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Abstract. In this paper, we introduce the notion of a quantum Jacobi form, and offer the two-
variable combinatorial generating function for ranks of strongly unimodal sequences as an example.
We then use its quantum Jacobi properties to establish a new, simpler expression for this function
as a two-variable Laurent polynomial when evaluated at pairs of rational numbers. Our results
also yield a new expression for radial limits associated to the partition rank and crank functions
previously studied by Ono, Rhoades, and the second author.

1. Introductions and statement of results

A sequence of integers {aj}sj=1(s ∈ N) is called a strongly unimodal sequence of size n if there
exists a positive integer k such that

0 < a1 < a2 < ... < ak > ak+1 > ... > as > 0

and a1 + · · ·+ as = n. The rank of a strongly unimodal sequence is equal to s− 2k+ 1, the number
of terms after the maximal term minus the number of terms that precede it. Let u(m,n) denote
the number of such size n and rank m sequences. The two-variable generating function U(w; q) for
ranks of strongly unimodal sequences can be expressed as a q-hypergeometric series as follows

U(w; q) :=
∞∑
n=1

∞∑
m=−∞

u(m,n)(−w)mqn =
∞∑
n=0

(wq; q)n(w−1q; q)nq
n+1, (1.1)

where for n ∈ N0 ∪ {∞}, the q-Pochhammer symbol is defined by (w; q)n :=
∏n−1
j=0 (1− wqj).

Various specializations in the variable w of this function have been of interest. Namely, if w = 1,
U(1; q) is related to a function originally studied by Kontsevich, later by Zagier, and also in [4],
which we recall in Section 2. In [4], U(1; q) is also written as a Hecke-type sum, which yields
congruences for its coefficients. Hecke-type sums for the general function U(w; q) may be found in
[9]. In the special case w = ±i, U(±i; q) is the 3rd order mock theta function of Ramanujan

U(±i; q) = Ψ(q) :=
∞∑
n=1

qn
2

(q; q2)n
.

Specializing to w = −1 gives

U(q) := U(−1; q) =:

∞∑
n=0

u(n)qn,
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the generating function for u(n), the number of strongly unimodal sequences of n. Rhoades [11]
showed that U(q) is a mixed mock modular form (i.e., a linear combination of modular and mock
modular forms) and studied the asymptotic behavior of u(n), as n → ∞. In general, U(w; q)
also nicely fits into a modular framework. To give the precise statement, let a ∈ Z and b ∈ N
with gcd(a, b) = 1, and set ζN := e2πi/N . Fix w = ζab to be a root of unity, and consider the
function φa/b(x) := U(ζab ; e2πix). It is now known [4, 5] that the functions φa/b are essentially (up
to multiplication by q-powers) quantum modular forms. Quantum modular forms (see Section 2.2),
recently defined by Zagier, are complex valued functions whose domains are subsets of Q, and which
satisfy modular transformation properties there, up to the addition of an error term which extends
to a suitably analytic or continuous function in R.

As a two-variable function on C×H, the function

Y +(z; τ) := −2i sin(πz)q−
1
24U(z; τ),

where U(w1;w2) := U(e(w1); e(w2)), and e(α) := e2πiα, satisfies mock Jacobi transformation prop-
erties (see [1, Proposition 3.2], and Theorem 2.1 below). We warn the reader that sometimes the
symbol Y + is also used to denote the (Jacobi) raising operator. In this paper, we adopt the nota-
tion from [1] in defining the function Y + above. Given the quantum modularity of the one-variable
specializations φa/b, it is a natural question to investigate the Jacobi transformation properties of
the two-variable function Y + on a subset of Q2. It is also natural to seek explicit evaluations of the
function Y +. In this paper, we address both of these questions. To describe our results, we consider
the following subset Q2 of Q2

Q2 :=

{(
a

b
,
h

k

)
∈ Q2 : b, k ∈ N, gcd(a, b) = gcd(h, k) = 1, b | k

}
.

We also define the “error of modularity”

H(z; τ) :=
i

2

ϑ(z; τ)

η(τ)
h(2z; τ)− g(z; τ), (1.2)

where η and ϑ are the modular and Jacobi forms, respectively, defined in (2.1), and the Mordell
integrals h and g are given in (2.2). Our first result establishes the mock Jacobi and transformation
properties of the two-variable combinatorial generating function Y +.

Theorem 1.1. The following transformation properties hold.

(i) For (z, τ) ∈ (C×H) ∪Q2, we have that

Y +(z; τ)− e
πi
12Y +(z; τ + 1) = 0, (1.3)

Y +(z; τ) + ie
3πiz2

τ (−iτ)−
1
2Y +

(
z

τ
;−1

τ

)
= −H(z; τ), (1.4)

Y +(z; τ) + Y +(z + 1; τ) = 0, (1.5)

Y +(z; τ) + e−6πiz−3πiτY +(z + τ ; τ)

= e−5πiz−
25πiτ
12
(
1− e4πiz+2πiτ

)
− iϑ(z; τ)

η(τ)

(
e−2πiz−

πiτ
4 − e−6πiz−

9πiτ
4

)
. (1.6)

(ii) In particular, for (z, τ) ∈ Q2, we have that

Y +(z; τ) + ie
3πiz2

τ (−iτ)−
1
2Y +

(
z

τ
;−1

τ

)
= g(z; τ), (1.7)

Y +(z; τ) + e−6πiz−3πiτY +(z + τ ; τ) = e−5πiz−
25πiτ
12
(
1− e4πiz+2πiτ

)
. (1.8)

2



The function g on the right-hand side of (1.7) extends to a C∞ function on (R \ (±1/6 +Z))×R×,
and the function on the right-hand-side of (1.8) extends to a C∞ function on R2.

Remarks.
(i) Theorem 1.1 shows that the function Y + is a quantum Jacobi form of weight 1/2 and index
−3/2, a notion made more precise in Section 3.1. A direct calculation yields that Q2 is invariant
under the action of the Jacobi group, so it is a natural “quantum Jacobi set.”
(ii) The transformation in (1.4) was established previously by Rhoades and the authors [6] (see
Section 2.1). For completeness, we have re-stated this result in Theorem 1.1.

It is not difficult to see, using its definition, that Y + can be evaluated as a finite q-hypergeometric
sum at (z, τ) ∈ Q2 by truncating the infinite q-hypergeometric series in (1.1). Our next result
provides a new, simpler expression for the strongly unimodal sequence rank generating functions
Y + as a two-variable Laurent polynomial, when evaluated at pairs of rationals in Q2. As we see
below, the proof of Theorem 1.2 relies upon the quantum-Jacobi transformation properties on Q2

established in Theorem 1.1 (ii).

Theorem 1.2. Let τ = h/k and z = a/b be such that (z, τ) ∈ Q2. Then we have that

Y + (z; τ) = −1

2
ζ−5a2b ζ−25h24k

k−1∑
j=0

(−1)j+1ζ−5hj2k

(
1− ζ2ab ζ

h(2j+1)
k

)
ζ−3jab ζ−3j

2h
2k .

As a corollary to Theorem 1.2, we obtain a new expression for radial limits involving the mock Jacobi
partition rank function R(w; q) and the (meromorphic) Jacobi partition crank function C(w; q) (see
Section 3.2 for their definitions), as originally studied by Ono, Rhoades, and the second author [6].
Namely if w = ζab , as q tends to another suitable root of unity ζhk radially from within the unit disk,
we have that

lim
q→ζhk

(
R (ζab ; q)− ζ−a2h′k

b2
C (ζab ; q)

)
= − (1− ζab )

(
1− ζ−ab

)
U
(
ζab ; ζhk

)
. (1.9)

Here, h′ is defined by hh′ ≡ −1 (mod k). This result of [6] in (1.9) generalizes and refines a more
specific claim which pertains to the special case ζab = −1, originally due to Ramanujan, and later
proved by Watson [12]. From (1.9) and Theorem 1.2, we immediately obtain the following new
evaluation of the radial limits (1.9).

Corollary 1.3. Let 1 ≤ a < b, 1 ≤ h < k with gcd(a, b) = gcd(h, k) = 1, b|k and h′ ∈ Z with
hh′ ≡ −1 (mod k). Then, as q → ζhk radially within the unit disc, we have that

lim
q→ζhk

(
R (ζab ; q)− ζ−a2h′k

b2
C (ζab ; q)

)
=

1

2

(
1− ζ−ab

)
ζ−2ab ζ−hk

k−1∑
j=0

(−1)j+1ζ−5hj2k

(
1− ζ2ab ζ

h(2j+1)
k

)
ζ−3jab ζ−3j

2h
2k .

Alternative evaluations for U(w; q) (and hence Y +(z; τ)) were also found in [5] for pairs of roots
of unity (w, q) = (ζab , ζ

h
k ) with b|k, and also in [7] in the special case (w, q) = (−1, ζhk ) with k even.

In the latter special case (w = −1), an alternative proof of results from [6, 7] may also be found
in [16]. The methods of proof given in [5, 7, 16] are different than those used here to establish
Theorem 1.2. Moreover, the evaluations obtained in [5, 7] are q-hypergeometric in nature, again
different from our polynomial evaluations.

The remainder of the paper is organized as follows: in Section 2 we review various properties of
U(w; q), in Section 3 we recall properties of partition ranks and cranks and prove Theorem 1.1, and
in Section 4 we establish Theorem 1.2.
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2. Properties of the unimodal rank generating function

2.1. Modular transformations. In this section, we recall the modular Jacobi transformation
properties of the normalized unimodal rank generating function Y + on C×H. To describe this, we
require the function H from (1.2), which is defined in terms of the modular and Jacobi forms (with
q := e2πiτ )

η(τ) := q
1
24

∞∏
n=1

(1− qn), ϑ(z; τ) :=
∑

n∈ 1
2
+Z

e2πin(z+
1
2)q

n2

2 , (2.1)

and the Mordell integrals

h(z; τ) :=

∫
R

eπiτt
2−2πzt

cosh(πt)
dt, g(z; τ) :=

i√
3

∫
R
e
πiτt2

3
−2πzt sinh

(
2πt
3

)
cosh(πt)

dt. (2.2)

Note that η is a weight 1/2 modular form (with multiplier) on SL2(Z) wheras ϑ is a weight 1/2,
index 1/2 Jacobi form. In particular, ϑ satisfies the following elliptic transformation law (where we
have let w := e2πiz), which we make use of below:

ϑ(z + τ ; τ) = −q−
1
2w−1ϑ(z; τ). (2.3)

In terms of the function H in (1.2), we have the following Jacobi modular transformation properties;
the transformation in (2.4) follows easily using the definition of Y +, and the transformation in (2.5)
was established in [1, Proposition 3.2].

Theorem 2.1. For (z, τ) ∈ C×H, we have that

Y +(z; τ)− e
πi
12Y +(z; τ + 1) = 0, (2.4)

Y +(z; τ) + ie
3πiz2

τ (−iτ)−
1
2Y +

(
z

τ
;−1

τ

)
= −H(z; τ). (2.5)

2.2. Quantum transformations. Quantum modular forms were originally introduced by Zagier
[15] as follows.

Definition. A weight k ∈ 1
2Z quantum modular form is a complex-valued function f on Q, such

that for all γ =
(
a b
c d

)
∈ SL2(Z), the functions hγ : Q \ γ−1(i∞)→ C defined by

hγ(x) := f(x)− ε(γ)(cx+ d)−kf

(
ax+ b

cx+ d

)
(2.6)

satisfy a “suitable” property of continuity or analyticity in (a subset of) R.

Remark. We have modified Zagier’s original definition in [15] to allow multipliers ε(γ) in (2.6), i.e.,
suitable complex numbers such as those appearing in the theory of half-integral weight modular
forms if k ∈ 1

2Z \ Z. We may also allow quantum modular forms to transform on subgroups of
SL2(Z), and on appropriate subsets of Q.

A particular quantum modular form is given by a special value of the unimodal rank generating
function. Namely, Bryson, Ono, Pitman, and Rhodes [4] studied

U(1; q) =

∞∑
n=1

∞∑
m=−∞

(−1)mu(m,n)qn =
∞∑
n=1

(ue(n)− uo(n)) qn,
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where ue(n) (resp. uo(n)) denotes the number of unimodal sequences of size n with even (resp.
odd) rank. They showed that for every root of unity ζ,

U(1; ζ) = F
(
ζ−1
)
, (2.7)

where Kontsevich’s “strange” function is defined by

F (q) :=
∞∑
n=0

(q; q)n.

Prior to this, Zagier [13] proved that F satisfies the “identity”

F (q) = −1

2

∞∑
n=1

n

(
12

n

)
q
n2−1
24 , (2.8)

where
( ·
·
)
is the Kronecker symbol. Neither side of (2.8) makes sense simultaneously. Indeed, the

right-hand side of (2.8) converges in the unit disk |q| < 1, but nowhere on the unit circle. The
identity (2.8) means that at roots of unity ζ, F (ζ) (which is a finite sum) agrees with the limit as q
approaches ζ radially within the unit disk of the function on the right-hand side of (2.8). Moreover,
Zagier proved that for x ∈ Q×

φ(x) + (−ix)−
3
2φ

(
−1

x

)
=

√
3i

2π

∫ i∞

0

η(ρ)

(ρ+ x)
3
2

dρ, (2.9)

where φ(x) := e−
πix
12 F (e−2πix). Note that the constant

√
3i/2π in (2.9) is obtained explicitly in [4].

There, the authors also gave a new proof of (2.9), using the fact that U(1; q) is a (weak) mixed
mock modular form for |q| < 1.

By [8, 9], equation (2.7) can also be interpreted in terms of quantum topology. In particular,
based on the colored Jones polynomial for certain torus knots at roots of unity, the authors in
[8, 9] introduced infinite families of quantum modular forms, including F (q) and U(1; q). In [5], the
authors also generalized this picture to roots of unity other than w = 1. That is, they defined a
generalization F (w; q) of Kontsevich’s function, with the property that F (1; q) = F (q), and showed
that U(ζab ; ζ) = F (ζab ; ζ−1), where ζab is any admissible root of unity (depending on ζ), generalizing
(2.7). The authors also produced quantum modular forms of weight 1/2 from F (w; q), extending
(2.9).

3. Proof of theorem 1.1 and quantum Jacobi forms

3.1. Quantum Jacobi forms. We start by introducing the notion of quantum Jacobi forms.

Definition. A weight k ∈ 1
2Z and index m ∈ 1

2Z quantum Jacobi form is a complex valued function
on Q×Q such that for all γ =

(
a b
c d

)
∈ SL2(Z) and (λ, µ) ∈ Z2 the functions

hγ (z; τ) := φ (z; τ)− ε1(γ) (cτ + d)−k e−
2πimcz2

cτ+d φ

(
z

cτ + d
;
aτ + b

cτ + d

)
,

g(λ,µ)(z; τ) := φ(z; τ)− ε2 ((λ, µ)) e2πim(λ2τ+2λz)φ (z + λτ + µ; τ)

satisfy a “suitable” property of continuity or analyticity in (a subset of) R2.

Remark. The ε1, ε2 are appropriate complex numbers, such as those appearing in the theory of half-
integral weight modular (Jacobi) forms. We may also allow quantum Jacobi forms to transform on
subgroups of SL2(Z), and on appropriate subsets of Q × Q, which are in particular required to be
closed under the action of the Jacobi group.

This definition is analogous to the definition of a quantum modular form in [15], just as the definition
of a (holomorphic) Jacobi form is analogous to the definition of a (holomorphic) modular form.
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3.2. Partition ranks and cranks. In this section, we review the definitions of and basic properties
of partition ranks and cranks. Both appear in (1.9) and Corollary 1.3, and ranks are used in our
proof of Theorem 1.1 in Section 3.3.

The rank of an integer partition is defined to be its largest part minus the number of its parts.
Partition cranks are given in terms of o(λ), the number of ones in a partition λ, and µ(λ), the
number of parts strictly larger than o(λ). That is, the crank of a partition λ is

crank(λ) :=

{
largest part of λ if o(λ) = 0,

µ(λ)− o(λ) if o(λ) > 0.

LetN(m,n) := p(n | rank m), andM(m,n) := p(n | crank m), where p(n) := #{partitions of n}.
The well-known two-variable generating functions for partition ranks and cranks are

R(w; q) :=
∑
m∈Z
n≥0

N(m,n)wmqn =
∞∑
n=0

qn
2

(wq; q)n(w−1q; q)n
,

C(w; q) :=
∑
m∈Z
n≥0

M(m,n)wmqn =
∞∏
n=1

1− qn

(1− wqn)(1− w−1qn)
,

the first of which is a mock Jacobi form [2, 10, 14], and the second of which is a meromorphic Jacobi
form, using (3.1) below.

3.3. Proof of Theorem 1.1. In this section, we prove Theorem 1.1. We first point out that the
transformation given in (1.5) follows easily from the definition of the function Y +. Moreover, the
Jacobi modular transformations (1.3) and (1.4) are given in Theorem 2.1. Thus, we are left to
establish (1.6), (1.7), and (1.8), and the analytic properties claimed in Theorem 1.1.

For ease of notation, in this section we let w := e(z) and recall q = e(τ). From (1.4), the
transformation in (1.7) follows, noting that by the Jacobi triple product identity

ϑ(z; τ)

η(τ)
= −iq

1
12w−

1
2

∞∏
n=1

(
1− wqn−1

) (
1− w−1qn

)
, (3.1)

so that if (z, τ) ∈ Q2, then the second summand on the right-hand side of (1.4) vanishes.
To prove the elliptic transformations given in (1.6) and (1.8), we first decompose U similarly as

in the proof of [1, Lemma 3.1]. This gives that

Y +(z; τ) = w
1
2 q−

1
24R∗(w; q) +

ϑ(z; τ)

η(τ)
µ(z,−z; τ), where (3.2)

R∗(w; q) :=
R(w; q)

1− w
, µ(z1, z2; τ) :=

eπiz1

ϑ(z2; τ)

∑
n∈Z

(−1)ne2πinz1q
n(n+1)

2

1− e2πiz2qn
.

By [3, (3.1)], we obtain

w
1
2 q−

1
24R∗(w; q) = iw−1q−

1
6µ(3z,−τ ; 3τ)− iwq−

1
6µ(3z, τ ; 3τ)− i η3(3τ)

η(τ)ϑ(3z; 3τ)
. (3.3)

We point out that due to work of Zwegers [17], the µ-function is essentially a mock Jacobi form,
upon suitable choices of parameters. In particular, we have the following elliptic transformation law
from [17, Proposition 1.3 (2)]:

µ(z1, z2; τ) + e−2πi(z1−z2)−πiτµ(z1 + τ, z2; τ) = −ie−πi(z1−z2)−
πiτ
4 . (3.4)
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Thus
iw−1q−

7
6µ(3z + 3τ,−τ ; 3τ) = −iw2q

4
3

(
µ(3z,−τ ; 3τ) + iw−

3
2 q−

7
8

)
.

Similarly

−iwq
5
6µ(3z + 3τ, τ ; 3τ) = iw4q

4
3

(
µ(3z, τ ; 3τ) + iw−

3
2 q

1
8

)
.

Thus (using (2.3) for the final term in (3.3)), we obtain

w
1
2 q−

1
24R∗(w; q) + w−3q−

3
2 (wq)

1
2 q−

1
24R∗(wq; q) = w−

5
2 q−

25
24 − w−

1
2 q−

1
24 .

We next turn to the second summand in (3.2), using that µ (z1 + τ, z2 + τ ; τ) = µ (z1, z2; τ) [17,
Proposition 1.4 (4)], again (2.3), and twice (3.4), we obtain

ϑ(z + τ ; τ)µ(z + τ,−z − τ ; τ) = −w3q
3
2ϑ(z; τ)

(
µ(z,−z; τ) + iw−1q−

1
8 − iw−3q−

9
8

)
.

Combining gives (1.6). The transformation (1.8) follows by again using (3.1).
It remains to show that the functions on the right-hand-sides of (1.7) and (1.8) are C∞ on

(R \ (±1/6 + Z)) × R× and R2, respectively. The result pertaining to (1.8) is clear. To show the
claim for g from (1.7), we re-write g as

g(z; τ) =
1

2i
√

3

∑
±
±h
(
z ± 1

3
;
τ

3

)
,

which was established in the proof of [1, Proposition 3.2]. We next restrict the domain in the
variable z by using that for r ∈ Z, we have that

h(z) + (−1)r+1h(z + r) =
2√
−iτ

|r|−1∑
j=0

(−1)je
πi
τ (z+sgn(r)(j+ 1

2))
2

, (3.5)

which is not hard to see by induction, using [17, Proposition 1.2 (1)] for r = 1. Note that the
right-hand side of (3.5) is analytic in R × R×. Because we exclude ±1/6 + Z in the statement of
the theorem, and the function z 7→ h(z; τ) is even, it suffices to study it in [0, 1/2)× R×. For this,
we apply [17, Theorem 1.16 (2)] with a = 0 and b = −z, to re-write

−h (z; τ) =

∫ i∞

0

g 1
2
,−z+ 1

2
(ρ)√

−i (ρ+ τ)
dρ, where gα,β(τ) :=

∑
n∈α+Z

neπin
2τ+2πinβ. (3.6)

We make the change of variables ρ = it and then split the integral in (3.6) into a sum of two
integrals, one over the interval (0, 1) and one over (1,∞). In the first interval, we make the change
of variables t 7→ 1/t and use the modular inversion property from [17, Proposition 1.15 (5)]

g 1
2
,−z+ 1

2

(
−1

τ

)
= ieπi(−z+

1
2)(−iτ)

3
2 g−z+ 1

2
,− 1

2
(τ),

which yields

ih (z; τ) =
ieπi(−z+

1
2)

√
−iτ

∫ ∞
1

g−z+ 1
2
,− 1

2
(it)√

t+ i
τ

dt+

∫ ∞
1

g 1
2
,−z+ 1

2
(it)

√
t− iτ

dt.

Since we exclude τ = 0, we thus have to show that

F (z, τ) :=

∫ ∞
1

gz1,z2(it)√
t− iτ

dt
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with (z1, z2) ∈ {(1/2,−z + 1/2), (−z + 1/2,−1/2)} is C∞ in [0, 1/2] × R×. For this, we establish
the following bounds (` ∈ N, v := Im(τ)) using that the n = 0 terms are the dominant terms

|gz1,z2(τ)| � |z1|e−πz
2
1v,

∂

∂z`
g 1

2
,−z+ 1

2
(τ) = (−2πi)`

∑
n∈Z

(
n+

1

2

)`+1

eπi(n+
1
2)

2
τ+2πi(n+ 1

2)(−z+ 1
2) � e−π(n+

1
2)

2
v,

∂

∂z`
g−z+ 1

2
,− 1

2
(τ) =

`+1∑
j=0

Pj(τ)
∑
n∈Z

(
n− z +

1

2

)j
eπi(n−z+

1
2)

2
τ−πi(n−z+ 1

2) �z |τ |`e−π(z−
1
2)

2
v,

where the Pj are polynomials of degree at most `. This easily yields uniform bounds in τ and z,
and we may apply the Leibnitz rule for indefinite integrals to prove the claim.

4. Proof of Theorem 1.2

We are now ready to prove Theorem 1.2. As in Section 3, we let w = e(z) and q = e(τ).

Proof of Theorem 1.2. Suppose a function f(z; τ) transforms in the elliptic variable as

f(z + τ ; τ) = −w3q
3
2 f(z; τ) + w3q

3
2 r(z; τ) (4.1)

for some function r(z; τ). By induction on m ∈ N0, it is not difficult to show that for all m ∈ N0

f(z +mτ ; τ) =(−1)mw3mq
3
2
m2
f(z; τ) + Gm,r(z; τ), where (4.2)

Gm,r(z; τ) :=(−1)m+1
m−1∑
j=0

(−1)jr(z + jτ ; τ)w3(m−j)q
3
2(m2−j2).

By (1.8), the function Y +(z; τ) transforms for (z, τ) ∈ (a/b, h/k) ∈ Q2 as in (4.1) with

r(z; τ) := w−
5
2 q−

25
24
(
1− w2q

)
.

Thus, from (4.2) with m = k, we have[
Y + (z + h; τ)

]
(z,τ)=(ab ,

h
k ) =

[
(−1)kw3kq

3
2
k2Y +(z; τ) + Gk,r(z; τ)

]
(z,τ)=(ab ,

h
k )
.

On the other hand, using (1.5), we have for any h ∈ Z

Y +(z + h; τ) = (−1)hY +(z; τ).

We obtain [(
(−1)h − (−1)kw3kq

3
2
k2
)
Y +(z; τ)

]
(z,τ)=(ab ,

h
k )

= [Gk,r(z; τ)](z,τ)=(ab ,
h
k ) . (4.3)

The factor in front of Y + in (4.3) evaluates as 2(−1)h, using the fact that if h is even, then k must
be odd. This proves the theorem. �
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