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ON A GENERALIZATION OF BEITER CONJECTURE

BART LOMIEJ BZDȨGA

Abstract. We prove that for every ε > 0 and a nonnegative integer
ω there exist primes p1, p2, . . . , pω such that for n = p1p2 . . . pω the
height of the cyclotomic polynomial Φn is at least (1 − ε)cωMn, where

Mn =
∏

ω−2

i=1
p2

ω−1−i
−1

i
and cω is a constant depending only on ω; fur-

thermore limω→∞ c2
−ω

ω ≈ 0.71. In our construction we can have pi >

h(p1p2 . . . pi−1) for all i = 1, 2, . . . , ω and any function h : R+ → R+.

1. Introduction

Let Φn be the nth cyclotomic polynomial, i.e. the unique monic poly-
nomial irreducible over integers, which roots are all primitive nth roots of
unity. We assume that n = p1p2 . . . pω and 2 < p1 < p2 < . . . < pω are
primes, since Φ2n(x) = Φn(−x) for odd n and Φnp(x) = Φn(x

p) for a prime
p dividing n. We call the number ω = ω(n) the order of Φn.

Let An denotes the maximal absolute value of a coefficient of Φn. We say
shortly that An is the height of Φn. In case of ω ∈ {0, 1, 2} determining of
An is easy and we have A1 = Ap1 = Ap1p2 = 1. For ω = 3 it is known that
Ap1p2p3 ≤ 3

4p1 [1]. The Corrected Beiter Conjecture states that Ap1p2p3 ≤
2
3p1 (see [4] and references given there for details). The constant 2

3 is best
possible if the conjecture is true.

For cyclotomic polynomials of any order we put

Mn =

ω−2
∏

i=1

p2ω−1−i−1
i ,

where the empty product, which happens if ω ≤ 2, equals 1. P.T. Bateman,
C. Pomerance and R.C. Vaughan proved in [2] that An ≤ Mn. In [3] the

author proved that An ≤ CωMn, where C2−ω

ω converges to approximately
0.95 with ω → ∞. However, so far we have known no good general class of
Φn for which An is close to CωMn.

It has not been even known if Mn gives the optimal order for the upper
bound on An. For example we have Ap1...p5 ≤ C5p

7
1p

3
2p3, but we did not

know whether Ap1...p5 ≤ C ′
5p

8
1p

2
2p3 for some other constant C ′

5. All known
constructions of Φn with large height required that most prime factors of n
are of almost the same size.
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One of the main purposes of this paper is to show that Mn is optimal, i.e.
in the upper bound on An it cannot be replaced by any smaller product of
the form pα1

1 pα2

2 . . . pαω

ω in a sense which we describe below.
For a fixed ω we define the following strict lexicographical order on R

ω:

(α1, α2, . . . , αω) ≺ (β1, β2, . . . , βω)

⇐⇒ αω = βω, αω−1 = βω−1, . . . , αk+1 = βk+1 and αk < βk for some k ≤ ω.

For α = (α1, α2, . . . , αω) and n = p1p2 . . . pω we putM
(α)
n = pα1

1 pα2

2 . . . pαω

ω .
Note that if α ≺ β and pi is large enough compared to p1p2 . . . pi−1 for all

i ≤ ω, then M
(α)
n < M

(β)
n .

Therefore, we say that M
(α)
n is the optimal bound on An for a fixed ω if

there exists a constant bω such that An ≤ bωM
(α)
n for all n with ω(n) = ω

and α is smallest possible in sense of the order ≺.
It requires an explanation what it means that pi is large enough compared

to p1p2 . . . pi−1 for all i ≤ ω. Let h : R+ → R+ be any function, preferably
growing fast. We say that a sequence of primes p1, p2, . . . , pω is h-growing
if pi ≥ h(p1p2 . . . pi−1) for i = 1, 2, . . . , ω (empty product equals 1). With a
small abuse of notation we will also write that the number n = p1p2 . . . pω
is h-growing.

The following theorem is the main result of this paper.

Theorem 1. For every ω ≥ 3, ε > 0 and h : R+ → R+ there exists an

h-growing n = p1p2 . . . pω such that An > (1− ε)cωMn, where

Mn =
ω−2
∏

i=1

p2ω−1−i−1
i and cω =

1

ω
·
(

2

π

)3·2ω−3

·
(

ω−1
∏

k=3

k2ω−1−k

)−1

.

By this theorem and the already mentioned result from [3], Mn is the
optimal bound on An. Furthermore

lim
ω→∞

c2−ω

ω =

(

2

π

)3/8

·
∞
∏

k=3

k−2−k−1 ≈ 0.71.

Let us define the ωth Beiter constant in the following natural way:

Bω = lim sup
ω(n)=ω

(An/Mn).

For example we know that B0 = B1 = B2 = 1 and 2
3 ≤ B3 ≤ 3

4 . If Corrected

Beiter Conjecture is true, then B3 = 2
3 .

For all ω we have

c+ o(1) < B2−ω

ω < C + o(1), ω → ∞
with c ≈ 0.71 and C ≈ 0.95. It would be interesting to know the asymptotics
of Bω. For example, we expect that the following natural conjecture is true.

Conjecture 2. There exists a limit limω→∞B2−ω

ω .
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2. Preliminaries and binary case

Let us define the value

Ln = max
|z|=1

|Φn(z)|.

It was already considered by several authors [2, 5, 6] while estimating An.
If Sn denotes the sum of absolute values of the coefficients of Φn, then for
n > 1

An ≥ Sn

degΦn + 1
≥ Ln

n
.

We express |Φn(z)| as a real function of x = arg(z) for |z| = 1. For all
n ≥ 1 let

Fn(x) =
∏

d|n

(

sin
d

2
x

)µ(n/d)

,

where we put sinax
sin bx = a

b for sin bx = sin ax = 0. Note that Fn is periodic
with the period 2π. By the following lemma Fn(x) is well defined for all
x ∈ R.

Lemma 3. For n > 1 we have |Φn(e
ix)| = |Fn(x)|.

Proof. By elementary computations |1 − z| = 2
∣

∣sin 1
2x
∣

∣. Then we use the

well known Moebius formula Φn(z) =
∏

d|n(1− zd)µ(n/d). Note that Φn(e
ix)

is a bounded continous function of x, so if the product Fn(x0) is not defined
for some x0 (which happens only for finitely many values of 0 ≤ x0 < 2π),
then we can replace it by its limit with x → x0. �

By Lemma 3 we have

Ln = max
|z|=1

|Φn(z)| = max
0≤x<2π

|Fn(x)|

as long as n > 1. Furthermore |F1(x)| = 1
2 |Φ1(e

ix)|.
It is easy to determine L1 = 1 and Lp1 = p1. Let us consider the case

ω = 2.

Theorem 4. Let p1 < p2 be primes and let a be the unique integer such

that p1 | p2 + 2a and |a| < p1/2. Then Lp1p2 ≥ 4(p1−2)p2
π2|2a+1| .

Proof. Put x =
(

1 + 1
p1

+ 2a+1
p1p2

)

π. Then

∣

∣

∣sin
p1p2x

2

∣

∣

∣ =

∣

∣

∣

∣

sin
p1p2 + p2 + 2a+ 1

2
π

∣

∣

∣

∣

= 1,

∣

∣

∣
sin

x

2

∣

∣

∣
=

∣

∣

∣

∣

cos

(

1

2p1
+

2a+ 1

2p1p2

)

π

∣

∣

∣

∣

≥ 1− 1

p1

− |2a+ 1|
p1p2

≥ 1− 2

p1
,
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where we used the inequality cos t ≥ 1− 2
π · |t| for |t| ≤ π/2. Furthermore

∣

∣

∣
sin

p1x

2

∣

∣

∣
=

∣

∣

∣

∣

sin

(

p1 + 1

2
+

2a+ 1

2p2

)

π

∣

∣

∣

∣

=

∣

∣

∣

∣

sin
2a+ 1

2p2
π

∣

∣

∣

∣

≤ |2a+ 1|π
2p2

,

∣

∣

∣sin
p2x

2

∣

∣

∣ =

∣

∣

∣

∣

sin

(

p2

2
+

p2 + 2a

2p1
+

1

2p1

)

π

∣

∣

∣

∣

=

∣

∣

∣

∣

sin
π

2p1

∣

∣

∣

∣

≤ π

2p1
,

where we used the inequality | sin t| ≤ |t| for t ∈ R. By the above inequalities
we obtain

Lp1p2 ≥ Fp1p2(x) =

∣

∣

∣

∣

sin(x/2) sin(p1p2x/2)

sin(p1x/2) sin(p2x/2)

∣

∣

∣

∣

≥ 4(p1 − 2)p2

π2|2a+ 1| ,

as desired. �

3. Derivative of Fn

It is not difficult to prove that Fn is a differentiable function. Let fn(x)
be the derivative of Fn(x). The function fn plays a crucial role in our
construction of n with large Ln, especially its minimal absolute values in
points x0 for which Fn(x0) = 0. Let

Dn = min
x0: Fn(x0)=0

|fn(x0)|.

The aim of this section is to prove the following theorem.

Theorem 5. For all positive integers ω and all ε > 0 there exists a function

hω,ε : R+ → R+ depending only on ω and ε, such that

n

2
·(Lp1Lp1p2 . . . Lp1p2...pω−1

)−1 ≤ Dn < (1+ε)
n

2
·(Lp1Lp1p2 . . . Lp1p2...pω−1

)−1

for all hω,ε-growing n = p1p2 . . . pω.

In order to prove this theorem we will need some lemmas.

Lemma 6. If Fn(x0) = 0, then

|fn(x0)| =
n

2

∏

d|n, d6=n

∣

∣

∣

∣

sin
d

2
x0

∣

∣

∣

∣

µ(n/d)

.

Proof. Since x0 = 2t0π
n with some integer t0 coprime to n, we have

fn(x0) = lim
ǫ→∞

1

ǫ

∏

d|n

(

sin
d

2
(x0 + ǫ)

)µ(n/d)

= lim
ǫ→∞

sin(t0π + nǫ/2)

ǫ

∏

d|n, d6=n

(

sin
d

2
(x0 + ǫ)

)µ(n/d)

= ±n

2

∏

d|n, d6=n

(

sin
d

2
x0

)µ(n/d)

,

as desired. �
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Lemma 7. Let p be a prime not dividing n. If Fnp(x1) = 0, then fnp(x1) =
p|fn(x1p)|
|Fn(x1)| .

Proof. By Lemma 6

|fnp(x1)| =
np

2

∏

d|np, d6=np

∣

∣

∣

∣

sin
d

2
x1

∣

∣

∣

∣

µ(np/d)

=
np

2
·





∏

d|n

∣

∣

∣

∣

sin
d

2
x1

∣

∣

∣

∣

µ(n/d)




−1

·





∏

d|n, d6=n

∣

∣

∣

∣

sin
dp

2
x1

∣

∣

∣

∣

µ(n/d)




=
np

2
· |Fn(x1)|−1 · 2

n
· |fn(px1)| =

p|fn(px1)|
|Fn(x1)|

,

which completes the proof. �

Lemma 8. We have Dnp ≥ p · Dn

Ln
. Moreover, for all ε > 0 there exists a

function hε : R+ → R+ depending only on ε, such that Dnp < (1+ ε) · p · Dn

Ln

for all p > hε(n).

Proof. Let x0 and x1 be such that Fn(x0) = Fnp(x1) = 0, |fn(x0)| = Dn

and |fnp(x1)| = Dnp. Since x1 = 2t1π
np for some t1 coprime to np, we have

px1 = 2t1π
n . Therefore Fn(px1) = 0 and hence |fp(px1)| ≥ Dn. By applying

this inequality and Lemma 7 we obtain

Dnp = |fnp(x1)| =
p|fn(px1)|
|Fn(x1)|

≥ p · Dn

Ln
.

For obtaining the opposite inequality, let x0 = 2t0π
n and x′1 = x0+2tπ

p =
2(t0+tn)π

np with any t 6≡ − t0
n (mod p). Then Fnp(x

′
1) = 0 and fn(px

′
1) = Dn.

Again by Lemma 7

Dnp ≤ |fnp(x′1)| =
p|fn(px′1)|
|Fn(x′1)|

= p · Dn
∣

∣

∣
Fn

(

x0+2tπ
p

)∣

∣

∣

.

By choosing an appropriate t we can have
∣

∣

∣
Fn

(

x0+2tπ
p

)∣

∣

∣
as close to Ln as

we wish when p → ∞. �

Now we are ready to prove the main theorem of this section.

Proof of Theorem 5. Let ε > 0 be fixed and let ε′ = ω
√
1 + ε − 1. Let hε′

be a function given by Lemma 8, which implies that if n = p1p2 . . . pω is
hε′-growing, then

pi ·
Dp1p2...pi−1

Lp1p2...pi−1

≤ Dp1p2...pi < (1 + ε′)pi ·
Dp1p2...pi−1

Lp1p2...pi−1

for i = 1, 2 . . . , ω (empty product equals 1). By these inequalities

nD1

L1Lp1Lp1p2 . . . Lp1p2...pω−1

≤ Dn < (1 + ε′)ω
nD1

L1Lp1Lp1p2 . . . Lp1p2...pω−1

.
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Note that (1+ ε′)ω = 1+ ε, L1 = 1 and D1 = 1
2 . So the theorem holds with

the function hω,ε = hε′ = h ω
√

1+ε−1, which clearly depends only on ω and
ε. �

4. Proof of main result

In the following lemma we give a lower bound on Lnp which depends on
the residue class of p modulo n.

Lemma 9. Let ε > 0 and n = p1p2 . . . pω be fixed. Put xM ∈ [0, 2π) such

that Fn(xM ) = Ln and x0 = 2t0π
n for which Fn(x0) = 0 and |fn(x0)| = Dn.

Let b = mink∈Z
∣

∣

nxM

2π − pt0 + nk
∣

∣. Then

Lnp > (1− ε)Ln · np

2bπDn

for every p large enough. Furthermore, if p1 > ω and r is an integer coprime

to n such that
∣

∣

nxM

2π − r
∣

∣ is smallest possible, then

Lnp > (1− ε)Ln · 1

π(ω + 1)
· np
Dn

for every sufficiently large p ≡ r
t0

(mod n).

Proof. We have Fn(x) =
Fn(px)
Fn(x) , so

Lnp = max
0≤x<2π

∣

∣

∣

∣

Fn(px)

Fn(x)

∣

∣

∣

∣

≥ max
k∈Z

|Fn(xM + 2kπ)|
∣

∣

∣Fn

(

xM+2kπ
p

)∣

∣

∣

=
Ln

mink∈Z
∣

∣

∣Fn

(

xM+2kπ
p

)∣

∣

∣

.

Let k0 be a integer for which
∣

∣

∣

xM+2k0π
p − x0

∣

∣

∣ is smallest possible. Then

min
k∈Z

∣

∣

∣

∣

Fn

(

xM + 2kπ

p

)∣

∣

∣

∣

≤
∣

∣

∣

∣

Fn

(

xM + 2k0π

p

)∣

∣

∣

∣

∼ |fn(x0)| ·
∣

∣

∣

∣

xM + 2k0π

p
− x0

∣

∣

∣

∣

(with p → ∞)

= Dn · 2π
np

·
∣

∣

∣

nxM
2π

− t0p+ k0n
∣

∣

∣

= Dn · 2bπ
np

.

Therefore

Lnp > (1 + o(1))
Ln

Dn · 2bπ
np

∼ Ln · np

2bπDn

with p → ∞, which completes the proof of the first statement.
For p ≡ r

t0
(mod n) we have

b = min
k∈Z

∣

∣

∣

nxM
2π

− pt0 + nk
∣

∣

∣ =
∣

∣

∣

nxM
2π

− r
∣

∣

∣ ≤ ω + 1

2

since, in view of p1 > ω, at most ω consecutive integers are not coprime to
p. �



ON A GENERALIZATION OF BEITER CONJECTURE 7

Simple calculations show that Theorem 4 gives a better lower bound for
Lp1p2 than Lemma 9. Therefore we use Theorem 4 in the proof of the main
result. By the fact that An ≥ Ln/n for n > 1, Theorem 1 is an immediate
consequence of the following theorem.

Theorem 10. For every ω ≥ 3, ε > 0 and h : R+ → R+ there exists an

h-growing n = p1p2 . . . pω such that Ln > (1 − ε)cωnMn, where cω and Mn

are defined in Theorem 1.

Proof. We prove this by a strong induction on ω = ω(n). The induction
starts with ω = 2.

Our inductive assumption is that for all ε′ > 0 and a function h : R+ →
R+ there exists an h-growing n = p1p2 . . . pω such that Lp1p2 > (1−ε′) 4

π2 p1p2

and Lp1p2...pi > (1− ε′)cip1p2 . . . piMp1p2...pi for 3 ≤ i ≤ ω. By Theorem 4 it
is true for ω = 2 with p1 | q1 − 2 (note that the second part of the inductive
assumption is empty when ω = 2).

Now we show the inductive step. Let ω ≥ 2. Without loss of generality we
may assume that h(1) ≥ ω. By Lemma 9 and Dirichlet’s theorem on primes
in arithmetic progressions, there exists pω+1 > h(p1p2 . . . pω) for which

Lp1p2...pω+1
> (1− ε′)Ln · npω+1

π(ω + 1)Dn
.

By Theorem 5 there exists a function h1 : R+ → R+ depending only on
ω and ε′, such that for all h1-growing n

Dn > (1− ε′)−1n

2
· 1

Lp1Lp1p2 . . . Lp1p2...pω

.

Again without loss of generality we can assume that h(x) > h1(x) for all
x ∈ R+. In this situation all h-growing numbers are also h1-growing, so the
above inequality holds for every h-growing n.

For given ε > 0 we choose ε′ = 1 − ω+1
√
1− ε. By the above inequalities

and the inductive assumption

Lp1p2...pω+1
> (1− ε′)2 · 2pω+1

π(ω + 1)
· Lp1Lp1p2 . . . Lp1p2...pω

> (1− ε′)ω+1 · 2pω+1

π(ω + 1)
· p1 ·

4

π2
p1p2 ·

ω
∏

i=3

(cip1p2 . . . piMp1p2...pi)

= (1− ε)

(

8

π3(ω + 1)
·

ω
∏

i=3

ci

)(

pω+1

ω
∏

i=1

(p1p2 . . . piMp1p2...pi)

)

.

The exponent of pk in
∏ω

i=1(p1p2 . . . piMp1p2...pi) for k ≤ ω equals

ω − k + 1 +
ω
∑

i=k+2

(2i−k−1 − 1) = 2ω−k,
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so

pω+1

ω
∏

i=1

(p1p2 . . . piMp1p2...pi) = p1p2 . . . pω+1Mp1p2...pω+1
.

It remains to evaluate the constant by using a similar method:

8

π3(ω + 1)
·

ω
∏

i=3

ci =
8

π3(ω + 1)
·

ω
∏

i=3





1

i
·
(

2

π

)3·2i−3

·
(

i−1
∏

k=3

k2i−1−k

)−1




=
1

ω + 1
·
(

2

π

)3·2ω−2

· 1

3 · 4 · . . . · ω ·
(

ω
∏

i=3

i−1
∏

k=3

k2i−1−k

)−1

=
1

ω + 1
·
(

2

π

)3·2ω+1−3

·
(

ω+1−1
∏

t=3

t2
ω+1−1−t

)−1

= cω+1

for ω ≥ 2.
Note that ε′ < ε, so by the inductive assumption also Lp1p2 > (1−ε) 4

π2 p1p2

and Lp1p2...pi > (1 − ε)cip1p2 . . . piMp1p2...pi for all 3 ≤ i ≤ ω. It completes
the inductive step. �
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