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We derive explicit formulas for solutions of the Bethe ansatz equations of the Gaudin
model associated to the tensor product of one arbitrary finite-dimensional irreducible
module and one vector representation for all simple Lie algebras of classical type.
We use this result to show that the Bethe ansatz is complete in any tensor product
where all but one factor are vector representations and the evaluation parameters are
generic. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4964389]

. INTRODUCTION

The Gaudin Hamiltonians are an important example of a family of commuting operators. We
study the case when the Gaudin Hamiltonians possess a symmetry given by the diagonal action of
g. In this case the Gaudin Hamiltonians depend on a choice of a simple Lie algebra g, g-modules
Vi,...,V,, and distinct complex numbers z;,. . ., z,, see (2.1).

The problem of studying the spectrum of the Gaudin Hamiltonians has received a lot of atten-
tion. However, the majority of the work has been done in type A. In this paper we study the cases of
types B, C, and D.

The main approach is the Bethe ansatz method. Our goal is to establish the method when all but
one module V; are isomorphic to the first fundamental representation V,,,. Namely, we show that the
Bethe ansatz equations have sufficiently many solutions and that the Bethe vectors constructed from
those solutions form a basis in the space of singular vectorsof V; ® - - - @ V,.

The solution of a similar problem in type A in Ref. 7 led to several important results, such
as a proof of the strong form of the Shapiro-Shapiro conjecture for Grassmannians, simplicity of
the spectrum of higher Gauding Hamiltonians, the bijection between Fuchsian differential operators
without monodromy with the Bethe vectors, etc, see Ref. 4 and references therein. We hope that this
paper will give a start to similar studies in type B. In addition, the explicit formulas for simplest
examples outside type A are important as experimental data for testing various conjectures.

By the standard methods, the problem is reduced to the case of n = 2, with V; being an arbitrary
finite-dimensional module, V> = V,,, and z; = 0, z2 = 1. The reduction involves taking appropriate
limits, when all points z; go to the same number with different rates. Then the n = 2 problems are
observed in the leading order and the generic situation is recovered from the limiting case by the
usual argument of deformations of isolated solutions of algebraic systems, see Ref. 7 and Section IV
for details.

For the 2-point case when one of the modules is the defining representation V,,,, the spaces
of singular vectors of a given weight are either trivial or one-dimensional. Then, according to the
general philosophy, see Ref. 5, one would expect to solve the Bethe ansatz equations explicitly. In
type A it was done in Ref. 5. In the supersymmetric case of gl(p|g) the corresponding Bethe ansatz
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equations are solved in Ref. 10. The other known cases with one dimensional spaces include tensor
products of two arbitrary irreducible sl, modules, see Ref. 13 and tensor products of an arbitrary
module with a symmetric power Vi, of the vector representation in the case of sl,,, see Ref. 8.
Interestingly, in the latter case the solutions of the Bethe ansatz equations are related to zeros of
Jacobi-Pineiro polynomials which are multiple orthogonal polynomials.

In all previously known cases when the dimension of the space of singular vectors of a
given weight is one, the elementary symmetric functions of solutions of Bethe ansatz equations
completely factorize into products of linear functions of the parameters. This was one of the main
reasons the formulas were found essentially by brute force. However, unexpectedly, the computer
experiments showed that in types B, C, and D, the formulas do not factorize, see also Theorem
5.5 in Ref. 7, and therefore, the problem remained unsolved. In this paper we present a method to
compute the answer systematically.

Our idea comes from the reproduction procedure studied in Ref. 9. Let V| = V,; be the irre-

ducible module of highest weight 4, let V3,...,V, be finite-dimensional irreducible modules, and
let /;,...,l, be non-negative integers, where r is the rank of g. Fix distinct complex numbers
21 =0,z1,...,2,. Consider the Bethe ansatz equation, see (2.2), associated to these data. Set

V=V,®- -8V, denote the highest weight vector of V by v™, the weight of v* by u*, and set
u=pu" =" la; Here a; are simple roots of g.

Given an isolated solution of the Bethe ansatz equations we can produce two Bethe vectors: one
in the space of singular vectors in V; ® V of weight u + A and another one in the space of vectors
in V of weight u. The first Bethe vector, see (2.3), is an eigenvector of the standard Gaudin Hamil-
tonians, see (2.1), acting in V; ® V and the second Bethe vector is an eigenvector of trigonometric
Gaudin Hamiltonians, see Ref. 9. The second vector is a projection of the first vector to the space
vV =V,

Then the reproduction procedure of Ref. 9 in the jth direction allows us to construct a new
solution of the Bethe ansatz equation associated to new data: representations Vi = Vs,.1, Va,..., V,,
and integers [y, . . . ,l},. .., 1, so that the new weight g = u* — Dizjliai — ijaj is given by fi = s;p.
This construction is quite general, it works for all symmetrizable Kac-Moody algebras provided that
the weight A is generic, see Theorem 2.6 below. It gives a bijection between solutions corresponding
to weights u of V in the same Weyl orbit.

Note that in the case u = u*, the Bethe ansatz equations are trivial. Therefore, using the trivial
solution and the reproduction procedure, we, in principle, can obtain solutions for all weights of the
form = wu*. Note also that in the case of the vector representation, V =V, , all weights in V are
in the Weyl orbit of u* = w; (with the exception of weight u = 0 in type B). Therefore, we get all
the solutions we need that way (the exceptional weight is easy to treat separately).

In contrast to Ref. 9, we do not have the luxury of generic weight A, and we have to check
some technical conditions on each reproduction step. It turns out, such checks are easy when going
to the trivial solution, but not the other way, see Section III C. We manage to solve the recursion and
obtain explicit formulas, see Corollary 3.10 for type B, Theorem 5.1 for type C, and Theorem 5.4
for type D. We complete the check using these formulas, see Section III E 4.

To each solution of Bethe ansatz, one can associate an oper. For types A, B, C the oper becomes
a scalar differential operator with rational coefficients, see Ref. 6, and Sections III F and V A. In
fact, the coefficients of this operator are eigenvalues of higher Gaudin Hamiltonians, see Ref. 3 for
type A and Ref. 2 for types B and C. The differential operators for the solutions obtained via the
reproduction procedure are closely related. It allows us to give simple formulas for the differential
operators related to our solutions, see Propositions 3.11 and 5.3. According to Ref. 6, the kernel
of the differential operator is a space of polynomials with a symmetry, called a self-dual space. We
intend to discuss the self-dual spaces related to our situation in detail elsewhere.

The paper is constructed as follows. In Section II we describe the problem and set our notation.
We study in detail the case of type B in Sections III and IV. In Section III we solve the Bethe
ansatz equation for n = 2 when one of the modules is V,,,. In Section IV, we use the results of
Section III to show the completeness and simplicity of the spectrum of Gaudin Hamiltonians acting
in tensor products where all but one factors are V, , for generic values of z;. In Section V we give
the corresponding formulas and statements in types C and D.
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Il. THE GAUDIN MODEL AND BETHE ANSATZ
A. Simple Lie algebras

Let g be a simple Lie algebra over C with Cartan matrix A = (a; ;)! T Denote the universal

enveloping algebra of g by U(g). Let D = diag{d,,...,d,} be the diagonal matrix with positive
relatively prime integers d; such that B = DA is symmetric.

Let ) c g be the Cartan subalgebra. Fix simple roots «j,...,a, in h*. Let alv,. .., €hbe
the corresponding coroots. Fix a nondegenerate invariant bilinear form (,) in g such that (, an) =
a; j/d;. Define the corresponding invariant bilinear forms in H* such that (o;,a;) = d;a; ;. We
have (1,a}) = 2(4,a;)/(a;, ;) for A € h*. In particular, (@;,@)) = a; ;. Let wy,...,w, € h* be the
fundamental weights, (w;, @) = 6; ;.

Let # = {1 € bh'[(A,a)) € Z} and P* = {2 € h*(1,) € Z>o} be the weight lattice and the
set of dominant integral weights. The dominance order > on bh* is defined by u > v if and only if
Hu—v=73"_aa;a; €Zyofori=1,...,r.

Let p € h*be such that (p,e)) = 1,i = 1,...,r. We have (p, ;) = (@;,@;)/2.

For A € b*, let V,; be the irreducible g-module with highest weight 4. We denote (/l,al.v) by 4;
and sometimes write Via,, 4,,....4,) for V.

The Weyl group ‘W c Aut(h*) is generated by reflections s;,i = 1,...,r,

si() =21-(,af)a;, A€
We use the notation
w-A=wdA+p)—p, weW, 1€l
for the shifted action of the Weyl group.

LetEy,....,E, en,, Hy,...,H, €Y, Fy,...,F, € n_be the Chevalley generators of g.

The coproduct A : U(g) — U(g) ® U(g) is defined to be the homomorphism of algebras such
that Ax=1® x+x®1,forall x € g.

Let (x;);co be an orthonormal basis with respect to the bilinear form (,) in g.

Let Qy= Yo x% € U(g) be the Casimir element. For any u € U(g), we have uQy = Qqu. Let
Q=3,c0Xi®x; €909 C U(g) ® U(g). For any u € U(g), we have A(u)Q = QA(u).

The following lemma is well-known, see, for example, Ref. 1, Ex. 23.4.

Lemma 2.1. Let V, be an irreducible module of highest weight A. Then Qg acts on V, by the
constant (1 + p, A + p) — (p, p). O

Let V be a g-module. Let Sing V = {v € V | n,v = 0} be the subspace of singular vectors in
V.For ueb*let Viul ={v € V| hv = {u,h)v} be the subspace of V of vectors of weight u. Let
Sing V[u] = (Sing V) N (V[ u]) be the subspace of singular vectors in V of weight p.

B. Gaudin model

Let n be a positive integer and A = (Ay,...,A,), A; € b*, a sequence of weights. Denote by Vj
the g-module V), ® - -- ® V.

If X € End(Vj,), then we denote by X) € End(V,) the operator id® ™' ® X ® id®*™" acting
non-trivially on the ith factor of the tensor product. If X = 3}, X; ® ¥i € End(Va, ® VAj), then we
set X0 =3, XV @ ¥ € End(Vy).

Let z =(z1,...,2,) be a point in C" with distinct coordinates. Introduce linear operators
H1(z),...,H,(z) on V, by the formula

QU-J)
Hi(z)= . i=1,....n @2.1)
=i X
J» J#I
The operators Hi(z), . . . , H,(z) are called the Gaudin Hamiltonians of the Gaudin model associated
with V4. One can check that the Hamiltonians commute, [#;(z),H;(z)] = O for all i, j. Moreover,
the Gaudin Hamiltonians commute with the action of g, [H;(z),x] = O for all i and x € g. Hence for
any u € b*, the Gaudin Hamiltonians preserve the subspace Sing VA[u] C Vji.
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C. Bethe ansatz

Fix a sequence of weights A = (A;)",, A; € b, and a sequence of non-negative integers
l=(,...,I,).Denotel =1 +---+1,, A=A +---+A,and a(l) = lha; +--- + [,a,.

Let ¢ be the unique non-decreasing function from {1,...,/} to {1,...,r}, such that #c~'(i) = [;
fori = 1,...,r. The master function ®(t,z,A,l) is defined by

I n
otz AD= [| G-a)®™ ] =z o™ [T -

I<i<j<n i=1 s=1 1<i<j<l

The function @ is a function of complex variables ¢ = (ty,...,t), 2 = (21,. . . ,Za), Weights A, and
discrete parameters /. The main variables are ¢, the other variables will be considered as parameters.
We call A; the weight at a point z;, and we also call ¢(i) the color of variable t;.
A point t € Clis called a critical point associated to z,A, 1, if the following system of algebraic
equations is satisfied:

n

ci,As c(i)®e(j
_Z(au )+Z(“(>“U))=o i=1,...,1 (2.2)

i — s e 1 —tj

s=1

In other words, a point ¢ is a critical point if

((I)‘lg—(b) (t)=0 fori=1,...,L

1

Equation (2.2) is called the Bethe ansatz equation associated to A, z,1.

By definition, if ¢ = (¢1,. . .,#;) is a critical point and (@@, @c(;)) # 0 for some 7, j, then t; # ¢;.
Also if (@¢(;), As) # 0 for some i, s, then t; # z,.

Let X; be the permutation group of the set {1,...,/}. Denote by X; C ¥; the subgroup of
all permutations preserving the level sets of the function c¢. The subgroup X; is isomorphic to
Xy, X -+ x %,. The action of the subgroup X; preserves the set of critical points of the master
function. All orbits of X; on the critical set have the same cardinality /;!.../,! In what follows we
do not distinguish between critical points in the same X;-orbit.

The following lemma is known.

Lemma 2.2 (Ref. 6). If weight A — a(l) is a dominant integral, then the set of critical points is
finite. O

D. Weight function

Consider highest weight irreducible g-modules Vy,,...,Vy,, the tensor product Vy, and its
weight subspace VA[A — «(I)]. Fix a highest weight vector vy, in Vi, fori = 1,...,n.
Following Ref. 12, we consider a rational map

w:C"xCh - WA - )]

called the canonical weight function.

Let P(I,n) be the set of sequences I = (i},... ,i]l,l; -3, .7 ) of integers in {1,...,r} such
that for all i = 1,...,r, the integer i appears in [ precisely /; times. For I € P(I,n), and a permuta-
tion o € X, set o1(i) = o(i) fori=1,...,j;and o5(i) = o(ji + -+ js_1 +i) for s =2,...,n and
i=1,...,js Define

S(={o €% | clos(j) =il fors=1,...,nand j = 1,...,j}.
To every I € P(l,n) we associate a vector
Fo = Fi}"'Fil. UA1®"'®F,"11...FI~;_1 VA,
J1 n
in VA[A — a(1)], and rational functions

Wro = Woy(1),..,o(i(21) - - Do (D), ..o n(in)(Zn)s
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labeled by o= € X(I), where
1
(til - tiz) v (tij,l - ti_,’)(tij - Z) .

wi.,...,ij(Z) =

We set
w(z,t) = Z Z wr.oFrv. (2.3)

I1eP(l,n)oe€x(l)

Let ¢ € C! be a critical point of the master function ®@(-,z,A,l). Then the value of the weight
function w(z,t) € VA[A — a(l)] is called the Bethe vector. Note that the Bethe vector does not
depend on a choice of the representative in the X;-orbit of critical points.

The following facts about Bethe vectors are known. Assume that z € C" has distinct coordi-
nates. Assume that ¢ € C! is an isolated critical point of the master function ®(-,z, A, ).

Lemma 2.3 (Ref. 7). The Bethe vector w(z,t) is well defined. O
Theorem 2.4 (Ref. 14). The Bethe vector w(z,t) is non-zero. O

Theorem 2.5 (Ref. 11). The Bethe vector w(z,t) is singular, w(z,t) € Sing VA[A — a(l)].
Moreover, w(z,t) is a common eigenvector of the Gaudin Hamiltonians,

Hi@)lzt) = (cb-la—q’) 0@  i=l...n

az,-
O
E. Polynomials representing critical points
Let t = (ty,...,t;) be a critical point of a master function ®(¢,z,A, ). Introduce a sequence of

polynomials y = (yi(x),.. ., y,(x)) in a variable x by the formula

p)= [] x-1p.
J.e(j)=i

We say that the r-tuple of polynomials y represents a critical point t of the master function
®(¢,z,A,1). Note that the r-tuple y does not depend on a choice of the representative in the X;-orbit
of the critical point £.

Wehave ! = )7 deg y; = X.i_, l;. We call [ the length of y. We use notation yD to indicate the
length of y.

Introduce functions

Tix) = [ [ =z, i=1,r 2.4)
s=1

We say that a given r-tuple of polynomials y € P(C[x])" is generic with respect to A, z if

Gl: polynomials y;(x) have no multiple roots;
G2:  roots of y;(x) are different from roots and singularities of the function 7};
G3: if a;; < 0 then polynomials y;(x), y;(x) have no common roots.

If y represents a critical point of @, then y is generic.

Following Ref. 9, we reformulate the property of y to represent a critical point for the case
when all but one weights are dominant integral.

We denote by W(f, g) the Wronskian of functions f and g, W(f,g) = f'g — fg’'.

Theorem 2.6 (Ref. 9). Assume that z € C" has distinct coordinates and z; = 0. Assume that

A; € Pt i=2,...,n A generic r-tuple y represents a critical point associated to A,z,1 if and only
ifforeveryi = 1,...,r there exists a polynomial ij; satisfying
laraV
W(yi,x(/\ﬁp,a}/) gl) =T, 1_[ yj (aja; >. (25)

J#
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Moreover, if the r-tuple 3; = (y1,. . ., §i,- - -, Yr) Is generic, then it represents a critical point associ-
ated to data (s; - A1,Mo,. .., A\y),2,1;, where l; is determined by equation

A=A —all) = si(A= A —a(l)).

O

We say that the r-tuple ¥; (and the critical point it represents) is obtained from the r-tuple y
(and the critical point it represents) by the reproduction procedure in the ith direction.

Note that the reproduction procedure can be iterated. The reproduction procedure in the ith
direction applied to r-tuple §; returns back the r-tuple y. More generally, it is shown in Ref. 9 that
the r-tuples obtained from y by iterating a reproduction procedure are in a bijective correspondence
with the elements of the Weyl group.

We call a function f(x) a quasi-polynomial if it has the form x“p(x), where a € C and
p(x) € C[x]. Under the assumptions of Theorem 2.6, all 7; are quasi-polynomials.

lll. SOLUTIONS OF THE BETHE ANSATZ EQUATION IN THE CASE OF V,, ® V,
FORTYPE B,

In Sections III and IV we work with Lie algebra of type B,.

Letg = s0(2r + 1). We have (a;,@;) =4,i=1,...,r — 1, and (a,,a,) = 2.

In this section we work with data A = (1,w;), z = (0,1). The main result of the section is the
explicit formulas for the solutions of the Bethe ansatz equations, see Corollary 3.10.

A. Parameterization of solutions

One of our goals is to diagonalize the Gaudin Hamiltonians associated to A = (1,wy), Z =
(0,1). It is sufficient to do that in the spaces of singular vectors of a given weight.
Let A € P*. We write the decomposition of finite-dimensional g-module V; ® V,,,. We have

Va® le = V/l+¢u1 @ V/l+w1—a/1 o0 V/lﬂul—a]—m—ar © V/l+w1—a/1—~--—a,,_1—2a/r
@ V/l+w1—a1—~-~—(1r,2—2<zr,1—2ar S RRRES V/l+w1—2(r1—~-'—2(1r,1—2ar
=Vt g 1) ® V-t 00 L2500 @ Va1 g+ Lo )
D Vi am 11,442 ® Vi gty ) @ Vi o, Ay 00141, 0-2)
O Vit oty o1, -1.2) © - @ V(a1 200 (3.1

with the convention that the summands with non-dominant highest weights are omitted. In addition,
if A, = 0, then the summand V,_o,—..._a, = V(a,,4,,....4,_1,4,) 15 absent.

Note, in particular, that all multiplicities are 1.

By Theorem 2.5, to diagonalize the Gaudin Hamiltonians, it is sufficient to find a solution of
the Bethe ansatz equation (2.2) associated to A,z, and [ corresponding to the summands in the
decomposition (3.1). We call an r-tuple of integers I admissible if Vy.o—aq) C VA ® V,,,.

The admissible r-tuples / have the form

1=(1,...,1,0,...,0) or I=(1,...,1,2,...,2), (3.2)

~——— ——

k ones k ones

where k = 0,...,r. In the first case the length / = + --- + [, is k and in the second case 2r — k.
It follows that different admissible r-tuples have different length and, therefore, admissible tuples /
are parameterized by length / € {0,1,...,2r}. We call a non-negative integer [ admissible if it is the
length of an admissible r-tuple /. More precisely, a non-negative integer / is admissible if / = 0 or if

[<r,A;>0orifl=r+1,A,>1orifr+1<1<2r, Ay _;41 > 0.

In terms of y = (yy,. . ., y,), we have the following cases, corresponding to (3.2).

For [ < r, the polynomials yy,. .., y; are linear and y;,1,. . ., y, are all equal to one.

For [ > r, the polynomials yy,. . ., y»,—; are linear and yy,_;41,- . ., Y, are quadratic.
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Remark 3.1. For | < r the Bethe ansatz equations for type B, coincide with the Bethe ansatz
equations for type A, which were solved directly in Ref. 5. In what follows, we recover the result for
| < r, and we refer to Ref. 5 for the case of | = r.

B. Example of B,

We illustrate our approach in the case of By, [ =4. We have n =2, Ay =1 € P*, Ay = wy,
71 = 0,22 = 1. We write A = (1, 42), where A; = (1,a;) € Zs,.
Suppose the Bethe ansatz equation has a solution with / = 4. Then it is represented by quadratic

@ By Theorem 2.6, it means that there exist polynomials 7, 7, such that

polynomials y§4) and y,

4 - 4 g vy
Wy, ) = xNx - Dy, W, 5 = x(yY)”

Note we have 4,4, € Zs, but for 1; = 0 the first equation is impossible for degree reasons.
Therefore, there are no solutions with / = 4 for 4; = 0 which is exactly when the corresponding
summand is absent in (3.1) and when / = 4 is not admissible.

Step 1: There exists a unique monic linear polynomial #; such that —A;j; = x*1"'u;. Clearly,

“4)

the only root of u; cannot coincide with the roots of x*1(x — 1)y, ", therefore the pair (u;, yf)) is

A1+1

generic. It follows from Theorem 2.6 that the pair (u, yf)) solves the Bethe ansatz equation with
[ =3and A replaced by s1 -4 = (=11 = 2,24, + A, + 2).
In terms of Wronskians, it means that there exist quasi-polynomials #; and 7, such that

N _A— 4 4) A
W, g) = x4 2= Dy, WY, go) = X240,

The procedure we just described corresponds to the reproduction in the first direction, we have
sl(a)l — 2(11 - 2&2) =w] — a1 — 2()’2.
Note that so(w; — 2@ — 2a;) = w) — 2a; — 2a, and the reproduction in the second direction

applied to (yf4), yf)) does not change [/ = 4. We do not use it.

Step 2: We apply the reproduction in the second direction to the / = 3 solution (i, y§4)).

For degree reasons, we have —(1, +24; + 1), = x2*2U+3 .1 Set u, = 1. Clearly, the pair
(u1,up) is generic. By Theorem 2.6, the pair (uy,us) solves Bethe ansatz equation with [ = 1 and
A= (S2S1) A= (/11 + A+ 1,-241— A — 4)

It means we have s;(w; — @) — 2a;) = w; — a; and there exist quasi-polynomials 7, i, such
that

W(ul, gl) — x/ll+/12+l(x _ 1)”2 — x/ll+/12+1(x _ 1), W(I/tz, gz) — x—2/11—/12—4u%.

Note that we also have A7 = x"ll‘lyf4). Therefore, we can recover the initial solution
(yf4), yf)) from (u, y§4)). In general, if we start with an arbitrary / = 3 solution and use the repro-
duction in the first direction, we obtain a pair of quadratic polynomials. If this pair is generic, then
it represents an [/ = 4 solution associated to the data A = (,w),z,I = (2,2). However, we have
no easy argument to show that it is generic. Thus, our procedure gives an inclusion of all / =4
solutions to the / = 3 solutions and we need an extra argument to show this inclusion is a bijection.

Step 3: Finally, we apply the reproduction in the first direction to the [ = 1 solution (u1,uy).

We have —(1; + A, + 1)ij; = x11*42*2. 1. Set v; = 1. Clearly, the pair (v;,u,) = (1,1) is generic
and represents the only solution of the Bethe ansatz equation with [ =0 and Aj = (sys251) - 4 =
(=41 — 42 — 3, 12). We denote the final weight (s15251) - 4 by 6 = (61,6,).

It means we have sj(w; — @) = wy, and there exist quasi-polynomials ¥1, ¥, such that
Wy, Y1) = x~ M~ 273(x - l)ui, W (us, yoz) = xtp, = x2.

As before, we have (1, + 1, + 1)5 1 = x~Y=72y, and therefore using reproduction in the first
direction to pair (vy,u;) we recover the pair (uy,us).

To sum up, we have the inclusions of solutions for/ =4 to/ =3to/ =1 to/ = 0 with the A
varying by the shifted action of the Weyl group. Since for / = 0 the solution is unique, it follows that
for I = 1,3,4 the solutions are at most unique. Moreover, if it exists, it can be computed recursively.
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We proceed with the direct computation of y](4), y§4). From Step 3, we have v; = u, = 1. Then
we compute
A+ A+1
Uy=x— ——:.
A1+ A+ 2

From Step 2, we get
@ 2 24+ L+ DA+ +1) QA+ A+ DA+ A+ 1)
S TR VIR, 31 P P S ) B I3 Y N TV S
Finally, from Step 1,

@ _ 2 Qu++ DA +201 A2+ 421 + 2, +2)
L (/11+1)(ﬂl+/12+2)(2/ll+/12+2)
A+ L+ D24+ A+ 1)
(ﬁl+1)(/11+/12+2)(2/11+/12+3).

From the formula it is easy to check that the pair (y{4), yf)) is generic if 4; > 0 and therefore

represents a solution of the Bethe ansatz equation associated to A, z, and [ = 4.
Thus the Bethe ansatz equation associated to A, z,I = (2,2) has a unique solution given by the
formulas above.

C. The recursion lemmas

Let [ € {0,...,r —1,r +2,...,2r}, we establish a reproduction procedure which produces
solutions of length / — 1 from the ones of length /. For [ = r + 1, the reproduction procedure goes
from/ =r + 1to/ =r — 1. We recover the special case [ = r directly from Ref. 5, see Remark 3.1.
By Theorem 2.6 it is sufficient to check that the new r-tuple of polynomial is generic with respect to
new data. It is done with the help of following series of lemmas.

For brevity, we denote x — 1 by y for this section.

The first lemma describes the reproduction in the kth direction from [ =2r —k+ 1 to [ =
2r —k,wherek=1,...,r — 1.

Lemma 3.2. Let k € {1,...,r — 1}. Let v = (vy,...,v,) be an integral weight such that v; > 0.

Let yi,...,yx—1 be linear polynomials and yy,...,y, be quadratic polynomials. Suppose the

r-tuple of polynomials y > **V = (y,,. .., y,) represents a critical point associated to (v,w,),z and

[ =2r — k + 1. Then there exists a unique monic linear polynomial uy. such that W(yy, x"**'u;) =

—ViX kY _1Yr+1. Moreover, vy > 0 and the r-tuple of polynomials y® = = (y1,. .., Yx—1,U, Yr+1s
.., Yy) represents a critical point associated to (sy - v,w),z and [ = 2r — k.

Proof. The existence of polynomial §; such that W(yg, jx) = X" yr_1yx+1 implies v > 0.
Indeed, if degijx > 3, then deg W(yy, i) > 4; if deg i <2, then deg W(yy, jix) < 2. Hence
deg X"k yr_1yr+1 # 3, it follows that v # 0.

By Theorem 2.6, it is enough to show y?" %) is generic. If yi_iyy4; is divisible by u, then
Yx has a common root with y,_;yx,+; which is impossible since (yi,. .., y,) is generic. Since uy is
linear, it cannot have a multiple root. O

Note that we do not have such a lemma for the reproduction in the kth direction which goes
from [ — 1 to [ since unlike u; the new polynomial is quadratic and we cannot immediately conclude
that it has distinct roots. We overcome this problem using the explicit formulas in Section III E 4.

The next lemma describes the reproduction in the rth direction from/ =r+ 1tol =r — 1.

Lemma 3.3. Let v = (vy,...,v,) be an integral weight such that v, > 0. Let yi,...,Yy,— be
linear polynomials and y, be a quadratic polynomial. Suppose the r-tuple of polynomials y"+" =
(Y1, .., yr) represents a critical point associated to (v,w),z and 1 =r + 1. Then W(y,,x"7*") =
—(v, = Dx"r yf_l. Moreover, v, > 2 and the r-tuple of polynomials y(”l) =Yty s Yr—2Yr-1,1)
represents a critical point associated to (s, - v,w1),z and [ =r — 1. O

Finally, we discuss the reproduction in the kth direction from / = k to I = k — 1, where k =
1,...,r—1.
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Lemma 3.4. Let k € {1,...,r — 1}. Let v = (v1,. .., v,) be an integral weight such that v; > 0.
Let yi,. .., yx be linear polynomials and yi.1 = - - - = y, = 1. Suppose the r-tuple of polynomials
y® = (y\,...,y,) represents a critical point associated to (v,w,),z and I = k. Then W(y, x"<*) =
—Vi X’k Y _1Yx+1. Moreover, vy > 0 and the r-tuple of polynomials y(k’l) =W Yk-1,1,1,...,1)
represents a critical point associated to (si - v,w1),z and [ = k — 1. O

D. At most one solution

In this section, we show that there exists at most one solution of the Bethe ansatz equation (2.2).
We start with the explicit formulas for the shifted action of the Weyl group.

Lemma 3.5. Let A = (44,...,14,) € h*.

We have
(s1.-o8 ) A=A = = A=k =1, A5, , A1, Ak + g1 + L, gy, 0, 44),
wherek =1,...,r =2,
(s1...8_)- A=A == A 1—-1,A1,...,4,2,22,_1 + A, + 2),
($1...8) A=A —-= A, —r=1,21,...,4,22,2,1 + 4, + 2),
and
(S1v0o8pSpoteeoSyrp) A= (A1 = = Aopp1 =200k — =24, = A, =k = 1,
Aty dor2, oot + Aop i + L Aoy i1, -5 Ap),
wherek =r+1,...,2r — 1.
Proof. If k = 1,...,r — 2,r, the action of a simple reflection is given by

S A=Ay, . Ak Adgcr + A+ 1L, =5 =2, + A1 + 1, Agany oo, A0
In addition,
S0 A=A, 3, 0+ A, 0+ 1,4, = 2,24, + A, + 2).
The lemma follows. O

We also prepare the inverse formulas.

Lemma 3.6. Let 6 = (04,...,0,) € b*. We have

(Sk.v.50) 0= 0. 0p—01 = = O —k— 1,01+ + Ops1 + K, Oy - . ., 0,),
wherek =1,...,r =2,
(Sp—1...81)-0=(02,...,0,_1,—-01—-+—0,_1—1,201+---+20,_1+ 60, +2r -2),
($p...81)-0=(02,...,0,_1,01+---+0,+r—1,-20,—---=20,_, -0, —2r),
and
(S2r—kS2r—k41 -+ SpSp_y...81) -0
=(0...,00 1,01+ +0p _, 1+200 1+ - +20,_1+0,+k—1,
=0y = =0k =200 pp1 = = 20,1 — 0, — k02 k415 -, 0,),
where k =r +1,...,2r — 1. In particular,
(s182...8:8:_1...51)-0=(-01—-20,—---=20,_1—60,-2r +1,0,,...,0,).

(]

Lemma 3.7. Let A € P* and let 1 be as in (3.2). Suppose the Bethe ansatz equation associ-
ated to A = (4,w),z = (0,1),1, where A € P*, has solutions. Then 1 is admissible. Moreover, if
[ > r + 1, then we can perform the reproduction procedure in the 2r — 1 + 1) th, 2r — [ + 2) th, . . .,
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(r—=1)th,rth, (r — 1) th, ..., I-st directions successively. If | < r, we can perform the reproduction
procedure in the l th, (I — 1) th, . . ., 1-st directions successively.

Proof. We use Lemmas 3.2-3.4. The condition of the lemmas of the form v, > 0 follows from
Lemmas 3.5 and 3.6. O

Corollary 3.8. Let A € P* and 1 as in (3.2). The Bethe ansatz equation (2.2) associated to
A, z,1, has at most one solution. If | is not admissible it has no solutions.

Proof. If | # r, then by Lemma 3.7, every solution of the Bethe ansatz equations by a se-
ries of reproduction procedures produces a solution for / = 0. These reproduction procedures are
invertible, and for / = 0 we clearly have only one solution (1,. . .,1). Therefore the conclusion.

For [ = r the corollary follows from Theorem 2 in Ref. 5, see also Remark 3.1. O

E. Explicit solutions

In this section, we give explicit formulas for the solution of the Bethe ansatz equation corre-
sponding to data A = (1,w;),z =(0,1)and [, 1 € P*,1 € {0,...,2r}.

We denote by 6 the weight obtained from A after the successive reproduction procedures as
in Lemma 3.7. Explicitly, if l <r —1,then 8 = (sy...s5;-15) - A;if l > r+ 1, then 8 = (s57...5,_;
SrSp—1-.-S2.—1+1) - 4. We recover the solution starting from data (6, w;), z = (0,1) and [ = 0, where
the solution is (1,...,1) by applying the reproduction procedures in the opposite direction explic-
itly. In the process we obtain monic polynomials ( yfl), ces Yy )) representing a critical point.

Recall that for I < r, yi,.. ., y; are linear polynomials and y;,,. .., y, are all equal to one. We
use the notation y( - cil Ja=1,...,1.

Recall further that for [ > r, the polynomials yi,. .., y,-—; are linear and y,_;+1,. .., Y, are
quadratic. We use the notation y?l) =x- cl(,l), i=1,...,2r—1 and y(l) (x - ﬁ.l))(x - bg.l)), i=
2r—1+1,.

Formulas for c; @) agl), and bf.l) in terms of 6;, clearly, do not depend on /, in such cases we
simply write ¢;, a;, and b;.

Denote y(k) =x—1,c0=1,and Ty(x) = x1. Also let

s ifk <r,
A®(g) = {(S" $1) o g

(S27—k - Sp_18pSp1...81) -0 if

Explicitly, A%)(6) are given in Lemma 3.6.

1. Constant term of y; in terms of @

For brevity, we write simply A®) for A®)(9). We also use A*’ for components of the weight
A(k). A(k) (A(k) A(k))

For I <r -1, we have y¢~! = (x —Cly...»X—cj-1,1,...,1). It is easy to check that if [ is
admissible and A is dominant then Ag =01+---+60;+ (- 1) is a negative integer.

We solve for y(l 1),

11~11 1-1) (-1 (-1 -1
Wiy =y = - ).

In other words

=Dy AV Al

—(!/l Cr-1x"t

Choosing the solution which is a quasi-polynomial, we obtain

(l l) —

iy _ - Ay A§’ )
Ci—1].

LA Do\t A§“>+1
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Therefore, the reproduction procedure in the /th direction gives y©) = (x = c,...,x — ¢, 1,...,1),

o
Agz-n

where ¢; = WCH- Substituting the value for and using induction, we have

_ﬁ91+~~-+9j+j+1

iel O1+---+0;+]

fork=1,...,r—1.
For I=r+1 we have y" D =(x-cp,....x—c,_1,1) and A" V=20, + - +26,_,+ 6, +

2r — 2 € Z. We solve for 7Y,

(r—
W(yﬁr 1)’ ~£r 1)) — T(r 1)( (r= 1))2 _ xAr (X—Cr—l)z-

This implies
(r-1) -1 -1
i ( 2473 AT )
r - -1 -1 r= —1 r-1/-
AV 43 AT Y40 ACD 4
Therefore, after performing the reproduction procedure in the rth direction to y”~"), we obtain the
r-tuple y" Y = (x = ¢1,...,x = c,_1,(x — a,)(x — b)), where
2
) ArVy3 ﬁ61+~~+6.,-+j+1 200+ +20,_1+0, +2r +1
a = —C = .
rer ACD 4 r-1 b Ot 0t 201+ +20,1+6,+2r -1

For [ such that r + 2 < 1 < 2r,let k = 2r — I, then y® 0 = (x —c1,. .., x — cr, (x — ags1)(x —
bst)se s (x —a)(x = b)) and ATV =014+ O+ 20000+ 420, + 6, +2r —k -2 €
Z <.

We have

(2r-k) ~(2r ) A(” k=D r-k) (2r-k)
Wy, Yeo1 Yirr >

(2r-k-1)
A(zr Dy 2)i, g = x H(x = ag)(x — by), we get

substituting —(
(AL 4 1) = ) = ar)(x = br) + x(x = i) (x = ag)
+x(x — cp)(x — br) — x(x — ar)(x — by) (3.3)
= (AT + 2)(x = @) = biea)(x = k).

Substituting x = 0 into (3.3), we obtain

(Afr_k_l) + Derarby = (Afr_k_l) +2)ck—1ap+1bps1. (3.4

It results in
200+ +20,_1+6,+2r+1
200+ - +20,_1+6,+2r—1

Xl_[ @1+ +0,_ )+ O, +0, 1+ -+ O )+ +i
@1+ +0,_)+O+60, 1+ + 0 )+r+i—1

axb = c,1cr

201+ 420, 1 +60,+2r +1 A 91+-~-+9j+j+1ﬁ91+---+9j+j+1
_281+~--+26r_1+0,+2r—1j=1 O1+---+0;+] O1+---+0;+]

(3.5)

1—[ @1+ +0,_ )+ O, +0, 1+ + O+ +i
B+ +0,_ )+ O, +6, 1+ +0, ) +r+i—1

2. The formula for ay + by in terms of 8

Comparing the coefficient of x? in (3.3), we obtain

(AP 4 D(ag + b + ) + 2cx = (AP 4 2) (a1 + brar + cxo)- (3.6)
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Comparing the coefficient of x in (3.3), we obtain
(A ™Y+ D(elar + bi) + anby) + cilag + by) = axby
= (AP 4 2)(cpmi(arar + bra) + arsibie). (3.7)
Solving (3.6) and (3.7) for ax + by, one has

(Agr_k_l) +2)(ag1brs1 — CI%—I) + (Afr_k_l) +3)cr_1ck — Afr—k—l)akbk
ay + bk = Py —— .
(Ak + Z)Ck - (Ak + 1)Ck—1

This gives the explicit formulas

20+ +20, +2r + 1 [ Or+---+0;+j+1

+ by =
ag + bk 201+ +20,_1+2r i 01+ +0;+]

r—1

O +---+0;+j+1
><1+n ! IR
Jj=k

O1+---+0;+]

r—1

O+ +0; +20+--+20,_1+6,+2r -k

i O+ 40,420+ +20,1+60,+2r—k—1]

These solutions indeed satisfy (3.3) for each k. This can be checked by a direct computation.

3. Final formulas

We use Lemma 3.5 to express 6; by A;. Here are the final formulas.
If [ < r, then

J .
A+ + 4+ -1
) i l .
- =|| =1,...,L 3.8
€ Adi+- o+ 4+1-i+1 / 38

i=1

We also borrow from Ref. 5 the [ = r result.

Cm:ﬁ A+ + A+ A, /24+r—1i
J 1/ll-+~--+/1,_1+/lr/2+r—i+1

=1, (3.9)

i=

If] > r + 1, then

C(,):ﬁ/lj+~~-+/12r_l+2/12,_1+1+~--+2/l,_1+/l,+l—j—1

, 3.10
k i Aj++ Ao + 200+ + 24,0+ A, 41— (3.10)
fork =1,...,2r — . Finally, for 2r — [ + 1 < k < r, we have
2
2OpD — ﬁ/1j+---+/12r_l+2/12r_1+1+---+2/l,_1+/l,+l—j—1
k "k i A+t Ao+ 200+ 24,9+ A, 41—
L At A A2 24, A -2
X -
J:Zr_m/12,_,+1+---+/1j+2/1j+1+~--+2/1,_1+/1,+l—]—1
ﬁ Aprcgii+ oo+ i+ 240+ + 24,0+ A, + 1 - j =2
X -
Fzr_m/12,_l+1+~~+/lj+2/lj+1+-~+2/l,_1+/lr+l—]—1
Xr_k/12,_1+1+-~~+/lr_,-+l—r—i—1
i Aop_gir+- -+ A, +l—r—i
20, i1+ -+ 24,1+ A, +21-2r -3
o ZAor-i 1 r 3.11)

200 g1+ +2A, 1+ A, +21-2r -1
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and

20/ —je1+ -+ 24,1+ A, +2[-2r -3

20, i1+ +24, 1+ A, +21-2r =2
21’—[_’/lj+-~~+/12r_l+2/12,_l+1+-~~+2/l,_1+/l,+l—j—1

Aj+o+ Aoy + 20 g1+ -+ 24,1+ A+ 1=

) ) _
a +bk =

J=1
-1

l_[ Appger+ o+ A+ 2400+ + 24,0+ A+ - j -2
X
jarisl Appogir oo+ A +240 + -+ 24,0+ A, +1—-j -1
1 Azt 4204+ 2,0+ A, 41— =2
+ : :
J=2rta1 Appopyr + -+ A+ 24500+ + 2,0+ A+l —j -1

ADypgpr+ -+ +l-r—i—-1
X . 3.12
!,:11 Appgpr+ -+ A, +l—r—i ) ( )

4. The solutions are generic

In this section we show the solutions are generic.

Theorem 3.9. Suppose A € P* and 1 is admissible, then y") in Section Il E 3 represents a
critical point associated to A = (1,w1), z = (0,1), and 1.

Proof. Tt is sufficient to show that y is generic with respect to A, z.

Let us first consider G2. For A € P*, G2 is equivalent to yfl)(l) # 0 and yi(l)(O) #0if A; # 0.

If [ < r — 1, then the admissibility of / implies A; > 0. To prove G2, it suffices to show c;.l) #0
if ; # 0and ¢!" # 1, see (3.8). Note that if 1; > 0, then

i+ + A4 +1-1
0< - <1
i+ +4+1—-i+1

foralli € {1,...,l}, therefore all cj(.l) € (0,1).
If [ = r, this is similar to the previous situation.

If I = r + 1, the admissibility of / implies A, > 2. G2 is obviously true.

(@)
k

ag)bgf) # 0. As for yl(l)(l) # 0 in the case [ = 2r, we delay the proof until after the case G1.

If [ > r + 2, the admissibility of [ implies A5,_;+; > 0. One has y, ’(0) # 0 since we have

Now, we consider G1. Suppose ag) = b;(l) for some 2r — [/ + 1 < k < r. Observe that

n o~ n o)
Wi 5 =T vl il
By G2, y,il) and Tlgl) have no common roots. In addition if / = 2r and k = 1, we have yfl)( 1)=0,

then a(ll)b(ll) = 1, while as above we have a(ll)b(ll) ]((l) = agi |

al’=al (@ = itk =2r—1+1).
We work in terms of 6. We have ay = by = axy1 or ay = by = ax_1 Or asy_j41 = Cop_y. If

ay = by = ag+1, then substituting x = ¢ into (3.3), we get

€ (0,1). It follows that we must have a or

— exlex = ags) = (cx = bra)ex — ce)(AY 7V +2). (3.13)

Solving (3.4) and (3.13) for a1 = ax = by and by, in terms of ¢, ¢, and Afr_k_l), we obtain

ke ke 2
(AT 4 3)ep — (AT l)+2)ck_])

Qr—k-1) Qr—k-1)
ax+1brs1 = (A +2)(A + Deg-ick
k k (A§(2r—k—1) ey A;(Zr—k—l)ckA
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Comparing it with (3.5) and canceling common factors, we obtain

200+ +20,_1+60,+2r+1

201+ ---+26,_1+6,+2r—1

:ﬁ 01+ +0;+i+1 ﬁ O+ 40, 1+20;+-+20, 1+0,+2r—i+1

i O1+---+0;+i ke O+ - 4+60;1+20;+--+20,_1+6, +2r —i

(A§(2r—k—1) + 2)(A§{2r—k—1) +1)

Substituting 6; in terms of 4 ;, we have
(/lzr_l+1+"'+/lk+k+l—2r—1)(/12r_1+1+"'+/lk+k+l—2}’)
201+ 24,0+ A, +2[-2r -3
A0, jp1+ 424, 4+ A, +21-2r —1
_1—[/12, gt 240+ 2, + A+ - -2
Appoppr + o+ A+ 2450+ + 24, + A, + - -1

r—k-1 .
Aopogsr+ o+ A+ l—r—i—1
X . 3.14
D Appgpr+ -+ A, i +l—r—i ( )
By our assumption, we have Ay,_;4; > 1,k > 2r — [ + 1,and [ > r + 2. Itis easily seen that
(/12,_1+1+~~~+/lk+k+l—2r— 1)(/12r_1+1+~-+/lk+k+l—2r)
29— e+ 2,0+ A, +20-2r =3 3
o T LA L s Ix2x > > 1.
20 gp1+ 42, 4+ A, +21-2r -1 5
Therefore (3.14) is impossible. Similarly, we can exclude a]((l) (l) . As for a(zlr) el = ;lr) by
(3.4), it is impossible since each fractional factor is strictly less than l
Finally, we prove G3. The nontrivial cases are a,(c) = agil and a;lr)_l = cgl) forl>r+1,

where k > 2r — [ + 1.

If ar = ag1, then by (3.3) we have that x — a; divides x(x — ¢x)(x — br). As we already
proved ai # by and ai # 0, it follows that a; = c;. This again implies that (x — ay)? divides
(x — ag1)(x = bry1)(x — cx—1) as A22r7k+1) +2 # 0. If by = ax = ag,1, then we are done. If g, =
Ck-1, then cx_1 = ci. It is impossible by the argument used in G2.

If a; = ck—1, then by (3.3) one has x — a; divides x(x — cx)(x — by). Since [ is admissible,

(l) # 0. Then ay # by implies ¢y 1 = ¢. Itis also a contradiction.

In particular, this shows that y D and Y ) have no common roots, i.e., yfl) (1) #0. O

Corollary 3.10. Suppose A € P*. Then the Bethe ansatz equation (2.2) associated to A,z,1,
where 1 is admissible, has exactly one solution. Explicitly, for | < r — 1, the corresponding r-tuple
yD) which represents the solution is described by (3.8), for | =r by (3.9), for 2r > 1 >r + 1 by
(3.10)—(3.12). O

F. Associated differential operators for type B

Let y be an r-tuple of quasi-polynomials. Following Ref. 6, we introduce a linear differential
operator D(y) of order 2r by the formula

T:...T> T, yT?. .. T* T,
Day) =0 -/ 12— )4 - In’ | — ="
Yi YT
T2...T2 T, Ty, . . T,T,
s 0 —n[ LH et ...(a—ln'(—y”‘ ‘))
y3I'T Yr
... T,_ Ty . T,
« (a_ln/(u)) (a_l(y—))
Yr-1 Yr-2

X (0 = In"(y1)),
where T;,i = 1,...,r, are given by (2.4).
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If y is an r-tuple of polynomials representing a critical point associated to integral domi-
nant weights Ay,...,A, and points zi,...,z, of type B,, then by Ref. 6, the kernel of D,(y) is
a self-dual space of polynomials. By Ref. 2 the coefficients of D,(y) are eigenvalues of higher
Gaudin Hamiltonians acting on the Bethe vector related to y.

For admissible / and 1 € b*, define a/(1),...,d"(r) as the following.
For[=0,...,r—1,i=1,..,I,setal(i)=2A;+ -+ +l+1-i.Forl=0,...,r—1,i=
[+1,...,r, setalﬂ(i) =0.

Forl=r+1,...,2r,setk =2r —[. Thenfori = 1,...,k, set
a (i) = A+ A A+ 20+ A2, A+ 2r —k— i
andfori =k +1,...,r,setal(i) =24k + -+ + 2,1+ A, +2r =2k — 1.

Proposition 3.11. Let the r-tuple y represent the solution of the Bethe ansatz equation (2.2)
associated to A, z, and admissible I, where A € P* and | + r. Then D, (y) = D/l(x“lﬂ(l),. . ,xalﬂ(r)).

Proof. The (2r — 1)-tuple (yi,..., Yr—1, Yr» Yr—1,--., Y1) Tepresents a critical point of type Ay, _;.
Then the reproduction procedure in direction i of type B, corresponds to a composition of repro-

duction procedures of type A,,_; in directions i and 2r —i fori = 1,...,r — 1, and to reproduction
procedure of type A,,_; in direction r for i = r, see Refs. 6 and 9. Proposition follows from Lemma
4.2 in Ref. 9. O

IV. COMPLETENESS OF BETHE ANSATZ FOR TYPE B

In this section we continue to study the case of g = so(2r + 1). The main result of the section is
Theorem 4.5.

A. Completeness of Bethe ansatz for V, ® V,,

Let A € P*. Consider the tensor product of a finite-dimensional irreducible module with high-
est weight 4, V,, and the vector representation V,,,.

Recall that the value of the weight function w(z;,22,¢) at a solution of the Bethe ansatz equa-
tions (2.2) is called the Bethe vector. We have the following result, which is usually referred to as
completeness of the Bethe ansatz.

Theorem 4.1. The set of Bethe vectors w(z1,22,t), where t runs over the solutions to the Bethe
ansatz equations (2.2) with admissible length I, forms a basis of Sing (V; ® V).

Proof. All multiplicities in the decomposition of V, ® V,,, are 1. By Corollary 3.10 for each
admissible length / we have a solution of the Bethe ansatz equation. The theorem follows from
Theorems 2.4 and 2.5. O

B. Simple spectrum of Gaudin Hamiltonians for V, ® V,
We have the following standard fact.
Lemma4.2. Let u,v € P If u > vthen(u+ p,u+ p) > v+ p,v+ p).
Proof. The lemma follows from the proof of Lemma 13.2B in Ref. 1. O

Proposition 4.3. Let w,w’ € V3 ® V,,, be Bethe vectors corresponding to solutions to the Bethe
ansatz equations of two different lengths. Then w,w’ are eigenvectors of the Gaudin Hamiltonian
H = Hy = —H, with distinct eigenvalues.

Proof. Recall the relation
1
Q2 = E(AQO— 19Q)-Q®1).

Since € acts as a constant in any irreducible module, 1 ® Qy+ Qy® 1 acts as a constant on
Vi ® V,,,. It remains to consider the spectrum of the diagonal action of ACy. By Theorem 2.5, w
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and w’ are highest weight vectors of two non-isomorphic irreducible submodules of V; ® V,,,. By
Lemmas 2.1 and 4.2 the values of AQq on w and w’ are different. O

C. The generic case
We use the following well-known lemma from algebraic geometry.

Lemma4.4. Let n € Z5 and suppose f,ﬁe)(xl,. .,x)=0,k=1,...,n is a system of n alge-
braic equations for | complex variables x1,. . .,x;, depending on a complex parameter € algebrai-

cally. Let (x(O) . ,xﬁo)) be an isolated solution with € = 0. Then for sufficiently small €, there exists

1
(e) ng)

an isolated solution (x|, .. .,x;"), depending algebraically on €, such that

ng) = x?{o) + o(1).

Our main result is the following theorem.

Theorem 4.5. Let g = s0(2r + 1), 1 € P*, and N € Z. For a generic (N + 1)-tuple of distinct
complex numbers z = (20,21,-..,2n), the Gaudin Hamiltonians (Hy,H,,...,Hy) acting in
Sing (V,l ® Vf’lN ) are diagonalizable and have a simple joint spectrum. Moreover, for generic z
there exists a set of solutions {t;, i € I} of the Bethe ansatz equation (2.2) such that the correspond-
ing Bethe vectors {w(z,t;), i € I} form a basis of Sing (V/l ® VfIN).

Proof. Our proof follows that of Theorem 5.2 of Ref. 10, see also of Section 4 in Ref. 7.

Pick distinct non-zero complex numbers Zj,. . ., Zy. We use Theorem 4.1 to define a basis in the
space of singular vectors Sing(V,; ® Vle ) as follows.

We call a (k + 1)-tuple of weights pg, iy, . . ., ux € P* admissible if yy = A and fori = 1,. ..k,
we have a submodule V,,, C V,,,_, ®V,,,, see (3.1).

For an admissible tuple of weights, we define a singular vector vy, ... ., € Va ® Vlf’lk of weight
Hx using induction on k as follows. Let v,,, = v, be the highest weight vector for module V. Let k
be such that 1 < k < N. Suppose we have the singular vector vy, .. ., , € Va ® Vf’lk‘l. It generates
asubmodule V., C V2 ® Vlflk‘l of highest weight 1 ;.

Let ¢ = (ff”;), where b=1,...,rand j = 1,...,l; », be the solution of the Bethe ansatz equa-
tion associated to V,,, |, ® Vi, 7 = (0,Z) and Iy = (Ix,1,. . .,Ik,,) such that py_; + wy — a(ly) = yy.
Note that #; depends on pu_; and g, even though we do not indicate this dependence explicitly.
Note also that in all cases [; ;, € {0,1,2}.

Then, define vy, ...,,, to be the Bethe vector

_ - ok
Vg ..oty = w(O,zk,tk) € VHO,---vﬂk—l ® le cVi® Vw] .

We denote by V... ., the submodule of V; ® Vflk generated by vy, .. 4, -

The vectors v,y € Va® V(f]N are called the iterated singular vectors. To each iterated
singular vector vy, ., We have an associated collection £ = (f;,. . .,fx) consisting of all the Bethe
roots used in its construction.

Clearly, the iterated singular vectors corresponding to all admissible (N + 1)-tuples of weights
form a basis in Sing(V,; ® Vﬁ” ), so we have

®N _
V/1®V¢u1 = @ V#o,ﬂl,---,ﬂN’
H0s - HN

where the sum is over all admissible (N + 1)-tuples of weights.

To prove the theorem, we show that in some region of parameters z for any admissible
(N + 1)-tuple of weights y,. .., uy, there exists a Bethe vector wy,... ., Which tends to v, .y
when approaching a certain point (independent on y;) on the boundary of the region.

To construct the Bethe vector w,,, ... 4, associated to v, ... .., We need to find a solution to

the Bethe equations associated to V; ® Vf’lN with Bethe roots, ¢ = (t;b)), where b=1,...,r and
. _ N
J = 1,. .. ’Zkzl lk,b-
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We do it for z of the form

2=z and zZ=z+&"" %5 k=1,...,N (4.1

for sufficiently small ¢ € C*. Here z € C is an arbitrary fixed number and Z; are as above.
Then, similarly to £ we write ¢ = (¢4,...,ty) where t;, = (tf{bj).), b=1,...,r;and j=1,..., 0k
is constructed in the form

b —k~Ab .
;;J):ZJ,SN“ k#kj k=1,...,N,j=1,....kp b=1,....r. (4.2)

The variables tg’; satisfy the system of Bethe ansatz equations

N Isb -1
(A, ap) —26p,1 S (ap,ap) (ab,abn) (ap,ap-1) |
R 2. o 2 B _ ) Z (b) LB+ Z o _6-n | T 0
k,j 0 s=1\ “k,j Ts ( g:(lk ) k.j Is, q 5 q q=1 ‘k,j s,q
s,q >J

4.3)

forb=1,...,r,k=1,...,N,j=1,...,lfp. Here we agree that [ o = [, y4+1 = O for all s.
Consider the leading asymptotic behavior of the Bethe ansatz equations as € — 0. We claim
that in the leading order, the Bethe ansatz equations for ¢ reduce to the Bethe ansatz equations
obeyed by the variables .
Consider, for example, the leading order of the Bethe equation for tg)J Note that

N
(A,a1) 2 (4,a1)  2(k—1) 2 _N-14k
M 2 M Bl R T O R Oe))e ’
t, .- 11, — Zs k f tk’j tk’j — Zk
Ig 1 k=1 Is1
Z Z (apa1) (a1, 1) N (a,a )+O( PR
1 ;“) ,(1) T\ LT T AL & :
.ty 7 ati fj Tlea sTTasl
and similarly
N s L, k=1 Ls.2
(@) (a1, @) 5 (a1,@2) _N-1+k
Z <l> o Z o " o toE))e :
s=1 g _s q q:l k q s=1 g=1 tk,j
Then by definition of the numbers /s 5, We have
r k=1lsp
Hr-1 = A+ (k= Dw; - ap
b=1 s=1 g=1

and, in particular,

-1 s,1 l_y,2
(e-r,n) = () +2(k = 1) = | Y (@) = ) ()|,
s=1 \g=1 q=1

Therefore
(ux-1, 1) 2 & 611,0/1) T (a1,@2)
A Z 7070 170 0 =0(e).
kj a=1 *k,j k.q kJ kq

At leading order this is indeed the Bethe equation for 7, 7" from the set of Bethe equations for the
tensor product V,,, , ® V,,,, with the tensor factors a551gned to the points 0 and Z, respectively. The
other equations work similarly.

By Lemma 4.4 it follows that for sufficiently small & there exists a solution to the Bethe
equations (4.3) of the form 7 A(a) _<“) +o(1).

Now we claim that the Bethe vector Wy, = w(z,t) associated to ¢ has leading asymptotic
behavior
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Opproin = €Wy +0(1)), (4.4)

as € — 0, for some K. Consider the definition (2.3) of w(z,#). We write wy ... 4 = Wi + wy Where
w; contains only those summands in which every factor in the denominator is of the form

(a) _ () (a) _

fej "l OF T T 3k

@ _ ) . (a)

The term w, contains terms where at least one factor is of the form 7, T lsg OT =25, S * k.

After substitution using (4.1) and (4.2), one finds that

N r ;
_ —N-1+k\'k,j
wy = | | | |(‘9 ) Vppeeun
k=1 j=1

and that w; is subleading to w;, which establishes our claim.

Consider two distinct Bethe vectors wy,,, ...,y and w Wty constructed as above. By Theorem
2.5 both are simultaneous eigenvectors of the quadratic Gaudin Hamiltonians Hy, Hj,. .., Hy. Let
k be the largest possible number in {1,...,N} such that y; = u; forall i = 1,...,k — 1. Consider
the Hamiltonian /). When the z; are chosen as in (4.1) then one finds

k-1 :
Qk.j)
H, = g~ N1+ Z - +o(1)]. (4.5)
=0

The sum Z?;& % coincides with the action of the quadratic Gaudin Hamiltonian H of the spin
chainV,, , ® V,,, with sites at 0 and Z, embedded in V; ® (le)®k via

V,

~ ®k
-1 ® le - Vlll’---,ﬂk—l ® le cVa® (le) :

. , . k=1 Qk.4) . .. .
Since py # py, vy, 4, and V..., ArE eigenvectors of ijo = with distinct eigenvalues by

Proposition 4.3. By (4.4) and (4.5), we have that the eigenvalues of Hj on wy,,.. ., and Wl

HN

are distinct.
The argument above establishes that the set of points z = (2o, 21, - - . , zx) for which the Gaudin
Hamiltonians are diagonalizable with joint simple spectrum is non-empty. It is a Zariski-open set,
therefore the theorem follows. O

V. THE CASES OF C, AND D,
A. The case of ¢,

Let g = sp(2r) be the simple Lie algebra of type C,., r > 3. We have (a;,a;) =2,i=1,...,r —
1 and (@, a,) = 4. We work with data A = (1,w,), z = (0,1), where 1 € P*.
We have
Vi® le = V,le D V,prmlfafl D---D V/”wrﬂf]*-“*afr
O Vatw-ai—-a,2-2a,1-ar © * ® Vavw 20120, _1-ar
=Vt 1) ® V-1 00 125,00 @ V. a1 A+ Lo 20
® Vi, 14,41 O Vi g, 2 04, +1,4,-1)
OV 3 #1412 @ O Ve, a0- 1,500 ® V-1, 2, (5.1
with the convention that the summands with non-dominant highest weights are omitted. Note, in
particular, all multiplicities are 1.

We call an r-tuple of integers I = (Iy,. . .,l,) admissible if the V., —o@) appears in (5.1).
The admissible r-tuples / have the form
(1,...,1,0,...,0)or(1,...,1,2,...,2,1), (5.2)
N——— ———
k1 ones ko ones

where k; = 0,1,...,r and k, = 0,1,...,r — 2. In the first case the length [ = [, +--- + [, is k; and
in the second case 2r — k, — 1. It follows that different admissible r-tuples have different lengths
and, therefore, admissible tuples I are parametrized by length [ € {0,1,...,2r — 1}. We call a
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non-negative integer ! admissible if it is the length of an admissible r-tuple I. More precisely, a
non-negative integer / is admissible if / = Oorif/ <r, ;> Oorifr <1 <2r -1, A, > 0.

Similarly to the case of type B,, see Theorem 3.9 and Corollary 3.10, we obtain the solutions to
the Bethe ansatz equations for V; ® V,,,.

Theorem 5.1. Let g = sp(2r). Let I be as in (5.2). If 1 is not admissible then the Bethe ansatz
equation (2.2) associated to A,z,l has no solutions. If 1 is admissible then the Bethe ansatz equa-
tion (2.2) associated to A,z,l has exactly one solution represented by the following r-tuple of

polynomials y'V.
For 1 =0,1,...,r — 1, we have y(l) =(x- cil),. C X = cgl),l,. .., 1), where cj.l) are given by
(3.8).

(r)

VX = c(rr)), where

Forl =r, we havey® = (x — ¢

! Adi+ -+ A +2,+r+1 -1

(r) .
c.’' = :1,...,r_1,
J g/li+~~~+/l,_1+2/lr+r+2—i /
ol A, A+ A 420, +1—i
" A+ 1] i+ 4 424, +7r+2 -0
For l=r+1,...,2r =1, we have y" = (x — c(ll),. CX = Cglr)—l—l’(x - agl,)_,)(x - b(zlr)_,)~ N

(x - ailj])(x - b(rlll),x - cgl)), where
J

[

i=1

i+t Ay + 20+ +24,,+1+1 -1

0 _
NARRE U O P T PR R B, S

J

1,....2r=1-1,

2r—I1-1

@=T]

i=1
r

Ai+ o+ Ay + 20+ 24, + 1+ 1 -1
Ai+ -+ Ay +20 g+ +2, +1+2 -1
e+ 24,41 =10

42, +1—-i+ 1

« Appp+ -+ A4+ 24 +

l/er,,+~--+/li+2/l,~+1+~~

2r=1-

1
Ai+ o+ Ay + 20, +

e+ 20,41+ 1 -0

i=2r—
(OO
a,’'b’ =
kK ( Ai+ -+ dopoio + 20, +

i=1
Appg+ -+ A+ 24 +

e+ 24, +1+2-10
s+ 24,41 -1

)2

4+ 24, +1—-i+1
Appg+ o+ 4+ 20+ +20, +1 -
Aopog+ -+ i+ 20+ +22, +1-i+ 1

k=1
< |
. Ay 4+ i+ 24500 + -
i=2r-1

r

X

i=2r-1
r+l-k

<
i=1

Adopog+ o+ g+l +1—-i—r1
Adopog+ o+ A+l +2—-i—r

and
2r—1-1

a0 =]

i=1

k-1
< |

Adi+ o+ Ay + 20+ +20, +1+1 -1
i+ o+ Ao+ 200+ +24, +1+2 -1

Apg+ o+ 442+ +20, +1 -

i Aopog+ o+ i+ 200+ +24,+1-i+ 1
x( 201+ -+ +2,+2] = 2r 20,4 4+24,+21+2-2r
X

2App g+ 424, +2l+1=-2r 225 +---+24,+2[+1-2r
Aopog+ o+ A4+ 200+ +24,+1 =i
et A L+ 20 4+ 20+ -0+ ]

fork=2r—-1,...,r—1.

Appg+- -+ A+ 1 +i0=2r
Adopg+--+ A4, +1+i+1-2r
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Therefore, in parallel to Theorem 4.5, we have the completeness of Bethe ansatz.

Theorem 5.2. Let g = sp(2r) and A € P*. For a generic (N + 1)-tuple of distinct complex
numbers 7 = (20,21, ----2n), the Gaudin Hamiltonians (Hy, Hj, ..., Hy) acting in Sing (V,l ® Vle)
are diagonalizable and have a simple joint spectrum. Moreover, for generic zZ there exists a set of
solutions {t;, i € I} of the Bethe ansatz equation (2.2) such that the corresponding Bethe vectors
{w(z,t;), i € I} form a basis of Sing (V,l ® Vf’lN). O

Similarly to Section III F, following Ref. 6, we introduce a linear differential operator D(y) of
order 2r + 1 by the formula

T:...T> T? yT?.. . T> T?
Dy)=(0-In'{ ————||[0 —In'[ ————]]...
Y yoTy
T T? T? T .. T? T?
wlo - (Y2 radr _”a_]n/%
yrflTl PN Tr,z er1 e Tr—l

r—1
x (a I’ (M)) . (a ~ (”Ln)) @ - In'(y))),
Yr-2 Y1
where 7;,i = 1,...,r, are given by (2.4).

If y is an r-tuple of polynomials representing a critical point associated with integral domi-
nant weights Ay,...,A, and points zi,...,z, of type C,, then by Ref. 6, the kernel of D,(y) is
a self-dual space of polynomials. By Ref. 2 the coefficients of D,(y) are eigenvalues of higher
Gaudin Hamiltonians acting on the Bethe vector related to y.

For admissible / and A € *, define afl(l),. .. ,afl(r) as follows.

For1=0,...,r—1,i=1,...,1, set afl(i)z/li+~~~+/11+l+l—i. Forl=0,....,r,i=1+
1,...,r, set afl(i) =0.

Forl=r,i=1,...,r - l,setalﬂ(i):/1,-+~--+/lr,1+2/l,+r+2—ianda;(r)= A+ 1.

Forl=r+1,...,2r—1,setk =2r—1—1.Thenfori =1,...,k, set

a(i)= A+ A+ 24+ 20, 424, + 2r + L=k —i

and for i = k+1,...,r = 1, set a\(i) = 2Ags1 + -+ + 2,21 + 22, + 2r — 2k and aly(r) = Ags1 +
e+ Ao+ A+ -k

Proposition 5.3. Let the r-tuple y represent the solution of the Bethe ansatz equation (2.2)
associated to A, z, and admissible l, where 1 € P*. Then D (y) = D,l(x"[)l(l),. .. ,x”l/l(r)). O

B. The case of D,
Let g = so(2r) be the simple Lie algebra of type D,, where r > 4. We have (a;,a;) =2,

i=1,....r,(ej,ai-))=1,i=1,...,r - 1, and (a,,a,-2) = 1, (@,ar-1) = 0. We work with data
A =(1,w1),z =(0,1), where A € P*.
We have
V/l ® Vu)l = V/l+w1 ® V/l+w1—(zl S RRRRS V/l+w1—<x1—--~—tlr ® V/l+w1—tt1—---—ar,2—ar
@ V/l+w|—al—-~-—a/r_3—2a/r_2—nr_|—ar SRR V/l+a)1—2(1|—---—2(lr_2—ar_1—ar
=Vt g o) @ V-1, 400 1,250 40 @ - ® VA a1 =L A4 L Apsns s )

© - @ Vi gy oL Ao+ 1 a4 1) @ Vi Ao =12 41)
O Vg eyt 1= 14-1) © Va0, 4y 141, 2,-1)
& ‘/(/lla/lZs---v/lr—4v/lr—3+1»/lr—2_l»/lr—ls/lr) @ V(/l1»---v/lk—Z»/lk—l"'lv/lk_l’/lkHv---v/lr)
D@ VL -1L 5.0 D V-1, 4,2, (5.3)
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with the convention that the summands with non-dominant highest weights are omitted. Note, in
particular, all multiplicities are 1.

We call an r-tuple of integers I = (Iy,. . .,l,) admissible if the V.., —o@) appears in (5.3).

The admissible r-tuples I have the form

1,...,1,0,...,0)or(1,...,1,1,0)0or (1,...,1,0,1) or (1,...,1,2,...,2,1,1), (5.4)
——— ———— N—— ——
ky ones r—2 ones r—2 ones ko ones

where k1 =0,...,r —2,r and k, =0,...,r — 2. In the first case the length [ =1; +--- + [, is ky,
in the second and third cases » — 1 and in the fourth case 2r — ko, — 2. It follows that different
admissible r-tuples in the first and fourth cases have different length and, therefore, admissible
tuples I of these types are parametrized by length [ € {0,1,...,r —2,r,...,2r —2}. We denote
the lengths in the second and third cases by r — 1 and r — 1, respectively. More precisely, for
1e{0,1,....,r—1,r—1,r,...,2r — 2}, l is a length of an admissible r-tuple I if / =Oor/ <r -1,
A;>0o0rifl=r—-1,4,>0o0rifl=r,A,_1>0and A, >0orif [ > r+1, A2_;—; > 0. We call
such [ admissible.

Similarly to the case of type B,, see Theorem 3.9 and Corollary 3.10, we obtain the solutions to
Bethe ansatz equations for V; ® V.

Theorem 5.4. Let g = s0(2r). Let I be as in (5.4). If 1 is not admissible then the Bethe ansatz
equation (2.2) associated to A,z,l has no solutions. If 1 is admissible then the Bethe ansatz equa-
tion (2.2) associated to A,z,l has exactly one solution represented by the following r-tuple of
polynomials y'V.

o)
L ae e

O}

For 1 =0,1,...,r — 1, we have y(l) =(x-c X — C;l),l,. .., 1), where c;’ are given by

(3.8).

Forl =r -1, we have y(m) =(x - cgr_]),.

CX = c(rr__zl), Lx —c"™V), where

J

c(.ﬁ):l_[/li+"'+/lr_2+/lr+r_l,_i izl -2
J i Ai+-+ A, o0+ A, +r—i
and
G _ A ﬁ/li+~~-+/l,,2+/l,+r—l—i
g A+l At Aot A tr =i ’
_ (r) _ _ ) _ )
Forl =r, we have y'") = (x T ), where
J .
(r) /1,~+---+/l,+r—l .
C. = N =l,...,V—2,
J L_l[/l,-+~~~+/l,+r+1—i /
(r) _ /lr—l r-2 ﬂ,i+"'+/lr+}"—l.
r=l Ao+ 14 i+ 4+, +r+1-4’
and
) A T At dr—i
¢’ = -
/l,+1i:1 Ai+-+ A, +r+1-1
Forl=r+1,...,2r —2, we have

1 1 1 1 ! ! 1
y® = (x - c(l ) ax— cgr)—l—Z’ (x— a) )Nx — 19(2 )_1_1), e (X — a(rjz)(x - b(rzz),x ¥

_ 0
2r—1-1 r PSTE R 2

) 1—[ Ai+- o+ Aoy oy +2A0 g4+ +24, 0+ A, 1+ A, +1 =1
c.’ = s
J | i+ Ay g +2A0, g 4+ +2, 20+ A, 1+ A, +1+1—1

i=
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j=1,...2r—1-2,

) 2];2]7! Ait -t Ao + 201+ 4240+ A+ A+ -
RON

r=17 Ai+ -+ Aoy +2A0 g+ +20, 0+ A, 1+ A, +1+1—1i

i=1
ﬁ Ao+ o+ A4+ 2400+ 24, 0+ A+ A, +1—i—1
X

i App_ig+ o+ ;42400 + - +24, 0+ A+ A+ 1 =i
Appig+ -+ A, 0+ A, +1l-7r
Aoty 4+ g+ A +l—r+ 1
) _2]_—2[_1 i+ + Aoy oy +2A0 g4+ +24, 0+ A+ A+ 1 =i
¢ =

Ai++ Ay g +2A0 g4+ 424, 20+ A1+ A, +1+1—1

T iyt A2 A2t A+ A =i 1
x |1

i Appig+ o+ A+ 2400+ +24, 0+ A+ A+ 1 =i
Appig+ -+ A, 0+ A, +1—r
Aot + -+ A+ A+l —r+1’

). ot Ai+ -+ Ay g +2A0 4+ +20, 0+ A1+ A, +1—1i
a by = 1_[

i=1

2

i+ o+ Aoy oy +2A0 g4+ +2, 0+ A, 4+ A+ —i+1

i=1
r

X

ﬁ Aopqog+ o+ A4, +20iq+ -+ 24, 0+ A+ A+ —i -1

i App g+ + ;4200 + - +24, 0+ A, + A, +1—i
U dapoig A A+ 20 4 42t A+ A =i —

App_ig+ o+ ;42400 + 24, 0+ A+ A+ 1 =i

X
i=2r—1-1

Xﬁ Appg1+ -+, +1+i+1-=-2r
i Ao+ -+, +1+i+2-2r
Aoy + o+ A0+ A, 1+ -7 Appig+ -+ A, 0+ A, +1—r
/er,H+~--+/1,,2+/1,,1+l—r+1‘/er,H+---+/1r,2+/lr+l—r+1

and

2r-1-2 .
a(l) + b(]) _ rl—[ i+ + Aoy oy +2A0 4+ +24, 0+ A1+ A+ 11—
k kK~

i+ + Aoy +2A0 g4+ +20, 0+ A, g+ A+l —i+1
k-1

i=1
Aopoqg+ o+ ;420 + - +2, 0+ A+ A, +1—i—1
Appig+ o+ 442+ 42, 0+ A+ A+ 1 =i

X
i=2r—1-1
201+ +2A, 0+ A1+ A, + 2]l = 2r
(2/12,_1_1 +o+ 24, 04+ A+ A+ 20-2r + 1
2011+ 424, 0+ A+ A, +20-2r +2
201+ +2, 0+ A+ A, +2-2r+1

A PRIy S, ) IR, ) T T [y S |

X

+

X
i Appgog + o+ A+ 200+ 42,0+ A1+ A+ 1 =i
« Adpp g+ -+ Ao+ A, 4+l =r Ayt + -+ A0+ A, +1 -7
Aty + -+ A, o+ A, g+l —r+1 Ay g+ +A, 0+, +1-r+1
r—2

Ay + -+ i+l +i+1-2
Xl_[ 2r=1-1 ! r)

ik Aopojoy+ o+ i+ 1+i+2-2r

k=2r-1-1,...,r =2. O
Note that the formulas above with r = 3 correspond to solutions of the Bethe ansatz equations

of type Az and A = (A4,w,). These formulas were given in Theorem 5.5, Ref. 7.
Then we deduce the analog of Theorem 4.5.

Theorem 5.5. Let g = s0(2r) and A € P*. For a generic (N + 1)-tuple of distinct complex num-
bers 7 = (20,21, . .,2n), the Gaudin Hamiltonians (Hy, H,. .., Hy) acting in Sing (V,l ® V‘ff’lN)
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are diagonalizable. Moreover, for generic z there exists a set of solutions {t;, i € I} of the Bethe
ansatz equation (2.2) such that the corresponding Bethe vectors {w(z,t;), i € I} form a basis of
Sing (V,z ® Vf’lN). i

For type D, the algebra has a non-trivial diagram automorphism which leads to degeneracy
of the spectrum. For example, if A,_; = 4,, then the Bethe vectors corresponding to the critical
points g~ and y~V are eigenvectors of the Gaudin Hamiltonian H := H| = —H, with the same
eigenvalue. In particular Proposition 4.3 is not applicable since the two corresponding summands in
(5.3) have non-comparable highest weights.

ACKNOWLEDGMENTS

This work was partially supported by a grant from the Simons Foundation (Nos. 336826 to
Alexander Varchenko and 353831 to Evgeny Mukhin).” The research of A.V. is supported by NSF
Grant No. DMS-1362924. A.V. thanks the MPI in Bonn for hospitality during his visit.

! Humphreys, J. E., Introduction to Lie Algebras and Representation Theory, 2nd ed. (Springer-Verlag, New York, 1978).

2 Molev, A. and Mukhin, E., “Eigenvalues of Bethe vectors in the Gaudin model,” e-print arXiv:math.RT/1506.01884.

3 Mukhin, E., Tarasov, V., and Varchenko, A., “Bethe eigenvectors of higher transfer matrices,” J. Stat. Mech.: Theory Exp.
2006, P08002; e-print arXiv:math.QA/0605015.

4 Mukhin, E., Tarasov, V., and Varchenko, A., “Schubert calculus and representations of the general linear group,” J. Am.
Math. Soc. 22(4), 909-940 (2009).

5 Mukhin, E. and Varchenko, A., “Remarks on critical points of phase functions and norms of Bethe vectors,” in
Arrangements—Tokyo 1998, Advanced Studies in Pure Mathematics Vol. 27 (Kinokuniya, Tokyo, 2000), pp. 239-246; e-print
arXiv:math.RT/9810087.

6 Mukhin, E. and Varchenko, A., “Critical points of master functions and flag varieties,” Commun. Contemp. Math. 6(1),
111-163 (2004); e-print arXiv:math.QA/0209017.

7 Mukhin, E. and Varchenko, A., “Norm of a Bethe vector and the Hessian of the master function,” Compos. Math. 141(4),
1012-1028 (2005); e-print arXiv:math.QA/0402349.

8 Mukhin, E. and Varchenko, A., “Multiple orthogonal polynomials and a counterexample to Gaudin Bethe Ansatz Conjec-
ture,” Trans. Am. Math. Soc. 359(11), 5383-5418 (2007); e-print arXiv:math.QA/0501144.

9 Mukhin, E. and Varchenko, A., “Quasi-polynomials and the Bethe ansatz,” Geom. Topol. Monogr. 13, 385420 (2008);
e-print arXiv:math.QA/0604048.

10 Mukhin, E., Vicedo, B., and Young, C., “Gaudin model for gl(m|n),” J. Math. Phys. 56(5), 051704 (2015); e-print arXiv:
math.QA/1404.3526.

11 Reshetikhin, N. and Varchenko, A., “Quasiclassical asymptotics of solutions to the KZ equations,” in Geometry, Topology
and Physics for R. Bott (International Press, 1995), pp. 293-322; e-print arXiv:hep-th/9402126.

12 Schechtman, V. and Varchenko, A., “Arrangements of hyperplanes and Lie algebra homology.” Invent. Math. 106, 139—194
(1991).

13 Varchenko, A., “Critical points of the product of powers of linear functions and families of bases of singular vectors,”
Compos. Math. 97(3), 385-401 (1995); e-print arXiv:hep-th/9312119.

14 Varchenko, A., “Quantum integrable model of an arrangement of hyperplanes,” Symmetry, Integrability Geom.: Methods
Appl. 7, 1-55 (2011); e-print arXiv:math.QA/1001.4553.


http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://arxiv.org/abs/math.RT/1506.01884
http://dx.doi.org/10.1088/1742-5468/2006/08/p08002
http://arxiv.org/abs/math.QA/0605015
http://arxiv.org/abs/math.QA/0605015
http://arxiv.org/abs/math.QA/0605015
http://arxiv.org/abs/math.QA/0605015
http://arxiv.org/abs/math.QA/0605015
http://arxiv.org/abs/math.QA/0605015
http://arxiv.org/abs/math.QA/0605015
http://arxiv.org/abs/math.QA/0605015
http://arxiv.org/abs/math.QA/0605015
http://arxiv.org/abs/math.QA/0605015
http://arxiv.org/abs/math.QA/0605015
http://arxiv.org/abs/math.QA/0605015
http://arxiv.org/abs/math.QA/0605015
http://arxiv.org/abs/math.QA/0605015
http://arxiv.org/abs/math.QA/0605015
http://arxiv.org/abs/math.QA/0605015
http://arxiv.org/abs/math.QA/0605015
http://arxiv.org/abs/math.QA/0605015
http://arxiv.org/abs/math.QA/0605015
http://arxiv.org/abs/math.QA/0605015
http://arxiv.org/abs/math.QA/0605015
http://dx.doi.org/10.1090/S0894-0347-09-00640-7
http://dx.doi.org/10.1090/S0894-0347-09-00640-7
http://arxiv.org/abs/math.RT/9810087
http://arxiv.org/abs/math.RT/9810087
http://arxiv.org/abs/math.RT/9810087
http://arxiv.org/abs/math.RT/9810087
http://arxiv.org/abs/math.RT/9810087
http://arxiv.org/abs/math.RT/9810087
http://arxiv.org/abs/math.RT/9810087
http://arxiv.org/abs/math.RT/9810087
http://arxiv.org/abs/math.RT/9810087
http://arxiv.org/abs/math.RT/9810087
http://arxiv.org/abs/math.RT/9810087
http://arxiv.org/abs/math.RT/9810087
http://arxiv.org/abs/math.RT/9810087
http://arxiv.org/abs/math.RT/9810087
http://arxiv.org/abs/math.RT/9810087
http://arxiv.org/abs/math.RT/9810087
http://arxiv.org/abs/math.RT/9810087
http://arxiv.org/abs/math.RT/9810087
http://arxiv.org/abs/math.RT/9810087
http://arxiv.org/abs/math.RT/9810087
http://arxiv.org/abs/math.RT/9810087
http://dx.doi.org/10.1142/S0219199704001288
http://arxiv.org/abs/math.QA/0209017
http://arxiv.org/abs/math.QA/0209017
http://arxiv.org/abs/math.QA/0209017
http://arxiv.org/abs/math.QA/0209017
http://arxiv.org/abs/math.QA/0209017
http://arxiv.org/abs/math.QA/0209017
http://arxiv.org/abs/math.QA/0209017
http://arxiv.org/abs/math.QA/0209017
http://arxiv.org/abs/math.QA/0209017
http://arxiv.org/abs/math.QA/0209017
http://arxiv.org/abs/math.QA/0209017
http://arxiv.org/abs/math.QA/0209017
http://arxiv.org/abs/math.QA/0209017
http://arxiv.org/abs/math.QA/0209017
http://arxiv.org/abs/math.QA/0209017
http://arxiv.org/abs/math.QA/0209017
http://arxiv.org/abs/math.QA/0209017
http://arxiv.org/abs/math.QA/0209017
http://arxiv.org/abs/math.QA/0209017
http://arxiv.org/abs/math.QA/0209017
http://arxiv.org/abs/math.QA/0209017
http://dx.doi.org/10.1112/S0010437X05001569
http://arxiv.org/abs/math.QA/0402349
http://arxiv.org/abs/math.QA/0402349
http://arxiv.org/abs/math.QA/0402349
http://arxiv.org/abs/math.QA/0402349
http://arxiv.org/abs/math.QA/0402349
http://arxiv.org/abs/math.QA/0402349
http://arxiv.org/abs/math.QA/0402349
http://arxiv.org/abs/math.QA/0402349
http://arxiv.org/abs/math.QA/0402349
http://arxiv.org/abs/math.QA/0402349
http://arxiv.org/abs/math.QA/0402349
http://arxiv.org/abs/math.QA/0402349
http://arxiv.org/abs/math.QA/0402349
http://arxiv.org/abs/math.QA/0402349
http://arxiv.org/abs/math.QA/0402349
http://arxiv.org/abs/math.QA/0402349
http://arxiv.org/abs/math.QA/0402349
http://arxiv.org/abs/math.QA/0402349
http://arxiv.org/abs/math.QA/0402349
http://arxiv.org/abs/math.QA/0402349
http://arxiv.org/abs/math.QA/0402349
http://dx.doi.org/10.1090/S0002-9947-07-04217-1
http://arxiv.org/abs/math.QA/0501144
http://arxiv.org/abs/math.QA/0501144
http://arxiv.org/abs/math.QA/0501144
http://arxiv.org/abs/math.QA/0501144
http://arxiv.org/abs/math.QA/0501144
http://arxiv.org/abs/math.QA/0501144
http://arxiv.org/abs/math.QA/0501144
http://arxiv.org/abs/math.QA/0501144
http://arxiv.org/abs/math.QA/0501144
http://arxiv.org/abs/math.QA/0501144
http://arxiv.org/abs/math.QA/0501144
http://arxiv.org/abs/math.QA/0501144
http://arxiv.org/abs/math.QA/0501144
http://arxiv.org/abs/math.QA/0501144
http://arxiv.org/abs/math.QA/0501144
http://arxiv.org/abs/math.QA/0501144
http://arxiv.org/abs/math.QA/0501144
http://arxiv.org/abs/math.QA/0501144
http://arxiv.org/abs/math.QA/0501144
http://arxiv.org/abs/math.QA/0501144
http://arxiv.org/abs/math.QA/0501144
http://dx.doi.org/10.2140/gtm.2008.13.385
http://arxiv.org/abs/math.QA/0604048
http://arxiv.org/abs/math.QA/0604048
http://arxiv.org/abs/math.QA/0604048
http://arxiv.org/abs/math.QA/0604048
http://arxiv.org/abs/math.QA/0604048
http://arxiv.org/abs/math.QA/0604048
http://arxiv.org/abs/math.QA/0604048
http://arxiv.org/abs/math.QA/0604048
http://arxiv.org/abs/math.QA/0604048
http://arxiv.org/abs/math.QA/0604048
http://arxiv.org/abs/math.QA/0604048
http://arxiv.org/abs/math.QA/0604048
http://arxiv.org/abs/math.QA/0604048
http://arxiv.org/abs/math.QA/0604048
http://arxiv.org/abs/math.QA/0604048
http://arxiv.org/abs/math.QA/0604048
http://arxiv.org/abs/math.QA/0604048
http://arxiv.org/abs/math.QA/0604048
http://arxiv.org/abs/math.QA/0604048
http://arxiv.org/abs/math.QA/0604048
http://arxiv.org/abs/math.QA/0604048
http://dx.doi.org/10.1063/1.4919652
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/math.QA/1404.3526
http://arxiv.org/abs/hep-th/9402126
http://arxiv.org/abs/hep-th/9402126
http://arxiv.org/abs/hep-th/9402126
http://arxiv.org/abs/hep-th/9402126
http://arxiv.org/abs/hep-th/9402126
http://arxiv.org/abs/hep-th/9402126
http://arxiv.org/abs/hep-th/9402126
http://arxiv.org/abs/hep-th/9402126
http://arxiv.org/abs/hep-th/9402126
http://arxiv.org/abs/hep-th/9402126
http://arxiv.org/abs/hep-th/9402126
http://arxiv.org/abs/hep-th/9402126
http://arxiv.org/abs/hep-th/9402126
http://arxiv.org/abs/hep-th/9402126
http://arxiv.org/abs/hep-th/9402126
http://arxiv.org/abs/hep-th/9402126
http://arxiv.org/abs/hep-th/9402126
http://arxiv.org/abs/hep-th/9402126
http://arxiv.org/abs/hep-th/9402126
http://arxiv.org/abs/hep-th/9402126
http://dx.doi.org/10.1007/BF01243909
http://arxiv.org/abs/hep-th/9312119
http://arxiv.org/abs/hep-th/9312119
http://arxiv.org/abs/hep-th/9312119
http://arxiv.org/abs/hep-th/9312119
http://arxiv.org/abs/hep-th/9312119
http://arxiv.org/abs/hep-th/9312119
http://arxiv.org/abs/hep-th/9312119
http://arxiv.org/abs/hep-th/9312119
http://arxiv.org/abs/hep-th/9312119
http://arxiv.org/abs/hep-th/9312119
http://arxiv.org/abs/hep-th/9312119
http://arxiv.org/abs/hep-th/9312119
http://arxiv.org/abs/hep-th/9312119
http://arxiv.org/abs/hep-th/9312119
http://arxiv.org/abs/hep-th/9312119
http://arxiv.org/abs/hep-th/9312119
http://arxiv.org/abs/hep-th/9312119
http://arxiv.org/abs/hep-th/9312119
http://arxiv.org/abs/hep-th/9312119
http://arxiv.org/abs/hep-th/9312119
http://dx.doi.org/10.3842/sigma.2011.032
http://dx.doi.org/10.3842/sigma.2011.032
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553
http://arxiv.org/abs/math.QA/1001.4553

