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Abstract: We discuss existence and abundance of Galois-generic points for adelic representations attached to Shimura varieties. First,
we show that, for Shimura varieties of abelian type, `-Galois-generic points are Galois-generic; in particular adelic representations

attached to such Shimura varieties admit (‘lots of’) closed Galois-generic points. Next, we investigate further the distribution of Galois-

generic points and show the André-Pink conjecture for them, namely: if S is a connected Shimura variety associated to a Q-simple
reductive group then every infinite subset of the generalized Hecke orbit of a Galois-generic point is Zariski-dense in S. Our proof

follows the approach of Pink for Siegel Shimura varieties. Our main contribution consists in showing that there are only finitely many

Hecke operators of bounded degree on (adelic and connected) Shimura varieties. Compared with other approaches of this result, our
proof, which relies on Bruhat-Tits theory, is effective and works for arbitrary Shimura varieties.
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1. Introduction

Given a smooth, separated and geometrically connected scheme S over a field k and a point s ∈ S, let
σs : π1(s)→ π1(S) denote the morphism induced by functoriality of étale fundamental group1. Given an
algebraic group G over Q and an adelic representation ρ : π1(S) → G(Af ), let ρ` : π1(S) → G(Af ) →
G(Q`) denote its `-adic component. We say that s ∈ S is Galois-generic (resp. `-Galois-generic) with
respect to ρ : π1(S)→ G(Af ) if the image of ρ ◦ σs is open in the image of ρ (resp. the image of ρ` ◦ σs
is open in the image of ρ`).

To a Shimura datum (G,X) and a neat compact open subgroup K0 ⊂ G(Af ), we can attach a represen-
tation of the étale fundamental group ρK0 : π1(S[K0]) → K0 ⊂ G(Af ), where S[K0] ⊂ ShK0(G,X) is a
geometrically connected component (defined over a finite extension E[K0] of the reflex field E = E(G,X)
of (G,X)). This representation encodes group-theoretically the tower of étale covers ShK(G,X) →
ShK0(G,X) indexed by open subgroups K ⊂ K0. For a point s[K0] ∈ S[K0] and a field extension F of
E[K0], we say that the induced point s[K0]F ∈ S[K0]F is Galois-generic (resp. `-Galois-generic) if it is
Galois-generic (resp. `-Galois-generic) with respect to ρK0 |π1(S[K0]F ) : π1(S[K0]F ) → G(Af ) (resp. with
respect to ρ[K0]`|π1(S[K0]F ) : π1(S[K0]F )→ G(Q`)). We say that a point s ∈ Sh(G,X)F is Galois-generic
(resp. `-Galois-generic) if there exists a neat compact open subgroup K0 ⊂ G(Af ) such that (equiv-
alently, for every neat compact open subgroup K0 ⊂ G(Af )) the image s[K0] of s in ShK0(G,X)F is
Galois-generic (resp. `-Galois-generic).

In the context of Shimura varieties, the terminology ‘Galois-generic’ was introduced by Pink [P05, Def.
6.3]. The definition of Pink does not resort to the formalism of étale fundamental groups and is seemingly
stronger than ours. Namely, if Eab denotes the maximal abelian extension of E, a point s[K0] ∈ S[K0] is
Galois-generic in the sense of Pink if and only if the induced point s[K0]Eab ∈ S[K0]Eab is Galois-generic
in our sense. However, using that ρ(π1(S[K0]E)) = Γ−0 , where Γ−0 ⊂ G(Af ) denotes the adelic closure

of Γ0 := G(Q) ∩K in G(Af ) and that every open subgroup of Γ−0 has finite abelianization (5.4), we can
show that the two definitions cöıncide (6.1.1).

1.1. Existence. Given a scheme S smooth, separated and geometrically connected over a field k and an
adelic representation ρ : π1(S) → G(Af ), the first question which arises is whether there exists Galois-
generic points (other than the generic point) with respect to ρ. While `-adic specialization techniques
give rise to ‘lots of’ closed `-Galois-generic points (3.3.1), they fail to ensure the existence of a single
closed point which is `-Galois-generic for every prime ` (hence a fortiori which is Galois-generic).

1Recall that π1(s) identifies with the absolute Galois group of the residue field k(s) at s.
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However, for adelic representations attached to motives, the `-adic Tate conjectures predict that a point
which is `-Galois-generic for one prime ` is `-Galois-generic for every prime ` and modulo-` variants of
the Tate conjectures even predict that a point which is `-Galois-generic for one prime ` is Galois-generic
(3.3.2).

By works of Faltings (e.g. [FW84]), partial forms of the modulo-` variant of the Tate conjectures are avail-
able for abelian varieties; this is enough to ensure that for adelic representations attached to the Tate
module of abelian schemes, a point which is `-Galois-generic for one prime ` is Galois-generic ( [C15, Thm.
1.2] - see 3.3.2.2). The first main result of this paper is the extension of this statement to adelic repre-
sentations attached to Shimura varieties of abelian type (see 6.3.2 for the definition of ‘abelian type’).

Theorem A Assume (G,X) is a Shimura datum of abelian type. Then a point s ∈ Sh(G,X) is `-Galois-
generic if and only if it is Galois-generic.

The bridge between [C15, Thm. 1.2] and adelic representations attached to Shimura varieties is provided
by the moduli description of Siegel Shimura varieties. The remaining parts of the argument rely on the
general machinery of Shimura varieties and group-theoretical arguments. Our approach fails to handle
the case of Shimura data (G,X) which are not of abelian type though it seems reasonable to expect that
Theorem A should also hold for such representations.

Theorem A and the description of Galois-generic points in terms of adelic representations are also used
in [CM15] to prove that, for motives parametrized by Shimura varieties of abelian type (e.g. abelian
varieties, K3 surfaces) the integral and adelic variants of the Mumford-Tate conjecture follow from the
standard (`-adic) Mumford-Tate conjecture.

1.2. Equidistribution; the André-Pink conjecture. Theorem A implies that adelic representations
attached to Shimura varieties of abelian type admit ‘lots of’ Galois-generic points since they admit ‘lots
of’ `-Galois-generic points. For instance, combining Theorem A and the abundance result for `-Galois-
generic points of [CT13] (see 3.3.1.2), on can show the following. Say that an irreducible curve C ↪→ S[K0]
is Galois-generic if its generic point is. Then the set of irreducible Galois-generic curves defined over a
number field is Zariski-dense in S[K0] and for each such curve C ↪→ S[K0], defined over a finite extension
say EC of E[K0] and integer d ≥ 1, all but finitely many closed points t ∈ C with [k(t) : EC ] ≤ d
are Galois-generic. In particular, closed Galois-generic points are Zariski-dense, which is not surprising
once the existence is proved: Being Galois-generic is preserved by Hecke operators and Hecke orbits are
Zariski dense. But the restrictions on the degree show more. Indeed, it follows from the definition of
Galois-generic points and the fact that there are only finitely many Hecke operators of bounded degree
on a connected Shimura variety (7.2.2) that for every Galois-generic point t ∈ S[K0] and integer d ≥ 1
there are only finitely many t′ in the Hecke orbit of t with [k(t′) : E] ≤ d. Thus there are infinitely many
Hecke orbits of closed Galois-generic points on Shimura varieties of abelian type and even, infinitely many
Hecke orbits of closed Galois-generic points intersecting a Galois-generic curve defined over a number field.

Using equidistribution techniques, we can strengthen these results as follows. Let (G,X) be a Shimura
datum (we no longer assume it is of abelian type). Let K0 ⊂ G(Af ) be a neat compact open subgroup
and let X+ ⊂ X be a connected component. Write Γ0 := K0∩G(Q)+, where G(Q)+ ⊂ G(Q) denotes the
stabilizer of X+. Eventually, let S[K0] =: ShΓ0(G,X+) ⊂ ShK0(G,X) denote the geometrically connected
component containing the image of X+ × {1} (that is ShΓ0(G,X+)C ' Γ0\X+). Write Aut(G,X+) for
the group of automorphisms of G defined over Q and stabilizing X+. For every S[K0] ∈ ShΓ0(G,X+),
write

T̂Γ0(s[K0]) :=
⋃

φ∈Aut(G,X+)

TΓ0,φ(s[K0])

for the (full) generalized Hecke orbit of s[K0], where TΓ0,φ denotes the generalized Hecke operator induced
by φ on ShΓ0(G,X+) (7.1). Then,

Theorem B (André-Pink Conjecture for Galois-generic points - [A89, Ch. X, Pb. 3], [P05, Conj.
1.6], [Or13, Conj. 1.3]) Assume G is almost Q-simple. Then for every Galois-generic point s[K0] ∈



GALOIS-GENERIC POINTS ON SHIMURA VARIETIES 3

ShΓ0(G,X+), every infinite subset of T̂Γ0(s[K0]) is Zariski-dense in ShΓ0(G,X+).

For Shimura varieties of abelian type a consequence of Theorem A, Theorem B and [CT13] is that if
C ↪→ S is an irreducible Galois-generic curve defined over a number field, then C is cut by infinitely
many Hecke orbits of closed Galois-generic points and each of these Hecke orbits cuts C in only finitely
many points.

Theorem B extends a previous result of Pink ( [P05, Thm. 7.6]) for the Siegel Shimura varieties; our proof
follows the one of Pink but with some technical adjustments required to deal with non simply connected
groups G. More precisely, the main ingredient in Pink’s argument is an equidistribution result of Clozel,
Oh and Ullmo ( [ClOU01, Thm. 1.6, Rem (3)]) for GSp2g. To deal with arbitrary Shimura varieties, one
needs a generalization of [ClOU01, Thm. 1.6] for adjoint groups G and arithmetic (not only congruence)
subgroups Γ ⊂ G(Q). Such a generalization was proved by Eskin and Oh ( [EO06, Thm 1.2]) following
an idea of Burger and Sarnak ( [BuS91]) (see 7.2). To apply Eskin and Oh’s result to our situation, we
have to ensure that, for an arithmetic subgroup Γ ⊂ G(Q), there are only finitely many Hecke operators
Ta, a ∈ G(Q) with |Γ \ ΓaΓ| bounded (7.2.2). We provide a detailed proof of this result in Section 8,
proceeding in two steps: First, we prove the adelic variant of 7.2.2 (8.2.1); here the ‘natural’ tools are
avatars of the Bruhat-Tits decomposition, which give explicit estimates for the local degrees (see 8.2 for
details). Then, we deduce 7.2.2 from this adelic variant by reducing to the simply connected case, where
we can apply strong approximation.

After a first version of this paper was released, we were informed by Hee Oh that 7.2.2 could also be
proved by equidistribution arguments as the ones used in [EO06]; but this proof does not seem to be
effective nor works for adelic Hecke operators (see 9.1 for details).

If we restrict to connected Shimura varieties of abelian type, Theorem B can easily be recovered from Orr’s
thesis ( [Or13, Thm. 1.5 (ii)]) arguing as follows. Let s[K0] ∈ ShΓ0(G,X+) be a Galois-generic point, let

A be an infinite subset of T̂Γ0(s[K0]), and let Z be some irreducible component of the Zariski-closure of
A containing s[K0]. Since s[K0] is Galois-generic, it is Hodge-generic (6.2.1). Hence the smallest special
subvariety of ShΓ0(G,X+) containing s[K0] is equal to the smallest special subvariety of ShΓ0(G,X+)
containing Z (because in both cases, this subvariety has to be ShΓ0(G,X+) itself). By construction
A ∩ Z is Zariski-dense in Z hence, from [Or13, Thm. 1.5 (ii)], Z is weakly special. But as Z contains
the Hodge-generic point s[K0], this forces Z = ShΓ0(G,X+). Orr’s approach to Theorem B relies on
different techniques than ours (Masser-Wüstholz isogeny bound for abelian varieties and o-minimality);
it is more general since it works for Hodge-generic points but, due to the use of the Masser-Wüstholz
isogeny bound, it only applies to Shimura varieties of abelian type. For connected Shimura varieties of
abelian type, one can also give a proof of 7.2.2 based on the Masser-Wüstholz isogeny bound and the
existence of closed Galois-generic points (see 9.2 for details).

∗ ∗ ∗

In Section 3, we review the notion of Galois-generic points attached to adelic representations of the étale
fundamental group and some of their basic properties. We also recall there the main existence/abundance
results for `-Galois-generic points and discuss in more details the relation between `-Galois generic points
and Galois-generic points for motivic representations. In Section 4, we construct the adelic represen-
tations attached to Shimura varieties and review some of their basic properties. Section 5 is technical
and gathers the group-theoretical results about the adelic closure of arithmetic subgroups of semisimple
groups we need to prove Theorem A. In Section 6, we focus on Galois-generic points attached to Sihmura
varieties, show that our definition cöıncides with the one of Pink, that Galois-generic-points are Hodge
generic and complete the proof of Theorem A. Section 7 is devoted to the proof of Theorem B. The
proof of 7.2.2 is postponed to Section 8 as it can be read independently of the rest of the paper and
involve technics of different nature. In the final Section 9, we discuss alternative approaches to 7.2.2: a
non effective approach based on equidistribution (9.1) and an effective approach (limited to connected
Shimura varieties of abelian type) based on the Masser-Wüstholz isogeny theorem (9.2).
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2. Notation and conventions

• The fields in this paper, when of characteristic 0, will always be assumed to be embedded into the field
C of complex numbers. For such fields, compositum, Galois, abelian, algebraic closures etc. will always
mean with respect to the given embedding into C.
• Given schemes S and T over a field k, unless there is a risk of confusion, we write ST := S ×k T (that

is we omit the notation for the base field k). When T = spec(F ) for a field extension k ⊂ F , we write
SF := Sspec(F ). However, when S =: s = spec(E) for a field extension k ⊂ E and k ⊂ F is another
field extension with E,F embedded into C, we write sF := spec(EF ) that is, we implicitly pick the
connected component of s×spec(k) spec(F ) corresponding to the given embeddings of E,F in C.
• Given a scheme S of finite type over a field k and a point s ∈ S, we write k(s) for the residue field (a

finitely generated extension of k) of S at s. We identify points s ∈ S and the corresponding morphisms
of k-schemes s : spec(k(s)) → S. For a point s ∈ S, a geometric point above s is a morphism
s : spec(Ω)→ S factorizing through s : spec(k(s))→ S and such that Ω is an algebraically closed field.
In general, we do not specify the algebraically closed field Ω in the notation for geometric points (see
below) and, otherwise specified, for a point s ∈ S, s will always denote a geometric point over s. For
every s ∈ S and geometric point s over s, let Fs denote the associated fiber functor from étale covers of
S to sets. Recall that, by definition, the étale fundamental group of S based at s is the automorphism
group π1(S, s) of Fs and that, if S is connected, for every s, s′ ∈ S there always exists isomorphisms
of fiber functors α : Fs→̃Fs′ and the set of such isomorphisms is a π1(S, s)-torsor. In particular, for
every étale cover X → S, α yields a bijection α : Fs(X)→̃Fs′(X) which is equivariant with respect to
the isomorphism of étale fundamental groups

π1(S, s)→̃π1(S, s′), σ 7→ ασα−1.

Thus, unless it helps understand the situation, we will omit the base-point s in our notation for étale
fundamental groups. Given a field k, we often shorten π1(spec(k)) in π1(k), which identifies with the
absolute Galois group of k. For a point s ∈ S, we also write π1(s) = π1(k(s)).
• Given an algebraic group G, we let Gder ⊂ G denote its derived subgroup, Z(G) ⊂ G its center,
pab : G → Gab := G/Gder its abelianization and pad : G → Gad := G/Z(G) its adjoint quotient. If G
is semisimple, we write psc : Gsc → G for its simply connected cover and set µG := ker(psc). Let Af
denote the ring of finite adeles of Q. Given a subgroup Γ ⊂ G(Af ) ⊂

∏
`G(Q`), we write Γ` ⊂ G(Q`)

for the projection of Γ into G(Q`).

3. Galois-generic and strictly Galois-generic points

Let k be a field of characteristic 0 and let S be a smooth, separated and geometrically connected scheme
over k with generic point η.

3.1. Galois-generic points. Let Γ be a topological group and ρ : π1(S) → Γ a continuous group
morphism. Write

Πρ := im(ρ), Πρ := ρ(π1(Sk)).

Every point s ∈ S induces by functoriality of étale fundamental group a morphism of profinite groups
σs : π1(s)→ π1(S) which is a section of the canonical projection π1(Sk(s))� π1(k(s)). Write

Πρ,s := im(ρ ◦ σs) ⊂ Πρ, Πρ,s := Πρ ∩Πρ,s.
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3.1.1. Definition We say that s ∈ S is Galois-generic (resp. strictly Galois-generic) with respect to ρ if
Πρ,s is open in Πρ (resp. if Πρ,s = Πρ).

We will use this terminology when Γ = G(Af ) for some algebraic group G over Q. For every prime `,
write

ρ` : π1(S)
ρ→ G(Af ) ⊂

∏
`

G(Q`)→ G(Q`)

for the `-adic component of ρ : π1(S) → G(Af ). If ρ : π1(S) → G(Af ) is clear from the context, we will

omit the subscript (−)ρ in the notation Πρ, Πρ, Πρ,s etc. and simply say that s ∈ S is Galois-generic
(resp. `-Galois-generic) if s ∈ S is Galois-generic with respect to ρ (resp. to ρ`). Similarly, we will say
that s ∈ S is strictly Galois-generic (resp. strictly `-Galois-generic) if s ∈ S is strictly Galois-generic
with respect to ρ (resp. to ρ`).

3.2. Elementary properties of Galois-generic and strictly Galois-generic points.

3.2.1. As S is normal, η ∈ S is strictly Galois-generic.

3.2.2. Let k ⊂ k̃ be a finitely generated field extension. Then s ∈ S is Galois-generic with respect to ρ if
and only if sk̃ ∈ Sk̃ is Galois-generic with respect to ρ|π1(Sk̃). This follows from the fact that the images

of the canonical morphisms π1(sk̃)→ π1(s) and π1(Sk̃)→ π1(S) are open.

3.2.3. As S is geometrically connected over k, we have a short exact sequence

1→ π1(Sk)→ π1(S)→ π1(k)→ 1

and as the image of π1(s)
σs→ π1(S) → π1(k) is open in π1(k), we see that s ∈ S is Galois-generic

with respect to ρ if and only if Πs is open in Π. Another way to formulate this observation is the
following. Let k ⊂ k̃ ⊂ k denote the (in general infinite) Galois subextension corresponding to the image
of ρ−1(Π) ⊂ π1(S) by π1(S) � π1(k). Then s ∈ S is Galois-generic with respect to ρ if and only if

sk̃ ∈ Sk̃ is Galois-generic with respect to ρ|π1(Sk̃). Under additional assumptions, one can enlarge k̃. For
instance,

3.2.4. Lemma Assume that every open subgroup of Π has finite abelianization. With the above notation,
let k̃ ⊂ k̃ab ⊂ k denote the maximal abelian extension of k̃ in k. Then s ∈ S is Galois-generic with respect
to ρ if and only if sk̃ab ∈ Sk̃ab is Galois-generic with respect to ρ|π1(S

k̃ab
).

Proof. The non trivial implication is the ‘only if’ one. So assume that s ∈ S is Galois-generic with
respect to ρ. Then Πsk̃

⊂ Π is open. In particular, it has finite abelianization. Thus its quotient

Πsk̃
� Πsk̃

/Πs
k̃ab

, which is abelian being a quotient of Gal(k̃ab|k̃), is finite. �

3.2.5. If S′ → S is a dominant morphism of finite type with S′ connected (for instance a connected étale
cover) and s′ ∈ S′ a point above s ∈ S then s ∈ S is Galois-generic with respect to ρ if and only if s′ ∈ S′
is Galois-generic with respect to ρ|π1(S′).

3.2.6. Given a Galois-generic point s ∈ S, one can always find a connected étale cover S′ → S and
s′ ∈ S′ above s such that s′ ∈ S′ is strictly Galois-generic with respect to ρ|π1(S′). Indeed, let s ∈ S be
a Galois-generic point and let U ⊂ Π be any open subgroup contained in Πs. Let SU → S denote the
connected étale cover corresponding to the open subgroup ρ−1(U) ⊂ π1(S) and let k(s) ↪→ k(s)U denote
the finite field extension corresponding to the open subgroup (ρ ◦ σs)−1(U) ⊂ π1(s). Then s ∈ S lifts to
a k(s)U -rational point sU ∈ SU which is strictly Galois-generic with respect to ρ|π1(SU ).

By definition, if s ∈ S is strictly Galois-generic, then for every open subgroup U ⊂ Π and corresponding
connected étale cover SU → S, π1(s) acts transitively on the geometric fiber of SU → S over s.
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3.3. The `-GG ⇔ GG problem. We now assume that Γ = G(Af ). Let Sgg ⊂ S (resp. Sgg
` ⊂ S)

denote the sets of (resp. `-)Galois-generic points. Write

Sgg
∞ :=

⋂
`

Sgg
` , Sgg∞ :=

⋃
`

Sgg
` .

Clearly,

Sgg ⊂ Sgg
∞ ⊂ Sgg∞.

3.3.1. `-Galois-generic points. `-adic specialization techniques show that Sgg
` is non-empty and even ‘large

in an arithmetical sense’ provided k satisfies some reasonable assumptions. More precisely, we have the
following results.

3.3.1.1. Fact ( [S89, §10.6]) Assume k is Hilbertian. Then there exists an integer d ≥ 1 and infinitely
many closed strictly `-Galois-generic points s ∈ S with [k(s) : k] ≤ d.

3.3.1.2. Fact ( [CT13, Thm. 1.1]) Assume k is finitely generated, S is a curve and every open subgroup
of Π` has finite abelianization. Then, for every integer d ≥ 1 all but finitely many s ∈ S with [k(s) : k] ≤ d
are `-Galois-generic.

Note that `-adic motivic representations (see Subsection 3.3.2) satisfy the assumption of 3.3.1.2 ( [CT12,
§5.2]). The `-adic components of adelic representations attached to Shimura varieties also satisfy this
assumption (see 4.2 and 5.4).

These results rely heavily on the fact that Π`, Π` are compact `-adic Lie groups: the key point in the
proof of 3.3.1.1 is that the Frattini subgroup Φ(Π) of a compact `-adic Lie group Π is open in Π. This
property is also crucial in the proof of 3.3.1.2, which also involves finer structural results about compact
`-adic Lie groups.

3.3.2. Motivic representations. The above results are `-adic in nature and fail to ensure that Sgg
∞ contains

points other than the generic point.

3.3.2.1. Definition We say that an adelic representation ρ : π1(S)→ G(Af ) satisfies the (`-GG ⇔ GG)-
property if Sgg = Sgg

∞ = Sgg∞.

When an adelic representation satisfies the (`-GG ⇔ GG)-property, the abundance results of Subsection
3.3.1 automatically hold for Galois-generic points.

Conjecturally, motivic representations, that is those of the form ρwX : π1(S) →
∏
` GL(Hw(Xη,Q`)) for

some smooth projective scheme f : X → S, should satisfy the (`-GG ⇔ GG)-property. More precisely,
the equality Sgg

∞ = Sgg∞ follows from the Tate conjectures (see [S94, §9], [A04, §7.3]) while the equal-
ity Sgg = Sgg

∞ follows from the modulo-` variant of the Tate conjectures proposed by Serre (see [S94, §10]).

For abelian schemes, partial forms of the modulo-` variants of the Tate conjectures were proved by Falt-
ings (see e.g. [FW84]). These are enough to show that adelic motivic representations attached to abelian
schemes satisfy the (`-GG ⇔ GG)-property. More precisely, given an abelian scheme f : X → S, recall
that Rwf∗Z` = ΛwR1f∗Z` ' ΛwT`(X)∨, where T`(X) := lim

←−
n

X[`n] denotes the `-adic Tate module (here

X[N ] denotes the kernel of multiplication-by-N on X; as k has characteristic 0, this is an étale cover of
S). Thus, the (`-GG ⇔ GG)-property for ρwX : π1(S)→

∏
` GL(Hw(Xη,Q`)) boils down to the following

statement.

3.3.2.2. Theorem ( [C15, Thm. 1.2]) The representation (ρ1
X)∨ : π1(S) → GL(T (X)η) satisfies the

(`-GG ⇔ GG)-property.

4. Adelic representations attached to Shimura varieties
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Let (G,X) be a Shimura datum. Throughout the paper we always assume that G is the generic Mumford-
Tate group on X. In this case, conditions [D79, (2.1.1.1–5)] are satisfied and Z(Q) is discrete in Z(Af ).
( [D79, 2.1.11]; for details see also [UY13, Lemma 5.13]).

Let K0 ⊂ G(Af) be a neat compact open subgroup. If K ⊂ K0 is an open subgroup, the induced morphism
on Shimura varieties pK,K0 : ShK(G,X) → ShK0(G,X) is finite étale. If, moreover, K is normal in K0,
this morphism is Galois with group K0/K. Fix a point s ∈ Sh(G,X) and for every open subgroup
K ⊂ K0, let s[K] denote the image of s in ShK(G,X), let S[K, s] ⊂ ShK(G,X) denote the geometrically
connected component of s[K] and E[K] := E[K](G,X) its field of definition (a finite abelian extension of

the reflex field E := E(G,X)). Let S̃[K, s] ⊂ ShK(G,X)E[K0] denote the connected component of s[K]

in ShK(G,X)E[K0] (explicitly, S̃[K, s] is the union of the Gal(E[K]|E[K0])-conjugate of S[K, s]). The
tower of (connected) pointed Galois covers

pK,K0,s : (S̃[K, s], s[K])→ (S[K0, s], s[K0])

corresponds to a projective system of continuous group morphisms

π1(S[K0, s], s[K0])� Aut(pK,K0,s) ⊂ K0/K.

As the intersection of all open normal subgroups K ⊂ K0 is trivial, passing to the limit we obtain a
continuous group morphism

ρ[K0, s] : π1(S[K0, s], s[K0])� lim
←−
K

K0/K = K0.

By construction, ρ[K0, s] : π1(S[K0, s], s[K0])→ K0 satisfies the following properties.

4.1. Functoriality Let f : (G2, X2)→ (G1, X1) be a morphism of Shimura data, Ki ⊂ Gi(Af ), i = 1, 2
neat compact open subgroups such that f(K2) ⊂ K1; these induces morphisms of Shimura varieties
Sh(G2, X2)→ Sh(G1, X1)E2 and ShK2(G2, X2)→ ShK1(G1, X1)E2 over the reflex field E2 := E(G2, X2).
Fix s2 ∈ Sh(G2, X2) and set s1 := f(s2) ∈ Sh(G1, X1). Then the following diagram commutes

K2
f // K1

π1(S[K2, s2], s2[K2]) //

ρ[K2,s2]

OO

π1(S[K1, s1]E[K2], s1[K1]),

ρ[K1,s1]

OO

where, as above, E[K2] := E[K2](G2, X2) denotes the field of definition of the geometrically connected
component S[K2, s2] of s2[K2] in ShK2(G2, X2).

4.2. Change of connected component Assume the C-valued point sC ∈ Sh(G,X)(C) = G(Q)\X ×
G(Af ) corresponding to s is of the form sC = G(Q)(x, 1), let a ∈ G(Af ) and write sa ∈ Sh(G,X) for
the point corresponding to sCa = G(Q)(x, a). For a neat compact open subgroup K ⊂ G(Af ), write
Ka := K ∩ aKa−1. As the Hecke-operator −a : Sh(G,X)→̃Sh(G,X) is defined over the reflex field, the
following diagram commutes

π1(S[K0, s], s[K0])

ρ[K0,s]

��

π1(S[Ka
0 , s], s[K

a
0 ])

ρ[Ka
0 ,s]

��

? _oo ' // π1(S[Ka−1

0 , sa], sa[Ka−1

0 ])

ρ[Ka−1

0 ,sa]
��

� � // π1(S[K0, s], sa[K0])

ρ[K0,sa]

��
K0 Ka

0
? _oo

a−1−a
' // Ka−1

0
� � // K0,

where the middle upper horizontal arrow is induced by the isomorphism −a : S[Ka
0 , s]→̃S[Ka-1

0 , sa]

(mapping s[Ka
0 ] to sa[Ka-1

0 ]) and the arrows

π1(S[Ka
0 , s], s[K

a
0 ]) ↪→ π1(S[K0, s], s[K0]), π1(S[Ka−1

0 , sa], sa[Ka−1

0 ]) ↪→ π1(S[K0, s], sa[K0])

are open embeddings.

Let X+ ⊂ X denote the connected component of x ∈ X and let G(Q)+ ⊂ G(Q) denote the stabilizer
of X+ in G(Q). Given an open subgroup K ⊂ K0, write Γ := G(Q)+ ∩ K, Γ0 := G(Q)+ ∩ K0. Then

S̃[K, s]EK splits into a disjoint union of geometrically connected components isomorphic to the connected
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component ShΓ(G,X+) of ShK(G,X)EK containining the image of X+×{1}. As ShΓ(G,X+)C ' Γ\X+,
ρK0,s : π1(SK0,s, sK0)→ K0 restricts to a surjective continuous group morphism

ρ[K0, s] : π1(S[K0, s]E , s[K0])� Γ−0 .

Here we implicitly identify the closure Γ−0 of Γ0 in G(Af ) with lim
←−

Γ0/Γ, where the projective limit is

taken over all normal congruence subgroups of Γ0.

Actually, as E[K] is contained in the maximal abelian extension Eab of the reflex field E, the above shows
that ρ[K0, s] : π1(S[K0, s], s[K0])→ K0 already restricts to a surjective continuous group morphism

ρ[K0, s] : π1(S[K0, s]Eab , s[K0])� Γ−0 ,

which is completely determined by the tower of connected étale cover over Eab

pΓ,Γ0 : ShΓ(G,X+)Eab → ShΓ0(G,X+)Eab ,

where Γ describes all normal congruence subgroups of Γ0.

4.3. Change of base point Let s, s′ ∈ Sh(G,X) be two points lying in the same geometrically connected
component; write S[K0, s] = S[K0, s

′] =: S[K0]. Then every étale path α : s[K0]→ s′[K0] mapping s to
s′ induces an isomorphism of profinite groups α : π1(S[K0], s[K0])→̃π1(S[K0], s′[K0]), which makes the
following diagram commute

π1(S[K0], s[K0])

α'
��

ρ[K0,s] // K0

π1(S[K0], s′[K0])

ρ[K0,s′]

55

4.4. Galois-generic points. For s ∈ Sh(G,X) the following assertions are equivalent (3.2.2, 3.2.5):
(1) There exists a neat compact open subgroup K ⊂ G(Af ) such that s[K] ∈ S[K, s] is Galois-generic

(resp. `-Galois-generic) with respect to ρ[K, s] : π1(S[K, s], s[K])→ K ⊂ G(Af );
(2) For every neat compact open subgroup K ⊂ G(Af ), s[K] ∈ S[K, s] is Galois-generic (resp. `-Galois-

generic) with respect to ρ[K, s] : π1(S[K, s], s[K])→ K ⊂ G(Af ),
In which case we will say that s ∈ Sh(G,X) is Galois-generic (resp. `-Galois-generic). In view of 4.2,
we also see that for every a ∈ G(Af ), s ∈ Sh(G,X) is Galois-generic if and only if sa ∈ Sh(G,X) is
Galois-generic. So, in the following, we shall always assume that sC = G(Q)(x, 1) and write X+ ⊂ X
for the connected component of x. In particular, with the notation of 4.2, S[K0, s] = ShΓ0(G,X+) and
the restriction ρ[K0, s] : π1(S[K0, s]Eab , s[K0])� Γ−0 is completely determined by the tower of connected
étale cover over Eab

pΓ,Γ0 : ShΓ(G,X+)Eab → ShΓ0(G,X+)Eab .

Also, in view of 4.3, we shall omit the reference to s in the notation (e.g. write S[K0], ρ[K0], π1(S[K0])
instead of S[K0, s], ρ[K0, s], π1(S[K0, s], s[K0]) etc.) unless it plays a part in the discussion.

4.5. Adelic representation attached to Siegel Shimura varieties Let (GSp2g, X) denote the Siegel
Shimura datum ( [D71, 1.6]). Using the moduli description of the attached Shimura variety ( [D71, 4.16]),
one easily shows that for a neat compact open subgroup K0 ⊂ GSp2g(Af ) and geometrically connected
component S[K0] ⊂ ShK0(GSp2g, X), the corresponding adelic representation ρ[K0] : π1(S[K0]) → K ⊂
G(Af ) identifies with the representation ρ : π1(S[K0]) → GL(T (A)η) on the adelic Tate module of the
universal abelian scheme A→ S[K0]. (See also [UY13]).

5. Group-theoretical preliminaries

In this section, we gather technical group-theoretical results about the adelic closure of arithmetic sub-
groups of semisimple algebraic groups. These will be used in the proof of Theorem A to deduce the case
of Shimura data of abelian type from the case of Shimura data of Hodge type.

Let G be a group. Recall that two subgroups K,K ′ ⊂ G are said to be commensurable if K ∩K ′ is of
finite index in both K and K ′. Commensurability is an equivalence relation, which we denote by ≡, on
the set of subgroups of G.
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For an algebraic group G over Q, a faithful Q-linear representation G ↪→ GL(V ) and a Z-lattice L ⊂ V ,
write GL for the subgroups of elements g ∈ G(Q) stabilizing L. If G ↪→ GL(V ), G ↪→ GL(V ′) are two
faithful Q-linear representations and L ⊂ V , L′ ⊂ V ′ are Z-lattices then GL ≡ GL′ ⊂ G. Thus the class
of commensurability of GL does not depend on the choices of G ↪→ GL(V ) and L ⊂ V ; the groups in this
class are the arithmetic subgroups of G. Arithmetic subgroups have the following properties.

5.1. Fact
(1) For an algebraic group G over Q, a faithful Q-linear representation G ↪→ GL(V ) and an arithmetic

subgroup Γ ⊂ G(Q) there exists a Γ-invariant Z-lattice L ⊂ V .
(2) For a surjective morphism f : G2 → G1 of algebraic groups over Q and an arithmetic subgroup

Γ ⊂ G2(Q), the subgroup f(Γ) ⊂ G1(Q) is again arithmetic.
Let G be a semisimple algebraic group over Q and Γ ⊂ G(Q) an arithmetic subgroup. Then,
(3) Γ is finitely presented as an abstract group.
(4) If, furthermore, G is of non-compact type then Γ is Zariski-dense in G.

An algebraic group G over Q is said to be of compact type if G(R) is compact [PlR94, Def. p. 205]. A
semisimple algebraic group over Q is said to be of non-compact type if none of its simple factors is of
compact type.

Proof. For Assertion (1), (2), (3), see [PlR94, Prop. 4.2, Thm. 4.1, Thm. 4.2] respectively. Assertion (4)
is the Borel density theorem [Bo66a] (see also [PlR94, Thm. 4.10]). �

For an algebraic group G over Q and a subgroup Γ ⊂ G(Q), let Γ− ⊂ G(Af ) denote the adelic closure of
Γ in G(Af ).

5.2. Lemma If Γ ⊂ G(Q) is an arithmetic subgroup then Γ− is profinite and the collection of subgroups
Γ′−, for Γ′ ⊂ Γ a normal subgroup of finite index, is a fundamental system of open neighborhoods of 1 in
Γ−.

For an algebraic subgroup G ⊂ GLn,Q and a ring A of characteristic 0, write G(A) := G(Q) ∩GLn(A).

Proof. Let G ↪→ GL(V ) be a faithful Q-rational representation of G and let L ⊂ V a Γ-invariant Z-lattice
(5.1 (1)). Fixing a Z-basis of L we get an isomorphism GL(V ) ' GLn,Q such that Γ ⊂ G(Z). Then Γ− is
a closed subgroup of the profinite group

∏
`G(Z`) hence is profinite. In particular, a subgroup of Γ− is

open if and only if it is closed of finite index in Γ−. As for any subgroup Γ′ ⊂ Γ of finite index, Γ
′− ⊂ Γ−

is a closed subgroup of finite index ≤ [Γ : Γ′], one already sees that the Γ′−, with Γ′ ⊂ Γ of finite index
are open neighborhoods of 1 in Γ−. But, also, for every open subgroup U ⊂ Γ−, Γ ∩ U ⊂ Γ has finite
index ≤ [Γ− : U ] and, by construction (Γ ∩ U)− ⊂ U− = U . Eventually, if Γ′ ⊂ Γ is a subgroup of finite
index then ⋂

γ∈Γ

γΓ′γ−1 ⊂ Γ′

is normal and again of finite index ≤ [Γ : Γ′]! in Γ. �

For a closed subgroup U ⊂ GLn(Z`), let U+ ⊂ U denote the (normal) subgroup generated by the `-Sylow
subgroups of U .

5.3. Lemma Let G ⊂ GLn,Q be an algebraic subgroup and U ⊂ G(Af ) a closed subgroup such that

U` ⊂ G(Z`) for ` � 0. Assume that U` = U+
` for ` � 0. Then there exists an open subgroup U ′ ⊂ U

such that U ′ =
∏
` U
′
`.

Proof. This follows from a combination of results about almost-` independency in the sense of Serre [S13].
More precisely, given an infinite set of primes L, a family G`, ` ∈ L of `-adic Lie groups and a profinite
group ∆ ⊂

∏
`G`, one says that ∆ is `-independent (as a subgroup of

∏
`G`) if ∆ =

∏
` ∆` and that ∆

is almost `-independent if there exists an open subgroup ∆′ ⊂ ∆ which is `-independent as a subgroup
of
∏
`G`. With these definitions, the following holds.

(1) ( [S13, Lemma 1]) If for ` 6= `′ no simple quotient of ∆` is isomorphic to a simple quotient of ∆`′

then ∆ ⊂
∏
`G` is `-independent.
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(2) ( [S13, Lemma 3]) If there exists a finite subset F ⊂ L such that the image of ∆ in
∏
L\F G` is almost

`-independent then ∆ ⊂
∏
`G` is almost `-independent.

For every prime `, let Σ` denote the set of all (isomorphism classes of) finite groups which are either a
simple group of Lie type in characteristic ` (see [S13, §6.1]) or Z/`.
(3) ( [S13, Thm. 4]) Every finite simple subquotient of GLn(Z`) of order divisible by ` is in Σ` for `� 0

(depending on n).
(4) ( [S13, Thm. 5]) For `, `′ ≥ 5, ` 6= `′ one has Σ` ∩ Σ`′ = ∅.
From (2), it is enough to show that the image UL of U in

∏
`∈LG(Q`) is almost `-independent for a set

L containing all but finitely many primes. In particular, on may assume that U` ⊂ G(Z`), that U` = U+
`

for every ` ∈ L and that the conclusion of (3) (resp. (4)) holds for ` ∈ L (resp. ` 6= `′ ∈ L). As, for ` ∈ L,

every simple quotient of U#
` (= U`) is in Σ`, (4) and (1) shows that UL is `-independent as requested. �

5.4. Theorem Let G be a semisimple algebraic group over Q. Let Γ ⊂ G(Q) be an arithmetic subgroup.
Then every open subgroup U of Γ− ⊂ G(Af ) has finite abelianization.

Proof. We fix once for all an embedding G ↪→ GLn,Q. We let again G denote the Zariski closure of G in
GLn,Z; this is a semisimple group over some non-empty open subscheme of Spec(Z).

- Reduction to the case where U is of the form Γ− for some normal arithmetic subgroup Γ ⊂ G(Z). From

5.2, there exists a subgroup Γ′ ⊂ Γ normal, of finite index in Γ and such that Γ
′− ⊂ U . From the finite-

ness of U/Γ
′− and the exact sequence

(Γ
′−)ab → Uab → (U/Γ

′−)ab → 0,

it is enough to perform the proof for Γ
′− that is we may assume U is of the form Γ− for some arithmetic

subgroup Γ ⊂ G(Q). Next, as Γ is finitely generated as an abstract group (5.1 (3)), it has only finitely
many subgroup of bounded index ≤ [Γ : G(Z) ∩ Γ]. In particular, the group

∆ :=
⋂

g∈G(Z)Γ

gG(Z) ∩ Γg−1 ⊂ G(Q)

is again an arithmetic subgroup, contained and normal both in Γ and G(Z). So the conclusion follows
from the finiteness of Γ/∆ and the exact sequence

∆−ab → Γ−ab → (Γ−/∆−)ab → 0.

- Reduction to the case where G is of non-compact type. Let Gnc ⊂ G denote the largest (normal) al-
gebraic subgroup of G of non-compact type and let p : G � G/Gnc denote the canonical projection.
Write Γnc := Γ ∩ Gnc(Q) ⊂ Gnc(Q). As p(Γ) ⊂ G/Gnc(Q) is again an arithmetic subgroup (5.1 (3))
and G/Gnc is of compact type, p(Γ) is finite; in particular, Γ−/Γnc− is finite. Also, by construction,
Γnc is contained and normal in Gnc(Z) and [Gnc(Z) : Γnc] ≤ [G(Z) : Γ], which shows that Γnc ⊂ Gnc(Q)
is again an arithmetic subgroup. Thus the conclusion follows from the finiteness of Γ−/Γnc− and the
exact sequence

Γnc−ab → Γ−ab → (Γ−/Γnc−)ab → 0.

- Reduction to the case where Γ−` = G(Z`)+ for `� 0. For a prime `, let p` : GLn(Z)� GLn(F`) denote

the reduction modulo-` morphism. Then, as Γ is finitely generated as an abstract group (5.1 (3)) and
Zariski-dense in G (5.1 (4)), we have

G(F`)+ ⊂ p`(Γ) ⊂ G(F`)
for `� 0 depending only on n ( [N87, Thm. 5.1]). Here G(F`)+ ⊂ G(F`) denotes the (normal) subgroup
generated by the order-` elements in G(F`) (or, equivalently, the `-Sylow subgroups as soon as ` > n).
As G is semisimple, G(F`)/G(F`)+ is abelian of order ≤ 2n−1. In particular, there exists an integer
N ≥ 1 such that for every prime ` the subgroup

∆[`] := p−1
` (G(F`)+) ∩ Γ ⊂ Γ

is normal and of index ≤ N in Γ. As Γ is finitely generated, it has only finitely many subgroups of
index ≤ N . So

∆ :=
⋂
`

∆[`] ⊂ Γ
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is again a subgroup normal and of finite index in Γ. For ` > [Γ : ∆] and `� 0 such that G(F`)+ ⊂ Γ`,
we have

[G(F`)+ : p`(∆)] = [p`(∆[`]) : p`(∆)] ≤ [∆[`] : ∆] ≤ [Γ : ∆] < `.

As G(F`)+ is generated by its order-` elements, this forces p`(∆) = G(F`)+. Then the finiteness of
Γ−/∆− and the exact sequence

∆−ab → Γ−ab → (Γ−/∆−)ab → 0

show that it is enough to prove that ∆−ab is finite. That is, without loss of generality, we may
replace Γ with ∆ hence assume that p`(Γ) = G(F`)+ for ` � 0. As p−` (Γ−` ) = p`(Γ`) = G(F`)+ and

ker(p−` ) ⊂ G(Z`) is a pro-` group, this implies Γ−` = (Γ−` )+ hence Γ−` ⊂ G(Z`)+. Assume also that

`� 0 so that GZ` is semisimple over Z`. Then the reduction-modulo-` morphism p−` : G(Z`)� G(F`)
is surjective and, up to increasing `, we may assume that the induced surjective morphism

p−` |G(Z`)+ : G(Z`)+ � G(F`)+

is Frattini ( [C15, Fact 2.4, Lemma 2.5]) that is, G(Z`)+ is the unique closed subgroup X ⊂ G(Z`)+

mapping subjectively onto G(F`)+. This shows that Γ−` = G(Z`)+.

- End of the proof. As Γ−` = (Γ−` )+ for ` � 0, there exists (5.3) an open subgroup U ⊂ Γ− such that

U =
∏
` U`. As Γ− is profinite, U is of finite index in Γ− thus [Γ−` : U`] ≤ [Γ− : U ] for every `. On the

other hand, as Γ−` = (Γ−` )+, all subgroups of Γ−` have index ≥ ` in Γ−` . This forces U` = Γ−` for `� 0.
Also, up to replacing U` by ⋂

γ`∈Γ−`

γ`U`γ
−1
`

for small `, we may assume that U is normal in
∏
` Γ−` (hence a fortiori in Γ−). Then, the exact

sequence

Uab → Γ−ab → (Γ−/U)ab → 0

shows that it is enough to prove that Uab =
∏
` U

ab
` is finite that is, equivalently,

(1) Uab
` is finite for every `;

(2) Uab
` = 0 for `� 0 (or, equivalently, (G(Z`)

+)ab = 0 for `� 0).

Proof of (1): If (1) were false, U` would have an infinite abelian quotient U` � Z`. As U` is a `-adic
Lie group, so is Z` and Z` has dimension ≥ 1 as an `-adic Lie group. From exactness of the Lie-algebra
functor on the category of `-adic Lie groups, we obtain a surjective morphism of Lie algebras

Lie(U`)� Lie(Z`).

But, on the other hand, since G is semisimple, we also have Lie(U`) = Lie(Γ−` ) = Lie(G) ⊗ Q`, which
has no abelian quotient as a Lie algebra.

Proof of (2): As

p−` |G(Z`)+ : G(Z`)+ � G(F`)+

is Frattini (see above) and [G(Z`)+, G(Z`)+]− maps surjectively onto [G(F`)+, G(F`)+], it is enough
to show that [G(F`)+, G(F`)+] = G(F`)+ that is G(F`)+ab = 0. This fact is probably well-known to
specialists. However, for lack of a suitable reference, we sketch the argument. Without loss of generality,
we may assume G is semisimple over Z.

(1) Then, for `� 0, GF` coincides with the algebraic envelope (in the sense of Nori - [N87]) ˜G(F`) ⊂
GLn,F` of G(F`) in GLn,F` . More precisely, if P1, . . . , Pr ∈ Z[Xi,j , Y ] are polynomial equations

defining G ⊂ GLn,Z ' Mn(Z)[ 1
det

] ⊂ Zn2+1, for every g ∈ G(F`) of order `, the polynomial

Pi,g(T ) := Pi(exp(T log(g))) ∈ F`[T ] has degree bounded from above by a constant δi independent
of `. As Pi,g(T ) has at least ` distinct roots, this forces Pi,g(T ) = 0 as soon as ` > δi. In other
words, GF` contains the one-parameter subgroup

eg : A1
F` → GLn,F`

t → exp(t log(g)).
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So, for ` > max{δ1, . . . , δr}, GF` contains ˜G(F`). On the other hand ( [N87, Thm. B]), for `� 0,

(†) ˜G(F`)(F`)+ = G(F`)+.

As [ ˜G(F`)(F`) : ˜G(F`)(F`)+] ≤ 2n−1 (because ˜G(F`) is exponentially generated) and [G(F`) :

G(F`)+] ≤ 2n−1 (because GF` is semi simple) ( [N87, Rem. 3.6]), (†) implies that ˜G(F`) and
GF` have the same dimension ( [N87, Lemma 3.5]). As GF` is connected, this eventually yields

˜G(F`) = GF` as claimed.

(2) As ˜G(F`) = GF` is semisimple, ˜G(F`) acts semisimply on F⊕n` for `� 0 ( [J97, Prop. 3.2]). Since

for `� 0 the ˜G(F`)-submodules and G(F`)+-submodules of F⊕n` coincide, this in turn implies that

G(F`)+ acts semisimply on F⊕n` .
(3) The conclusion then follows from [CT14, Lemma 3.4].

This concludes the proof of Theorem 5.4. �

5.5. Lemma Let f : G2 → G1 be an isogeny of connected semisimple algebraic groups over Q. Let
Γ1 ⊂ G1(Q), Γ2 ⊂ G2(Q) be arithmetic subgroups such that f(Γ2) ⊂ Γ1. Then for every closed subgroup
∆ ⊂ Γ−2 , f(∆) ⊂ Γ−1 is open if and only if ∆ ⊂ Γ−2 is open.

Proof. This follows from 5.2 and the fact that a profinite group is compact and that its open subgroups
are exactly its closed subgroups of finite index. As f(Γ2) ⊂ G1(Q) is arithmetic, f(Γ2) and Γ1 are
commensurable. This implies that f(Γ2)− and Γ−1 are commensurable as well hence that f(Γ2)− is open
in Γ−1 . But as Γ−2 is compact, f(Γ−2 ) = f(Γ2)−. This shows that f : Γ−2 → Γ−1 is a morphism of profinite
groups with (i) open image and (ii) finite kernel (since f : G2 → G1 is an isogeny). In particular, if
∆ ⊂ Γ−2 has finite index then f(∆) ⊂ Γ−1 also has finite index: [Γ−1 : f(∆)] ≤ [Γ−1 : f(Γ−2 )][Γ−2 : ∆].
Conversely, if f(∆) ⊂ Γ−1 has finite index then ∆ ⊂ Γ−2 also has finite index:

[Γ−2 : ∆] ≤ | ker(f)|[f(Γ−2 ) : f(∆)] ≤ | ker(f)|[Γ−1 : f(∆)]. �

6. Galois-generic points for adelic representations attached to Shimura varieties

Let (G,X) be a Shimura datum.

6.1. Comparison with Pink’s definition. Let E := E(G,X) denote the reflex field. A point s ∈
Sh(G,X) is Galois-generic in the sense of Pink ( [P05, Def. 6.3]) if and only if sEab ∈ Sh(G,X)Eab is

Galois-generic in the sense of 4.4. With the notation of 3.2.4, one has Ẽ ⊂ Eab but, in general the extension
Ẽ ⊂ Eab is not finite (when the reciprocity map describing the action of π1(Eab) on π0(Sh(G,X)) has
infinite kernel). Still, the two notions of Galois-genericity coincide. More precisely, for s ∈ Sh(G,X) let
sad ∈ Sh(Gad, Xad) denote its image by the canonical morphism

Sh(G,X)→ Sh(Gad, Xad).

6.1.1. Proposition For every s ∈ Sh(G,X) the following properties are equivalent
(1) s ∈ Sh(G,X) is Galois-generic (resp. `-Galois-generic);
(2) sEab ∈ Sh(G,X)Eab is Galois-generic (resp. `-Galois-generic);
(3) sad ∈ Sh(Gad, Xad) is Galois-generic (resp. `-Galois-generic);
(4) sad

Eab ∈ Sh(Gad, Xad)Eab is Galois-generic (resp. `-Galois-generic).

Proof. (1) ⇔ (2) and (3) ⇔ (4) follow from 3.2.4, the fact that Π = Γ− ⊂ G(Af ) and 5.4. For (2) ⇔
(4), we may assume (4.4) that the connected component of sC is of the form G(Q)\X+ × {1}. Fix neat
compact open subgroups K ⊂ G(Af ), Kad ⊂ Gad(Af ) such that pad(K) ⊂ Kad. Write Γ := K ∩ G(Q)
and Γad := Kad ∩Gad(Q); we may assume Γ ⊂ Gder(Q). As K is neat, Γ maps injectively into Γad. Then
the geometrically connected component S of s[K] in ShK(G,X) is an étale cover of the geometrically
connected component Sad of sad[Kad] in ShKad(Gad, Xad). The functoriality of adelic representations
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attached to Shimura varieties yields the following commutative diagram

π1(s[K]Eab) //
� _

��

π1(SEab)
� _

��

ρ[K,s] // // Γ− �
� //

��

G(Af )

��
π1(s[Kad]ad

Eab) // π1(SEab)
ρ[Kad,sad]

// // (Γad)− �
� // Gad(Af ).

The conclusion then follows from the fact that the left vertical arrow has open image and from 5.5 applied
to the isogeny Gder → Gad and to ∆ = Πs[K]

Eab
⊂ Γ−. The proof for `-Galois-generic points is similar. �

6.2. Galois-generic versus Hodge-generic points. We say that x ∈ X is Hodge-generic if MT (x) =
G. Let Xhg ⊂ X denote the subset of Hodge-generic points. The set Xhg is analytically dense in X
and G(Q)Xhg = Xhg. Let K ⊂ G(Af ) be a neat compact open subgroup. We say that s ∈ Sh(G,X)
(resp. s[K] ∈ ShK(G,X)) is Hodge-generic if sC ∈ G(Q)\Xhg × G(Af ) ⊂ Sh(G,X)(C) (resp. s[K]C ∈
G(Q)\Xhg ×G(Af )/K ⊂ ShK(G,X)(C)).

6.2.1. Proposition `-Galois-generic points are Hodge-generic.

Proof. (See also [P05, Prop. 6.7]). Let s ∈ Sh(G,X) be a `-Galois-generic point and (x, g) ∈ X ×G(Af )
lifting sC ∈ Sh(G,X)(C). We may assume (4.4) g = 1. LetXx denote theMT (x)(R)-conjugacy class of x :
S→MT (x)R. The inclusion MT (x) ↪→ G induces a morphism of Shimura data (MT (x), Xx)→ (G,X)
hence a morphism of Shimura varieties Sh(MT (x), Xx) → Sh(G,X) and, for every neat compact open
subgroupK ⊂ G(Af ), a morphism ShKx(MT (x), Xx)→ ShK(G,X), where we setKx := K∩MT (x)(Af ).
Assume K =

∏
`K` and write Γ := K ∩ G(Q)+. Let sx ∈ Sh(MT (x), Xx) be the point corresponding

to the image of x and let E[Kx] denote the field of definition of the geometrically connected component
S[Kx, sx] of sx[Kx] in ShKx(MT (x), Xx). The following diagram commutes (4.1)

π1(s[Kx]) //

��

π1(S[Kx, sx]) //

��

Kx� _

��
π1(s[K]) // π1(S[K, s]E[Kx]) // K

.

As s ∈ Sh(G,X) is `-Galois-generic and the image of π1(s[Kx]) → π1(s[K]) → π1(S[K, s]E[Kx]) is open
in the image of π1(s[K]) → π1(S[K, s]E[Kx]), the commutativity of the above diagram implies that

K[x, `] ⊂ MT (x)(Q`) contains an open subgroup of Γ−` . As such a subgroup is Zariski-dense in Gder
Q` ,

this shows that MT (x)Q` contains Gder
Q` hence that MT (x) contains Gder. In particular, MT (x) is normal

in G. So every G(R)-conjugates of x : S → MT (x)R factors through MT (x)R. Since G is the generic
Mumford-Tate group of (G,X), this forces MT (x) = G. �

6.2.2. Pink conjectures that Hodge-generic points are Galois-generic ( [P05, Conj. 6.8]). Thus, Theorem
A reduces Pink’s conjecture to proving that every Hodge-generic point is `-Galois generic which, in the
case of abelian schemes, is precisely the statement of the standard (`-adic) Mumford-Tate Conjecture.

6.3. Proof of Theorem A.

6.3.1. Shimura data of Hodge type Recall that a Shimura datum (G2, X2) (as well as the associated
Shimura variety) is said to be of Hodge type if there exists an embedding of Shimura data f : (G2, X2) ↪→
(G1, X1) with (G1, X1) a Siegel Shimura datum. Let Ki ⊂ Gi(Af ), i = 1, 2 be neat compact open
subgroups such that f(K2) ⊂ K1. Let s2 ∈ Sh(G2, X2) and write s1 := f(s2) ∈ Sh(G1, X1). For
simplicity, write Si := S[Ki, si] for the geometrically connected component of si[Ki] and let Ei denote
its field of definition, i = 1, 2. Let A→ S1 denote the universal abelian scheme over S1. Then the adelic
representation

π1(S2)
f→ π1(S1E2)

ρ[K1,s1]→ K1

coincides with the adelic representation attached to the abelian scheme A|S2 := A ×S1E2
S2 → S2. But,

as f : K1 ↪→ K2 is injective, one sees (4.1) that π1(S2)
f→ π1(S1E2)

ρ[K1,s1]→ K1 and ρ[K2, s2] : π1(S2) →
K2 ↪→ K1 have the same Galois-generic and `-Galois-generic points. So, consider the following assertions:



14 ANNA CADORET AND ARNO KRET

s2[K2] ∈ S2 is

(1) Galois-generic with respect to ρ[K2, s2] : π1(S2)→ K2 ⊂ G2(Af );
(2) `-Galois-generic with respect to ρ[K2, s2] : π1(S2)→ K2 ⊂ G2(Af );
(3) Galois-generic with respect to the adelic representation attached to A|S2 → S2.
(4) `-Galois-generic with respect to the adelic representation attached to A|S2 → S2.

Then, from the above, (1) ⇔ (3), (2) ⇔ (4) and from 3.3.2.2, (3) ⇔ (4). This shows Theorem A for
Shimura data of Hodge type.

6.3.2. Shimura data of abelian type Recall that a Shimura datum (G1, X1) (as well as the as-
sociated Shimura variety) is said to be of abelian type if there exists a Shimura datum (G2, X2) of
Hodge type and an isogeny f : Gder

2 → Gder
1 which induces an isomorphism of adjoint Shimura data

f : (Gad
2 , X

ad
2 )→̃(Gad

1 , X
ad
1 ). We refer to [D71, §1.2, 1.3 and 2.7] and [Mi13, §10] for a detailled account of

Shimura data of abelian type. These include essentially all Shimura data (G,X) except those for which
G has simple factors of type E6, E7 and certain type D.

We can now conclude the proof of Theorem A. Start from a `-Galois-generic point s1 ∈ Sh(G1, X1).
We may assume (4.4) that the image sad1 of s1 in Sh(Gad

1 , X
ad
1 ) ' Sh(Gad

2 , X
ad
2 ) lies in the image of

Sh(G2, X2) → Sh(Gad
2 , X

ad
2 ). Fix s2 ∈ Sh(G2, X2) above sad1 . As s1 ∈ Sh(G1, X1) is `-Galois-generic,

sad1 ∈ Sh(Gad
1 , X

ad
1 ) is `-Galois-generic ((1) ⇒ (4) in 6.1.1) and s2 ∈ Sh(G2, X2) is `-Galois-generic

((4) ⇒ (1) in 6.1.1). As (G2, X2) is of Hodge-type, s2 ∈ Sh(G2, X2) is Galois-generic (6.3.1). Thus
sad1 ∈ Sh(Gad

1 , X
ad
1 ) is Galois-generic ((1) ⇒ (4) in 6.1.1) and s1 ∈ Sh(G1, X1) is Galois-generic ((4) ⇒

(1) in 6.1.1). �

7. Proof of Theorem B

7.1. Generalized Hecke operators. Let (G,X) be a Shimura datum. Let X+ ⊂ X be a connected
component and let K ⊂ G(Af ) be a neat compact open subgroup; write Γ := G(Q)+ ∩ K. For every
a ∈ G(Af ), let Ta denote the Hecke operator ·a−1 : Sh(G,X)C→̃Sh(G,X)C and Ta,K the corresponding
algebraic correspondence

ShK(G,X)C ← Sh(G,X)C
·a−1

→̃ Sh(G,X)C → ShK(G,X)C.

It is part of the definition of a canonical model that Ta,K is defined over the reflex field E := E(G,X). For
a ∈ G(Q)+K, Ta,K restricts to an algebraic correspondence Ta,Γ (of degree 1 if a ∈ K) on ShΓ(G,X+)C,
defined over E

Ka−1 (see 4.2 for the notation)

ShΓ(G,X+)C ← Sh(G,X+))C
a·
→̃ Sh(G,X+)C → ShΓ(G,X+)C.

Here, we write Sh(G,X+)C := lim
←−
Γ

ShΓ(G,X+)C, where the projective limit is taken over all congruence

subgroups Γ ⊂ G(Q). Recall that Sh(G,X+)C identifies with the connected component of Sh(G,X)
containing the image of X+ × {1} ( [D71, 1.8]). For s = Γx ∈ ShΓ(G,X+)(C) we set

Ta,Γ(s) = {Γaγx | γ ∈ Γ}.
More generally, for a subset A ⊂ G(Q)+, we set

TA,Γ(s) :=
⋃
a∈A

Ta,Γ(s) ⊂ ShΓ(G,X+)(C)

for its A-Hecke orbit. For A = G(Q)+ we simply write TA,Γ(s) =: TΓ(s) for the full Hecke orbit of s.

Let Aut(G,X+) denote the group automorphisms of G defined over Q and stabilizing X+. For every
φ ∈ Aut(G,X+), the corresponding generalized Hecke operator Tφ is the algebraic correspondence

ShΓ(G,X+)C ← Sh(G,X+)C
φ·
→̃ Sh(G,X+)C → ShΓ(G,X+)C.

For s = Γx ∈ ShΓ(G,X+)(C) we set

Tφ,Γ(s) = {Γφ(γ)φ(x) | γ ∈ Γ}.
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More generally, for a subset Φ ⊂ Aut(G,X+), we set

TΦ,Γ(s) :=
⋃
φ∈Φ

Tφ,Γ(s) ⊂ ShΓ(G,X+)(C)

for its Φ-Hecke orbit. The usual full Hecke orbit TΓ(s) coincides with the Φ-Hecke orbit TΦ,Γ(s) for Φ the
image of G(Q)+ → Aut(G,X+) given by inner automorphisms. For Φ = Aut(G,X+) we simply write

TΦ,Γ(s) =: T̂Γ(s) for the full generalized Hecke orbit of s.

If Γ is obvious from the context, we will omit it from the notation. The above definitions of Hecke orbits
extend as they are to arithmetic subgroups Γ ⊂ G(Q)+.

For the comparison between usual Hecke orbits and generalized Hecke orbits, see [Or13, §4.1.1]; let us
only point out the following observation, which will be used in the proof of Theorem B.

Assume G is adjoint. For an arithmetic subgroup Γ ⊂ G(Q)+, write again ShΓ(G,X+)C for the complex
algebraic variety underlying Γ \X+ ( [BBo66]). Then,

7.1.1. Lemma For every congruence (resp. arithmetic) subgroup Γ ⊂ G(Q)+ there exists a congruence
(resp. an arithmetic) subgroup Γ′ ⊂ Γ such that, for every subset Φ ⊂ Aut(G,X+) and s ∈ ShΓ(G,X+),
the inverse image of TΦ,Γ(s) by pΓ′,Γ : ShΓ′(G,X

+)→ ShΓ(G,X+) is contained in a finite union of usual
Hecke orbits on ShΓ′(G,X

+).

Proof. As G is adjoint, the quotient Aut(G,X+)/G(Q)+ is finite. Choose a system of representives
φ1, . . . , φr for Aut(G,X+)/G(Q)+ and set

Γ′ :=
⋂

1≤i≤r
φi(Γ) ⊂ Γ, Γ′′ :=

⋂
1≤i≤r

φi(Γ
′) ⊂ Γ′.

Note that, by construction, if Γ is a congruence (resp. an arithmetic) subgroup then Γ′ and Γ′′ are again
congruence (resp. arithmetic) subgroups. Fix systems of representatives

- γj , j = 1, . . . s of Γ/Γ′;
- αk, k = 1, . . . t of Γ/Γ′′;
- and αi,l, l = 1, . . . , ti of φi(Γ

′)/Γ′′ for i = 1, . . . , r.

For an arbitrary element φ = a− a−1 ◦ φi ∈ Aut(G,X+), we can then compute explicitly

p−1
Γ′′,Γ(Tφ,Γ(s)) =

⋃
1≤j≤s

⋃
1≤k≤t

⋃
1≤l≤ti

Tαkaαl,i,Γ′′(φi(γjx)).

This shows that for every subset Φ ⊂ Aut(G,X+) and s ∈ ShΓ(G,X+), p−1
Γ′′,Γ(TΦ,Γ(s)) is contained in a

finite union of usual Hecke orbits on ShΓ′′(G,X
+). �

7.2. Equidistribution. Let G be a connected Q-simple algebraic group of non-compact type and let
G(R)+ ⊂ G(R) denote the connected component of 1 in G(R). Set G(Q)+ := G(Q) ∩ G(R)+. Fix an
arithmetic subgroup Γ ⊂ G(Q)+. Then Γ is a lattice in G(R)+ ( [BoH62]); let µ denote the normalized
Haar measure on Γ \ G(R)+. For a function f : Γ \ G(R)+ → C and an element a ∈ G(Q)+ define its
Hecke transform Ta(f) : Γ \G(R)+ → C by

Ta(f)(y) =
1

degΓ(a)

∑
y′∈Ta(y)

f(y′),

where degΓ(a) = |ΓaΓ/Γ| = [Γ : Γ ∩ aΓa−1].

7.2.1. Fact ( [EO06, Thm. 1.2]; see also [BuS91, ‘Thm. 5.2’]) For every sequence a = (an) of elements
in G(Q)+ with lim

n→+∞
degΓ(an) = +∞ and for every continuous bounded function f : Γ\G(R)+ → C and

y ∈ Γ\G(R)+ we have

lim
n→+∞

Tan(f)(y) =

∫
Γ\G(R)+

fdµ.
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In particular, for every y ∈ Γ\G(R)+ the set

Ta(y) :=
⋃
n≥1

Tan(y)

is dense in Γ \ G(R)+. To exploit 7.2.1, we need the following general finiteness result about Hecke
operators of bounded degree.

7.2.2. Theorem Let G be a connected semisimple group over Q of non-compact type2 and let Γ ⊂ G(Q)
be an arithmetic subgroup. Then, for every integer d ≥ 1 there are only finitely many double-classes
ΓaΓ ∈ Γ \G(Q)/Γ with degΓ(a) ≤ d.

Theorem 7.2.2 will be proved in Section 8.

Let (G,X) be a Shimura datum. Fix a connected component X+ ⊂ X and a neat arithmetic subgroup
Γ ⊂ Gder(Q)+.

7.2.3. Corollary (Compare with [P05, Thm. 7.5]) Assume G is almost Q-simple. Then, for every
sΓ ∈ ShΓ(G,X+) and for every sequence φ = (φn) in Aut(G,X+), the set Tφ,Γ(sΓ) is either finite or

Zariski-dense in ShΓ(G,X+).

Proof. Let Xad denote the Gad(R)-conjugacy class of pad◦x : S→ Gad
R for one (equivalently every) x ∈ X.

Then pad : X ↪→ Xad identifies X with a union of connected components of Xad. As Γ ⊂ Gder(Q)+,
pad : G → Gad maps Γ bijectively onto its image Γad := pad(Γ). Thus the morphism of Shimura data
pad : (G,X)→ (Gad, Xad) induces an isomorphism of schemes over C

pad : ShΓ(G,X+)→̃ShΓad(Gad, X+)

and, this isomorphism maps Tφ,Γ(sΓ) bijectively onto Tpad(φ),Γad(pad(sΓ)), where we write again

pad : Aut(G,X+)→ Aut(Gad, X+)

for the morphism of groups induced by pad : G → Gad. Thus, we may assume G is adjoint. Next,
for every arithmetic subgroup Γ′ ⊂ Γ, the quotient map pΓ′,Γ : ShΓ′(G,X

+) → ShΓ(G,X+) is a finite

cover so it is enough to prove that p−1
Γ′,Γ(Tφ,Γ(sΓ)) is finite. In particular (7.1.1), we may assume that

φn = an ∈ G(Q)+, n ≥ 0. Then, assume that the Zariski-closure Z of Ta,Γ(sΓ) in ShΓ(G,X+) is a strict
closed subscheme. Then, Z(C) ( ShΓ(G,X+)(C) = Γ\X+ is a strict closed analytic subset. As the
canonical map pΓ : Γ\G(R)+ � Γ\X+ is analytic and surjective, p−1

Γ (Z(C)) ( Γ\G(R)+ is again a strict

closed analytic subset. As p−1
Γ (Ta,Γ(sΓ)) = Ta(1) ⊂ p−1

Γ (Z(C)), we have

Ta(1)− ⊂ p−1
Γ (Z(C))− = p−1

Γ (Z(C)) ( Γ\G(R)+.

Then (7.2.1) degΓ(an) is bounded which, in turn, implies (7.2.2) that the set

{ΓanΓ | n ≥ 0} ⊂ Γ\G(Q)/Γ

is finite. Hence Ta,Γ(sΓ) = pΓ(Ta(1)) is finite as well. �

7.3. Proof of Theorem B. (Compare with [P05, Proof of Thm. 7.6]). Fix a Galois-generic point
s ∈ Sh(G,X) such that sC = G(Q)(x, 1) and let X+ ⊂ X denote the connected component of x. Setting
Γ0 := K0 ∩ G(Q)+, we then have S[K0, s] = ShΓ0(G,X+). Recall (6.1.1) that sEab ∈ Sh(G,X)Eab is
again Galois-generic. So, to prove Theorem B, we may and will work over Eab (without mentioning it
explicitly in the notation, for simplicity). Then ρ[K0] : π1(ShΓ0(G,X+))� Γ−0 is completely determined
by the tower of connected étale covers

pΓ,Γ0 : ShΓ(G,X+)→ ShΓ0(G,X+).

Let Z ↪→ ShΓ(G,X+)C be a closed subvariety containing an infinite subset T of T̂Γ(s).

2 If we remove the assumption that G is of non-compact type, 7.2.2 becomes trivially false. Indeed, if G is Q-simple of
compact type then Γ is always finite while G(Q) is always infinite.
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- Reduction to the case where s[K0] ∈ ShΓ0(G,X+) is strictly Galois-generic and Z is defined over the residue

field k(s[K0]) of s[K0]: As all the points in T̂Γ0(s) are defined over the algebraic closure of k(s[K0]),

up to replacing Z by the irreducible components of the Zariski closure of T in ShΓ0(G,X+), we may
assume Z is defined over a finite field extension F of k(s[K0]). As s[K0]F ∈ ShΓ0(G,X+)F is again
Galois-generic, up to replacing s[K0] by s[K0]F , we may assume F = k(s[K0]). Then, we can find a
congruence subgroup Γ := K ∩G(Af ) ⊂ Γ0 such that Γ− ⊂ Πs[K0] hence s[K0] lifts to a strictly Galois-

generic point s[K] ∈ ShΓ(G,X+)F (3.2.6). Then p−1
Γ,Γ0

Z ↪→ ShΓ(G,X+)F is again a closed subvariety

containing an infinite subset of T̂Γ(s[K]) (just observe that, for every φ ∈ Aut(G,X+),

p−1
Γ,Γ0

(Tφ,Γ0(s[K0])) =
⋃

γ1,γ2∈Γ0/Γ

Tφγ1,γ2 ,Γ
(s[K]F ),

where φγ1,γ2 ∈ Aut(G,X+) is defined by φγ1,γ2(g) = γ1φ(γ2)φ(g)(γ1φ(γ2))−1, g ∈ G). As it is enough to

show that p−1
Γ,Γ0

Z = ShΓ(G,X+)F , up to replacing Eab with F , ShΓ0(G,X+) with ShΓ(G,X+)F , s[K0]

with s[K] and Z with p−1
Γ,Γ0

Z, without loss of generality we may assume that s[K0] ∈ ShΓ0(G,X+) is

strictly Galois-generic and that Z is defined over F = k(s[K0]).

- Conclusion: As s[K0] is strictly Galois-generic, for every generalized Hecke operator φ ∈ Aut(G,X+),
the group π1(k(s[K0])) acts transitively on Tφ,Γ0(s[K0]) ⊂ ShΓ0(G,X+). In particular, for every φ ∈
Aut(G,X+) such that Z ∩ Tφ,Γ0(s[K0]) 6= ∅ we have Tφ,Γ0(s[K0]) ⊂ Z (recall that we assume Z is
defined over k(s[K0])). Now, consider a sequence φ = (φn) of elements in Aut(G,X+) such that Z
contains a point sn ∈ Tφn,Γ0(s[K0]), n ≥ 1 with sn 6= sm for n 6= m. Then

Tφ,Γ0(s[K0]) =
⋃
n≥1

Tφn,Γ0(s[K0]) ⊂ Z

is infinite by construction. So, the conclusion follows from 7.2.3.

8. Degree of Hecke operators

8.1. Formal lemmas. Let G be a group. For every subgroups K,K ′ ⊂ G such that K ≡ K ′, set

[K : K ′] :=
[K : K ∩K ′]
[K ′ : K ∩K ′]

∈ Q.

For a subgroup K ⊂ G, let K≡ be the set of all g ∈ G such that K and gKg−1 are commensurable.
Then K≡G ⊂ G is a subgroup containing K and for every subgroup K ′ ⊂ G such that K ′ ≡ K, we have
K≡ = K

′≡. For g ∈ K≡, define the degree of g with respect to K as

degK(g) = [K : K ∩ gKg−1] = |K\KgK|.
For subgroups K ⊂ U ⊂ G, let CorU (K) :=

⋂
u∈U uKu

−1 ⊂ K denote the largest subgroup of K which
is normalized by U . Equivalently CorU (K) is the kernel of U acting on U/K by left-translation. In
particular, if [U : K] is finite then [U : CorU (K)] is also finite and [U : CorU (K)] ≤ [U : K]!.

8.1.1. Lemma For subgroups K,K ′ ⊂ G such that K ≡ K ′ and a ∈ K≡, we have degK(a) ≤
CK,K′ degK′(a), where CK,K′ = [K : CorK(K ∩K ′)][K ′ : CorK(K ∩K ′)].

Proof Observe first that (i) if K ′ ⊂ K then degK′(a) ≤ [K : K ′] degK(a) and that (ii) if furthermore
K ′ ⊂ K is normal, then degK(a) ≤ [K : K ′] degK′(a). The proof of (i) is straightforward. As for the
proof of (ii), if K ′ ⊂ K is normal then

(∗) degK′(ka) = |K ′/K ′ ∩ kaK ′(ka)−1| = |K ′/k−1K ′k ∩ aK ′a−1| = degK′(a)

and similarly, degK′(ak) = degK′(a). Let R ⊂ K be a set of representatives for the left-cosets of K ′ in
K. By normality, R is a also a set of representatives for the right-cosets of K ′ in K. Hence,

[K : K ′] degK(a) = |K ′\K||K\KaK| = |K ′\KaK|
≤
∑
x,y∈R

|K ′\K ′xayK ′| =
∑
x,y∈R

deg(xay) = [K : K ′]2 degK′(a),
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where the last equality follows from (*). The assertion in 8.1.1 now follows from the combination of (i)
and (ii):

degK(a) ≤ [K : CorK(K ∩K ′)] degCorK(K∩K′)(a) (by (i))

≤ [K : CorK(K ∩K ′)][K ′ : CorK(K ∩K ′)] degK′(a) (by (ii)). �

8.1.2. Definition For a subgroup K ⊂ G, we say that property ?(G,K) holds if for every integer d ≥ 1
there are only finitely many K-double classes KaK ∈ K\G/K with degK(a) ≤ d.

8.1.3. Lemma Let ϕ : G′ → G be a morphism of groups and K ′ ⊂ G′, K ⊂ G two subgroups. Assume
that ker(ϕ), [G : ϕ(G′)] are finite and K ≡ ϕ(K ′) ⊂ G. Then ?(G,K) holds if and only if ?(G′,K ′) holds.

Proof First, consider the case where G′ = G and ϕ is the identity. As the situation is symmetric in K,K ′,
it is enough to show the implication ?(G,K) ⇒ ?(G′,K ′). Set K ′′ := K ∩K ′ and fix an integer d ≥ 1.

Let a ∈ K≡(= K
′≡) with degK′(a) ≤ d. From Lemma 8.1.1.(iii), degK(a) ≤ CK′,Kd. From ?(G,K),

there are only finitely many possibilities for the K-double class KaK ∈ K \ G/K. But, then, there are
also only finitely many possibilities for the K ′-double class K ′aK ′ ∈ K ′ \G/K ′ since the induced maps
K ′′\G/K ′′ → K\G/K, K ′′\G/K ′′ → K ′\G/K ′ are both surjective with finite fibers.

In particular, ?(G,K) holds if and only if ?(G,ϕ(K ′)) holds. So, in the following, we may and will assume
that K = ϕ(K ′).

Then the assumption that ker(ϕ) is finite ensures that the induced map K ′\G′/K ′ → K\G/K has finite
fibers. The implication ?(G,K)⇒ ?(G′,K ′) then follows from degK(ϕ(a′)) ≤ degK′(a

′), a′ ∈ G′.

For the implication ?(G′,K ′)⇒ ?(G,K), observe that

degK(ab) ≤ degK(a) degK(b), a, b ∈ G

(just note that KabK ⊂ KaKbK). Let ∆ denote a (finite) set of representatives of left-cosets of ϕ(G′)
in G. Then for every a ∈ G there exists (a unique) δa ∈ ∆ such that aδ−1

a = ϕ(a′) for some a′ ∈ G′. In
particular

degK′(a
′) ≤ degK(ϕ(a′)) ≤ min{degK(δ−1) | δ ∈ ∆} degK(a). �

As a result, to prove 7.2.2, we may assume that Γ ⊂ G(Q) is a congruence subgroup. So, let K ⊂ G(Af )
a compact open subgroup such that Γ = K ∩G(Q). By shrinking K, we may assume K is of the form

8.1.4.

K = KPK
P ,

where P is a finite set of primes containing the primes where G ramifies, KP =
∏
p∈P Kp with Kp ⊂ G(Qp)

compact open and KP =
∏
p/∈P Kp with Kp ⊂ G(Qp) hyperspecial.

8.2. Degree of adelic Hecke operators. In this paragraph, we reduce the adelic variant of 7.2.2 (8.2.1)
to statements (8.2.2, 8.2.5) about the degree of local (p-adic) Hecke operators.

8.2.1. Theorem Let G be a connected semisimple group over Q then ?(G(Af ),K) holds for every compact
open subgroup K ⊂ G(Af ).

8.2.2. Lemma Let G be a connected semisimple group over Qp then ?(G(Qp),K) holds for every compact
open subgroup K ⊂ G(Qp).

8.2.3. Remark More precisely, let nd(G(Qp),K) denote the number of double classes KaK, a ∈ G(Qp)
with degK(a) ≤ d and let B ⊂ G(Qp) be an Iwahori subgroup. Then

nd(G(Qp),K) ≤ |{w ∈WG | `(w) ≤
ln(CB,Kd)

ln(p)
}|,

where WG denotes the affine Weil group of G, ` : WG → Z≥0 the length function on it and CB,K is the
constant of Lemma 8.1.1.
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8.2.4. Lemma (Definition of ι(−)) Let G′ → G be an isogeny of algebraic groups over Qp. Assume that
the degree N of its kernel µ is at most p. Then there exists a constant ι(N) depending only on N (but
not on p) such that |coker(G′(Qp)→ G(Qp))| ≤ ι(N).

Proof. By the long exact sequence in Galois cohomology, it is enough to show that there exists a constant
ι(N) depending only on N such that |H1(Qp, µ(Qp))| ≤ ι(N). For this, let E/Qp denote the finite Galois

extension corresponding to the kernel of the action of π1(Qp) on µ(Qp). We have [E : Qp] ≤ N !. As p is
prime-to-N !, the number of extension of degree ≤ N !N of Qp is

c(N) :=
N !N∑
n=1

∑
d|n

n

d
.

Let EN/E denote the finite Galois extension corresponding to the open subgroup
⋂
E′ π1(E′) ⊂ π1(E),

where E′/E describes all Galois extensions of degree ≤ N in Qp/E. We have [EN : Qp] ≤ N !c(N)N .

By construction, the restriction map H1(Qp, µ(Qp)) → H1(EN , µ(Qp)) is trivial. So, by the inflation-

restriction exact sequence, we get an isomorphism H1(EN |Qp, µ(Qp))→̃H1(Qp, µ(Qp)) and we can take

ι(N) := NN !c(N)N . �

8.2.5. Lemma Let G be a connected semisimple group over Qp and let K ⊂ G(Qp) be a maximal special
compact subgroup. Assume that p > ι(|µG|). Then, for every a ∈ G(Qp), either a ∈ K or degK(a) ≥ p.

8.2.6. Proof of 8.2.1 We may assume K is of the form 8.1.4. Then, for every a ∈ G(Af ) we have
degK(a) =

∏
p degKp(a). Assume degK(a) ≤ d. If p /∈ P and p > max{d, ι(|µG|)}, 8.2.5 shows that

a ∈ Kp. But, then, the conclusion follows from 8.2.2 applied to the finitely many p which are in P or
≤ max{d, ι(|µG|)}. �

8.2.7. Remark Assume that K is of the form 8.1.4 and let nd(G(Af ),K) denote the the number of
double classes KaK, a ∈ G(Af ) with degK(a) ≤ d. Then

nd(G(Af ),K) ≤
∏

p∈P or p≤d
nd(G(Qp),Kp).

8.3. Degree of local Hecke operators. This section is devoted to the proof of 8.2.2 and 8.2.5. For an
anisotropic group G over Qp the group G(Qp) is compact [Pr82]. So it is enough to prove 8.2.2 and 8.2.5
for isotropic groups G. Then, we can use (avatars of) the Bruhat-Tits decomposition attached to the
euclidean building of G(Qp), which expresses explicitly the degree of local Hecke operators in terms of
the extended affine Weyl group of G(Qp). For 8.2.2, we may assume that G is simply connected (8.1.3).
Under this assumption, the parametrizing group of the Bruhat-Tits decomposition is a Coxeter group (the
affine Weyl group) and computations are easy. For 8.2.5, we can no longer resort to 8.1.3 and thus have
to handle the Bruhat-Tits decomposition for possibly non-simply connected G. There, the parametrizing
group of the Bruhat-Tits decomposition (the extended affine Weyl group) is a semi-direct product of a
Coxeter group by a finite group of non-preserving type automorphisms, which make computations slightly
more technical. As this is possibly less known to non-experts, we have included an expository paragraph,
which we tried and keep as self-contained as possible.

8.3.1. Review of Bruhat-Tits theory. Let G be a connected semisimple isotropic group over Qp with
Qp-split maximal torus S. The principle of Bruhat-Tits theory is to attach to G(Qp) a discrete eu-
clidean building endowed with a strongly transitive action of G(Qp). The existence of this building is
essentially equivalent to the datum of a generalized Tits system (G(Qp), B,N) and once the existence
of (G(Qp), B,N) is established, the axiomatic of Tits systems gives a combinatorial description of the
compact subgroups of G(Qp) containing B in terms of the extended affine Weyl group N/N ∩B.

We assume the reader is familiar with the formalism of Tits systems and buildings ( [Bou68, Chap
IV], [BruT72, §1, §2], [Br89], [G13]). We review below the construction of the euclidean Bruhat-
Tits building attached to G(Qp) and summarize (8.3.1.6) the consequences of this construction we
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will need. We follow closely the survey [R09], which provides a synthetic introduction to the classi-
cal [T79], [BruT72], [BruT84a], [BruT84b].

Given a group H acting on a set X and an element x ∈ X, we write Hx for the stabilizer of x in H.

Let X∗(S) and X∗(S) denote the groups of characters and cocharacters of S respectively. These are free
Z-modules of rank r = dim(S), dual to each other via the evaluation pairing X∗(S) ×X∗(S) → Z. Set
V (S) := X∗(S)⊗Z R and N := NorG(S)(Qp), Z := CenG(S)(Qp). The action of N on S by conjugation
yields

νv : N � N/Z ↪→ AutGrAlg/Qp(S) ↪→ AutZ(X∗(S)) ↪→ GL(V (S)).

8.3.1.1. The vectorial part W v of the extended affine Weyl group. The torus S acts on the Lie algebra
g of G, which decomposes accordingly as g =

⊕
α∈X∗(S) gα, where gα ⊂ g denotes the eigenspace cor-

responding to the character α ∈ X∗(S). Let Φ denote the set of all 0 6= α ∈ X∗(S) such that gα 6= 0.
Then Φ ⊂ V (S)∗ is a (not necessarily reduced) root system in the usual sense. Let W v denote the Weyl
group of Φ; we endow V (S) with a W v-invariant scalar product. For every α ∈ Φ, let rα ∈ W v denote
the orthogonal reflexion fixing ker(α). The morphism νv : N → GL(V (S)) induces an isomorphism
νv : N/Z→̃W v. We can describe more precisely elements corresponding to the reflexions rα, α ∈ Φ.
For every α ∈ Φ there exists a unique connected unipotent group Uα ↪→ G normalized by CenG(S) and
such that the induced embedding of Lie algebras uα ↪→ g identifies uα with gα ⊕ g2α. Also, for every
1 6= u ∈ Uα(Qp), the intersection U−α(Qp)uU−α(Qp)∩N consists of a single element m(u) and m(u) has
the properties that νv(m(u)) = rα ∈ N/Z 'W v ( [BoT76, §5]).

8.3.1.2. The extended affine Weyl group Ŵ . As the restriction map X∗(CenG(S)) → X∗(S) has finite
cockernel of order say m ≥ 1, for every z ∈ Z there exists a unique ν(z) ∈ V (S) such that χ(ν(z)) =
− 1
mvp(mχ(z)), χ ∈ X∗(S). This defines a morphism ν : Z → V (S) characterized by the fact that

χ(ν(s)) = −vp(χ(s)), χ ∈ X∗(S), s ∈ S(Qp). Set T̂ := ν(Z) ⊂ V (S) and Z0 := ker(ν) ⊂ Z, which is a
compact open subgroup containing S(Zp) ' (Z×p )r. The morphism ν : Z → V (S) extends ( [R09, Prop.
11.3]) to a morphism ν : N → GA(V (S)) with values in the group GA(V (S)) of affine transformations
of V (S) and which makes the following diagram commute

1 // Z //

ν

��

N //

ν

��

N/Z //

νv

��

1

1 // V (S) // GA(V (S)) // GL(V (S)) // 1,

where the left and right vertical arrows are the morphisms defined above. The extension ν : N →
GA(V (S)) is unique up to GA(V (S))-conjugacy. Write Ŵ := ν(N).

8.3.1.3. The Weyl group W and the standard appartment A(S). For every α ∈ Φ and 1 6= u ∈ Uα(Qp),

ν(m(u)) ∈ Ŵ is an orthogonal reflexion with hyperplane H(u) of direction ker(α) and

W := 〈ν(m(u)) | 1 6= u ∈ Uα(Qp), α ∈ Φ〉 C Ŵ

is a discrete affine reflexion group. Let A(S) := (V (S),W ) denote the corresponding apartment (see
[BruT72, §1.3], [R09, Part I]) and F(S) the set of its facets. For a special point x ∈ A(S), we have

W ' T oWx with T ⊂ T̂ and Wx ' Ŵx 'W v. Fix once for all a special point 0 ∈ A(S).

8.3.1.4. Parahoric and parabolic subgroups. For every α ∈ Φ, 1 6= u ∈ Uα(Qp) there exists a unique
φα(u) ∈ R such that H(u) = α−1(−φα(u)). Set φα(1) = +∞. This defines a map φα : Uα(Qp) →
] −∞,+∞] with the property that Uα,λ := φ−1

α ([λ,+∞]) ⊂ Uα(Qp) is a subgroup for every λ ∈ R. For
every x ∈ A(S), let Px ⊂ G(Qp) denote the subgroup generated by Z0 and the Uα,−α(x), α ∈ Φ. When
F = C is a chamber, P0(C) is called an Iwahori subgroup. For every facet F ⊂ A(S) define the parahoric
subgroup of type F to be the subgroup P0(F ) ⊂ G(Qp) generated by Z0 and the Uα,λ, α ∈ Φ, λ ∈ R such
that F ⊂ φ−1

α ([−λ,+∞]). Also let NF ⊂ N denote the pointwise stabilizer of F in N . Then the group
P (F ) := NFP0(F ) ⊂ G(Qp) is called the parabolic subgroup of type F .
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8.3.1.5. The building Ia(G,Qp). Let Ia(G,Qp) denote the quotient of G(Qp)× A(S) by the equivalence
relation (g, x) ∼ (g′, x′) if and only if there exists n ∈ N such that x′ = ν(n)x and g−1g′n ∈ PxNx. The
action of G(Qp) by left multiplication on the first factor of G(Qp)×A(S) induces an action on Ia(G,Qp).
And one shows that Ia(G,Qp) is an euclidean building - the Bruhat-Tits building of G over Qp - with
set of apartments gA(S), g ∈ G(Qp) and set of facets gF(S), g ∈ G(Qp). The pointwise stabilizer of a
facet gF is gP (F )g−1, the stabilizer of gA(S) is gNg−1 and the pointwise stabilizer of gA(S) is gZ0g

−1.

(See [T79, §3.4, 3.5]) Let F be a facet in Ia(G,Qp) and let G(Qp)F ⊂ G(Qp) denote the stabilizer of F
in G(Qp). Then there exists a unique smooth affine group scheme GF over Zp with generic fiber G and
with the property that GF (Ok) = G(k)F for every finite unramified extension k/Qp (here we implicitly

identify Ia(G,Qp) with its image in Ia(G, k)). Write GredF,Fp := G◦F,Fp/Ru(GF,Fp) for the connected reduc-

tive part of the reduction modulo p of GF ; as G is residually quasi-split, GredF,Fp is quasi-split. The link

of F in Ia(G,Qp) is the spherical building of GredF,Fp . In particular, when F is of codimension 1, GredF,Fp
has semi simple Fp-rank 1 and its spherical building is 0-dimensional with vertices corresponding to its
minimal parabolic subgroups. More precisely, let R denote the canonical set of generators of W (the
reflexions with respect to the walls of a chamber). If F is of type R \ {r}, let dr denote the dimension
of GredF,Fp/P , where P is a minimal parabolic subgroup. Then the number of vertices in the link of F

is pdr + 1. The classification shows that dr = 1, 2, 3 but we will only need the fact that dr ≥ 1. This
number can also be interpreted as the number of chambers in Ia(G,Qp) containing F that is3, degB(r)+1.

8.3.1.6. Non type-preserving automorphisms. The action of G(Qp) on Ia(G,Qp) is strongly transitive
(see footnote 3) but not type-preserving in general. More precisely, let G◦ ⊂ G(Qp) denote the subgroup
acting on Ia(G,Qp) by type-preserving automorphisms; this is the subgroup generated by N◦ := ν−1(W )
and the Uα(Qp), α ∈ Φ. The action of G◦ on Ia(G,Qp) remains strongly transitive [G13, §17.7]. Set
B := P0(C) for a chamber C in A(S); note that B ⊂ G◦. Then (G◦, B,N◦) is the Tits system induced
by the strongly transitive, type-preserving action of G◦ on Ia(G,Qp) [G13, §5.2]; in particular we get
the standard Bruhat-Tits decompositions [G13, §5.1-5.4]. The formalism of Tits systems (or BN -pairs)
extends (formally) to the ‘generalized’ Tits system (G(Qp), B,N). This is explained in [Bou68, IV, §2,
Ex. 8], [G13, §5.5, §14.7] (see also [Bo76, §3.1] and [T79, §2.5]), which we briefly summarize.

(1) (Structure of Ŵ ) Set Z◦ := Z ∩G◦. Since N◦ = ν−1(W ), we have W ' N◦/B ∩N◦ and the following
commutative diagram of short exact sequences

1 // T◦ := Z◦/B ∩N◦ //

�

_�

��

W = N◦/B ∩N◦ //
_�

��

W v //

'
��

1

1 // T̂ = Z/B ∩N // Ŵ = N/B ∩N // W v // 1

Let Ψ := Z/Z◦ denote the cokernel of the right (and middle) vertical arrows. As the extension

1→ T◦ → T̂ → Ψ→ 1 splits, Ŵ = W o Ψ and an explicit complement of W in Ŵ is

Ψ =
P (C) ∩N
B ∩N

' NC(B ∩N)

B ∩N
.

The order of Ψ is bounded from above by a constant which only depends on the Coxeter diagram
∆(W,R) of (W,R). Indeed, Ψ injects into Aut(∆(W,S)) and stabilizes the connected components of
∆(W,R). In our case, we can also show that Ψ is abelian. This follows for instance from the explicit
description given in [T79, §2.5]. Namely, if Ssc ⊂ Gsc is a Qp-split maximal torus mapping into S,
Zsc := CenGsc(S

sc)(Qp) and Z ′ := φ(Qp)(Z
sc) then Ψ ' Z/Z ′Z0. In particular, a rough upper bound

for |Ψ| is |Ψ| ≤ ι(|µG|).

3This follows from the fact that the action of G(Qp) on Ia(G,Qp) is strongly transitive (that is, transitive on the set of
embeddings of a chamber into an apartment): If C and rC are two chambers in a given apartment A with wall F and if
C′ is another chamber in Ia(G,Qp) containing F then there exists an apartment A′ containing C, C′ and g ∈ G(Qp) such
that gA = A′, gC = C. So g ∈ B. Also, the chambers C = gC and grC have the same wall gF = F in A′, which forces
grC = C′. This shows that the chambers containing F in Ia(G,Qp) are C and the chambers brC, b ∈ B.
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(2) (Double cosets) The map ŵ → BŵB induces a bijection

Ŵ→̃B \G(Qp)/B.

(3) (Subgroups of G(Qp) containing B) Recall that R denotes the canonical set of generators of W and
let R denote the set of pairs (Ψ′, R′) with Ψ′ ⊂ Ψ a subgroup and R′ ⊂ R a subset normalized by
Ψ′. For a subset R′ ⊂ R, let WR′ ⊂ W denote the subgroup generated by R′; if R′ ( R the group
WR′ is finite. Then the map

(Ψ′, R′)→ P(Ψ′,R′) := BWR′Ψ
′B :=

⊔
ŵ∈WR′Ψ

′

BŵB

induces a bijection from R to the set of subgroups of G(Qp) containing B.
Furthermore a subgroup P(Ψ′,R′) ( G(Qp) is a maximal compact subgroup if and only if R′ ( R,
Ψ′ = NorΨ(R′) and Ψ′ acts transitively on R \R′.

8.3.2. Proof of 8.2.2 The exact sequence

1→ µG(Qp)→ Gsc(Qp)→ G(Qp)→ H1(Qp, µG(Qp))

shows that psc(Qp) : Gsc(Qp) → G(Qp) has finite kernel and finite cokernel. So, from 8.1.3, we may
assume G is simply connected and that K = B ⊂ G(Qp) is an Iwahori subgroup. Then, from 8.3.1.6 (3),
we have the Bruhat-Tits decomposition

G(Qp) =
⊔
w∈W

BwB

As (W,R) is a Coxeter system, every element w ∈W can be written as w = r1 · · · r`(w) with r1, . . . , r`(w) ∈
R and `(w) ∈ Z≥0 minimal (called the length of w); the elements r1, . . . , r`(w) are then unique up to
permutation. Furthermore, we have

degB(w) = degB(r1) · · · degB(r`(w))

with degB(r) = pdr and dr = 1, 2, 3 for every r ∈ R (8.3.1.5). In particular, degB(w) ≥ p`(w). The
conclusion then follows from the fact that there are only finitely many elements of bounded length in a
Coxeter group.

8.3.3. Proof of 8.2.5 From 8.3.1.6 (3), K ⊂ G(Qp) is of the form

K =
⊔

ŵ∈WR′Ψ
′

BŵB

for a subset R′ ( R and a subgroup Ψ′ ⊂ Ψ such that Ψ′ = NorΨ(R′) and Ψ′ acts transitively on R \R′.
Write ŴK := WR′Ψ

′. Then, for every ŵ = wψ ∈ Ŵ we can compute (using BwBw′B = Bww′B):

KŵK = Ψ′BWR′BwψBWR′BΨ′ = Ψ′BWR′BwBψWR′ψ
−1BψΨ′ = Ψ′BWR′wψWR′ψ

−1BψΨ′ = BŴKŵŴKB

That is,

KŵK =
⊔

λ∈ŴK ŵŴK

BλB.

As a result,

|B \KŵK| =
∑

λ∈ŴK ŵŴK

degB(λ).

On the other hand,

|B \KŵK| = degK(ŵ)[K : B] = degK(ŵ)
∑
µ∈ŴK

degB(µ).

From this, we get

degK(ŵ) =

∑
λ∈ŴK ŵŴK

degB(λ)∑
µ∈ŴK

degB(µ)
.

Now, we can compute explicitly∑
µ∈ŴK

degB(µ) =
∑
ψ∈Ψ

∑
w∈WR′

degB(w) = |Ψ|(1 +
∑

16=w∈WR′

degB(w)) ≡ |Ψ| [p].
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Write
ŴK \ ŴKŵŴK = S1 t S2,

where S1 denote the set of left cosets ŴKλ such that ŴKλ ∩Ψ 6= ∅. Then, for C ∈ S1 we have∑
λ∈C

degB(λ) =
∑
λ∈ŴK

degB(λ)

hence

degK(ŵ) = |S1|+
∑

C∈C2
∑

λ∈C degB(λ)∑
µ∈ŴK

degB(µ)
.

But for C ∈ S2 and λ ∈ C we have λ = wψ with 1 6= w ∈W and ψ ∈ Ψ. In particular, degB(λ) = degB(w)
is a power of p. As degK(ŵ) is an integer and

∑
µ∈ŴK

degB(µ) ≡ |Ψ| [p] is non-zero (this is where we use

the assumption p > ι(|µG|)(≥ |Ψ|)), it is thus enough to prove that if ŵ /∈ ŴK then S2 6= ∅. This follows
from the maximality of K. Indeed, otherwise, we may assume that ŵ = ψ ∈ Ψ \Ψ′. Then the following
holds

(∗) For every w ∈ ŴK there exists ψ(w,ψ) ∈ Ψ \Ψ′, w(w,ψ) ∈ ŴK such that ψw = w(w,ψ)ψ(w,ψ).

But, then,

ŴKψ(w,ψ)ŴK = ŴKψŴK

thus ψ(w,ψ) satisfies again (∗). This shows that the subgroup generated by ŴK and ψ in Ŵ is of the

form ŴK o Ψ′′ for some subgroup Ψ′ ( Ψ′′ ⊂ Ψ, which contradicts the maximality of K. �

8.4. Proof of 7.2.2. Recall that we may assume that Γ = G(Q) ∩K for a compact open subgroup K
as in 8.1.4. So we will take K =

∏
pKp with Kp ⊂ G(Qp) compact open (which we could even assume to

be maximal) for every p and hyperspecial for p /∈ P, where P denotes the finite set of primes where G
ramifies. Also, recall that Γ− ⊂ G(Af ) denotes the closure of Γ for the adelic topology.

8.4.1. Lemma For every a ∈ G(Q) the canonical map ϕa : Γ\ΓaΓ→ Γ−\Γ−aΓ− is bijective. In particu-
lar degΓ(a) = degΓ−(a).

Proof. We first prove that ϕa is injective. Let Γaγ,Γaγ′ ∈ Γ\ΓaΓ such that Γ−aγ = Γ−aγ′ that is there

exists γ− ∈ Γ− such that aγ = γ−aγ′. But, then γ− = aγγ
′−1a−1 ∈ Γ− ∩G(Q) = Γ. Thus Γaγ = Γaγ′.

We now show that ϕa is surjective. As ϕa : Γ \ ΓaΓ ↪→ Γ− \ Γ−aΓ− is injective and both sets are finite,
it is enough to prove that degΓ−(a) ≤ degΓ(a). For this, fix a set of representatives R of Γ \ ΓaΓ and
observe that

Γ−aΓ− = (ΓaΓ)− = (
⊔
b∈R

Γb)− =
⋃
b∈R

(Γb)− =
⋃
b∈R

Γ−b.

Here, the first equality follows from the fact that Γ− is compact (to prove that (ΓaΓ)− ⊂ Γ−aΓ−). �

8.4.2. Lemma The canonical map ϕ : Γ\G(Q)/Γ → K\G(Af )/K has finite fibers. More precisely, for
every a ∈ G(Q), |ϕ−1(ϕ(a))| ≤ degK(a).

Proof. Let a ∈ G(Q) and let R ⊂ G(Q) be a set of representatives for ϕ−1(KaK). Since Γ = G(Q) ∩K,
the map Γ\G(Q)→ K\G(Af) is injective hence restricts to an injective map

Γ\
⊔
b∈R

ΓbΓ =
⊔
b∈R

Γ\ΓbΓ −→ K\KaK.

Because the union is disjoint, we get

|R| ≤

∣∣∣∣∣⊔
b∈R

Γ\ΓbΓ

∣∣∣∣∣ ≤ |K\KaK| = degK(a). �

For simply connected groups G of non-compact type, the proof is now complete: let nd(G(Q),Γ) denote
the number of double classes ΓaΓ with a ∈ G(Q) and degΓ(a) ≤ d. By strong approximation, Γ− = K. So
degΓ(a) = degK(a) (8.4.1) and nd(G(Q),Γ) ≤ dnd(G(Q),K) ≤ dnd(G(Af ),K) (8.4.2). So the conclusion
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follows from 8.2.1.

In the non-simply connected case, we can no longer apply 8.4.1 directly.

8.4.3. Lemma There exists an integer r(G,K) ≥ 1 and a compact normal subgroup H ⊂ K such that
H ≡ Γ− and for every p, Hp ⊂ G(Qp) is compact open and [Kp : Hp] ≤ r(G,K).

Proof. Set Ksc
p = (psc)−1(Kp) ⊂ Gsc(Qp) and Ksc :=

∏
pK

sc
p ⊂ G(Af ). Then Ksc

p ⊂ Gsc(Qp) is compact

open for every p and hyperspecial for p /∈ P. Set Hp := CorKp(p
sc(Ksc

p )) for p ∈ P and Hp := psc(Ksc
p )

otherwise. We claim that H =
∏
pHp ⊂ K works. Indeed, for p /∈ P the short exact sequence

1→ µG → Gsc p
sc

→ G→ 1

extends to a short exact sequence of smooth group schemes over Zp with Ksc
p = Gsc(Zp), Kp = G(Zp).

Taking the reduction modulo p and Fp-points, we obtain a short exact sequence of finite groups

1→ µG(Fp)→ Gsc(Fp)
psc→ G(Fp)→ 1.

Since Zurp (the integral closure of Zp in the maximal unramified extension Qur
p of Qp) is Henselian, by

smoothness (see [PlR94, Lemma 6.5, p. 295] for details) we get a short exact sequence

1→ µG(Zurp )→ Gsc(Zurp )
psc→ G(Zurp )→ 1.

Taking the Gal(Qur
p /Qp)-invariants, we obtain

Hp = ker(Kp → H1(Gal(Qur
p /Qp), µG(Zur

p ))).

In particular, Hp is normal in Kp (thus H is normal in K as required) and

(8.1) [Kp : Hp] ≤ |H1(Gal(Qur
p /Qp), µG(Zur

p ))| ≤ |µG|.

The last inequality comes from the fact that Gal(Qur
p /Qp) ' Ẑ is procyclic hence [S68, Chap. XIII, §1,

Prop. 1]

H1(Gal(Qur
p /Qp), µG(Zur

p )) = µG(Zur
p )Gal(Qur

p /Qp)

(the maximal trivial Gal(Qur
p /Qp)-quotient of µG(Zur

p )). So we can take

r(G,K) := max{[Kp : Hp] | p ∈ P or p < pK} ∪ {|µG|}.

It remains to show that Γ−, H ⊂ G(Af ) are commensurable. As Γsc ⊂ Gsc(Q) is arithmetic and psc : Gsc →
G is surjective, the group psc(Γsc) ⊂ G(Q) is again arithmetic [PlR94, Thm. 4.1] hence [Γ : psc(Γsc)]
is finite. Thus [Γ− : psc((Γsc)−)](≤ [Γ : psc(Γsc)]) is finite as well. But, by strong approximation,
(Γsc)− = Ksc and by the continuity of psc and the compacity of (Γsc)−,

psc(Γsc)− = psc((Γsc)−) = psc(Ksc) = H. �

8.4.4. Lemma For every integer d ≥ 1 there are only finitely double-classes KaK ∈ K\G(Q)/K with
degΓ−(a) ≤ d.

Proof. Let a ∈ G(Q) with degΓ−(a) ≤ d and let H be as in 8.4.3. Then dCH,Γ− ≥ degH(a) =
∏
p degHp(a)

and degHp(a) ≥ degKp(a)/r(G,K) (8.1.1). Set

µ(G,K, d) := max{ι(|µG|), r(G,K)dCH,Γ−}.

Then (8.2.5), for p /∈ P, p > µ(G,K, d), we have a ∈ Kp. Set ν(G,K, d) := ι(|µG|)dr(G,K)CH,Γ− and

N(G,K, d) := |P|+ |{p /∈ P, p ≤ ν(G,K, d)}|

Then (8.1.1),

degK(a) =
∏
p∈P

degKp(a)
∏

p/∈P, p≤ν(G,K,d)

degKp(a) ≤ r(G,K)N(G,K,d) degH(a) ≤ r(G,K)N(G,K,d)dCH,Γ− .

The conclusion thus follows from 8.2.1. �
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8.4.5. End of the proof of 7.2.2 Let a ∈ G(Q) such that degΓ(a) ≤ d. Then degΓ−(a) = degΓ(a) ≤ d
(8.4.1). So there are only finitely many possibilities for the set of double-classes KaK ∈ K\G(Q)/K
(8.4.4) hence only finitely many possibilities for the set of double-classes ΓaΓ ∈ Γ\G(Q)/Γ (8.4.2).

8.4.6. Remark Fix once for all K0 ⊂ G(Af ) compact open of the form 8.1.4. Let K ⊂ G(Af ) be an
arbitrary compact open subgroup and set Γ := K ∩ G(Q), Γ0 := K0 ∩ G(Q). Then, the proof yields an
explicit estimate

nd(G(Q),Γ) ≤ A[Γ0 : Γ ∩ Γ0]2(dCΓ0,Γ)Bα(dCΓ0,Γ
) ln(dCΓ0,Γ

)+β(dCΓ0,Γ
)+γ ,

where A, B, α, β, γ are absolute constants depending only on the group-theoretical data Γ0, P, WG etc.
but not on d nor on Γ.

9. Alternative approaches to 7.2.2

9.1. An ergodic proof of 7.2.2. The argument below was explained to us by Hee Oh. We use the
notation of [EO06, Thm.1.2]. If we have infinitely many distinct ΓaiΓ whose degree is bounded by d,
then the associated ∆(G)-invariant measures ν̃ai have a weak-limit ν̃. There are two possibilities for ν̃ as
discussed in the proof: either ν̃ is supported in the closed ∆(G)-invariant measure or is a G×G invariant
measure. In the first case, the proof shows that the sequence [(e, ai)]∆(G) has a constant sub-sequence; or
equivalently, that the sequence ΓaiΓ has a constant subsequence, contradicting the assumption that they
are distinct. The second case where ν̃ is G×G-invariant cannot happen; since this is equivalent to Γ\ΓaiΓ
is equidistributed in Γ\G(R); but Γ\ΓaiΓ has at most d points, so cannot possibly be equidistributed.

We do not know whether 8.2.1 can be recovered from 7.2.2 hence be proved by ergodic technics. In any
case, our proof relies on different arguments (Bruhat-Tits, strong approximation) and is effective.

It was also mentionned to us by an anonymous referee that, when G is Q-split, [GO03, Prop. 6.1] gives
an effective bound for the degree of Hecke operators; the proof of [GO03, Prop. 6.1] involves elements of
Bruhat-Tits theory in the split case.

9.2. Masser-Wüstholz isogeny theorem. One key ingredient of the proof of [Or13, Thm. 1.5 (ii)] is
(a generalization to finitely generated field of characteristic 0 of) the Masser-Wüstholz isogeny theorem
( [MW93], [Or13, Thm. 5.2]). Using it, the existence of closed Galois-generic points on Shimura varieties
of abelian type (Theorem A) and technical arguments from Orr’s thesis, we can give an alternative (and,
again, effective) proof of the fact that on a connected Shimura variety of adjoint abelian type, there are
only finitely many Hecke operators of bounded degree.

9.2.1. Lemma Let (G,X+) be a connected Shimura datum of abelian type. Then, for every arithmetic
subgroup Γ ⊂ G(Q), s ∈ ShΓ(G,X+) with residue field k = k(s) and integer d ≥ 1 there are only finitely

many t ∈ T̂Γ(s) with [k(t) : k] ≤ d.

Proof. It is enough to prove the assertion when G is adjoint and for an ordinary Hecke orbit. By [Or13,
Thm. 4.6], this case, in turn, reduces to the case of an ordinary Hecke orbit in the Siegel moduli space
Ag := ShGSp2g(Z)(GSp2g,H+

g ). This allows to use the modular interpretation of Ag as a coarse moduli

space for g-dimensional principally polarized abelian varieties and the fact that Hecke orbits on Ag
correspond to isogeny classes of such objects (here we say that (A, λA) is isogenous to (B, λB) if there
is an isogeny f : A → B and an integer N ≥ 1 such that f∨ ◦ λB ◦ f = NλA). Let a ∈ Ag with

residue field k = k(a) and b ∈ TΓ(a) with [k(b) : k] ≤ d. Over k, a and b correspond to isogenous
g-dimensional principally polarized abelian varieties (Ak, λAk) and (Bk, λBk). Let δ denote the order of

GSp2g(F3). Then4 (Ak, λAk) admits a model (A, λA) over a finite field extension L of k with [L : k] ≤ δ
and (Bk, λBk) admits a model (B, λB) over finite field extension L(b) of k(b) with [L(b) : k(b)] ≤ δ.

4Explicitly, let GSp2g(3) denote the kernel of the reduction modulo-3 morphism GSp2g(Z) → GSp2g(F3) and write

Ag,3 := ShGSp2g(Z)(3)(GSp2g,H+
g ). Then L (resp. L(b)) can be taken to be the residue field of any point in the fiber over a

(resp. b) of Ag,3 → Ag.
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From [Or13, Thm. 5.2] (see also [MW93])), there exists constants c(A,L) and κ(g) (independent of B)
and an isogeny f : Ak → Bk of degree

deg(f) ≤ c(A,L)[L.L(b) : L]κ(g) ≤ (c(A,L)δ2κ(g))dκ(g).

As f : Ak → Bk is uniquely determined by its kernel, there are - up to k-isomorphism - only finitely
many possibilities for Bk hence for (Bk, λBk) ( [Mi86, Thm. 18.1]). �

Now, let (G,X+) be a connected Shimura datum of adjoint abelian type and Γ ⊂ G(Q) a neat congruence
subgroup. Fix a closed Galois-generic point s ∈ ShΓ(G,X+) with residue field k(s) = k. Up to replacing
Γ by a smaller congruence subgroup, we may assume that s is strictly Galois-generic. Then,

- As s is strictly Galois-generic, for every a ∈ G(Q)+ and t ∈ TΓ,a(s) we have degΓ(a) = [k(t) : k];
- As Γ is neat, for every a, b ∈ G(Q)+, the following properties are equivalent:

(1) TΓ,a(s) ∩ TΓ,b(s) 6= ∅;
(2) TΓ,a(s) = TΓ,b(s);
(3) ΓaΓ = ΓbΓ.

Combining these observations with Lemma 9.2.1, we see that the number of Hecke operators of bounded
degree ≤ d on ShΓ(G,X+) is finite and bounded from above by the number of t ∈ TΓ(s) with [k(t) : k] ≤ d.
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Centre de Mathématiques Laurent Schwartz - Ecole Polytechnique,
91128 PALAISEAU, FRANCE.

arnokret@gmail.com
Faculty of Science, Korteweg-de Vries Instituut, Postbus 94248,
1090 GE AMSTERDAM, THE NETHERLANDS


	1. Introduction
	1.1. Existence
	1.2. Equidistribution; the André-Pink conjecture

	2. Notation and conventions
	3. Galois-generic and strictly Galois-generic points
	3.1. Galois-generic points
	3.1.1. 

	3.2. Elementary properties of Galois-generic and strictly Galois-generic points
	3.2.1. 
	3.2.2. 
	3.2.3. 
	3.2.4. 
	3.2.5. 
	3.2.6. 

	3.3. The -GG  GG problem
	3.3.1. -Galois-generic points
	3.3.2. Motivic representations


	4. Adelic representations attached to Shimura varieties
	4.1. 
	4.2. 
	4.3. 
	4.4. Galois-generic points
	4.5. 

	5. Group-theoretical preliminaries
	5.1. 
	5.2. 
	5.3. 
	5.4. 
	5.5. 

	6. Galois-generic points for adelic representations attached to Shimura varieties
	6.1. Comparison with Pink's definition
	6.1.1. 

	6.2. Galois-generic versus Hodge-generic points
	6.2.1. 
	6.2.2. 

	6.3. Proof of Theorem A
	6.3.1. 
	6.3.2. 


	7. Proof of Theorem B
	7.1. Generalized Hecke operators
	7.1.1. 

	7.2. Equidistribution
	7.2.1. 
	7.2.2. 
	7.2.3. 

	7.3. Proof of Theorem B 

	8. Degree of Hecke operators
	8.1. Formal lemmas
	8.1.1. 
	8.1.2. 
	8.1.3. 
	8.1.4. 

	8.2. Degree of adelic Hecke operators
	8.2.1. 
	8.2.2. 
	8.2.3. 
	8.2.4. 
	8.2.5. 
	8.2.6. 
	8.2.7. 

	8.3. Degree of local Hecke operators
	8.3.1. Review of Bruhat-Tits theory
	8.3.2. 
	8.3.3. 

	8.4. Proof of ??
	8.4.1. 
	8.4.2. 
	8.4.3. 
	8.4.4. 
	8.4.5. 
	8.4.6. 


	9. Alternative approaches to ??
	9.1. An ergodic proof of ??
	9.2. Masser-Wüstholz isogeny theorem
	9.2.1. 


	References

