS) is
usually replaced by (MC) or (CS), see e.g. [3, (1.6.7) and (1.6.9)]). In view of these
facts, the following theorem follows from Propositions 2.4 and 3.3.

Theorem 4.2. Measure-theoretic entropy obeys the infimum rule, i.e.

hµ(G,P) = inf
F∈F(G)

1

|F |Hµ(PF ).

for every G-invariant measure µ and every partition P.

Remark 4.3. The above formula can be found, e.g. in [5], where it is attributed to
Kolmogorov.

5. Beyond amenability

The “mindblowingly” simple formula infF∈F(G)
1
|F |Hµ(PF ) can be applied to

processes under actions of any countable groups. (It can be applied to uncountable
groups as well, however, it will typically yield zero; such is the case of flows.) To
distinguish from other existing notions, we will denote it by h∗µ(G,P). How good
is this formula for countable non-amenable groups? The answer depends on the
properties we expect from a good notion of dynamical entropy.

The notion h∗µ(G,P) has the following advantages:

• It is completely universal, can be defined for arbitrary groups.
• It is extremely simple, requires no details of the group (for instance in
amenable groups it is formulated without referring to any Følner sequence).

• It satisfies the Bernoulli shifts postulate: Bernoulli shifts have “full” entropy
(equal to the Shannon entropy of the independent generator).

• It has a very convincing interpretation for other processes (entropy is lost
in finite-dimensional dependencies and all such losses matter).

Disadvantages can be detected by examining the action of the free group F2 with
two generators, and they include:

• It fails the factors postulate: it can increase when passing to a factor.
• It fails the invariance postulate: it can change with change of a generator
(hence is not an isomorphism invariant).

Before the examples, we recall the notions of the shift action and of a subshift.
Suppose G is a group and Λ is a finite set with the discrete topology. By the full
shift we understand the set ΛG (whose elements are x = (xg)g∈G) equipped with
the product topology, on which G acts by shifts: (gx)h = xhg. A subshift is any
closed G-invariant subset X ⊂ ΛG. The full shift, as well as any subshift, admits a
natural partition PΛ = {[a] : a ∈ Λ} by closed-and-open cylinder sets determined
by the symbol “at zero”: [a] = {x : xe = a} (e is the unity of G). We call it
the time-zero partition (or time-zero cover, depending on the context). The term
Bernoulli measure is synonymous with a product measure νG on ΛG, where ν is a
probability measure on Λ.
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Example 5.1. Let F2 denote the free group with two generators a and b and unity
e, and consider X = {−1, 1}F2 with the shift action, the Bernoulli (12 ,

1
2 )-measure,

and the zero-coordinate partition P = {[−1], [1]}. Clearly, H(P) = log 2 and
h∗µ(F2,P) = log 2. Next, consider the mapping ψ : X → {−1, 1}×{−1, 1} given by

ψ(x) = (x(e)x(a), x(e)x(b))

and the associated four-element partition R. It is not hard to see that the process
generated by R is the (14 ,

1
4 ,

1
4 ,

1
4 )-Bernoulli shift: the one-dimensional distributions

are independent. So, Hµ(R) = log 4 and so equals h∗µ(F2,R). On the other hand,

the process generated by R is clearly a factor of that generated by P . 1

Now let E = {e, a, b} ⊂ F2 and consider Q = PE. Clearly, this partition
is another generator of the process generated by P (the generated processes are
isomorphic). For any finite set F ⊂ F2 we have H(QF ) = H(PEF ) = |EF | log 2.
However, the ratio |FE|

|F | does not drop below 2 (and can be arbitrarily close to 2).

Hence h∗µ(F
2,Q) = 2h∗µ(F

2,P) = log 4. 2

So, either we accept h∗µ(G,P) as a parameter associated with a concrete process,
maintaining its simplicity and interpretation, or we try to force it to become an
isomorphism invariant. As an attempt in this direction we propose two invariants,
both equal to h∗µ(G,P) for actions of amenable groups. Unfortunately, we are
unable to verify whether these new notions fulfill the Bernoulli shift condition in a
more general case.

Definition 5.2.

h∗∗µ (X,G) = inf{h∗µ(G,P) : P is a generator},

h∗∗∗µ (X,G) = inf{Hµ(P) : P is a generator}.

Note that the latter notion has nothing to do with h∗µ(G,P), we were driven
to it just by analogy to h∗∗µ (X,G). For actions of amenable groups we know that
h∗∗µ (X,G) equals hµ(X,G). We also have h∗∗∗µ (X,G) = hµ(X,G) (see [7, Corollary
2.7]).

In the general case it is obvious that h∗∗(X,G) ≤ h∗∗∗(X,G). B. Seward [6] can
prove the opposite inequality for free actions (i.e., such that for g 6= e, the set of
points fixed by g has measure 0). As we already mentioned, we still do not know
whether any of these notions satisfies the Bernoulli shifts postulate.3

1The above example shows that the failure of the factors postulate is inevitable for any entropy
notion satisfying the Bernoulli shifts postulate (in particular, for sofic entropy [2]). For this reason
it is commonly agreed to give up the factors postulate in the search for a universal (i.e., valid for
a range of acting groups) notion of entropy.

2The strength of the notion of sofic entropy is that it behaves better in this aspect; it does not
depend on the partition as long as it generates the whole process. So, sofic entropy can be viewed
as a parameter associated to measure-preserving actions, and becomes an isomorphism invariant.
On the other hand, sofic entropy has its disadvantages: it has a very complicated definition, and
it applies to actions of sofic groups only.

3B. Weiss ([9]) can prove the Bernoulli shifts postulate for h∗∗∗(X,G) in actions of sofic groups,
so h∗∗∗(X,G) becomes a serious competition for sofic entropy. It is unknown whether these two
notions coincide for actions of sofic groups.
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6. Topological entropy

In the present section we enter the world of topological dynamical systems. We
assume that X is a compact metric space and G acts by homeomorphisms on X .
Similarly to the measure-theoretic case, for an open cover U and a finite F ⊂ N we
write UF for the refinement

∨

f∈F f
−1U , where f−1U = {f−1U : U ∈ U}. We recall

that N(U) is the smallest cardinality of a subcover chosen from a cover U and that
topological entropy of a cover U is defined by Htop(U) = log(N(U)). Topological
entropy of the action is defined in two steps:

htop(T,U) = lim sup
n→∞

1

|Fn|
Htop(UFn),

htop(T ) = sup
U
htop(T,U),

where (Fn) is a Følner sequence and the supremum is taken over all open covers
of X .

We want to study the nonnegative function on F(G) obtained by fixing an open
cover U and abbreviating Htop(UF ) as Htop(F ). It is obvious that Htop is monotone
and G-invariant. It is also commonly known (and easily verified) that this function
is subadditive (see e.g. [3, (6.3.8)]). The natural next step is the verification of
Shearer’s inequality. We begin with a discrete version of [1, Thm. 2]. The proof is
almost literally copied.

Lemma 6.1. Let X be a subset of Λn, where Λ is a finite set and n ∈ N. Let K
be a k-cover of the set of coordinates {1, 2, . . . , n} (the elements of K are nonempty
subsets of {1, 2, . . . , n}, we admit repeated elements in K, and each coordinate be-
longs to at least k elements of K). For K ∈ K let XK denote the projection of X
onto the coordinates belonging to K. Then

|X| ≤
∏

K∈K
|XK | 1k .

Proof. For n = 1 the statement is obvious: each K ∈ K equals {1}, each XK equals
X and the cardinality of K is at least k. We proceed by induction. Consider an
n ≥ 2 and suppose the statement holds for subsets of Λn−1. The set X ⊂ Λn splits
into disjoint sets Xa, a ∈ Λ, depending on the value at the last coordinate:

X
a = {(x1, x2, . . . , xn) ∈ X : xn = a}.

For K ∈ K let K◦ = K \ {n} and let K◦ = {K◦ : K ∈ K}. Clearly, K◦ is a
k-cover of {1, 2, . . . , n− 1}. For every a ∈ Λ, Xa can be viewed as a subset of Λn−1

(with the symbol a appended to each element), hence, by the inductive assumption,
we have

|Xa| ≤
∏

K∈K
|Xa

K◦ | 1k .

Because in X
a the symbol at the last coordinate is determined, we have |Xa

K◦ | =
|Xa

K | for every K, and we get

|Xa| ≤
∏

K∈K
|Xa

K | 1k .

Further,

|X| =
∑

a∈Λ

|Xa|, and |XK | =
∑

a∈Λ

|Xa
K |,
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for every K ∈ K such that n ∈ K. For K not containg n we will apply the estimate
|Xa

K | ≤ |XK | (regardless of a ∈ Λ). And so, we have

(6.1) |X| =
∑

a∈Λ

|Xa| ≤
∑

a∈Λ

∏

K∈K
|Xa

K | 1k =
∑

a∈Λ

(

∏

K∋n

|Xa
K | 1k ·

∏

K 6∋n

|Xa
K | 1k

)

≤
∏

K 6∋n

|XK | 1k ·
∑

a∈Λ

∏

K∋n

|Xa
K | 1k .

For each K containing n, on Λ we define a function fK , by fK(a) = |Xa
K | 1k , and

then we apply the generalized Hölder inequality:
∥

∥

∥

∏

K∋n

fK

∥

∥

∥

p
≤

∏

K∋n

∥

∥

∥
fK

∥

∥

∥

k
,

where 1
p
=

∑

K∋n
1
k
. Because K is a k-cover, this sum has at least k terms, hence

p ≤ 1 (if p < 1, formally, ‖ · ‖p is not a norm, but it does not matter). Since for a
fixed finite-dimensional vector f , the term ‖f‖p is a decreasing function of p > 0,
the above inequality holds also for p = 1, and then it reads:

∑

a∈Λ

∏

K∋n

|Xa
K | 1k ≤

∏

K∋n

(

∑

a∈Λ

|Xa
K |

)
1

k

=
∏

K∋n

|XK | 1k .

Plugging this into (6.1) we end the proof. �

Corollary 6.2. If U consists of pairwise disjoint sets then the corresponding func-
tion Htop on F(G) fulfills Shearer’s inequality.

Proof. Because the cover U is by disjoint sets, for each F ∈ F(G) we have N(UF ) =
|UF |, where UF is rid of empty elements. Labeling U by elements of a finite alphabet
Λ (of the same cardinality as U), UF can be identified with a set X ⊂ ΛF , while for
any K ⊂ F we have UK = XK . Now, Htop(F ) = log |X| and Htop(K) = log |XK |
and the assertion follows directly from Lemma 6.1. �

Corollary 6.3. If (X,G) is a subshift and U = PΛ then the infimum rule holds for
Htop, i.e.,

htop(T ) = htop(T,U) = inf
F∈F(G)

1

|F |Htop(UF ).

Proof. Follows immediately from Propositions 6.2 and 3.3. �

The following example shows that topological entropy is not in general strongly
subadditive, even for subshifts. To make matters worse, in another example we will
present a system and a (non-disjoint) cover such that both Shearer’s inequality and
infimum rule fail.

Example 6.4. The golden mean shift is a subshift X ⊂ {0, 1}Z consisting of all
sequences in which block 11 does not occur. Let U = PΛ be the two-element time-
zero cover. It was shown already that Shearer’s inequality holds, but it can easily
be checked that

Htop({−1, 0, 1}) +Htop({0}) = log 5 + log 2 ≥ log 3 + log 3

= Htop({−1, 0}) +Htop({0, 1}),
i.e., strong subadditivity does not hold.
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The following example looks innocent, but it took us a lot of effort to find it.

Example 6.5. Let Λ = {a, b, c}. We consider the action of the group Z3 = Z/3Z =
{0, 1, 2}, by shifts, on a space X ⊂ ΛZ3 (i.e., a subshift) defined by

X = {(a, a, a), (b, b, b), (c, c, c), (a, b, c), (b, c, a), (c, a, b)}.
(In fact, (c, c, c) can be dropped and the example with 5 elements will still work.) It
is clear that X is closed and Z3-invariant. The collection V = {{a, b}, {b, c}, {a, c}}
is a (non-disjoint) cover of Λ. Let V̄ = {V̄ : V ∈ V}, where V̄ = V ×Λ×Λ. Clearly,
V̄ is a cover of ΛZ3 hence also of X . The elements of V̄Z3 have the form V1×V2×V3,
where V1, V2, V3 are (not necessarily distinct) elements of V . It is easy to check that
X admits a subcover of V̄Z3 consisting of three sets, namely

{a, b} × {a, b} × {a, b}, {a, c} × {b, c} × {a, c}, {b, c} × {a, c} × {a, b}.
On the other hand, there is no subcover with two elements (one set of the form
V1×V2×V3 may contain at most two elements of X , because in any three of them,
on some coordinate there appear all three letters). Thus N(V̄Z3) = 3 and

htop(Z3, V̄) =
1

|Z3|
Htop(V̄Z3) =

1

3
log 3

(in any finite group G, for any Følner sequence, eventually Fn = G). However,
the cover V̄{0,1} has a minimal subcover consisting of only two sets (for example
{b, c}× {a, c} and {a, b}× {a, b}), and Htop(V{0,1}) = log 2. Since 1

2 log 2 <
1
3 log 3,

the infimum rule does not hold. Consequently, by Proposition 3.3 (or by direct
verification for the 2-cover of Z3 by {0, 1}, {1, 2}, {0, 2}), Shearer’s inequality fails
as well.

Remark 6.6. Shearer’s inequality depends only vaguely on the acting group. The
example (as a counterexample for Shearer’s inequality) can be easily adapted to the
action of any group with at least 3 elements, in particular of Z. The infimum rule
depends more heavily on the acting group (its proof uses only k-covers obtained by
shifting one set F of cardinality k), so the following question arises:

Question 6.7. Let G be an infinite countable amenable group acting on a compact
spaceX and let U be an open cover of X . Does the infimum rule hold for Htop(F ) =
Htop(UF ), i.e., is it true that htop(G,U) = h∗top(G,U)?

In spite of many efforts, we have not succeeded in answering this questions even
for G = Z. In fact, we do not even know toward which answer should we incline.
Let us discuss the difficulties more extensively.

Our example for Z3 works only because the two-element set {0, 1} and its shifts
form a non-splitting 2-cover of Z3. In Z, an analogous 2-cover is splitting (i.e., it
splits as a union of two 1-covers) and it is easy to show, using plain subadditivity,
that for a splitting k-cover of G, obtained by shifting one set F , the Shearer’s in-
equality nearly holds (up to a small error) on large elements of the Følner sequence.
This suffices to prove the infimum rule. The simplest finite subset of Z whose shifts
produce a non-splitting 3-cover is {0, 1, 3}, but we failed to find a counterexample
for Shearer’s inequality, based on any 3-cover. The point is that the key inequality
1
k
log k ≤ 1

k+1 log(k + 1) does not hold for k > 2.

Nevertheless, we are able to formulate a positive result. In its proof we benfit
from the fact that the infimum rule works for the Shannon entropy and we apply
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the variational principle (for amenable groups it was first proved in [8]). Let us
recall: if MG(X) is the collection of all G-invariant probability measures on X
then htop(G) = supµ∈MG(X) hµ(G). It suffices to take the supremum over ergodic
measures.

Theorem 6.8. Let X be a compact metric space and G a countable amenable group
acting on X by continuous maps. Define

h∗top(G,U) = inf
F

1

|F |Htop(UF )

h∗top(G) = sup
U
h∗top(G,U)

Then
h∗top(G) = htop(G)

Proof. Clearly, h∗top(G) ≤ htop(G).
To obtain the converse inequality, consider an ergodic measure µ on X , a finite

partition P = {A1, ..., Ap} of X , and fix an ǫ > 0. For any δ > 0 one can choose
compact sets Bi ⊂ Ai, i = 1, ..., p, so that µ(Ai \ Bi) < δ/p. Additionally, let
B0 = X \⋃p

i=1 Bi and define Ui = B0 ∪Bi, i = 1, ..., p. Then U = {U1, ..., Up} is a
cover with Ui ⊃ Ai, µ(Ui \ Ai) < δ. The family ξ = {B0, B1, ..., Bp} is a partition
of X . For any F ∈ F(G), we have

Hµ(PF ) ≤ Hµ(PF ∨ ξF ) = Hµ(PF |ξF ) +Hµ(ξ
F ) ≤ |F |Hµ(P|ξ) +Hµ(ξ

F )

(we have used subadditivity of the function H(F ) = Hµ(PF |ξF ), see e.g. [3,
(1.6.33)]. Choosing δ appropriately small, we may demand that Hµ(P|ξ) < ǫ,
so that

(6.2) Hµ(PF ) ≤ Hµ(ξ
F ) + |F |ǫ.

Let (Fn) be a tempered Følner sequence (we skip the definition, every Følner se-
quence has a tempered subsequence, the ergodic theorem holds along any tempered
Følner sequence, see [4]). By the ergodic theorem, for almost all x it holds that

lim
n→∞

1

|Fn|
|{g ∈ Fn : gx ∈ B0}| = µ(B0) < ǫ.

The same is true for f−1B0 (f ∈ F ), which implies that for almost all x,

lim
n→∞

1

|Fn|
|{g ∈ Fn : fgx ∈ B0}| < ǫ

for all f ∈ F . Therefore, we can choose N ∈ N such that the set

Xǫ,N =
⋂

n≥N

⋂

f∈F

{

x ∈ X :
1

|Fn|
|{g ∈ Fn : fgx ∈ B0}| < ǫ

}

has positive measure. For x ∈ Xǫ,N and n ≥ N we have

|{(g, f) : f ∈ F, g ∈ Fn, fgx ∈ B0}| < |Fn| · |F | · ǫ,
which implies

(6.3)
∣

∣

{

g ∈ Fn : |{f ∈ F : fgx ∈ B0}| > |F |√ǫ
}∣

∣ ≤ |Fn|
√
ǫ.

Consider a collection of all sets of the form
⋂

f∈F f
−1Cf , where Cf = B0 or

Cf = X \ B0, such that the first case occurs for at most |F | √ǫ indices f . Let Y
be the union of all such sets. Note that Y is a union of elements of the partition
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ξF . The ratios 1
|Fn| |{g ∈ Fn : gx ∈ Y }| converge to µ(Y ) for µ-almost every x. On

the other hand, gx ∈ Y is equivalent to the fact that fgx ∈ B0 for at most |F | √ǫ
elements f ∈ F . If, in addition, we pick x ∈ Xǫ,N then (6.3) implies that for every
n ≥ N ,

1

|Fn|
|{g ∈ Fn : gx ∈ Y }| ≥ 1−√

ǫ.

Since Xǫ,N has positive measure, it contains a point which fulfills the ergodic the-
orem for Y , implying that µ(Y ) ≥ 1−√

ǫ.
Let U ′ be a subcover of UF with minimal cardinality. Denoting by ξFY the

collection {B ∈ ξF : B ∩ Y 6= ∅} (note that we can as well write B ⊂ Y , so ξFY is a
partition of Y ), we obviously have

∣

∣ξFY
∣

∣ ≤
∑

U∈U ′

∣

∣{B ∈ ξFY : B ∩ U 6= ∅}
∣

∣ .

Fix some U ∈ U ′, U =
⋂

f∈F f
−1Ujf , 1 ≤ jf ≤ p. Consider a B ∈ ξFY satisfying

B ∩ U 6= ∅. Then B is a cylinder in ξF , B =
⋂

f∈F f
−1Bkf

, 0 ≤ kf ≤ p, and

because B is contained in Y , kf = 0 may occur for not more than |F | √ǫ indices
f ∈ F . If kf 6= 0 then it must be equal to jf , because otherwise Bkf

and Ujf would

be disjoint, implying B ∩U = ∅. Therefore, for given U the number of sets B ∈ ξFY
intersecting U is estimated by the number of ways in which the (few) indices 0 can
be distributed over the kf ’s, i.e.,

∣

∣{B ∈ ξFY : B ∩ U 6= ∅}
∣

∣ ≤
⌊|F |√ǫ⌋
∑

i=0

(|F |
i

)

.

It is well known that log
(

n
k

)

≤ nH( k
n
), where H(δ) is the binary entropy of the

vector (δ, 1− δ), so we get

(6.4) log
∣

∣ξFY
∣

∣ ≤ Htop(UF ) + |F |H(
√
ǫ) + log |F | √ǫ.

We still need to compare the partition ξFY with ξF . Let R be the partition
{Y,X \ Y } and let µY be the normalized conditional measure induced by µ on Y .
We have

Hµ(ξ
F ) ≤ Hµ(ξ

F ∨R) = Hµ(ξ
F |R) +H(R)

= µ(Y )HµY
(ξFY ) + µ(X \ Y )HµX\Y

(ξF ) +H(R)

≤ HµY
(ξFY ) +

√
ǫ · log |ξF |+H(

√
ǫ).

Eventually, combining the above with (6.2) and (6.4) (and the standard estimate
of entropy by means of cardinality), we get

Hµ(PF ) ≤ Htop(UF ) + |F |H(
√
ǫ) + log |F | √ǫ+√

ǫ · log |ξF |+H(
√
ǫ) + |F |ǫ.

Dividing both sides by |F | and noticing that all but the first term on the right can
be made arbitrarily small, regardless of F , by the choice of ǫ, next taking infima
over F on both sides, and supremum over U on the right (which eliminates the
small error terms), we arrive to

inf
F

1

|F |Hµ(PF ) ≤ h∗top(G).
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Now Theorem 4.2 allows to replace the left hand side by hµ(G,P). Since the
inequality holds for any P and any ergodic µ, taking appropriate suprema (and
applying the variational principle), we can further replace the left hand side by
htop(G), concluding the proof. �
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