
ar
X

iv
:1

60
1.

04
46

5v
2 

 [
m

at
h.

A
G

] 
 2

2 
Ju

l 2
01

6

GEOMETRICITY FOR DERIVED CATEGORIES

OF ALGEBRAIC STACKS

DANIEL BERGH, VALERY A. LUNTS, AND OLAF M. SCHNÜRER

To Joseph Bernstein on the occasion of his 70th birthday

Abstract. We prove that the dg category of perfect complexes on a smooth,
proper Deligne–Mumford stack over a field of characteristic zero is geometric in
the sense of Orlov, and in particular smooth and proper. On the level of trian-
gulated categories, this means that the derived category of perfect complexes
embeds as an admissible subcategory into the bounded derived category of co-
herent sheaves on a smooth, projective variety. The same holds for a smooth,
projective, tame Artin stack over an arbitrary field.
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1. Introduction

The derived category of a variety or, more generally, of an algebraic stack, is
traditionally studied in the context of triangulated categories. Although triangu-
lated categories are certainly powerful, they do have some shortcomings. Most
notably, the category of triangulated categories seems to have no tensor product,
no concept of duals, and categories of triangulated functors have no obvious trian-
gulated structure. A remedy to these problems is to work instead with differential
graded categories, also called dg categories. We follow this approach and replace
the derived category Dpf(X) of perfect complexes on a variety or an algebraic stack

X by a certain dg category Ddg
pf (X) which enhances Dpf(X) in the sense that its

homotopy category is equivalent to Dpf(X).
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The study of dg categories is central in noncommutative geometry, and dg cat-
egories are sometimes thought of as categories of sheaves on a hypothetical non-
commutative space. Although a variety in general cannot be recovered from its
associated dg category, several of its important homological invariants can. These
include the algebraic K-theory spectrum as well as various variants of cyclic homol-
ogy. See [Kel06] and [Tab11] for surveys on dg categories and their invariants.

In noncommutative algebraic geometry, saturated dg categories play a similar
role as smooth and proper varieties in usual commutative algebraic geometry. For

example, the dg category Ddg
pf (X) associated to a variety X is saturated if and only

if X is smooth and proper. The saturated dg categories have an intrinsic charac-
terization as the homotopy dualizable objects in the category of all dg categories
with respect to a certain localization [CT12, §5].

It is natural to ask how far a dg category, thought of as a noncommutative
space, is from being commutative. Motivated by the dominant role of smooth, pro-
jective varieties, Orlov recently introduced the notion of a geometric dg category

[Orl14]. By definition, every dg category of the form Ddg
pf (X), for X a smooth,

projective variety, is geometric, and so are all its “admissible” subcategories (see
Definition 5.16 for a precise definition). Every geometric dg category is saturated.
Orlov asks whether in fact all saturated dg categories are geometric. To our knowl-
edge, this question is wide open. Our main theorems say that we stay in the realm
of geometric dg categories if we consider certain algebraic stacks.

Theorem 6.6. Let X be a smooth, proper Deligne–Mumford stack over a field of

characteristic zero. Then the dg category Ddg
pf (X) is geometric, and in particular

saturated.

This theorem can be seen as a noncommutative counterpart to [Cho12, Corol-
lary 4.7], which states that the mixed motive of a finite type, smooth Deligne–
Mumford stack over a field of characteristic zero is effective geometric.

In the preprint [HLP15], the authors consider a similar problem for certain stacks
with positive dimensional stabilizers and even for categories of matrix factorizations
on such stacks. They prove a geometricity result in a generalized sense which
involves infinite sums of dg categories of smooth Deligne–Mumford stacks [HLP15,
Theorem 2.7]. As mentioned in Remark 2.9 of loc. cit. our result strengthens their
Theorem 2.7 by replacing Deligne–Mumford stacks with varieties.

We also give a version of our main theorem which is valid for stacks over arbitrary
fields. Since we do not have resolution of singularities over a field of positive charac-
teristic, we restrict the discussion to projective algebraic stacks (see Definition 2.5).
Indeed, even for a smooth, proper scheme X over a field of positive characteristic it

is not clear whether Ddg
pf (X) is geometric if X is not projective. Moreover, instead

of Deligne–Mumford stacks we consider tame algebraic stacks [AOV08]. Over a
field of characteristic zero the class of separated Deligne–Mumford stacks coincides
with the class of separated tame algebraic stacks, but in positive characteristic tame
stacks are usually better behaved. For example, under mild finiteness assumptions
the tame algebraic stacks are scheme-like from a noncommutative perspective in
the sense that their derived categories are generated by a single compact object and
the compact objects coincide with the perfect complexes [BVdB03, Theorem 3.1.1],
[HR14, Theorem A, Remark 4.6].
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Theorem 6.4. Let X be a tame, smooth, projective algebraic stack over an arbi-

trary field. Then the dg category Ddg
pf (X) is geometric, and in particular saturated.

We specify the dg enhancement Ddg
pf (X) of Dpf(X) we work with in Example 5.5.

A priori, there are other possible choices (cf. Remark 5.3), but it turns out that
they are all equivalent. This follows from a recent result by Canonaco and Stellari
[CS15] which implies that the derived categories Dpf(X) for the stacks considered
in the theorems above have unique dg enhancements (see Remark 5.9).

Theorem 6.4 has the following equivalent reformulation in terms of varieties with
group actions.

Theorem 6.4b. Let U be a smooth, quasi-projective variety over a field k, and let
G be a linear algebraic group over k acting properly on U . Assume that the action
admits a geometric quotient U → U/G (in the sense of [MFK94, Definition 0.6])
such that U/G is projective over k. Also assume that all stabilizers of the action
are linearly reductive. Then the dg category enhancing the bounded derived cate-
gory Db(CohG(U)) of G-equivariant coherent sheaves on U is geometric, and in
particular saturated.

Proof. See Example 2.6 and Remark 2.12 together with the fact that the category of
coherent sheaves on the stack [U/G] is equivalent to the category of G-equivariant
coherent sheaves on U . �

Note that the requirement that the action be proper implies that the stabilizers
are finite. In particular, the condition that the stabilizers be linearly reductive is
superfluous if our base field k has characteristic zero. Also note that if G is finite
and U is projective over k, then the action is automatically proper and the existence
of a projective geometric quotient U/G is guaranteed.

Outline. The proof of the main results primarily builds on two results – the
destackification theorem by Bergh and Rydh [Ber14], [BR15] and the gluing theo-
rem for geometric dg categories by Orlov [Orl14].

The destackification theorem allows us to compare a smooth, tame algebraic
stack to a smooth algebraic space via a sequence of birational modifications called
stacky blowups . We review this theorem as Theorem 6.1 in Section 6. In this section,
we also give the main geometric arguments of the proofs of the main theorems.

Stacky blowups play a similar role in the study of the birational geometry of
tame stacks as do usual blowups for schemes. They come in two incarnations:
usual blowups and so-called root stacks . Root stacks are purely stacky operations
which have no counterpart in the world of schemes. We review the notion of a root
stack in Section 3.

A stacky blowup modifies the derived category of a stack in a predictable way.
More specifically, it induces a semiorthogonal decomposition on the derived cate-
gory on the blowup. For usual blowups this is due to Orlov ([Orl92], [Huy06, Propo-
sition 11.18]) and for root stacks this is due to Ishii–Ueda [IU11]. In Section 4, we
reprove the theorem by Ishii–Ueda as Theorem 4.7, but in a more general setting.
We also give a combinatorial description of the semiorthogonal decomposition on
an iterated root stack as Theorem 4.9.

In Section 5, we provide the dg categorical ingredients for the proofs of our main

theorems. We first introduce the dg enhancements Ddg
pf (X) and lift certain derived
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functors to these enhancements. Then we discuss geometric dg categories and state
Orlov’s gluing theorem as Theorem 5.22.

Some general facts concerning algebraic stacks, derived categories, and semior-
thogonal decompositions are assembled in section 2. Appendix A contains some
results on bounded derived categories of coherent sheaves on noetherian algebraic
stacks.

Acknowledgments. We thank David Rydh for detailed comments. Daniel Bergh
was partially supported by Max Planck Institute for Mathematics, Bonn, and by the
DFG through SFB/TR 45. Valery Lunts was partially supported by the NSA grant
141008. Olaf Schnürer was partially supported by the DFG through a postdoctoral
fellowship and through SPP 1388 and SFB/TR 45.

2. Preliminaries

In this section, we fix our notation and our conventions for algebraic stacks as
well as their derived categories of sheaves. We also review the notions of tame and
projective stacks. Finally, we review the notion of semiorthogonal decompositions
for triangulated categories.

Conventions for algebraic stacks. We will use the definition of algebraic space
and algebraic stack from the stacks project [SP16, Tag 025Y, Tag 026O]. In partic-
ular, we will always state all separatedness assumptions explicitly. The main results
of this article concern tame algebraic stacks which are separated and of finite type
over a field k. If k is a field of characteristic zero, the class of these stacks consists
precisely of the separated Deligne–Mumford stacks of finite type over k. Thus the
reader unwilling to work in full generality could safely assume that all stacks are of
the aforementioned kind.

Although algebraic stacks form a 2-category we will follow the common practice
to suppress their 2-categorical nature to simplify the exposition if no misunder-
standing is likely. In particular, we will often say morphism instead of 1-morphism,
isomorphism instead of equivalence, commutative instead of 2-commutative and
cartesian instead of 2-cartesian.

Tame algebraic stacks. An algebraic stack X has finite inertia if the canonical
morphism IX → X from its inertia stack is finite. If X has finite inertia, then
there is a canonical morphism π : X → Xcs to the coarse (moduli) space, which is
an algebraic space [KM97, Ryd13]. If X is locally of finite type over some base
algebraic space S, then the morphism π is proper.

Definition 2.1. An algebraic stack X is called tame provided that the stabilizer
at each of its geometric points is finite and linearly reductive.

If X has finite inertia, tameness implies that the pushforward π∗ : Qcoh(X) →
Qcoh(Xcs) is exact. The converse implication holds if X has finite inertia and is
quasi-separated [Hal14, Corollary A.3].

Remark 2.2. Tame algebraic stacks are defined in [AOV08] in a slightly less general
context. We use the more general definition given in [Hal14].

Example 2.3. Let X be a separated algebraic stack of finite type over a field k.
Then X has finite inertia provided that the stabilizer at each geometric point is

http://stacks.math.columbia.edu/tag/025Y
http://stacks.math.columbia.edu/tag/026O
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finite. If k has characteristic zero, then X is tame if and only if it is a Deligne–
Mumford stack. If k has characteristic p > 0, the stack X is tame if and only if the
stabilizer group at each geometric point is of the form ∆ ⋊H , where ∆ is a finite
diagonalizable p-group and H is a constant finite group of order prime to p.

Projective algebraic stacks. A definition of projective Deligne–Mumford stack
is suggested in [Kre09]. Since we also work with some tame stacks which are not
Deligne–Mumford stacks, we will need to extend this definition slightly. First we
clarify what we mean by a global quotient stack.

An algebraic stack X is a global quotient stack if there exists a GLn-torsor
T → X , for some non-negative integer n, such that T is an algebraic space.

Example 2.4. Let k be a field and G ⊂ GLn a linear algebraic group over k.
Assume that G acts on an algebraic space U over k. Let T be the quotient of
GLn×U by G, with G acting on the right on the factor GLn via the inclusion
G ⊂ GLn and on the left on U . Then T is an algebraic space and the obvious
projection T → [U/G] is a GLn-torsor. In particular, the stack quotient [U/G] is a
global quotient stack.

If a global quotient stack X is separated over some base algebraic space S then
the relative diagonal ∆X/S : X → X ×S X is affine and proper and hence finite.
In particular, such a stack has finite inertia and therefore admits a coarse space
X → Xcs.

Definition 2.5. Let X be an algebraic stack over a field k. We say that X is quasi-
projective over k if it is a global quotient stack which is separated and of finite type
over k, and its coarse space Xcs is a quasi-projective scheme over k. If in addition
X or, equivalently, Xcs is proper over k, we say that X is projective over k.

Example 2.6. GIT-quotients by proper actions (in the sense of [MFK94]) give rise
to quasi-projective algebraic stacks. Let U be a quasi-projective variety over a field
k and let G be a reductive linear algebraic group acting properly on U . Assume that
U admits a G-linearized line bundle L such that U is everywhere stable with respect
to L in the sense of [MFK94, Definition 1.7]. Then the GIT-quotient U → U/G
is geometric and U/G is quasi-projective. Since geometric quotients by proper
actions are universal among algebraic spaces [Kol97, Corollary 2.15], the canonical
morphism [U/G] → U/G identifies U/G with the coarse space of the stack quotient
[U/G]. Since the action of G on U is proper, the stack quotient [U/G] is separated.
Hence [U/G] is a quasi-projective stack in the sense of Definition 2.5.

Conversely, every quasi-projective algebraic stack can be obtained in this way.
Indeed, assume that X is quasi-projective. Since X is a separated global quotient
stack, it is of the form [U/GLn] where GLn acts properly on an algebraic space
U . Denote the geometric quotient by q : U → U/GLn ∼= [U/GLn]cs. Let M
be an ample line bundle on U/GLn. This pulls back to a GLn-linearized line
bundle L = q∗M on U . Since q is affine (cf. [Kre09, Remark 4.3] or [Kol97,
Theorem 3.12]), the bundle L is ample and U is quasi-projective. Moreover, the
space U is everywhere stable with respect to L, since sections of M pull back to
invariant sections of L.

Example 2.7. Let U be a quasi-projective variety over a field k, and let G be a
finite group scheme over k acting on U . Then the quotient U/G is quasi-projective
by [SGA1, Exposé V, Proposition 1.8] combined with graded prime avoidance (cf.
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[SP16, Tag 09NV]). Since U/G coincides with the coarse space of [U/G], it follows
that [U/G] is a quasi-projective stack in the sense of Definition 2.5. Moreover, since
the natural morphism [U/G] → U/G is proper, the stack [U/G] is projective if and
only if U is projective.

As expected, we have the following permanence property for projective algebraic
stacks with respect to morphisms which are projective in the sense of [EGAII,
Definition 5.5.2].

Lemma 2.8. Let f : X → Y be a projective morphism of algebraic stacks with Y
being quasi-compact and quasi-separated. Assume that both X and Y have finite
inertia. Then the induced morphism fcs : Xcs → Ycs between the coarse spaces is
projective. In particular, if Y is (quasi-)projective over a field k in the sense of
Definition 2.5, then the same holds for X.

Proof. Note that since Y is assumed to be quasi-compact and quasi-separated,
projectivity of f is equivalent to f being proper and admitting an f -ample invertible
sheaf (see [Ryd15a, Proposition 8.6]). Hence the statement of the lemma follows
from [Ryd15b, Proposition 2]. Less general versions of the lemma can be found in
[KV04, Proof of Theorem 1] and [Ols12, Proposition 6.1]. �

Derived categories and derived functors. There are several equivalent ways
to define quasi-coherent modules on algebraic stacks. We will follow [LMB00] and
view quasi-coherent modules as sheaves on the lisse–étale site. The results on
derived categories depend on the techniques of cohomological descent as described
in [Ols07] and [LO08]. A concise summary of these results is given in [HR14,
Section 1]. We give a brief overview here. Let (X,O) be a ringed topos. We use
the notation Mod(X,O), for the abelian category of O-modules in X and D(X,O)
for its derived category.

Let X be an algebraic stack. We denote the topos of sheaves on the lisse–étale
site by Xlis-ét. If X is a Deligne–Mumford stack, we denote the topos of sheaves on
the small étale site by Xét. In these situations, we use the short hand notation

Mod(Xτ ) := Mod(Xτ ,OX), D(Xτ ) := D(Xτ ,OX),

where τ is either lis-ét or ét. By default, we will use the lisse-étale site when consid-
ering sheaves on algebraic stacks and simply write Mod(X) instead of Mod(Xlis-ét)
and D(X) instead of D(Xlis-ét).

Recall that an OX -module is quasi-coherent if it is locally presentable [SP16,
Tag 03DL]. We let Qcoh(X) denote the full subcategory of Mod(X) of quasi-
coherent modules and Dqc(X) the full subcategory of D(X) consisting of complexes
with quasi-coherent cohomology. Since Qcoh(X) is a weak Serre subcategory of
Mod(X), the category Dqc(X) is a thick triangulated subcategory of D(X).

Also recall that a complex in Mod(X) is called perfect if it is locally quasi-
isomorphic to a bounded complex of direct summands of finite free modules [SP16,
Tag 08G4]. We denote by Dpf(X) the subcategory of D(X) consisting of perfect
complexes. The category Dpf(X) is a thick triangulated subcategory of Dqc(X).

Remark 2.9. The reader willing to restrict the discussion to Deligne–Mumford
stacks could instead use Xét as the default topos when considering sheaves on
such a stack X . In this situation, the correspondingly defined categories Dqc(Xét)
and Dpf(Xét) are equivalent to Dqc(X) and Dpf(X) respectively.

http://stacks.math.columbia.edu/tag/09NV
http://stacks.math.columbia.edu/tag/03DL
http://stacks.math.columbia.edu/tag/08G4
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Explicitly, the equivalences are constructed as follows. Let X be a Deligne–
Mumford stack. The inclusion of its small étale site into its lisse-étale site induces
a morphism

(2.1) ε = (ε∗, ε∗) : (Xlis-ét,OX) → (Xét,OX)

of ringed topoi, where ε∗ is the restriction functor. Both functors ε∗ and ε∗ are
exact, and the equivalences are obtained by restriction of the induced adjoint pair
ε∗ : D(Xét) → D(Xlis-ét) and ε∗ : D(Xlis-ét) → D(Xét).

Let f : X → Y be a morphism of algebraic stacks. Assume, for simplicity,
that f is concentrated . This means that f is quasi-compact, quasi-separated and
has a boundedness condition on its cohomological dimension Y [HR14, Defini-
tion 2.4]. For our needs, it suffices to know that a quasi-compact and quasi-
separated morphism of algebraic stacks is concentrated provided that its fibers
are tame (cf. [HR15, Theorem 2.1]). We get induced adjoint pairs of functors

f∗ : Qcoh(Y ) → Qcoh(X), f∗ : Qcoh(X) → Qcoh(Y )

and

Lf∗ : Dqc(Y ) → Dqc(X), Rf∗ : Dqc(X) → Dqc(Y ).

Here f∗, f∗ and Rf∗ are simply the restrictions of the corresponding functors on
Mod(X), Mod(Y ) and D(X) ([HR14, Theorem 2.6.(2)]).

Remark 2.10. It requires some work to see that the functor Lf∗ : Dqc(Y ) → Dqc(X)
actually exists. This is due to the fact that the naturally defined adjoint pair
(f−1, f∗) does not induce a morphism (Xlis-ét,OX) → (Ylis-ét,OY ) of ringed topoi,
owing to the fact that f−1 in general is not exact. Hence, we do not get a functor
Lf∗ : D(Y ) → D(X) from the general theory.

Remark 2.11. If f : X → Y is a morphism of Deligne–Mumford stacks, then the
pair (f−1, f∗) does induce a morphism (Xét,OX) → (Yét,OY ) of ringed topoi.
Hence we do get a functor Lf∗ : D(Yét) → D(Xét). Furthermore, its restriction to
Dqc(Yét) is compatible with Lf∗ : Dqc(Y ) → Dqc(X) via the equivalences described
in Remark 2.9.

Remark 2.12. Let X be an algebraic stack. Then the category Qcoh(X) is a
Grothendieck abelian category. In particular, the category of complexes of quasi-
coherent modules has enough h-injectives and the derived category D(Qcoh(X))
has small hom-sets.

There is an obvious triangulated functor

(2.2) D(Qcoh(X)) → Dqc(X)

induced by the inclusion Qcoh(X) ⊂ Mod(X). Assume that X is quasi-compact,
separated and has finite stabilizers. In particular, this implies that X has finite,
and hence affine, diagonal. Then the functor (2.2) is an equivalence of categories.
This follows from [HNR14, Theorem 1.2] and [HR14, Theorem A].

Assume that X , in addition, is regular. In particular, this includes the stacks
considered in the main theorems of this article. Then the obvious functor induces
an equivalence Db(Coh(X)) ∼= Dpf(X) by Remark A.3. In particular, a complex
of OX -modules is perfect if and only if it is isomorphic in Dqc(X) to a bounded
complex of coherent modules.
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Remark 2.13. Let X → Y be a concentrated morphism of quasi-compact stacks
which are separated and have finite stabilizers. Then the derived pushforward
Rf∗ : D(Qcoh(X)) → D(Qcoh(Y )) corresponds to Rf∗ : Dqc(X) → Dqc(Y ) under
the equivalences mentioned in Remark 2.12, see [HNR14, Corollary 2.2].

Semiorthogonal decompositions. We recall the definition of admissible subcat-
egories and semiorthogonal decompositions of triangulated categories (cf. [BK89],
[LS12, Appendix A]).

Definition 2.14. Let T be a triangulated category. A right (resp. left) admis-
sible subcategory of T is a strict full triangulated subcategory T ′ of T such that
the inclusion functor T ′ → T admits a right (resp. left) adjoint. An admissible
subcategory is a subcategory that is both left and right admissible.

Definition 2.15. A sequence (T1, . . . , Tr) of subcategories of T is called semi-
orthogonal provided that HomT (Ti, Tj) = 0 for all objects Ti ∈ Ti and Tj ∈ Tj
whenever i > j. If, in addition, all Ti are strict full triangulated subcategories
and the category T coincides with its smallest strict full triangulated subcategory
containing all the Ti, then we say that the sequence forms a semiorthogonal decom-
position of T and write

T = 〈T1, . . . , Tr〉.

We say that a sequence Φ1, . . . ,Φr of triangulated functors with codomain T forms a
semiorthogonal decomposition of T and write T = 〈Φ1, . . . ,Φr〉 if all Φi are full and
faithful and the essential images of the functors Φ1, . . . ,Φr form a semiorthogonal
decomposition of T .

3. Root constructions

The root construction can be seen as a way of adjoining roots of one or sev-
eral divisors on a scheme or an algebraic stack. It has been described in several
sources, e.g. [Cad07, §2], [BC10, §2.1], [FMN10, §1.3] and [AGV08, Appendix B].
We recall its definition along with some of its basic properties. Since most of these
basic properties are already described in the sources mentioned above or trivial
generalizations, we will omit most of the proofs.

It is straightforward to define the root stack in terms of its generalized points
(cf. [Cad07, Remark 2.2.2]), but the most economical definition seems to use the
universal root construction. Let r be a positive integer and consider the commuta-
tive diagram

(3.1) BGm
ι //

ρ

��

[A1/Gm]

π

��
BGm

// [A1/Gm].

Here [A1/Gm] denotes the stack quotient of A1 = SpecZ[x] by Gm acting by mul-
tiplication. The maps ρ and π are induced by the maps Gm → Gm and A1 → A1

taking the coordinate x to its r-th power xr. Note that the diagram above is not
cartesian if r > 1.

Recall that the stack [A1/Gm] parametrizes pairs consisting of a line bundle
together with a global section.
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Definition 3.1. Let X be an algebraic stack and E an effective Cartier divisor
[SP16, Tag 01WR] on X . Consider the morphism fE : X → [A1/Gm] corresponding
to the line bundle OX(E) together with the canonical global section OX → OX(E).
Given a positive integer r, we construct the root diagram

(3.2) r−1E
ι //

ρ

��

Xr−1E

π

��
E

κ // X

as the base change of the universal root diagram (3.1) along the morphism fE . The
stack Xr−1E is called the r-th root stack of X with respect to E. The notation for
the divisor r−1E is motivated by the fact that r · (r−1E) = π∗E. We refer to this
construction as the root construction with respect to the datum (X,E, r).

The next example gives a local description of a root stack.

Example 3.2. Assume that X = SpecR is affine and the effective Cartier divisor
E →֒ X corresponds to a ring homomorphism R→ R/(f) where f ∈ R is a regular
element. Then the r-th root construction yields

(3.3) r−1E = Bµr × E, Xr−1E = [SpecR′/µr], R′ = R[t]/(tr − f)

where µr denotes the group scheme of r-th roots of unity. The µr-action on SpecR′

corresponds to the Z/rZ-grading on R′ with R in degree zero and t homogeneous of
degree 1. The closed immersion r−1E →֒ Xr−1E corresponds to the ideal generated
by t.

Proposition 3.3. The root construction described in Definition 3.1 has the follow-
ing basic properties:

(a) The morphism ι in diagram (3.2) is a closed immersion realizing r−1E as
an effective Cartier divisor on Xr−1E.

(b) The morphism π is a universal homeomorphism which is proper, faithfully
flat and birational with exceptional locus contained in r−1E.

(c) The morphism ρ turns r−1E into a µr-gerbe over E with trivial Brauer
class. In particular, the morphism ρ is smooth.

(d) If X is an algebraic space, then π identifies X with the coarse space of
Xr−1E. More generally, if X is an algebraic stack then the morphism π is
a relative coarse space. In particular, if X is an algebraic stack having a
coarse space X → Xcs, then the composition Xr−1E → X → Xcs is a coarse
space for Xr−1E.

(e) The pushforward π∗ : Qcoh(Xr−1E) → Qcoh(X) is exact, and Xr−1E is
tame provided that the same holds for X.

(f) If X is a Deligne–Mumford stack and r is invertible in OX , then Xr−1E is
a Deligne–Mumford stack.

The notion of projectivity is well-behaved under taking roots of effective Cartier
divisors.

Lemma 3.4. Let X be a quasi-projective algebraic stack over a field k, and let E
be an effective Cartier divisor on X. Then the root stack Xr−1E is quasi-projective
over k for any positive integer r. In particular, if X is projective over k, then so is
Xr−1E.

http://stacks.math.columbia.edu/tag/01WR
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Proof. Assume that X is quasi-projective over k. Since Xr−1E → X is proper
(Proposition 3.3.(b)), the root stack Xr−1E is separated and of finite type over k.
SinceX andXr−1E have isomorphic coarse spaces (Proposition 3.3.(d)), it is enough
to verify that Xr−1E is a global quotient stack. But this follows from the general
fact, proved below, that the fibre product of two global quotient stacks over any
algebraic stack is a global quotient stack. This we apply to the morphism fE : X →
[A1/Gm] corresponding to E (cf. Definition 3.1) and the morphisms π : [A1/Gm] →
[A1/Gm] from the universal root diagram (3.1).

Now we prove the general fact about fiber products of global quotient stacks.
Let Y → S and Z → S be morphisms of algebraic stacks and assume that Y and
Z are global quotients. Then there exist a GLn-torsor U → Y and a GLm-torsor
V → Z such that U and V are algebraic spaces. Then U ×S V is an algebraic space
and the canonical morphism U ×S V → Y ×S Z is a GLn×GLm-torsor. Extending
this torsor along the obvious embedding GLn×GLm → GLn+m yields a GLn+m-
torsor over Y ×S Z which is an algebraic space. This shows that Y ×S Z is a global
quotient. �

There is also the more general concept of a root stack in a simple normal crossing
(snc) divisor. In the next section, we will obtain a semiorthogonal decomposition for
such root stacks. Since this decomposition also exists in the case that the ambient
algebaic stack is not smooth, will work with a (non-standard) generalized notion
of snc divisor. This generality will not be needed in the applications we have in
mind, but it comes at no extra cost and reveals the true relative nature of the root
construction and the induced semiorthogonal decomposition.

Definition 3.5. Let X be an algebraic stack. A generalized snc divisor on X is
a finite family E = (Ei)i∈I of effective Cartier divisors on X such that for each
subset J ⊆ I and each element i ∈ J the inclusion

∩j∈JEj → ∩j∈J\{i}Ej

is an effective Cartier divisor. We call the divisors Ei the components of E. If
X is smooth over a field k, we call a generalized snc divisor an snc divisor if all
intersections ∩i∈JEj are smooth over k.

Note that the definition asserts that the non-empty components of a generalized
snc divisor are distinct.

Remark 3.6. Note that we do not require the components to be irreducible, re-
duced or non-empty. This will somewhat simplify the exposition in the proof of
Theorem 4.9. In the smooth case, our definition of an snc divisor coincides with
the standard one, possibly with the subtle difference that we make the splitting of
E into components part of the structure.

When dealing with the combinatorics of iterated root stacks, it is convenient to
use multi-index notation. Given a finite set I a multi-index (with respect to I) is an
element a = (ai) of ZI . Multiplication of multi-indexes is defined coordinatewise.
We will also consider the partial ordering on ZI defined by a ≤ b if and only if
ai ≤ bi for all i ∈ I. We write a < b if and only if ai < bi for all i ∈ I. If a is a
multi-index and E is a (generalized) snc divisor indexed by I, then aE denotes the
Cartier divisor given by

∑
i∈I aiEi.
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Definition 3.7 (Iterated root construction). Let X be an algebraic stack and
E = (Ei)i∈I a generalized snc divisor on X . Fix a multi-index r > 0 in ZI . The
r-th root stack , denoted by Xr−1E , of X with respect to E and r is defined as the
fiber product of the root stacks Xr−1

i
Ei

over X for i ∈ I. The transform of E is

defined as the family r−1E = (Ẽi)i∈I , where Ẽi denotes the pull-back of r−1
i Ei

along the projection Xr−1E → Xr−1

i
Ei
.

Remark 3.8. If X is smooth and E is an snc divisor, then the root stack Xr−1E

only depends on the divisor rE. The corresponding statement for generalized snc
divisors is not true. For instance, consider the coordinate axes V (x) and V (y) in the
affine plane A2 = SpecZ[x, y]. Then the (2, 2)-th root stack of A2 in (V (x), V (y))
is smooth whereas the 2-nd root stack of A2 in (V (xy)) is not (cf. [BC10, §2.1]).

The next proposition is well-known and stated, in a slightly different form, in
[BC10, §2.1]. We include a proof since none is given in loc. cit.

Proposition 3.9. Let X be an algebraic stack and E a generalized snc divisor
indexed by I. Given a multi-index r > 0 in ZI , the r-th root construction of X in
E has the following properties:

(a) Given s > 0 in ZI , the s-th root stack (Xr−1E)s−1(r−1E) of Xr−1E in the

transform r−1E is canonically isomorphic to the (rs)-th root stack X(sr)−1E

in E, and this isomorphism identifies s−1(r−1)E with (sr)−1E.
(b) The transform r−1E is a generalized snc divisor on Xr−1E.

If furthermore X is smooth over a field k and E is an snc divisor, then we have the
following:

(c) The stack Xr−1E is smooth and r−1E is an snc divisor.

Proof. Assume that r = (r1, . . . , rn). By identifying [An/Gnm] with [A1/Gm]n, we
get a canonical morphism

πr = πr1 × · · · × πrn : [A
n/Gnm] → [An/Gnm]

where each πri corresponds to the morphism π in the universal ri-th root dia-
gram 3.1. The generalized snc divisor E = (E1, . . . , En) gives rise to a morphism

fE : X
∆
−→ Xn → [An/Gnm],

where the second morphism is the product fE1
× · · · × fEn

with each fEi
as in

Definition 3.1. It is now easy to see that the structure map Xr−1E → X of the
root stack is canonically isomorphic to the pull-back of πr along fE (cf. [FMN10,
§1.3.b]). Using this description, statement (a) follows from the diagram

(Xr−1E)s−1(r−1E))
//

��

[An/Gnm]

πs

��
Xr−1E f

r−1E

//

��

[An/Gnm]

πr

��
X

fE

// [An/Gnm]

with cartesian squares and the fact that πr ◦ πs = πrs.
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Next we prove statement (b). We may work locally on X and assume that
X = SpecR and E = (V (f1), . . . , V (fn)) where f1, . . . , fn is a regular sequence in
R. Then Xr−1E is given by [SpecR′/A] with R′ = R[t1, . . . , tn]/(t

r1
1 − f1, · · · trnn −

fn) and A = µr1 × · · · × µrn (cf. Example 3.2). The divisor r−1E is given by
(V (t1), . . . , V (tn)). It is now easy to verify that t1, . . . , tn is a regular sequence in
R′, which proves the statement.

Now assume in addition that the ring R/(f1, . . . , fn) is regular. Then the
same holds for the rings R′/(t1, . . . , tr) for 0 ≤ r ≤ n since R′/(t1, . . . , tn) ∼=
R/(f1, . . . , fn) and t1, . . . , tn is a regular sequence. In particular, this implies (c)
since smoothness over k is equivalent to regularity after base change to an alge-
braically closed field. �

Due to Proposition 3.9.(a) root constructions in generalized snc divisors are
sometimes referred to as iterated root constructions .

4. Semiorthogonal decompositions for root stacks

In many aspects, root stacks behave like blowups. For example, they give rise
to semiorthogonal decompositions. This was observed by Ishii–Ueda in [IU11, The-
orem 1.6]. In this section, we reprove this theorem in a more general setting as
Theorem 4.7. We also give an explicit, combinatorial description of the semior-
thogonal decomposition of the derived category of an iterated root stack.

Lemma 4.1 (cf. [HR14, Theorem 4.14.(1)]). Let ι : E → X be an effective Cartier
divisor on an algebraic stack X. Then the functor ι∗ = Rι∗ : Dqc(E) → Dqc(X)
admits a right adjoint ι×, and both ι∗ and ι× preserve perfect complexes.

Before we prove the lemma, we introduce some auxiliary notation. Let Z be an
algebraic stack and R a quasi-coherent sheaf of commutative OZ-algebras. We call
a sheaf of R-modules quasi-coherent if it is quasi-coherent as an OZ-module. Let
D(Z,R) denote the derived category of sheaves ofR-modules in the topos Zlis-ét and
let Dqc(Z,R) be the full subcategory of objects with quasi-coherent cohomology.
More generally, the definitions of D(Z,R) and Dqc(Z,R) generalize in the obvious
way to the case that R is a quasi-coherent sheaf of commutative dg OZ -algebras.

Proof. Consider the sheaf of commutative dg OX -algebras R = (OX(−E) → OX)
where OX sits in degree zero. It comes with a quasi-isomorphism R → ι∗OE of
sheaves of dg OX -algebras. The pushforward

ι∗ : Dqc(E) = Dqc(E,OE) → Dqc(X) = Dqc(X,OX)

factors as

(4.1) Dqc(E,OE)
∼
−→ Dqc(X, ι∗OE)

∼
−→ Dqc(X,R)

α∗−−→ Dqc(X,OX).

Indeed, the first functor is an equivalence since ι is affine [HR14, Corollary 2.7]. The
second equivalence is induced by restriction along the quasi-isomorphismR → ι∗OE

[Ric10, Proposition 1.5.6]. The third functor α∗ is induced by restriction along the
structure morphism OX → R. This reduces the problem of finding a right adjoint
to ι∗ to finding a right adjoint to α∗.

On the level of complexes, the functor HomOX
(R,−) is easily seen to be right

adjoint to restriction alongOX → R. SinceR is strictly perfect as a complex ofOX -
modules, the functor HomOX

(R,−) takes acyclic complexes to acyclic complexes
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and descends to a right adjoint α× : Dqc(OX , X) → Dqc(R, X) of α∗. This proves
the existence of i×.

Next we prove that ι∗ preserves perfect complexes. Let F ∈ Dpf(E). The
question whether ι∗F is perfect is local on X . Since vector bundles on E trivialize
locally on X , we may assume that F is a bounded complex of finite free modules.
But now the fact that ι∗OE is perfect implies that ι∗F is perfect.

Finally, let us prove that ι× preserves perfect complexes. Since the question
is local on X , it is enough to verify that ι×(OX) is perfect. Observe first that
α×(OX) = HomOX

(R,OX) ∼= R⊗OX
OX(E)[−1] in Dqc(X,R). Under the equiv-

alences of (4.1), this object corresponds to the object ι∗OE ⊗OX
OX(E)[−1] ∼=

ι∗(OE ⊗OE
ι∗(OX(E))[−1] ∼= ι∗(ι

∗(OX(E))[−1] of Dqc(X, ι∗OE) and to the object
ι∗(OX(E))[−1] of Dqc(E). This latter object is obviously perfect and isomorphic
to ι×(OX). �

Lemma 4.2. In the setting of Lemma 4.1, given any object F of Dqc(E), the
adjunction counit Lι∗ι∗F → F fits into a triangle

F ⊗OE
ι∗OX(−E)[1] → Lι∗ι∗F → F → F ⊗OE

ι∗OX(−E)[2]

Proof. Recall the factorization (4.1) of ι∗ from the proof of Lemma 4.1. The functor
α∗ occuring there is restriction of scalars along OX → R. Extension of scalars
(−⊗OX

R) preserves acyclic complexes and therefore defines a left adjoint (−⊗OX

R) : Dqc(X,OX) → Dqc(X,R) to α∗. Modulo the two equivalences in (4.1) this
functor is isomorphic to Lι∗, and the adjunction counit Lι∗ι∗ → id corresponds to
the adjunction counit (−⊗OX

R) → id.
Let M be a dg R-module. The adjunction counit M⊗OX

R → M is given by
multiplication. We denote its kernel by K and obtain a short exact sequence

K →֒ M⊗OX
R ։ M

of dgR-modules. As complexes of dgOX -modules, we have an obvious isomorphism

K ∼= M⊗OX
OX(−E)[1].

Assume that M is obtained from a complex of dg ι∗OE-modules by restriction along
R → ι∗OE . Then this isomorphism is even an isomorphism of dg R-modules. Since
M⊗OX

OX(−E) and M⊗R (R⊗OX
OX(−E)) are isomorphic as dg R-modules,

we obtain a triangle

M⊗R (R⊗OX
OX(−E))[1] → M⊗OX

R → M → M⊗R (R⊗OX
OX(−E))[2]

in D(X,R). Since restriction of scalars Dqc(X, ι∗OE) → Dqc(X,R) is an equiva-
lence, we obtain such a triangle in Dqc(X,R) for any object M of Dqc(X,R). The
claim follows. �

Lemma 4.3. Let f : X → Y be a concentrated morphism of algebraic stacks such
that Rf∗ : Dqc(X) → Dqc(Y ) preserves perfect complexes. Then Lf∗ : Dpf(Y ) →
Dpf(X) has a left adjoint f× given by

f× : Dpf(X) → Dpf(Y ), F 7→ (Rf∗(F
∨))∨

where (−)∨ denotes the dual RHomOX
(−,OX) on Dpf(X), and similarly for Dpf(Y ).
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Proof. This statement is a formal consequence of the dual (−)∨ being an involutive
anti-equivalence which respects derived pullbacks. Explicitly, for F ∈ Dpf(X) and
G ∈ Dpf(Y ) we have

HomD(X)(F , Lf
∗G) ∼= HomD(X)((Lf

∗G)∨,F∨)

∼= HomD(X)(Lf
∗(G∨),F∨)

∼= HomD(Y )(G
∨,Rf∗(F

∨))

∼= HomD(Y )((Rf∗(F
∨))∨, (G∨)∨)

∼= HomD(Y )(f×F ,G).

�

Lemma 4.4. Let f : X → Y be a concentrated morphism of algebraic stacks. Then
Lf∗ : Dqc(Y ) → Dqc(X) is full and faithful if and only if the natural morphism
OY → Rf∗OX is an isomorphism.

Proof. A left adjoint functor is full and faithful if and only if the adjunction unit is
an isomorphism. In particular, one implication is trivial. For the other implication,
assume that OY → Rf∗OX is an isomorphism. Then the projection formula [HR14,
Corollary 4.12] gives

G
∼
−→ Rf∗OX ⊗ G

∼
−→ Rf∗(OX ⊗ Lf∗G)

∼
−→ Rf∗Lf

∗G, G ∈ Dqc(Y ).

This shows that the adjunction unit is an isomorphism. �

Lemma 4.5. Let X be a tame algebraic stack with finite inertia, and let π : X →
Xcs denote the canonical morphism to its coarse space. Then the natural morphism
OXcs

→ Rπ∗OX is an isomorphism. Moreover, if π is flat and of finite presentation,
then Rπ∗ : Dqc(X) → Dqc(Xcs) preserves perfect complexes.

Proof. To check that a morphism in the derived category Dqc(Xcs) is an isomor-
phism, we may pass to an fppf covering by affine schemes. Since the derived push-
forward and the formation of the coarse space commute with flat base change, we
reduce to the situation where Xcs is affine. Since π : X → Xcs is the canonical
morphism to the coarse space, it is separated and quasi-compact. Furthermore X
has finite stabilizers. By Remark 2.12 and 2.13, we can therefore identify Dqc(X)
with D(Qcoh(X)) and similarly for Xcs. The canonical morphism OXcs

→ π∗OX

is an isomorphism, again because π is the structure morphism to the coarse space.
Hence the first statement follows from the exactness of π∗ : Qcoh(X) → Qcoh(Xcs)
which is a consequence of the tameness hypothesis.

For the other statement, we may again work locally on Xcs, since perfectness of
a complex is a local property. Hence we may again assume that Xcs is affine. We
can also assume that we have a finite locally free covering α : U → X by an affine
scheme U (cf. [Ryd13, Theorem 6.10 and Proposition 6.11]).

In this situation, we claim that the object α∗OU is a compact projective generator
for Qcoh(X). In particular, the category Qcoh(X) is equivalent to the category of
modules for a not necessarily commutative ring.

Now we prove the statement claimed above. First note that since α is affine, the
functor α∗ has a right adjoint α

× with the property that α∗α
× = HomOX

(α∗OU ,−).
Since α∗OU is finite locally free, it follows that the functor α∗α

× is exact, faithful,
and commutes with filtered colimits. Since α is affine, the functor α∗ reflects these
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properties, which implies that also α× is exact, faithful and commutes with filtered
colimits. Finally, since U is affine, it follows that also the functor

HomOX
(α∗OU ,−) ∼= HomOU

(OU , α
×(−))

has these properties, so α∗OU is indeed a compact, projective generator for Qcoh(X).
It follows that the compact objects of the derived category Dqc(X), which coin-

cides with D(Qcoh(X)) by Remark 2.12, are precisely those isomorphic to bounded
complexes of compact projective objects. By tameness, the perfect objects of
Dqc(X) coincide with the compact objects [HR14, Remark 4.6]. Hence it suffices
to show that π∗ : Qcoh(X) → Qcoh(Xcs) preserves compact projective objects.

To prove this, we assume that P is a compact, projective object in Qcoh(X).
Since α∗(OU ) is a compact, projective generator of Qcoh(X), there exists a split
surjection α∗(OU )

⊕n → P for some positive integer n. Hence also the pushforward
π∗α∗(OU )

⊕n → π∗P is a split surjection. But π∗α∗(OU ) is finite locally free, and
hence compact and projective in Qcoh(Xcs), by our assumption that π : X → Xcs

is flat and of finite presentation. It follows that π∗P is compact and projective,
which concludes the proof. �

Example 4.6. We give some examples of concentrated morphisms f : X → Y of
algebraic stacks such that the functor Rf∗ : Dqc(X) → Dqc(Y ) preserves perfect
complexes and the natural morphism OY → Rf∗OX is an isomorphism (cf. Lem-
mas 4.3 and 4.4). Note that these properties are fppf local on Y . Examples where
f is representable are

(a) blow-ups of smooth algebraic stacks over a field in a smooth locus;
(b) more generally, proper birational morphisms between smooth algebraic

stacks over a field;
(c) projective bundles.

Examples where f is not necessarily representable are

(d) the morphism ρ in the root diagram (3.2);
(e) the morphism π in the root diagram (3.2).

The last two items follow by applying Lemma 4.5 after an appropriate base change,
and using part (b), (c), (d), and (e) of Proposition 3.3.

Theorem 4.7. Let X be an algebraic stack and E ⊂ X an effective Cartier divisor.

Fix a positive integer r and let π : X̃ = Xr−1E → X be the r-th root construction
of X in E with ι and ρ as in the root diagram (3.2). Then the functors

(4.2) π∗ : Dpf(X) → Dpf(X̃),

(4.3) Φa := OX̃

(
ar−1E

)
⊗ ι∗ρ

∗(−) : Dpf(E) → Dpf(X̃)

for a ∈ {1, . . . , r − 1}, are full and faithful and admit left and right adjoints. Fur-

thermore, the category D(X̃) has the semiorthogonal decomposition

(4.4) D(X̃) =
〈
Φr−1, . . . ,Φ1, π

∗
〉

into admissible subcategories.

Recall that π and ρ are flat and that ι is the embedding of the Cartier divisor
r−1E (Proposition 3.3, part (a), (b), (c)) and that OX̃(ar−1E) is a line bundle.
Therefore we omitted the usual decorations for derived functors in (4.2) and (4.3).
Also note that Φa is well-defined by Lemma 4.1.



16 DANIEL BERGH, VALERY A. LUNTS, AND OLAF M. SCHNÜRER

Proof of Theorem 4.7. Both functors ρ∗ : Dpf(E) → Dpf(r
−1E) and π∗ : Dpf(X) →

Dpf(X̃) are full and faithful and admit left and right adjoints by part (d) and (e)
of Example 4.6 and Lemmas 4.3 and 4.4. Since tensoring with a line bundle is an

autoequivalence and since ι∗ : Dpf(r
−1E) → Dpf(X̃) admits left and right adjoints,

by Lemma 4.1, we deduce that the functors Φa admit left and right adjoints.
The stack r−1E is a µr-gerbe overE. Therefore the categoryMod(r−1E) splits as

a direct sum
⊕r−1

χ=0 Mod(r−1E)χ according to the characters of the inertial action.

This induces a corresponding decomposition
⊕r−1

χ=0 Dpf(r
−1E)χ of the triangulated

category Dpf(r
−1E). The essential image of ρ∗ is Dpf(r

−1E)0.
Consider

HomD(X̃)(ι∗F , ι∗G)
∼= HomD(r−1E)(Lι

∗ι∗F ,G)

for F , G ∈ Dpf(r
−1E). Since ι is the inclusion of an effective Cartier divisor,

Lemma 4.2 provides a triangle

F ⊗N [1] → Lι∗ι∗F → F → F ⊗N [2]

where N = ι∗OX̃(−r−1E) is the conormal line bundle of the closed immersion ι.

Now assume thatF ∈ Dpf(r
−1E)χ and G ∈ Dpf(r

−1E)ψ. SinceN ∈ Dpf(r
−1E)1,

the above triangle enables us to compute

(4.5) HomD(X̃)(ι∗F , ι∗G)
∼=





HomD(r−1E)(F ,G) if χ = ψ,
HomD(r−1E)(F [1]⊗N ,G) if χ+ 1 = ψ in Z/r,
0 otherwise.

In particular, we see that the restriction of the functor ι∗ to the category Dpf(r
−1E)χ

is full and faithful for each χ. As a consequence, all functors Φa are full and faithful.
Moreover, given H ∈ Dpf(X), we have

HomD(X̃)(π
∗H, ι∗G) ∼= HomD(r−1E)(Lι

∗π∗H,G) ∼= HomD(r−1E)(ρ
∗
Lκ∗H,G),

which vanishes if ψ 6= 0 since the essential image of ρ∗ is Dpf(r
−1E)0.

This, together with the third equality in (4.5) shows that

(4.6) ι∗Dpf(r
−1E)1, . . . , ι∗Dpf(r

−1E)r−1, π
∗Dpf(X)

is a semiorthogonal sequence. The projection formula [HR14, Corollary 4.12]
shows that Φa ∼= ι∗(N⊗(−a) ⊗ ρ∗(−)). Hence the essential image of Φa lies in
ι∗Dpf(r

−1E)−a and the essential images of the functors in (4.4) form a semiorthog-
onal sequence.

Let T denote the smallest strict full triangulated subcategory of Dpf(r
−1E) which

contains all these essential images. Then

T =
〈
Φr−1, . . . ,Φ1, π

∗
〉

is a semiorthogonal decomposition into admissible subcategories. It remains to
prove that T = Dpf(Xr−1E). This can be done fppf locally on X by conservative
descent [BS16]. Hence we may work with the local description given in Example 3.2.
Using the notation from the example, the category Qcoh(Xr−1E) is equivalent to
the category of Z/rZ-graded R′-modules. We use the symbol 〈−〉 to denote shifts
with respect to the Z/rZ-grading. More precisely, given a graded R′-module M =⊕
Mn, we writeM〈i〉 for the gradedR′-module with components (M〈i〉)n =M i+n.
Note that P = R′〈0〉 ⊕ · · · ⊕ R′〈r − 1〉 is a compact projective generator of

Qcoh(Xr−1E). This implies that P is a classical generator of Dpf(Xr−1E). Since
each of the semiorthogonal summands of T is idempotent complete, the same holds
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for T . Therefore, it is enough to prove that R′〈i〉 is contained in T for each i. But
T contains π∗OX = R′〈0〉, and ΦiOE = R′/(t)〈i〉 = R/(f)〈i〉 for i ∈ {1, . . . r − 1},
so this follows from the triangles

R′〈i− 1〉
t
−→ R′〈i〉 → R/(f)〈i〉 → R′〈i − 1〉[1]

and induction on i starting with i = 1. �

Remark 4.8. In [IU11], Ishii and Ueda state Theorem 4.7 for bounded derived
categories of coherent sheaves. They assume that X and E are quasi-compact,
separated Deligne–Mumford stacks which are smooth over C (although not all of
these conditions are explicitly mentioned). Under these hypotheses the triangulated
categories Db(Coh(X)), Db(Coh(E)), and Db(Coh(Xr−1E)) are equivalent to the
categories Dpf(X), Dpf(E), and Dpf(Xr−1E) respectively (cf. Remark A.3).

Next, we generalize Theorem 4.7 to iterated root stacks.

Theorem 4.9. Let X be an algebraic stack and E a generalized snc divisor on X
with components indexed by I. Fix a multi-index r > 0 in ZI and let Xr−1E be the
r-th root stack as in Definition 3.7. For any multi-index a satisfying r > a ≥ 0
denote its support by Ia ⊆ I and consider the diagram

(4.7) r−1E(Ia)
ιa //

ρa

��

Xr−1E

π

��
E(Ia) // X,

where E(Ia) := ∩i∈IaEi and r
−1E(Ia) := ∩i∈Ia (r

−1E)i. Then all the functors

(4.8) Φa := OX
r−1E

(ar−1E)⊗ (ιa)∗ρ
∗
a(−) : Dpf(E(Ia)) → Dpf(Xr−1E)

are full and faithful and admit left and right adjoints. Furthermore, the category
Dpf(Xr−1E) has the semiorthogonal decomposition

(4.9) 〈Φa | r > a ≥ 0〉

into admissible subcategories. Here the multi-indexes a with r > a ≥ 0 are arranged
into any sequence a(1), a(2), . . . , a(m) such that a(s) ≥ a(t) implies s ≤ t for all
s, t ∈ {1, . . . ,m} where m =

∏
i∈I ri.

Remark 4.10. If r has at most one coordinate which is strictly bigger than one, then
the root stack Xr−1E is isomorphic to a non-iterated root stack, and we recover
Theorem 4.7.

Example 4.11. If our generalized snc divisor E has two components E1 = D,
E2 = F and r1 = 4 and r2 = 3, the Hasse diagram of the poset {a ∈ Z

2 | r > a ≥ 0}



18 DANIEL BERGH, VALERY A. LUNTS, AND OLAF M. SCHNÜRER

(with arrows pointing to smaller elements) looks as follows.

(4.10) (3, 2)D∩F

��❄
❄❄

??⑧⑧⑧

(2, 2)D∩F

��❄
❄❄

??⑧⑧⑧

(1, 2)D∩F

��❄
❄❄

??⑧⑧⑧

(0, 2)F

��❄
❄❄

(3, 1)D∩F

��❄
❄❄

??⑧⑧⑧

(2, 1)D∩F

��❄
❄❄

??⑧⑧⑧

(1, 1)D∩F

��❄
❄❄

??⑧⑧⑧

(0, 1)F

��❄
❄❄

(3, 0)D

??⑧⑧⑧

(2, 0)D

??⑧⑧⑧

(1, 0)D

??⑧⑧⑧

(0, 0)X

The index at a vertex a = (a1, a2) is E(Ia). If we think of such a vertex as repre-
senting the essential image of Dpf(E(Ia)) under the fully faithful functor Φa, this
gives a nice way to visualize the semiorthogonal decompositions (4.9) for all allowed
sequences a(1), . . . , a(12) at once. If there is a nonzero morphism from an object
of the category represented by a vertex a to an object of the category represented
by a vertex b, then there is a directed path from a to b in the Hasse diagram. Of
course, we could have used the concept of a semiorthogonal decomposition indexed
by a poset.

Proof of Theorem 4.9. We use induction on the number of coordinates of r which
are strictly bigger than one. In light of Remark 4.10, we may assume that ri0 > 1
for some index i0 ∈ I which we fix. Then the multi-index r factors as s · t, where
t = (ti) satisfies ti0 = ri0 and ti = 1 for all i 6= i0. By Proposition 3.9.(a), the root
stack Xr−1E → X decomposes into a sequence

(4.11) Xr−1E → Xs−1E → X

of root stacks.
Any multi-index r > a ≥ 0 can be uniquely written as a sum a = a′ + a′′ with

t > a′ ≥ 0 and s > a′′ ≥ 0, and this gives a bijective correspondence between the
set of multi-indexes a with r > a ≥ 0 and pairs (a′, a′′) of multi-indexes satisfying
t > a′ ≥ 0 and s > a′′ ≥ 0. The support Ia′ of such a multi-index a′ is contained
in {i0}.

For any such multi-index a = a′ + a′′ the sequence (4.11) induces the decompo-
sition

(4.12) r−1E(Ia) //

��

r−1E(Ia′ ) //

��

Xr−1E

��
s−1E(Ia) //

��

s−1E(Ia′) //

��

Xs−1E

��
E(Ia) // E(Ia′) // X

of the diagram (4.7).
In the rest of this proof, we call a diagram of the form (4.7) a transform diagram.

The upper right square in (4.12) depends on the support of a′ (but not on a and
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a′′) and is a transform diagram for the t-th root of the divisor s−1E in Xs−1E . If
Ia′ = {i0} it is, in fact, by the special form of t, a root diagram for the ri0 -th root of
the effective Cartier divisor (s−1E)i0 on Xs−1E . Denote the functors corresponding
to (4.8) for this root construction by Φ′

a′ : Dpf(s
−1E(Ia′)) → Dpf(Xr−1E). Then

Theorem 4.7 yields the semiorthogonal decomposition

(4.13) Dpf(Xr−1E) = 〈Φ′
a′ | t > a′ ≥ 0〉.

Fix t > a′ ≥ 0 for a moment. Note that the lower right square of (4.12) is
cartesian. This is trivial if Ia′ = ∅ and otherwise follows from the fact that si0 = 1.
As a consequence, s−1E(Ia′) → E(Ia′) is an s

′-th root of the generalized snc divisor
E′ = (Ei ∩ E(Ia′))i∈I−{i0} where s′ = (si)i∈I−{i0}. The corresponding transform
diagram for s > a′′ ≥ 0 is the lower left square of diagram (4.12) where a = a′+a′′.
Let Φ′′

a′′ : Dpf(E(Ia)) → Dpf(s
−1E(Ia′ )) denote the functors corresponding to (4.8)

for this iterated root construction; here a′′ is identified with its restriction to I−{i0}.
By the induction hypothesis, we obtain the semiorthogonal decomposition

(4.14) Dpf(s
−1E(Ia′)) = 〈Φ′′

a′′ | s > a′′ ≥ 0〉.

Combining the decompositions (4.13) and (4.14) yields the semiorthogonal de-
composition

(4.15) Dpf(Xr−1E) = 〈Φ′
a′ ◦ Φ

′′
a′′ | t > a′ ≥ 0, s > a′′ ≥ 0〉.

Next, we establish an isomorphism Φa ∼= Φ′
a′ ◦Φ

′′
a′′ for a = a′ + a′′ as above. Let

L′ = OX
r−1E

(a′r−1E), L′′ = OX
s−1E

(a′′s−1E).

Furthermore, we denote the horizontal arrows in (4.12) by ιij and the vertical arrows
by ρij , where i denotes the row and j the column of domain of the morphism as
viewed in the diagram. With this notation, we have identities

Φ′
a′ = L′ ⊗ (ι12)∗ρ

∗
12(−), Φ′′

a′′ = ι∗22L
′′ ⊗ (ι21)∗ρ

∗
21(−).

Consider the composition Φ′
a′ ◦Φ

′
a′′ of these two functors. By the projection formula

for ι12 ([HR14, Corollary 4.12]) and the fact that pullbacks and tensor products
commute, we see that this composition is isomorphic to

(4.16) L′ ⊗ ρ∗13L
′′ ⊗ (ι12)∗ρ

∗
12(ι21)∗ρ

∗
21(−).

Since the upper left square in (4.12) is cartesian, flat base change ([HR14, The-
orem 2.6.(4)]) along the flat morphism ρ12 (Proposition 3.3.(c)) shows that our
composition (4.16) is isomorphic to

(4.17) L′ ⊗ ρ∗13L
′′ ⊗ (ι12 ◦ ι11)∗(ρ11 ◦ ρ21)

∗.

Now

L′ ⊗ ρ∗13L
′′ = OX

r−1E

(
(a′ + ta′′)r−1E

)
.

But a′+ ta′′ = a′+a′′ = a since ti = 1 for i in the support of a′′, so (4.17) is indeed
isomorphic to Φa. This shows Φa ∼= Φ′

a′ ◦ Φ
′′
a′′ .

Hence Φa is full and faithful and admits left and right adjoints, and the semior-
thogonal decomposition (4.15) simplifies to

(4.18) Dpf(Xr−1E) = 〈Φa | t > a′ ≥ 0, s > a′′ ≥ 0, a = a′ + a′′〉.

Since i0 was arbitrary with ri0 > 1 the above shows: if a and b are two multi-
indexes with r > a ≥ 0 and r > b ≥ 0 such that a nonzero morphism from an
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object of the essential image of Φa to an object of the essential image of Φb exists,
then a ≥ b. This proves the theorem. �

5. Differential graded enhancements and geometricity

Many triangulated categories are homotopy categories of certain differential
graded (dg) categories. This observation leads to the notion of a dg enhancement
of a triangulated category. We introduce obvious dg enhancements of the derived
categories considered in this article and explain how to lift certain derived functors
to dg functors between these enhancements. We then recall Orlov’s notion of a
geometric dg category and state his main glueing result.

We assume that the reader has some familiarity with differential graded cate-
gories, see for example [Kel06, Toë11]. In this section, we will work over a fixed
field k and assume that all our triangulated categories and all our dg categories are
k-linear.

DG enhancements. We introduce the dg enhancements we will use in the rest of
this article.

The homotopy category of a dg category A is denoted by [A]. Recall that if A
is a pretriangulated dg category, then the homotopy category [A] has a canonical
structure of a triangulated category.

Definition 5.1. A dg enhancement of a triangulated category T is a pair (E , ε)

consisting of a pretriangulated dg category E together with an equivalence ε : [E ]
∼
−→

T of triangulated categories.

Example 5.2. Let (X,O) be a ringed topos over k. In the dg category of complexes

of O-modules, consider the full dg subcategory Ddg(X,O) consisting of h-injective
complexes of injective O-modules. This pretriangulated dg category together with
the obvious equivalence

(5.1) [Ddg(X,O)]
∼
−→ D(X,O)

forms a dg enhancement of D(X). We chose to work with these dg enhancements
in this article.

Remark 5.3. Another dg enhancement of D(X,O) is provided by the Drinfeld dg
quotient of the dg category of complexes of O-modules by its full dg subcategory
of acyclic complexes.

Remark 5.4. If (E , ε) is a dg enhancement of T then any strict full triangulated sub-
category S of T has an induced dg enhancement: just take the full dg subcategory
of E of objects that go to objects of S under ε, and restrict ε appropriately.

Example 5.5. Let X be an algebraic stack over k and consider the ringed topos
(Xlis-ét,OX). The derived category D(X) = D(Xlis-ét,OX) has the dg enhancement

Ddg(X) := Ddg(Xlis-ét,OX). By Remark 5.4, the strict triangulated subcategories

Dqc(X) and Dpf(X) have induced dg enhancements which we denote by Ddg
qc (X)

and Ddg
pf (X), respectively.

Example 5.6. If X is a Deligne–Mumford stack over k we could instead consider
the ringed topos (Xét,OX) and define the dg enhancements Ddg(Xét), D

dg
qc(Xét)

and Ddg
pf (Xét) for the triangulated categories D(Xét), Dqc(Xét) and Dpf(Xét) in a

similar way as in the previous example.
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Remark 5.7. Let X be a Deligne–Mumford stack. As described in Remark 2.9, the
morphism (2.1) of ringed topoi induces a triangulated equivalence ε∗ : Dqc(Xlis-ét)

∼
−→

Dqc(Xét). Since ε∗ is exact, the functor ε∗ : Mod(Xlis-ét,O) → Mod(Xét,O) pre-
serves injectives and h-injective complexes. Therefore we obtain quasi-equivalences

Ddg
qc (Xlis-ét) → Ddg

qc (Xét) and Ddg
pf (Xlis-ét) → Ddg

pf (Xét) lifting the equivalences

Dqc(Xlis-ét)
∼
−→ Dqc(Xét) and Dpf(Xlis-ét)

∼
−→ Dpf(Xét) to dg enhancements.

Uniqueness of dg enhancements. We would like to point out that the derived
categories we are mainly interested in have unique dg enhancements in the sense of
the following definition.

Definition 5.8 (cf. [LO10, CS15]). We say that a triangulated category T has a
unique dg enhancement if it has a dg enhancement and given any two dg enhance-
ments (E , ε) and (E ′, ε′) of T , the dg categories E and E ′ are quasi-equivalent. That
is, they are connected by a zig-zag of quasi-equivalences.

Remark 5.9. By [CS15, Proposition 6.10], the derived category Dpf(X) for any
separated, tame algebraic stack X which is smooth and of finite type over k has a
unique dg enhancement. In particular, this includes the stacks considered in the
main theorems of this article. Indeed, Proposition 6.10 from loc. cit. applies since
every coherent OX -module on X is perfect by the assumption that X is regular
(cf. Proposition A.2). Furthermore, the category Qcoh(X) is generated by a set of
coherent OX -modules as a Grothendieck category since every quasi-coherent OX -
module is the filtered colimit of its coherent submodules [LMB00, Proposition 15.4].

Lifts of some derived functors to dg enhancements. We need to lift some
derived functors to the level of dg enhancements. Since our main results concern
algebraic stacks over a field we chose to use the methods of [Sch15]. We briefly
recall the results we need.

If (X,O) is a ringed topos over the field k, we have replacement dg functors i and
e on the dg category of complexes of O-modules. The functor i replaces a complex
with a quasi-isomorphic h-injective complex of injective O-modules, and e replaces
a complex with an h-flat complex of flat O-modules ([Sch15, Theorem 4.17]).

Let f : (X,O) → (Y,O′) be a morphism of ringed topoi over k. Then the dg func-
tors

f∗ := if∗e : Ddg(Y ) → Ddg(X),

f∗ := if∗ : D
dg(X) → Ddg(Y )

make the diagrams

(5.2) [Ddg(Y )]
[f∗]

//

∼

��

[Ddg(X)]

∼

��
D(Y )

Lf∗

// D(X),

[Ddg(X)]
[f∗]

//

∼

��

[Ddg(Y )]

∼

��
D(X)

Rf∗ // D(Y )

commutative up to isomorphisms of triangulated functors, by [Sch15, Proposi-
tion 6.5]. The vertical arrows in these diagrams are given by the functor (5.1).

Here we abbreviate D(X) = D(X,O) and Ddg(X) = Ddg(X,O) to ease the nota-
tion, and similarly for Y .
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Similarly, if E ∈ D(X) is any object, the dg functor

(E⊗−) := i(E ⊗ e(−)) : Ddg(X) → Ddg(X)

makes the diagram

(5.3) [Ddg(X)]
[E⊗−]

//

∼

��

[Ddg(X)]

∼

��
D(X)

E⊗L− // D(X)

commutative up to an isomorphism of triangulated functors; this follows immedi-
ately from [Sch15, Section 6.3].

These three diagrams say that the dg functors f∗, f∗ and (E⊗−) lift the trian-

gulated functors Lf∗, Rf∗ and (E ⊗L −) to dg enhancements.

Remark 5.10. In the above situation assume that D⋄(X) and D⋄(Y ) are strict
triangulated subcategories of D(X) and D(Y ), respectively. By Remark 5.4, these

subcategories have induced dg enhancements Ddg
⋄ (X) and Ddg

⋄ (Y ). If Lf∗ : D(Y ) →
D(X) maps D⋄(Y ) to D⋄(X), then f∗ : Ddg(Y ) → Ddg(X) maps Ddg

⋄ (Y ) to Ddg
⋄ (X),

and the induced dg functor f∗ : Ddg
⋄ (Y ) → Ddg

⋄ (X) lifts the induced triangulated
functor Lf∗ : D⋄(Y ) → D⋄(X): diagram (5.2) restricts to

(5.4) [Ddg
⋄ (Y )]

[f∗]
//

∼

��

[Ddg
⋄ (X)]

∼

��
D⋄(Y )

Lf∗

// D⋄(X).

Similar remarks apply to the functors Rf∗ and (E ⊗L −).

Example 5.11. Let f : X → Y be a concentrated morphism of Deligne–Mumford
stacks over the field k. As stated in Remark 2.11, we get an induced morphism
of ringed topoi. Hence Remark 5.10 applies and the functors Lf∗ and Rf∗ lift to
dg functors f∗ : Ddg

qc (Yét) → Ddg
qc (Xét) and f∗ : D

dg
qc (Xét) → Ddg

qc (Yét) between the

dg enhancements of Example 5.6. If E ∈ Dqc(Xét) then (E ⊗L −) : Dqc(Xét) →

Dqc(Xét) lifts to a dg functor (E⊗−) : Ddg
qc (Xét) → Ddg

qc (Xét).

Example 5.12. Let f : X → Y be a concentrated morphism of arbitrary algebraic
stacks over the field k. Then the functors

(5.5) Lf∗ : Dqc(Y ) ⇄ Dqc(X) : Rf∗

lift to dg functors

(5.6) f∗ : Ddg
qc(Y ) ⇄ Ddg

qc (X) : f∗

between the dg enhancements of Example 5.5 as we explain below. Given a complex
E ∈ Dqc(X), we also get a lift of the triangulated functor (E ⊗L −) : Dqc(X) →

Dqc(X) to a dg functor (E⊗−) : Ddg
qc (X) → Ddg

qc (X). Moreover, if the functors Lf∗,

Rf∗ and (E ⊗L −) restrict to the triangulated categories Dpf(X) and Dpf(Y ), then

the lifts f∗, f∗, (E⊗−) restrict to the dg categories Ddg
pf (X) and Ddg

pf (Y ).
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Due to the fact that f does not induce a morphism between the lisse-étale topoi,
this situation is more complicated than the situation in Example 5.11. To circum-
vent the problem one can use the technique of cohomological descent from [Ols07]
and [LO08]. Choose smooth hyper-coverings πX : X• → X and πY : Y• → Y to-
gether with a morphismX• → Y• over f : X → Y . Passing to the associated strictly

simplicial algebraic spaces we obtain a morphism f̃ : X+
• → Y +

• augmenting f . This
gives us a diagram

(Xlis-ét,OX) (X+
•,lis-ét,OX)

πXoo εX // (X+
•,ét,OX)

f̃

��
(Ylis-ét,OY ) (Y +

•,lis-ét,OY )
πYoo εY // (Y +

•,ét,OY )

of ringed topoi, where εX and εY are restriction morphism similar to the morphisms
(2.1) from Remark 2.9. The dg functor f∗ : Ddg(Y ) → Ddg(X) is defined as the
composition

(πX)∗ε
∗
X f̃

∗(εY )∗π
∗
Y

and similarly for f∗. Again using Remark 5.10 we see that the restrictions of f∗

and f∗ to Ddg
qc (X) and Ddg

qc (Y ) give the lifts (5.6) of the triangulated functors (5.5)
(cf. [LO08, Example 2.2.5], [HR14, Section 1]).

Remark 5.13. As we have seen in Example 5.12, the triangulated functors Lf∗,
Rf∗ and (E ⊗L −) lift to dg functors f∗, f∗ and (E⊗−) when working over a

field. Over an arbitrary base ring R, dg R-linear (or even additive) replacement
functors similar to e and i need not exist (see [Sch15, Lemma 4.4]). However, it
is presumably possible to define morphisms in the homotopy category of R-linear
dg categories (where the quasi-equivalences are inverted) which lift these functors
when considered as morphisms in the homotopy category of triangulated categories
(where equivalences are inverted).

Geometric dg categories. After recalling some standard notions for dg cate-
gories we discuss geometric dg categories. Then we state Orlov’s gluing result as
Theorem 5.22. We keep the assumption that k is a field.

Definition 5.14 (cf. [TV07, Definition 2.4], [Toë09, Definition 2.3], [LS13, Sec-
tions 2.2, 2.5]). Let A be a k-linear dg category.

(a) A is triangulated if it is pretriangulated and the triangulated category [A]
is idempotent complete.

(b) A is locally cohomologically bounded if A(A,B) is cohomologically bounded
for all A, B ∈ A.

(c) A is locally perfect if A(A,B) is a perfect complex of k-vector spaces, for
all A, B ∈ A. That is, all complexes A(A,B) have bounded and finite
dimensional cohomology.

(d) A has a compact generator if its derived category D(A) of dg A-modules
has a compact generator.

(e) A is proper if it is locally perfect and has a compact generator.
(f) A is smooth if A is compact as an object of the derived category of dg

A⊗Aop-modules.
(g) A is saturated if it is triangulated, smooth and proper.
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We say that two dg categories are quasi-equivalent if they are connected by
a zig-zag of quasi-equivalences. The above notions are all well-defined on quasi-
equivalence classes of dg categories (cf. [LS13, Lemma 2.12]). In fact, proper-
ties (b)–(f) are well-defined on Morita equivalence classes of dg categories (cf. [LS13,
Lemma 2.13]).

Remark 5.15. Orlov’s definition of a (derived) non-commutative scheme ([Orl14,
Definition 3.3]) can be reformulated using the terms above. A non-commutative
scheme is precisely a locally cohomologically bounded, triangulated dg category
with a compact generator.

Indeed, a triangulated dg category A has a compact generator if and only if it
is quasi-equivalent to a dg category of perfect dg A-modules for some dg algebra A
([LS13, Definition 2.2, Lemma 2.3, Corollary 2.4, Proposition 2.16]). In this case,
A is locally cohomologically bounded if and only if A is (locally) cohomologically
bounded (the property of being ”locally cohomologically bounded” can be added
to the list in [LS13, Lemma 2.13].

Definition 5.16 (cf. [Orl14, Definition 4.3]). A dg category A is geometric if there
exists a smooth projective scheme X over k and an admissible subcategory S of

Dpf(X) such that A and the full dg subcategory of Ddg
pf (X) consisting of objects of

S are quasi-equivalent.

Remark 5.17. Geometric dg categories are saturated. Indeed, if X is any scheme,
then Dpf(X) is idempotent complete [SP16, Tag 08GA], and so is any admissi-
ble subcategory. This shows that a geometric dg category is triangulated. If X

is smooth and proper over the field k, then Ddg
pf (X) is smooth and proper, by

[LS14, Theorem 1.2 and 1.4] or [Orl14, Proposition 3.31]. Moreover, smoothness

and properness are inherited to dg subcategories of Ddg
pf (X) enhancing admissible

subcategories of Dpf(X), by [LS13, Proposition 2.20].
This shows, together with Remark 5.15, that our geometric dg categories coin-

cide with Orlov’s geometric noncommutative schemes as defined in [Orl14, Defini-
tion 4.3].

Example 5.18. Not all geometric dg categories are of the form Ddg
pf (X) for some

smooth projective variety X over k. Let Λ = k[• → •] be the path algebra of a
Dynkin quiver of type A2. Then the standard enhancement of the bounded derived
category Db(Λ) is geometric by [Orl14, Corollary 5.4].

On the other hand, the third power of the Serre functor on Db(Λ) is isomorphic

to the shift [1] (cf. [HI11, Proposition 3.1]). Hence Db(Λ) cannot be equivalent to
Dpf(X) for any smooth projective variety X over k.

Lemma 5.19. Let B be a dg subcategory of a geometric dg category A such that [B]
is an admissible subcategory of the triangulated category [A]. Then B is geometric.

We will see in Corollary 5.21 below that it is enough to assume that [B] is right
or left admissible in [A].

Proof. Let X be a smooth projective scheme and E a dg subcategory of Ddg
pf (X)

such that [E ] is an admissible subcategory of [Ddg
pf (X)] and there is a zig-zag of

quasi-equivalences connecting A and E . Transfering B along such a zig-zag yields a
zig-zag of quasi-equivalences connecting B with a dg subcategory F of E such that

http://stacks.math.columbia.edu/tag/08GA
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[F ] is an admissible subcategory of [E ]. But then [F ] is also admissible in [Ddg
pf (X)].

Hence B is geometric. �

Proposition 5.20. Let B be a dg subcategory of a saturated dg category A such
that [B] is a right (resp. left) admissible subcategory of the triangulated category
[A]. Then [B] is admissible in [A] and B is saturated.

Proof. We have a semiorthogonal decomposition [A] = 〈[B]⊥, [B]〉 (resp. [A] =

〈[B],⊥[B]〉). So our claim follows from the proof of [LS13, Proposition 2.26]. �

Corollary 5.21. Let B be a dg subcategory of a geometric dg category A such that
[B] is a right (resp. left) admissible subcategory of the triangulated category [A].
Then [B] is admissible in [A] and B is geometric.

Proof. Since A is saturated, by Remark 5.17, this follows from Proposition 5.20
and Lemma 5.19. �

We reformulate Orlov’s result [Orl14, Theorem 4.15] that the gluing of geometric
dg categories is again geometric; for completeness we add the implication in the
other direction.

Theorem 5.22 (cf. [Orl14, Theorem 4.15]). Let A be a pretriangulated dg category
with full dg subcategories B1, . . . ,Bn such that [A] = 〈[B1], . . . , [Bn]〉 is a semior-
thogonal decomposition. Then A is geometric if and only if A is locally perfect and
all dg categories B1, . . . ,Bn are geometric.

Moreover, if these conditions are satisfied then all [Bi] are admissible in [A].

Proof. If A is locally perfect and all dg categories B1, . . .Bn are geometric then A
is geometric by [Orl14, Theorem 4.15]. (The “proper” dg categories in [Orl14] are
usually called locally perfect, cf. [Orl14, Remark 3.15]).

Conversely assume that A is geometric. Then A is saturated by Remark 5.17
and in particular locally perfect. Corollary 5.21 and an easy induction (using [LS12,
Lemma A.11]) shows that all Bi are geometric and that all [Bi] are admissible in
[A]. �

6. Geometricity for dg enhancements of algebraic stacks

In this section, we combine Orlov’s result on gluing of geometric dg categories
with a geometric argument to obtain the results about geometricity for dg en-
hancements of algebraic stacks stated in the introduction. The geometric argument
depends on the existence of destackifications in the sense of [Ber14, BR15]. We
start by briefly recalling this notion.

In this section, we will mostly work with tame stacks which are separated and
of finite type over a field k. Such a stack will be called an orbifold provided that it
is smooth over k and contains an open dense substack which is an algebraic space.

Let X be an orbifold over k. Although the stack X is smooth, the same need
not hold for its coarse space Xcs. However, it is possible to modify the stack via
a sequence of birational modifications such that the coarse space of the modified
stack becomes smooth. It suffices to use two kinds of modifications: blowups in
smooth centers and root stacks in smooth divisors. Collectively, we refer to such
modifications as smooth stacky blowups .
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Theorem 6.1 (Destackification). Let X be a tame, separated algebraic stack which
is smooth and of finite type over a field k. Assume that X contains an open dense
substack which is an algebraic space. Then there exists a morphism f : Y → X,
which is a composition of smooth stacky blowups, such that Ycs is smooth over k

and such that Y → Ycs is an iterated root construction in an snc divisor E on Ycs.

Proof. The case where X has abelian stabilizers is treated in [Ber14, Theorem 1.2].
In the discussion before [Ber14, Corollary 1.4] it is shown how the abelian hypothesis
can be removed if k has characteristic zero. For k of arbitrary characteristic, the
theorem is shown in [BR15]. �

Proposition 6.2. Let f : X → Y be a concentrated morphism of algebraic stacks
over a field k such that the natural morphism OY → Rf∗OX is an isomorphism and

Rf∗ preserves perfect complexes. If the k-linear dg category Ddg
pf (X) is geometric

then so is Ddg
pf (Y ).

Proof. Lemma 4.4 shows that Lf∗ : Dpf(Y ) → Dpf(X) is full and faithful. Exam-

ple 5.12 and Remark 5.10 provide the dg functor f∗ : Ddg
pf (Y ) → Ddg

pf (X) lifting Lf∗

to dg enhancements. It defines a quasi-equivalence from Ddg
pf (Y ) to E where (E , ε)

is the induced dg enhancement of the essential image of Lf∗ : Dpf(Y ) → Dpf(X)
(cf. [LS13, Lemma 2.5]). By assumption, this essential image is a right admissible

subcategory. Therefore, if Ddg
pf (X) is geometric, so are E and Ddg

pf (Y ); either use
Corollary 5.21, or the easier Lemma 5.19 together with the fact that the essential
image of Lf∗ is left admissible, by Lemma 4.3. �

Proposition 6.3. Let X be a smooth projective scheme over a field k. Assume
that E is an snc divisor on X and that r > 0 is a multi-index (with respect to the

indexing set of E). Then the k-linear dg category Ddg
pf (Xr−1E) associated to the root

stack Xr−1E is geometric.

Proof. The root stack Xr−1E is tame (Proposition 3.3.(e)) and proper (Propo-
sition 3.3.(b)) over k. This implies that the cohomology of coherent sheaves is
bounded ([HR15, Theorem 2.1]) and coherent ([Fal03, Theorem 1]). Therefore, the

dg category Ddg
pf (Xr−1E) is locally perfect.

Recall the semiorthogonal decomposition for iterated root constructions from
Theorem 4.9 and observe that the functors (4.8) involved in this decomposition lift
to dg functors

(6.1) OX
r−1E

(ar−1E)⊗(ιa)∗(ρa)
∗(−) : Ddg

pf (E(Ia)) → Ddg
pf (Xr−1E)

between dg enhancements, by Example 5.12, Lemma 4.1 and Remark 5.10. Since
all intersections E(Ia) are smooth, projective schemes over k, all dg categories

Ddg
pf (E(Ia)) are geometric. The claim now follows from Orlov’s glueing Theo-

rem 5.22. �

We are now ready to prove our first result on geometricity for dg enhancements
of algebraic stacks.

Theorem 6.4. Let X be a tame, smooth, projective algebraic stack over an arbi-

trary field k. Then the k-linear dg category Ddg
pf (X) is geometric, and in particular

saturated.
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Proof. Since X is a global quotient stack, there is a projectivized vector bundle
P → X such that P contains an open dense substack which is an algebraic space
(cf. [KV04, Proof of Theorem 1]). Explicitly, we can construct such a bundle as
follows. Let T → X be a GLn-torsor where T is an algebraic space. Consider
the corresponding vector bundle E of rank n on X . Then we have dense open
immersions T →֒ V →֒ P , where V = V(EndOX

(E)) and P = P(EndOX
(E) ⊕OX).

The stack P is tame since P → X is representable. Since also T is representable,
it follows that P is an orbifold.

Now we apply Theorem 6.1 and get a proper birational morphism Y → P which
is a composition of smooth stacky blowups such that Y and Ycs are smooth and the
canonical map Y → Ycs is an iterated root construction in an snc divisor E on Ycs.

Note that Y is a projective algebraic stack. Indeed, the map Y → P is a
composition of root stacks and blowups and P → X is projective, so this follows
from Lemma 3.4 and Lemma 2.8. In particular, Ycs is a smooth projective scheme.

Hence Proposition 6.3 shows that Ddg
pf (Y ) is geometric.

Denote the composition Y → P → X by π. Since π is a composition of root
stacks, blow-ups and the structure morphism of a projective bundle, the canonical
morphism OX → Rπ∗OY is an isomorphism, and Rπ∗ preserves perfect complexes
by part (a), (c), (e) of Example 4.6. In particular, the morphism π satisfies the

assumptions of Proposition 6.2. Therefore Ddg
pf (X) is geometric since the same holds

for Ddg
pf (Y ). �

If we work over a field k which admits resolution of singularities, we have the
following version of Chow’s Lemma.

Proposition 6.5 (Chow’s Lemma). Let X be a separated Deligne–Mumford stack
which is smooth and of finite type over a field k of characteristic zero. Then there
exists a morphism π : Y → X which is a composition of (non-stacky) blowups in
smooth centers such that Y is a quasi-projective algebraic stack.

Proof. By [Cho12, Theorem 4.3], which is attributed to Rydh, we can find a se-
quence of (non-stacky) blowups Y → · · · → X in smooth centers such that Ycs is
quasi-projective. By [Kre09, 4.4] any smooth Deligne–Mumford stack of finite type
over a field is automatically a global quotient if its coarse space is quasi-projective.
In particular, the stack Y is quasi-projective. �

In particular, over a field of characteristic zero, we can replace the projectivity
assumption from Theorem 6.4 by a properness assumption.

Theorem 6.6. Let X be a smooth, proper Deligne–Mumford stack over a field k

of characteristc zero. Then the k-linear dg category Ddg
pf (X) is geometric, and in

particular saturated.

Proof. By Proposition 6.5, there is a composition π : Y → X of blow-ups in smooth

centers such that Y is a projective algebraic stack. Hence Ddg
pf (Y ) is geometric

by Theorem 6.4. By arguing as in the final paragraph of the proof of the same

theorem, we see that also Ddg
pf (X) is geometric. �
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Appendix A. Bounded derived category of coherent modules

Our aim is to show that the bounded derived category of coherent modules on a
regular, quasi-compact, separated algebraic stack with finite stabilizers is equivalent
to the derived category of perfect complexes (see Remark A.3).

The category of coherent OX -modules on a locally noetherian algebraic stack X
is denoted by Coh(X). We use the usual decorations for full subcategories of derived
categories. For example, the symbol D−

Coh(Qcoh(X)) denotes the full subcategory
of the derived category D(Qcoh(X)) of quasi-coherent modules whose objects have
bounded above coherent cohomology modules.

The following proposition generalizes a well-known result for noetherian schemes
[SGA6, Exposé II, Proposition 2.2.2], [Huy06, Proposition 3.5] to noetherian alge-
braic stacks.

Proposition A.1. Let X be an noetherian algebraic stack. Then the obvious func-
tor defines an equivalence

D−(Coh(X))
∼
−→ D−

Coh(Qcoh(X)).

Proof. It is certainly enough to show that each bounded above complex of quasi-
coherent modules with coherent cohomology modules has a quasi-isomorphic sub-
complex of coherent modules. This is an easy consequence of the proof of [Huy06,
Proposition 3.5] as soon as we know the following fact: given any epimorphism
G → F from a quasi-coherent module G to a coherent module F , there is a co-
herent submodule G′ of G such that the composition G′ ⊂ G → F is still an
epimorphism. This latter statement follows from the fact that every quasi-coherent
module is the filtered colimit of its coherent submodules [LMB00, Proposition 15.4]
and [SGA6, Exposé II, Lemma 2.1.1.a)]. �

Proposition A.2. Let X be a regular and quasi-compact algebraic stack. Then we
have an equality Dpf(X) = Db

Coh(X).

Proof. Since X is quasi-compact we have Dpf(X) ⊂ Db
Coh(X). In order to show

equality it is enough to prove that any coherent module is perfect. Let SpecA→ X
be any smooth morphism where A is a ring. Then A is regular. It is enough to
prove that any finitely generated A-module M has a finite resolution by finitely
generated projective A-modules. Let P → M be a resolution by finitely gener-
ated projective A-modules. Let p ∈ SpecA. Since Ap is regular, it has finite
global dimension by the Auslander–Buchsbaum–Serre theorem. Therefore, there is
a natural number n = n(p) such that the kernel of the differential d−n : (P−n)p →
(P−n+1)p is a finitely generated projective Ap-module. Since A is noetherian,
there is some open neighborhood SpecAf of p in SpecA such that the kernel of
d−n : (P−n)f → (P−n+1)f is a finitely generated projective Af -module. Then also
all kernels d−i : (P−i)f → (P−i+1)f , for i ≥ n, are finitely generated projective
Af -modules. Since SpecA is quasi-compact there is a natural number N such that
the kernel of d−N : P−N → P−N+1 is a finitely generated projective A-module. �

Remark A.3. If X is a noetherian, separated algebraic stack with finite stabilizers
we have equivalences

D−(Coh(X))
∼
−→ D−

Coh(Qcoh(X))
∼
−→ D−

Coh(X).
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This follows immediately from Proposition A.1 and the equivalence D(Qcoh(X))
∼
−→

Dqc(X) from (2.2). If we assume in addition that X is regular then Proposition A.2
together with the above equivalences shows that

Db(Coh(X))
∼
−→ Db

Coh(X) = Dpf(X)

is an equivalence.
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de Riemann-Roch. Lecture Notes in Mathematics, Vol. 225. Springer-Verlag, Berlin,
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[Toë11] Bertrand Toën. Lectures on DG-categories. In Topics in algebraic and topological K-

theory, volume 2008 of Lecture Notes in Math., pages 243–302. Springer, Berlin, 2011.

http://arxiv.org/abs/1212.2670
http://arxiv.org/abs/1310.7640
http://arxiv.org/abs/1406.7559
http://arxiv.org/abs/1402.7364
http://mathoverflow.net/q/206117
http://arxiv.org/abs/1507.08697
http://stacks.math.columbia.edu
http://arxiv.org/abs/1108.3787


GEOMETRICITY FOR DERIVED CATEGORIES OF ALGEBRAIC STACKS 31
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