
ar
X

iv
:1

30
1.

21
11

v4
  [

m
at

h.
R

T
] 

 3
1 

D
ec

 2
01

4

DIFFERENTIAL SYMMETRY BREAKING OPERATORS.
I. GENERAL THEORY AND F-METHOD.

TOSHIYUKI KOBAYASHI, MICHAEL PEVZNER

Abstract. We prove a one-to-one correspondence between differential symmetry
breaking operators for equivariant vector bundles over two homogeneous spaces
and certain homomorphisms for representations of two Lie algebras, in connection
with branching problems of the restriction of representations.

We develop a new method (F-method) based on the algebraic Fourier transform

for generalized Verma modules, which characterizes differential symmetry breaking
operators by means of certain systems of partial differential equations.

In contrast to the setting of real flag varieties, continuous symmetry breaking
operators of Hermitian symmetric spaces are proved to be differential operators in
the holomorphic setting. In this case symmetry breaking operators are character-
ized by differential equations of second order via the F-method.

Key words and phrases: branching laws, F-method, symmetric pair, invariant the-

ory, Verma modules, Hermitian symmetric spaces.
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1. Introduction

Let W → Y and V → X be two vector bundles with a smooth map p ∶ Y → X .
Then we can define “differential operators” D ∶ C∞(X,V) → C∞(Y,W) between the
spaces of smooth sections (Definition 2.1).
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2 TOSHIYUKI KOBAYASHI, MICHAEL PEVZNER

Suppose that G′ ⊂ G is a pair of Lie groups acting equivariantly on W → Y

and V → X , respectively, and that p is G′-equivariant. The object of the present
work is the study of G′-intertwining differential operators (differential symmetry
breaking operators). If W is isomorphic to the pull-back p∗V, then the restriction
map f ↦ f ∣Y is obviously a G′-intertwining operator (and a differential operator
of order zero). In the general setting where there is no morphism from p∗V to W ,
non-zero G′-intertwining differential operators may and may not exist.

Suppose that G acts transitively on X and G′ acts transitively on Y . We write
X = G/H and Y = G′/H ′ as homogeneous spaces. The first main result is a duality
theorem that gives a one-to-one correspondence between G′-intertwining differential
operators and (g′,H ′)-homomorphisms for induced representations of Lie algebras
(see Corollary 2.10 for the precise notation):

Theorem A. Suppose H ′ ⊂H. Then there is a natural bijection:

(1.1) DX→Y ∶ Hom(g′,H′)(ind
g′

h′(W
∨), indg

h(V
∨)) ∼Ð→ DiffG′ (VX ,WY ) .

This generalizes a well-known result in the case where G and G′ are the same
reductive group and where X and Y are the same flag variety ([Kos74, HJ82]).

By a branching problem we wish to understand how a given representation of a
group G behaves when restricted to a subgroup G′. For a unitary representation π
of G, branching problems concern a decomposition of π into the direct integral of
irreducible unitary representations of G′ (branching law).

More generally, for non-unitary representations π and τ of G and G′, respectively,
we may consider the space HomG′ (π∣G′, τ) of continuous G′-homomorphisms. The
right-hand side of (1.1) concerns branching problems with respect to the restric-
tion from G to G′, whereas the left-hand side of (1.1) concerns branching laws of
“generalized Verma modules”.

If DiffG′ (VX ,WY ) in (1.1) is one-dimensional, we may regard its generator as
canonical up to a scalar and be tempted to find an explicit description for such a
natural differential symmetry breaking operator. It should be noted that seeking ex-
plicit formulæ of intertwining operators is much more involved than finding abstract
branching laws, as we may observe with the celebrated Rankin–Cohen brackets which
appear as symmetry breaking operators in the decomposition of the tensor product
of two holomorphic discrete series representations of SL(2,R) (see [DP07, KP14-2]
for a detailed discussion).

The condition dimDiffG′ (VX ,WY ) ≤ 1 is often fulfilled when h is a parabolic
subalgebra of g with abelian nilradical, (see [K14, Theorem 2.7]). Moreover, finding
all bundles WY for which such nontrivial intertwining operators exist is a part of the
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initial problem, which reduces to abstract branching problems (see [KP14-2, Fact
??]).

We propose a new method to find explicit expressions for differential symmetry
breaking operators appearing in this geometric setting. We call it the F-method,
where F stands for the Fourier transform. More precisely, we consider an “algebraic
Fourier transform” of generalized Verma modules, and characterize symmetry break-
ing operators by means of certain systems of partial differential equations. If h is a
parabolic subalgebra with abelian nilradical, then the system is of second order al-
though the resulting differential symmetry breaking operators may be of any higher
order. The characterization is performed by applying an algebraic Fourier transform
(see Definition 3.1). A detailed recipe of the F -method is described in Section 4.4
relying on Theorem 4.1 and Proposition 3.11.

In general, the symmetry breaking operators between two principal series represen-
tations of real reductive Lie groups G′ ⊂ G are given by integro-differential operators
in geometric models. Among them, equivariant differential operators are very special
(e.g. [KnSt71] for G′ = G and [KS14] for G′ ⫋ G). However, in the case where X
is a Hermitian symmetric space, Y a subsymmetric space, G′ ⊂ G are the groups
of biholomorphic transformations of Y ↪ X , respectively, we prove the following
localness and extension theorem:

Theorem B. Any continuous G′-homomorphism from O(X,V) to O(Y,W) is given
by a holomorphic differential operator, which extends to the whole flag variety.

See Theorem 5.3 for the precise statement. Theorem B includes the case of the
tensor product of two holomorphic discrete series representations corresponding to
the setting where G ≃ G′ ×G′ and X ≃ Y × Y as a special case.

In the second part of the work [KP14-2] we apply the F-method to Hermitian sym-
metric spaces to find explicit formulæ of differential symmetry breaking operators
in the six parabolic geometries arising from symmetric pairs of split rank one.

The authors are grateful to the referee for his/her enlightening remarks and for
suggesting to divide the original manuscript into two parts and to write more detailed
proofs and explanations for the first part not only for specialists but also for broader
audience. Special thanks are also due to Dr. T. Kubo who read very carefully the
revised manuscript and made constructive suggestions on its readability.

Notation: N = {0,1,2,⋯}.
2. Differential intertwining operators

In this section we discuss equivariant differential operators between sections of
homogeneous vector bundles in a more general setting than the usual. Namely,
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we consider vector bundles admitting a morphism between their base spaces. In
this generality, we establish a natural bijection between such differential operators
(differential symmetry breaking operators) and certain homomorphisms arising from
the branching problems for infinite-dimensional representations of Lie algebras, see
Theorem 2.9 (duality theorem).

2.1. Differential operators between two manifolds. We understand the notion
of differential operators between two vector bundles in the usual sense when the
bundles are defined over the same base space. We extend this terminology in a more
general setting, where there exists a morphism between base spaces. Let V → X

be a vector bundle over a smooth manifold X . We write C∞(X,V) for the space of
smooth sections, which is endowed with the Fréchet topology of uniform convergence
of sections and their derivatives of finite order on compact sets. Let W → Y be
another vector bundle, and p ∶ Y →X a smooth map between the base spaces.

Definition 2.1. We say that a continuous linear map T ∶ C∞(X,V) → C∞(Y,W) is
a differential operator if T satisfies

(2.1) p (SuppTf) ⊂ Supp f for any f ∈ C∞(X,V).
We write Diff(VX ,WY ) for the vector space of differential operators from C∞(X,V)
to C∞(Y,W).

The condition (2.1) shows that T is a local operator in the sense that for any open
subset U of X , T induces a continuous linear map:

TU ∶ C∞(U,V∣U) Ð→ C∞ (p−1(U),W∣p−1(U)) .

Remark 2.2. If X = Y and p is the identity map, then the condition (2.1) is equivalent
to T being a differential operator in the usual sense owing to Peetre’s celebrated
theorem [Pee59]. Our proof of Lemma 2.3 in this special case gives an account of
this classical theorem by using the theory of distributions due to L. Schwartz [S66].

Let ΩX ∶= ∣ ⋀top T ∨(X)∣ be the bundle of densities. For a vector bundle V → X , we
set V∨ ∶=∐x∈X V∨x where V∨x ∶= HomC(Vx,C), and denote by V∗ the dualizing bundle
V∨ ⊗ ΩX . In what follows D′(X,V∗) (respectively, E ′(X,V∗)) denotes the space of
V∗-valued distributions (respectively, those with compact support). We shall regard
distributions as generalized functions à la Gelfand rather than continuous linear
forms on C∞c (X) or C∞(X). In particular, we sometimes write as

(2.2) E ′(X,ΩX) → C, ω ↦ ∫
X
ω,
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to denote the natural pairing ⟨ω,1X⟩ of ω with the constant function 1X on X .
Composing (2.2) with the contraction on the fiber, we get a natural bilinear map

(2.3) C∞(X,V) × E ′(X,V∗)→ C, (f,ω)↦ ⟨f,ω⟩ = ∫
X
fω.

Let V∗ ⊠W denote the tensor product bundle over X × Y of the two vector bundles
V∗ →X andW → Y . Then for any continuous linear map T ∶ C∞(X,V) → C∞(Y,W)
there exists a unique distribution KT ∈ D′(X × Y,V∗ ⊠W) such that the projection
on the second factor pr2 ∶ X × Y → Y is proper on the support of KT and such that

(Tf)(y) = ⟨KT (⋅, y), f(⋅)⟩ for any f ∈ C∞(X,V),
by the Schwartz kernel theorem.

Given a map p ∶ Y → X , we set

∆(Y ) ∶= {(p(y), y) ∶ y ∈ Y } ⊂X × Y.
The following lemma characterizes differential operators by means of the distribution
kernels KT .

Lemma 2.3. Let p ∶ Y →X be a smooth map. A continuous operator T ∶ C∞(X,V) →
C∞(Y,W) is a differential operator in the sense of Definition 2.1 if and only if
SuppKT ⊂ ∆(Y ).
Proof. Suppose SuppKT ⊂ ∆(Y ). Let (xo, yo) ∈ ∆(Y ) and take a neighborhood U
of xo = p(yo) in X and a neighborhood U ′ of yo in Y such that U ′ ⊂ p−1(U). We
trivialize the bundles locally as V ∣U ≃ U×V andW ∣U ′ ≃ U ′×W . Let (x1,⋯, xm) be the
coordinates in U . According to the structural theory of distributions supported on a
submanifold ∆Y ⊂ X×Y [S66, Chapter III, Théorème XXXVII], there exists a unique
family hα(y) ∈ D′(U ′)⊗W for a finite number of multi-indices α = (α1,⋯, αm) ∈ Nm,
such that ⟨KT , f⟩ ∈ D′(U ′) ⊗HomC(V,W ) is locally given as a finite sum

(2.4) ∑
α

hα(y)∂∣α∣f
∂xα
(p(y)),

for every f ∈ C∞(X,V). Hence ⟨KT , f⟩∣U ′ = 0 if f ∣U = 0. Thus T is a differential
operator in the sense of Definition 2.1.

Conversely, take any (xo, yo) ∈ SuppKT . By the definition of the distribution
kernel KT , for any neighborhood S of xo in X there exists f ∈ C∞(X,V) such that
Suppf ⊂ S and (xo, yo) ∈ Supp f × SuppTf . If T is a differential operator then by
(2.1)

p(SuppTf) ⊂ Supp f ⊂ S.
Since S is an arbitrary neighborhood of xo, p(yo) must coincide with xo. Hence
SuppKT ⊂ ∆(Y ). �



6 TOSHIYUKI KOBAYASHI, MICHAEL PEVZNER

By (2.4), the terminology “differential operators” in Definition 2.1 is justified as
follows:

Example 2.4. (1) Let p ∶ Y ↠ X be a submersion. Choose an atlas of local
coordinates {(xi, zj)} on Y in such a way that {xi} form an atlas on X.
Then, every T ∈ Diff(VX ,WY ) is locally of the form

∑
α∈NdimX

hα(x, z) ∂∣α∣
∂xα

(finite sum),
where hα(x, z) are Hom(V,W )-valued smooth functions on Y .

(2) Let i ∶ Y ↪ X be an immersion. Choose an atlas of local coordinates {(yi, zj)}
onX in such a way that {yi} form an atlas on Y . Then, every T ∈ Diff(VX ,WY )
is locally of the form

∑
(α,β)∈NdimX

gαβ(y) ∂∣α∣+∣β∣
∂yα∂zβ

(finite sum),
where gα,β(y) are Hom(V,W )-valued smooth functions on Y .

Next, suppose that the two vector bundles V → X and W → Y are equivariant
with respect to a given Lie groupG. Then we have natural actions ofG on the Fréchet
spaces C∞(X,V) andC∞(Y,W) by translations. Denote by HomG(C∞(X,V),C∞(Y,W))
the space of continuous G-homomorphisms. We set

DiffG(VX ,WY ) ∶= Diff(VX ,WY ) ∩HomG(C∞(X,V),C∞(Y,W)).(2.5)

Example 2.5. Suppose X and Y are both Euclidean vector spaces with an injec-
tive linear map p ∶ Y ↪ X. If G contains the subgroup of all translations of Y
then DiffG(VX ,WY ) is a subspace of the space of differential operators with constant
coefficients.

An analogous notion can be defined in the holomorphic setting. Let V → X and
W → Y be two holomorphic vector bundles with a holomorphic map p ∶ Y → X

between the complex base manifolds X and Y . We say a differential operator T ∶
C∞(X,V) → C∞(Y,W) is holomorphic if

TU(O(U,V ∣U)) ⊂ O(p−1(U),W ∣p−1(U))
for any open subset U of X . We denote by Diffhol(VX ,WY ) the vector space of
holomorphic differential operators. When a Lie group G acts biholomorphically on
the two holomorphic vector bundles V →X and W → Y , we set

Diffhol
G (VX ,WY ) ∶= Diffhol(VX ,WY ) ∩HomG(C∞(X,V),C∞(Y,W)).
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2.2. Induced modules. Let g be a Lie algebra over C, and U(g) its universal
enveloping algebra. Let h be a Lie subalgebra of g.

Definition 2.6. For an h-module V , we define the induced U(g)-module indg

h(V ) as
indg

h(V ) ∶= U(g) ⊗U(h) V.
If h is a Borel subalgebra and dimV = 1, then the g-module indg

h(V ) is the Verma
module.

For later purposes we formulate the following statement in terms of the contragre-
dient representation V ∨. Let h′ be another Lie subalgebra of g.

Proposition 2.7. For a finite-dimensional h′-module W we have:

(1) Homg(indg

h′(W ∨), indg

h(V ∨)) ≃ Homh′(W ∨, indg

h(V ∨)).
(2) If h′ /⊂ h, then Homh′(W ∨, indg

h(V ∨)) = {0}.
Proof. The first statement is due to the functoriality of the tensor product.

For the second statement it suffices to treat the case where h′ is one-dimensional.
Then the assumption h′ /⊂ h implies that h′ ∩ h = {0}, and therefore there is a direct
sum decomposition of vector spaces:

g = h′ + q + h,
for some subspace q in g. We fix a basis X1,⋯,Xn of q, and define a subspace of
U(g) by

U ′(q) ∶= C-span {Xα1

1 ⋯Xαn
n ∶ (α1,⋯, αn) ∈ Nn} .

Then, by the Poincaré–Birkhoff–Witt theorem we have an isomorphism of h′-modules:

indg

h(V ∨) ≃ U(h′) ⊗C U
′(q) ⊗C V

∨.

In particular, indg

h(V ∨) is a free U(h′)-module. Hence there does not exist a non-zero

finite-dimensional h′-submodule in the g-module indg

h(V ∨). �

Remark 2.8. We shall see in Theorem 2.9 that dimCHomg′(indg′

h′(W ∨), indg

h(V ∨)) is
equal to the dimension of the space of differential symmetry breaking operators from
C∞(X,V) to C∞(Y,W) when H ′ is connected. In [KP14-2, Section ??], we give a
family of sextuples (g,g′,h,h′, V,W ) such that this dimension is one.

2.3. Duality theorem for differential operators between two homogeneous
spaces. Let G be a real Lie group, and g(R) ∶= Lie(G). We denote by U(g) the uni-
versal enveloping algebra of the complexified Lie algebra g ∶= g(R) ⊗R C. Analogous
notations will be applied to other Lie groups.

Let H be a closed subgroup of G. Given a finite-dimensional representation λ ∶
H → GLC(V ) we define the homogeneous vector bundle VX ≡ V ∶= G ×H V over
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X ∶= G/H . As a G-module, the space C∞(X,V) of smooth sections is identified with
the following subspace of C∞(G,V ) ≃ C∞(G) ⊗ V :

C∞(G,V )H ∶={f ∈ C∞(G,V ) ∶ f(gh) = λ(h)−1f(g) for any g ∈ G,h ∈ H}
≃{F ∈ C∞(G) ⊗ V ∶ λ(h)F (gh) = F (g) for any g ∈ G, h ∈H}.

In dealing with a representation V of a disconnected subgroup H (e.g. H is a
parabolic subgroup of a real reductive Lie group G), we notice that the diagonal
H-action on U(g)⊗C V ∨ defines a representation of H on indg

h(V ∨) = U(g)⊗h V ∨ and
thus indg

h(V ∨) is endowed with a (g,H)-module structure.

Theorem 2.9 (Duality theorem). Let H ′ ⊂H be (possibly disconnected) closed sub-
groups of a Lie group G with Lie algebras h′ ⊂ h, respectively. Suppose V and W are
finite-dimensional representations of H and H ′, respectively. Let G′ be any subgroup
of G containing H ′, and VX ∶= G ×H V and WY ∶= G′ ×H′ W be the corresponding
homogeneous vector bundles. Then, there is a natural linear isomorphism:

(2.6) DX→Y ∶ HomH′(W ∨, indg

h(V ∨)) ∼Ð→ DiffG′ (VX ,WY ) ,
or equivalently,

DX→Y ∶ Hom(g′,H′)(indg′

h′(W ∨), indg

h(V ∨)) ∼Ð→ DiffG′ (VX ,WY ) .
For ϕ ∈ HomH′(W ∨, indg

h(V ∨)) and F ∈ C∞(X,V) ≃ C∞(G,V )H , DX→Y (ϕ)F ∈
C∞(Y,W) ≃ C∞(G′,W )H′ is given by the following formula:

(2.7) ⟨DX→Y (ϕ)F,w∨⟩ = ∑
j

⟨dR(uj)F, v∨j ⟩∣G′ for w∨ ∈W ∨,

where ϕ(w∨) = ∑j ujv∨j ∈ indg

h(V ∨) (uj ∈ U(g), v∨j ∈ V ∨).
When H ′ is connected, we can write the left-hand side of (2.6) by means of Lie

algebras.

Corollary 2.10. Suppose we are in the setting of Theorem 2.9. Assume that H ′ is
connected. Then there is a natural linear isomorphism:

DX→Y ∶ Homh′(W ∨, indg

h(V ∨)) ∼Ð→ DiffG′(VX ,WY ),(2.8)

or equivalently,

(2.8)′ DX→Y ∶ Homg′(indg′

h′(W ∨), indg

h(V ∨)) ∼Ð→ DiffG′(VX ,WY ).
The construction of DX→Y and the fact that the formula (2.7) is well-defined will

be explained in Section 2.4.

Remark 2.11. (1) Corollary 2.10 is known when X = Y , i.e. G′ = G and H ′ =H ,
especially in the setting of complex flag varieties, see e.g. [Kos74, HJ82].
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(2) When g′ is a reductive subalgebra and h′ is a parabolic subalgebra, the exis-
tence of an h′-module W for which the left-hand side of (2.8) is non-zero, is
closely related to the “discretely decomposability” of the g-module indg

h(V ∨)
when restricted to the subalgebra g′ ([K98, Part III], [K12]). This relationship
will be used in Section 5 in proving that any continuous symmetry breaking
operator in a holomorphic setting is given by a differential operator (localness
theorem).

(3) Owing to Proposition 2.7, the left-hand side of (2.8)′ is non-zero only when
h′ ⊂ h. Conversely, if H ′ ⊂ H ∩ G′, then there is a natural morphism Y =
G′/H ′ → X = G/H and therefore “differential operators” (in the sense of
Definition 2.1) from C∞(X,V) to C∞(Y,W) are defined.

(4) We shall consider the case where H ′ = H ∩G′ in later applications, however,
Theorem 2.9 also covers the cases where the natural morphism Y →X is not
injective, i.e. where H ′ ⫋H ∩G′.

An analogous result to Theorem 2.9 holds in the holomorphic setting as well.
To be precise, let GC be a complex Lie group, G′

C
, HC and H ′

C
be closed complex

subgroups such that H ′
C
⊂ HC ∩G′C. We write g, h, . . . for the Lie algebras of the

complex Lie groups GC, HC, . . ., respectively. Given finite-dimensional holomorphic
representations V of HC and W of H ′

C
, we form holomorphic vector bundles V ∶=

GC ×HC
V over XC = GC/HC and W ∶= G′

C
×H′

C
W over YC = G′C/H ′C.

For simplicity, we assume that H ′
C
is connected. (This is always the case if G′

C

is a connected complex reductive Lie group and H ′
C
is a parabolic subgroup of G′

C
.)

Then we have:

Theorem 2.12 (Duality theorem in the holomorphic setting). There is a canonical
linear isomorphism:

DX→Y ∶ Homg′ (indg′

h′(W ∨), indg

h(V ∨)) ∼Ð→ Diffhol
G′

C

(VXC
,WYC).

Suppose furthermore thatG, G′,H andH ′ are real forms of the complex Lie groups
GC, G′C, HC and H ′

C
, respectively. We regard V andW as H- and H ′-modules by the

restriction, and form vector bundles V = G ×H V over X = G/H and W = G′ ×H′ W
over Y = G′/H ′.

We ask whether or not all symmetry breaking operators have holomorphic exten-
sions. Here is a simple sufficient condition:

Corollary 2.13. If H ′ is contained in the connected complexification H ′
C
, then we

have a natural bijection:

Diffhol
G′

C

(VXC
,WYC) ∼→ DiffG′(VX ,WY ).
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Proof. Comparing Theorem 2.9 with Theorem 2.12, the proof of Corollary 2.13 re-
duces to the surjectivity of the inclusion

(2.9) Hom(g′,H′)(indg′

h′(W ∨), indg

h(V ∨))↪ Homg′(indg′

h′(W ∨), indg

h(V ∨)).
We note that Hom(g′,H′

C
)(indg′

h′(W ∨), indg

h(V ∨)) is a subspace of the left-hand side of

(2.9) because H ′ ⊂ H ′
C
, whereas it coincides with the right-hand side of (2.9) if H ′

C

is connected. Hence (2.9) is surjective. Thus Corollary 2.13 is proved. �

The rest of this section is devoted to the proof of Theorem 2.9. For Theorem 2.12,
since the argument is parallel to that of Theorem 2.9, we omit the proof.

2.4. Construction of DX→Y . This subsection gives the definition of the linear map
DX→Y in Theorem 2.9.

Consider two actions dR and dL of the universal enveloping algebra U(g) on
the space C∞(G) of smooth complex-valued functions on G induced by the regular
representation L ×R of G ×G on C∞(G):
(2.10) (dR(Z)f)(x) ∶= d

dt
∣
t=0

f(xetZ) and (dL(Z)f)(x) ∶= d

dt
∣
t=0

f(e−tZx),
for Z ∈ g(R).

The right differentiation (2.10) defines a bilinear map

Φ ∶ C∞(G) ×U(g)→ C∞(G), (F,u)↦ dR(u)F,
with the following properties

Φ(L(g)F,u) = L(g)Φ(F,u),(2.11)

Φ(F,u′u) = dR(u′)Φ(F,u),(2.12)

for any g ∈ G and u,u′ ∈ U(g).
Combining Φ with the canonical pairing V × V ∨ → C, we obtain a bilinear map

ΦV ∶ C∞(G) ⊗ V ×U(g) ⊗C V
∨ → C∞(G).

Then we have the following:

Lemma 2.14. The map ΦV induces a well-defined diagram of maps:

C∞(G) ⊗ V ×U(g) ⊗C V ∨
ΦVÐ→ C∞(G)

1 ↡ ∥
C∞(X,V) × indg

h(V ∨) ⇢ C∞(G).
Proof. Denote by λ∨ the contragredient representation of the representation (λ,V )
of H , and by dλ∨ the infinitesimal representation of h. The kernel of the natural
quotient map U(g) ⊗C V ∨ → indg

h(V ∨) is generated by

−uY ⊗ v∨ + u⊗ dλ∨(Y )v∨
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with u ∈ U(g), Y ∈ h and v∨ ∈ V ∨. Hence it suffices to show

ΦV (f,−uY ⊗ v∨ + u⊗ dλ∨(Y )v∨) = 0
for any f ∈ C∞(X,V) ≃ C∞(G,V )H .

Since f ∈ C∞(G,V )H satisfies dR(Y )f = −dλ(Y )f for Y ∈ h, we have

ΦV (f, uY ⊗ v∨) = ⟨dR(u)dR(Y )f, v∨⟩
= ⟨dR(u)f, dλ∨(Y )v∨⟩
= ΦV (f, u⊗ dλ∨(Y )v∨⟩.

Thus the lemma is proved. �

Lemma 2.15. 1) The bilinear map

(2.13) C∞(X,V) × indg

h(V ∨)→ C, (f,m) ↦ ΦV (f,m)(e)
is (g,H)-invariant.

2) If m ∈ indg

h(V ∨) satisfies ΦV (f,m)(e) = 0 for all f ∈ C∞(X,V) then m = 0.
Proof. 1) Let f ∈ C∞(X,V) and m ∈ indg

h(V ∨). It follows from (2.11) and (2.12) that

ΦV (dL(Z)f,m) =dL(Z)ΦV (f,m)
ΦV (f,Zm) =dR(Z)ΦV (f,m)

for any Z ∈ g. Since (dL(Z) + dR(Z))F (e) = 0
for any F ∈ C∞(G), we have shown the g-invariance of the bilinear map (2.13):

ΦV (dL(Z)f,m)(e) +ΦV (f,Zm)(e) = 0.
The proof for the H-invariance of (2.13) is similar.

2) Take a basis {v1,⋯, vk} of V , and let {v∨1 ,⋯, v∨k} be the dual basis in V ∨. Choose
a complementary subspace q of h in g, and fix a basis {X1,⋯,Xn} of q. Then by the
Poincaré–Birkhoff–Witt theorem, we can write m ∈ indg

h(V ∨) as a finite sum:

m =
k

∑
j=1

∑
α=(α1,⋯,αn)

aα,jX
α1

1 ⋯Xαn
n v∨j .

If m is non-zero, we can find a multi-index β and jo (1 ≤ jo ≤ k) such that aβ,jo /= 0
and that aα,j0 = 0 for any multi-index α satisfying ∣α∣ > ∣β∣ and for any j. Here∣α∣ = ∑ni=1 αi for α ∈ Nn. We take f ∈ C∞(G,V )H ≃ C∞(X,V) such that f is given in
a right H-invariant neighborhood of H in G by

f (exp( n

∑
i=1

xiXi)h) = xβλ(h)−1vjo forx = (x1,⋯, xn) ∈ Rn and h ∈H.
Then ΦV (f,m)(e) = aβ,joβ1!⋯βk! ≠ 0. The contraposition completes the proof. �
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We regard C∞(G) as a G × g-module via the (L × dR)-action. Then the space
HomG(C∞(X,V),C∞(G)) of continuous G-homomorphisms becomes a g-module by
the remaining dR-action on the target space. By (2.11), (2.12) and Lemma 2.14, we
get the following g-homomorphism:

(2.14) indg

h(V ∨)Ð→ HomG(C∞(X,V),C∞(G)), u⊗ v∨ ↦ (f ↦ ⟨dR(u)f, v∨⟩).
Furthermore, it is actually a (g,H)-homomorphism, where the group H acts on

indg

h(V ∨) = U(g) ⊗U(h) V ∨ diagonally and acts on HomG(C∞(X,V),C∞(G)) via the

R-action on C∞(G).
Let H ′ be a connected closed Lie subgroup of G. Given a finite-dimensional repre-

sentation W of H ′, we form a homogeneous vector bundle WZ ≡W ∶= G ×H′ W over
Z ∶= G/H ′.

Taking the tensor product of the (g,H)-modules in (2.14) with the H ′-module W ,
we get an (H ′ × (g,H))-homomorphism:

HomC(W ∨, indg

h(V ∨))Ð→ HomG(C∞(X,V),C∞(G,W )).
Let ∆(H ′) be a subgroup of H ′ ×H defined by {(h,h) ∶ h ∈ H ′}. Taking ∆(H ′)-

invariants, we obtain the following C-linear map:

(2.15) HomH′(W ∨, indg

h(V ∨))Ð→ HomG(C∞(X,V),C∞(Z,W)), ϕ↦Dϕ,

where Dϕ satisfies

(2.16) ⟨Dϕf,w
∨⟩ = ΦV (f,ϕ(w∨))

for any f ∈ C∞(X,V) and any w∨ ∈W ∨.

Remark 2.16. If H ′ is connected, then we can replace HomH′ by Homh′ in (2.15).

Lemma 2.17. The map (2.15) is injective.

Proof. By (2.16), Lemma 2.17 is derived from the second statement of the Lemma
2.15. �

Take any subgroup G′ of G containing H ′ and form a homogeneous vector bundle
WY ∶= G′ ×H′ W over Y = G′/H ′. Then, the vector bundle WY is isomorphic to the
restriction WZ ∣Y of the vector bundle WZ to the submanifold Y of the base space Z.
Let

RZ→Y ∶ C∞(Z,WZ)→ C∞(Y,WY )
be the restriction map of sections. For ϕ ∈ Homh′(W ∨, indg

h(V ∨)) we set

(2.17) DX→Y (ϕ) ∶= RZ→Y ○Dϕ.

Then DX→Y (ϕ) ∶ C∞(X,V) → C∞(Y,W) is a G′-equivariant differential operator, i.e.
DX→Y defines a linear map Homh′(W ∨, indg

h(V ∨)) → DiffG′(VX ,WY ). Theorem 2.9
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describes explicitly the image DX→Y when H ′ ⊂ H ∩G′, namely, when the following
diagram exists:

Z = G/H ′
&& &&◆

◆◆
◆◆

◆◆
◆◆

◆◆

Y = G′/H ′*



77♣♣♣♣♣♣♣♣♣♣♣

// X = G/H

.

Remark 2.18. The left-hand side of (2.8) does not depend on the choice of G′. This
fact is reflected by the commutativity of the following diagram.

(2.18) Homh′(W ∨, indg

h(V ∨))
DX→Y

∼

))❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚

∼ // DiffG(VX ,WZ)
RZ→Yvv❧❧❧

❧❧
❧❧
❧❧
❧❧
❧❧
❧

DiffG′(VX ,WY )
2.5. Proof of Theorem 2.9. We have already seen in Lemma 2.17 that DX→Y is
injective. In order to prove the surjectivity of the linear map DX→Y , we realize the
induced U(g)-module indg

h(V ∨) in the space of distributions.
We recall that V∗ = V∨ ⊗ΩX is the dualizing bundle of a vector bundle V over X .

For a closed subset S and an open subset U inX containing S, we write D′S(U,V∗) for
the space of V∗-valued distributions on U with support in S. Obviously, D′S(U,V∗) =
D′S(X,V∗). If S is compact, then D′S(U,V∗) is contained in the space E ′(U,V∗)
of distributions on U with compact support, and thus coincides with E ′S(U,V∗) ∶=
D′S(U,V∗) ∩ E ′(U,V∗).

We return to the setting of Theorem 2.9, where V is a G-equivariant vector bundle
over X = G/H . Then the Lie group G acts on C∞(X,V) and E ′(X,V∗) by the
pull-back of smooth sections and distributions, respectively. The infinitesimal action
defines representations of the Lie algebra g on C∞(U,V) and E ′S(U,V∗).

The “integration map” (2.2)

(2.19) E ′(X,ΩX)→ C, ω ↦ ∫
X
ω

is G-invariant. Composing this with the G-invariant bilinear map (contraction):

C∞(X,V) × E ′(X,V∗)Ð→ E ′(X,ΩX), (f,h) ↦ ⟨f,h⟩,
we obtain the following G-invariant bilinear form

(2.20) C∞(X,V) × E ′(X,V∗)Ð→ C, (f,h)↦ ∫
X
⟨f,h⟩.

Similarly, we obtain the following local version:
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Lemma 2.19. Let S be a closed subset of X and U an open neighborhood of S in
X. Then, we have the natural g-invariant bilinear form:

C∞(U,V) × E ′S(U,V∗)Ð→ C, (f,h) ↦ ∫
U
⟨f,h⟩.

Moreover, if S ⊂ U are both H-invariant subsets in X, then the bilinear form is also
H-invariant.

We write o = eH ∈ X for the origin. By Lemmas 2.15 and 2.19, we have obtained
two (g,H)-invariant pairings:

C∞(X,V) × indg

h(V ∨) Ð→ C, (f,m) ↦ ΦV (f,m)(e),
C∞(X,V) × E ′{o}(X,V∗) Ð→ C (f,h) ↦ ∫

X
⟨f,h⟩.

Let us show that there is a natural (g,H)-isomorphism between indg

h(V ∨) and
E ′{o}(X,V∗). In fact, it follows from Lemma 2.15 that there exists an injective (g,H)-
homomorphism

A ∶ indg

h(V ∨)→ E{o}(X,V∗)
such that

ΦV (f,m)(e) = ∫
X
⟨f,A(m)⟩ for all m ∈ indg

h(V ∨) and f ∈ C∞(X,V).
For a homogeneous vector bundle V = G ×H V we define a vector-valued Dirac

δ-function δ ⊗ v∨ ∈ E ′{o}(X,V∗), for v ∈ V ∨ by

(2.21) ⟨f, δ ⊗ v∨⟩ ∶= ⟨f(e), v∨⟩ for f ∈ C∞(X,V) ≃ C∞(G,V )H .
By the definition of ΦV , we have

ΦV (f,1⊗ v∨)(e) = ⟨f(e), v∨⟩.
Hence A(1 ⊗ v∨) = δ ⊗ v by (2.21). Since A is a g-homomorphism, we have shown
that

A(u⊗ v∨) = dL(u)(δ ⊗ v∨), for u ∈ U(g), v ∈ V ∨.
Lemma 2.20. The (g,H)-homomorphism

(2.22) A ∶ indg

h(V ∨)Ð→E ′{o}(X,V∗), u⊗ v∨ ↦ dL(u) (δ ⊗ v∨) ,
is bijective.

Proof. By Lemma 2.15 the map (2.22) is injective. Let us show that it is also sur-
jective. By the structural theorem of (scalar-valued) distributions [S66, Chapter III,
Théorème XXXVII], distributions supported on the singleton {o} are obtained as
a finite sum of derivatives of the Dirac’s delta function. An analogous statement
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holds for vector-bundle valued distributions supported on {o}, as we can see by triv-
ializing the bundle near the origin o. Choose a complementary subspace q(R) of
h(R) = Lie(H) in g(R) = Lie(G). Since dL(Z) (Z ∈ q(R)) spans the tangent space
To(G/H) ≃ q(R), any derivative of the vector-valued Dirac’s delta function is given
as a linear combination of elements of the form dL(u)(δ ⊗ v∨) (u ∈ U(g), v∨ ∈ V ∨).
Thus the map (2.22) is surjective. �

Let C2ρ denote the one-dimensional representation of H defined by

h↦ ∣det(AdG/H(h) ∶ g/h→ g/h)∣−1.
If H is a parabolic subgroup of G with Langlands decomposition P =MAN+ then the
infinitesimal representation of C2ρ is given by the sum of the roots for n+ = Lie(N+).
The bundle of densities ΩG/H is given as a G-equivariant line bundle,

ΩG/H ≃ G ×H ∣det−1AdG/H ∣ ≃ G ×H C2ρ.

For an H-module (λ,V ), we define a “twist” of the contragredient representation
λ∨2ρ on the dual space V ∨ (or simply denoted by V ∨2ρ) by the formula

λ∗ ≡ λ∨2ρ ∶= λ∨ ⊗C2ρ = λ∨ ⊗ ∣det −1AdG/H ∣.
Then the dualizing bundle V∗ = V∨ ⊗ΩG/H of the vector bundle V = G×H V is given,
as a homogeneous vector bundle, by:

(2.23) V∗ ≡ V∨2ρ ≃ G ×H V ∨2ρ.
Then D′(X,V∗) is identified with

(D′(G) ⊗ V ∨2ρ)∆(H) = {F ∈ D′(G) ⊗ V ∨ ∶ λ∨2ρ(h)F (⋅h) = F (⋅) for any h ∈H}.
Now let us consider the setting of Theorem 2.9 where we have a G′-equivariant

(but not necessarily injective) morphism from Y = G′/H ′ to X = G/H .

Lemma 2.21. Suppose that G′ is a subgroup of G. Then the multiplication map

m ∶ G ×G′ → G, (g, g′)↦ (g′)−1g,
induces the isomorphism:

m∗ ∶ (D′(X,V∗) ⊗W )∆(H′) ∼

Ð→ D′(X × Y,V∗ ⊠W)∆(G′).
Proof. The image of the pull-back m∗ ∶ D′(G)→ D′(G×G′) is D′(G×G′)∆(G′), where
G′ acts diagonally from the left. Thus, considering the remaining G × G′ action
from the right, we take H ×H ′-invariants with respect to the diagonal action in the(G ×G′ ×H ×H ′)-isomorphism:

m∗ ⊗ id⊗ id ∶ D′(G) ⊗ V ∨2ρ ⊗W ∼

Ð→ D′(G ×G′)∆(G′) ⊗ V ∨2ρ ⊗W,
and therefore we get the lemma. �



16 TOSHIYUKI KOBAYASHI, MICHAEL PEVZNER

We recall from Section 2.1 that any continuous linear map T ∶ C∞(X,V) →
C∞(Y,W) is given by a unique distribution kernel KT ∈ D′(X × Y,V∗ ⊠W). The
following lemma gives a necessary and sufficient condition on the distribution KT for
the linear map T to be a G′-equivariant differential operator.

Lemma 2.22. There is a natural linear isomorphism:

DiffG′(VX ,WY ) ∼

Ð→ (D′{o}(X,V∗) ⊗W )∆(H′), T ↦ (m∗)−1(KT ).(2.24)

Proof. First, we show that the map (2.24) is well-defined. Suppose T ∈ DiffG′(VX ,WY ).
Since KT is uniquely determined by T , the operator T is G′-equivariant, i.e. L(g) ○
T ○ L(g−1) = T for all g ∈ G′ if and only if KT ∈ D′(X × Y,V∗ ⊠W)∆(G′). By Lemma
2.3 the distribution kernel KT is supported on the diagonal set ∆(Y ) = {(p(y), y) ∶
y ∈ Y } ⊂X × Y . Via the bijection m∗ given in Lemma 2.21 we thus have

Supp((m∗)−1KT ) ⊂ {o}.
Hence the map (2.24) is well-defined. The injectivity of (2.24) is clear.

Conversely, take any element k ∈ (D′{o}(X,V∗) ⊗W )∆(H′). We set K ∶= m∗(k) ∈
D′(X × Y,V∗ ⊠W)∆(G′), and define a linear map

T ∶ C∞(X,V) Ð→ D′(Y,W), f ↦ ∫
X
f(x)K(x, ⋅).

Then T is G′-equivariant because K is ∆(G′)-invariant.
Let us show that Tf ∈ C∞(Y,W) for any f ∈ C∞(X,V). To see this, we take

neighborhoods U,U ′ and U ′′ of xo = p(yo) in X , yo in Y , and e in G′, respectively,
such that gU ′ ⊂ p−1(U) for any g ∈ U ′′. Since the kernel K is supported on the
diagonal set ∆(Y ), TF ∣U ′ is locally of the form (2.4) as in the proof of Lemma 2.3.

Since T is G′-equivariant, we have

∑
α

hα(y)∂∣α∣f
∂xα

(gp(y)) =∑
α

hα(gy)∂∣α∣f
∂xα
(p(y)),

for any y ∈ U ′, g ∈ U ′′, and f ∈ C∞(U) ⊗ V . By taking f(x) = xα ⊗ v (α ∈ Nn and
v ∈ V ) as test functions, there are some ϕαβ ∈ C∞(U ′′ ×U ′) for ∣β∣ < ∣α∣ such that

hα(gy) = hα(y) + ∑
∣β∣<∣α∣

ϕαβ(g, y)hβ(y).
Therefore we see inductively on ∣α∣ that hα(y) ∈ C∞(U ′) ⊗ Hom(V,W ) for all α
because G′ acts transitively on Y . Hence Tf ∣U ′ ∈ C∞(U ′)⊗W . Thus we have shown
that T maps C∞(X,V) into C∞(Y,W).

Finally, it follows from Lemma 2.3 that T is a differential operator because SuppK ⊂
∆(Y ). Now we have proved the lemma. �
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Proof of Theorem 2.9. Taking the tensor product of each term in (2.22) with the
finite-dimensional representation W of H ′, we get a bijection between the subspaces
of h′-invariants:

Homh′(W ∨, indg

h(V ∨)) ∼

Ð→ (D′{o}(X,V∗X) ⊗W )∆(H′).
Composing this with the bijection in Lemma 2.22, we obtain a bijection from

Homh′(W ∨, indg

h(V ∨)) to DiffG′(VX ,WY ), which is by construction nothing butDX→Y
in Theorem 2.9. �

3. Algebraic Fourier transform for generalized Verma modules

The duality theorem (Theorem 2.9) states that, to obtain a differential symmetry
breaking operator D ∈ DiffG′(VX ,WY ), it suffices to find ϕ ∈ HomH′(W ∨, indg

h(V ∨)).
In Section 4, we shall present a new method (F-method) which characterizes the “al-
gebraic Fourier transform” of ϕ as a solution to a certain system of partial differential
equations.

In this section we introduce and study the “algebraic Fourier transform” of gener-
alized Verma modules. Proposition 3.11 is particularly important to the F-method.

3.1. Weyl algebra and algebraic Fourier transform. Let E be a vector space
over C. The Weyl algebra D(E) is the ring of holomorphic differential operators on
E with polynomial coefficients.

Definition 3.1. We define the algebraic Fourier transform as an isomorphism of
two Weyl algebras on E and its dual space E∨:

D(E)→ D(E∨), T ↦ T̂ ,

induced by

(3.1)
∂̂

∂zj
∶= −ζj, ẑj ∶= ∂

∂ζj
, 1 ≤ j ≤ n = dimE.

where (z1, . . . , zn) are coordinates on E and (ζ1, . . . , ζn) are the dual coordinates on
E∨.

Example 3.2. Let Ez ∶= ∑nj=1 zj ∂
∂zj

be the Euler operator on E. Then, by the com-

mutation relations

(3.2)
∂

∂ζi
ζj − ζj ∂

∂ζi
= δij ,

in the Weyl algebra D(E∨), where δij is the Kronecker delta. Hence we have Êz =−Eζ − n.
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The isomorphism T ↦ T̂ in Definition 3.1 does not depend on the choice of coordi-
nates. To see this, we consider the natural action of the general linear group GL(E)
on E, which yields automorphisms of the ring Pol(E) of polynomials of E and the
Weyl algebra D(E). For A ∈ GL(E), we set

A# ∶ Pol(E)Ð→ Pol(E), F ↦ F (A−1⋅),
A∗ ∶ D(E)Ð→ D(E), T ↦ A# ○ T ○A−1# .

We denote by tA ∈ GL(E∨) the dual map of A. Then we have

Lemma 3.3. For any A ∈ GL(E) and T ∈ D(E),
Â∗T = (tA−1)∗ T̂ .

The proof is straightforward from the definition (3.1), and we omit it.
Next we consider the group homomorphism GL(E) Ð→ GL(Pol(E)), A ↦ A#.

Taking the differential, we get a Lie algebra homomorphism End(E) → D(E). In
the coordinates, we write Z = t(z1,⋯, zn) and ∂Z = t ( ∂

∂z1
,⋯, ∂

∂zn
). Then this homo-

morphism amounts to

(3.3) ΨE ∶ End(E)→ D(E), A↦ −tZ tA∂Z ≡ −∑
i,j

Aijzj
∂

∂zi
.

Let σ ∶ g → End(E) be a representation of a Lie algebra g on E, and σ∨ ∶ g →
End(E∨) the contragredient representation. Then the algebraic Fourier transform

T ↦ T̂ relates the two Lie algebra homomorphisms ΨE ○σ ∶ g→ D(E) and ΨE∨ ○σ∨ ∶
g→ D(E∨) as follows:
Lemma 3.4.

Ψ̂E ○ σ = ΨE∨ ○ σ∨ + (Trace ○ σ) ⋅ idE∨.
Proof. In the coordinates, we write A ∶= σ(Z) ∈ End(E) ≃M(n,C) for Z ∈ g. Then,

̂ΨE ○ σ(Z) −ΨE∨ ○ σ∨(Z) = − ̂tZ tA∂Z − tζA∂ζ

= t∂ζ
tAζ − tζA∂ζ

= (TraceA) idE∨,
where the last equality follows from the commutation relations (3.2). �

For actual computations that will be undertaken in a subsequent paper [KP14-2],
it is convenient to give another interpretation of the algebraic Fourier transform by
using real forms of E.
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Definition 3.5. Fix a real form E(R) of the complex vector space E. Let E ′{0}(E(R))
be the space of distributions on the vector space E(R) supported at the origin 0. We
define a “Fourier transform” Fc ∶ E ′{0}(E(R)) → Pol(E∨) by the following formula:

(3.4) Fcf(ζ) ∶= ⟨f(⋅), e⟨⋅,ζ⟩⟩ = ∫
E(R)

e⟨x,ζ⟩f(x) for ζ ∈ E∨.
We have used the function e⟨x,ζ⟩ in (3.4) rather than e−

√
−1⟨x,ζ⟩ or e−⟨x,ζ⟩ which are

involved in the usual Fourier transform or the Laplace transform, respectively. This
convention makes later computations simpler (see Remark 4.2).

Furthermore, with our convention

(3.5) Fc(f(A⋅)) = (Fcf)( tA−1⋅),
for any A ∈ GLR(E(R)).

The Fourier transform Fc induces an algebra isomorphism

Fc ∶ E ′{0}(E(R)) ∼Ð→ Pol(E∨)
between the polynomial algebra Pol(E∨) with unit 1, the constant function on E∨,
and the convolution algebra E ′{0}(E(R)) with unit δ, the Dirac delta function. We

write F−1c ∶ Pol(E∨) ∼Ð→ E ′{0}(E(R)) for the inverse “Fourier transform”:

F−1c (1) = δ.
Remark 3.6. The Weyl algebra D(E) acts naturally on the space of distributions on
E(R), and in particular, on E ′{0}(E(R)). The algebraic Fourier transform defined in

Definition 3.1 satisfies

(3.6) T̂ = Fc ○ T ○F−1c for T ∈ D(E),
and the formula (3.6) characterizes T̂ . To see this, we take coordinates (x1,⋯, xn)
on E(R), and extend them to the complex coordinates (z1,⋯, zn) on E and the dual

ones (ζ1,⋯, ζn) on E∨. Let P (ζ) = ζα ∈ Pol(E∨) and T = ∑
β,γ

aβ,γz
β ∂
∣γ∣

∂zγ
∈ D(E). Then

we have

T̂ P =∑
β,γ

(−1)∣γ∣aβ,γ ∂∣β∣
∂zβ

ζα+γ,

and on the other hand,

Fc ○ T ○F−1c P = (−1)∣α∣Fc ○ T (δα(x)) = (−1)∣α∣Fc ⎛⎝∑β,γ aβ,γx
βδα+γ(x)⎞⎠

= (−1)∣α∣∑
β,γ

(−1)∣α∣+∣γ∣aβ,γ ∂∣β∣
∂zβ

ζα+γ.
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Hence the identity (3.6) holds on Pol(E∨). Since the Weyl algebra D(E∨) acts
faithfully on Pol(E∨), we have shown (3.6). In particular, the composition Fc○T ○F−1c
does not depend on the choice of a real form E(R).
3.2. Holomorphic vector fields associated to the Gelfand–Naimark decom-
position. It is convenient to prepare some notation in the complex reductive Lie
algebras for later purpose.

Let g be a complex reductive Lie algebra, and p = l + n+ a Levi decomposition of
a parabolic subalgebra. Let GC be a connected complex Lie group with Lie algebra
g, and PC = LC exp n+ the parabolic subgroup with Lie algebra p = l + n+. According
to the Gelfand–Naimark decomposition g = n− + l + n+ of the Lie algebra g, we have
a diffeomorphism

n− ×LC × n+ → GC, (Z, ℓ, Y )↦ (expZ)ℓ(expY ),
into an open dense subset Greg

C
of GC. Let

p± ∶ Greg

C
Ð→ n±, po ∶ Greg

C
→ LC,

be the projections characterized by the identity

exp(p−(g))po(g) exp(p+(g)) = g.
We set

α ∶ g × n− → l, (Y,Z)↦ d

dt
∣
t=0

po (etY eZ) ,(3.7)

β ∶ g × n− → n−, (Y,Z)↦ d

dt
∣
t=0

p− (etY eZ) .(3.8)

γ ∶ g × n− → l + n+, (Y,Z)↦ α(Y,Z) + d

dt
∣
t=0

p+ (etY eZ) .(3.9)

We regard β(Y, ⋅ ) as a holomorphic vector field on n− through the following iden-
tification.

n− ∋ Z ↦ β(Y,Z) ∈ n− ≃ TZn−.
Example 3.7. GC = GL(p + q,C), LC = GL(p,C) ×GL(q,C), and n− ≃M(p, q;C).
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We note that n− is realized as upper block matrices. Then for g−1 = (a b

c d
) ∈ GC,

Y = (A B

C D
) ∈M(p + q;C) and Z ∈M(p, q;C) we have

p−(g−1) =bd−1,
po(g−1) =(a − bd−1c, d) ∈ GL(p,C) ×GL(q,C),
α(Y,Z) =(A −ZC,CZ +D) ∈ glp(C)⊕ glq(C),
β(Y,Z) =AZ +B −ZCZ −ZD.

Then β(Y, ⋅) is regarded as the following holomorphic vector field on n− ≃M(p, q;C)
given by

Trace(β(Y,Z) t∂Z) = p

∑
a=1

q

∑
b=1

β(Y,Z)ab ∂

∂zab

=
p

∑
a=1

q

∑
b=1

( p∑
i=1

Aaizib +Bab −

p

∑
i=1

q

∑
j=1

zajCjizib −
q

∑
j=1

zajDjb) ∂

∂zab
.

A reductive Lie algebra g is said to be k-graded if it admits a direct sum decom-
position g = ⊕kj=−kg(j) such that [g(i),g(j)] ⊂ g(i + j) for all i, j. Any parabolic
subalgebra p = l+n+ of g is given by l = g(0) and n+ = ⊕j>0g(j) for some k-gradation
of g. We then have the following estimates of coefficients of holomorphic differential
operators dπµ(Y ).
Lemma 3.8. According to the direct sum decomposition g = ⊕kj=−kg(j), we write

γ(Y,Z) = ∑kℓ=0 γℓ and β(Y,Z) = ∑−1ℓ=−k βℓ, where γℓ ∈ g(ℓ) for 0 ≤ ℓ ≤ k and βℓ ∈ g(ℓ)
for −k ≤ ℓ ≤ −1. Then γℓ and βℓ are polynomials in Z of degree at most k − ℓ.

Proof. Since the map N−,C × PC

∼

Ð→ G
reg

C
is an analytic diffeomorphism, we have

(3.10) etY eZ = eZ+tβ(Y,Z)+o(t)etα(Y,Z)+o(t)

for sufficiently small t ∈ C, where we use the Landau symbol o(t) for a g-valued
function dominated by t when t tends to be zero. Multiplying (3.10) by e−Z from
the left, and taking the differential at t = 0, we get

Ad(e−Z)Y = γ(Y,Z) + ead(Z) − 1
ad(Z) β(Y,Z),
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because
d

dt
∣
t=0

e−ZeZ+tW = e
ad(Z)

− 1

ad(Z) W. We note that ad(Z) lowers the grading of g,

namely ad(Z)g(j) ⊂ ⊕j−1i=−kg(i) because Z ∈ n−. In particular, we have

(3.11)
2k

∑
j=0

(−1)j
j!

ad(Z)jY = γ(Y,Z) + k−1∑
i=0

ad(Z)i
(i + 1)!β(Y,Z).

Let qℓ ∶ g → g(ℓ) be the projection according to the direct sum decomposition g =
k⊕

j=−k

g(j). Suppose ℓ ≥ 0. Applying qℓ to (3.11), we have

γℓ = qℓ (k−ℓ∑
j=0

(−1)jad(Z)j
j!

Y ) .
Hence γℓ is a polynomial in Z of degree at most k − ℓ.

Suppose ℓ < 0. Applying qℓ to (3.11), we get

βℓ = qℓ (k−ℓ∑
j=0

(−1)jad(Z)j
j!

Y ) − qℓ ⎛⎝
j−ℓ∑
i=0

−1∑
j=ℓ

ad(Z)i
(i + 1)!βj

⎞
⎠ .

By the downward induction on ℓ, we see that βℓ is a polynomial in Z of degree at
most k − ℓ for −k ≤ ℓ ≤ −1. �

3.3. Fourier transform of principal series representations. Suppose g is a
complex reductive Lie algebra, p = l+n+ a parabolic subalgebra, and λ ∶ p→ EndC(V )
a finite-dimensional representation.

We use the letter µ to denote the representation of p on the dual space V ∨ given
by

(3.12) µ ∶= λ∗ ≡ λ∨ ⊗Trace(ad(⋅) ∶ n+ → n+).
By applying the (algebraic) Fourier transform of the Weyl algebra, we define a Lie

algebra homomorphism

d̂πµ ∶ g → D(n+)⊗EndC(V ∨),
by using the complex flag variety GC/PC in this subsection. In Section 3.4, we relate

d̂πµ with the “algebraic Fourier transform” of a generalized Verma module

Fc ∶ ind
g
p(V ∨) ∼→ Pol(n+)⊗ V ∨,

which is defined by using a real flag variety G/P , see (3.23).
Let GC be a connected complex reductive Lie group with complex reductive Lie

algebra g, and PC = LCN+,C be the parabolic subgroup with Lie algebra p. Let ΩXC

be the canonical line bundle of the complex generalized flag variety XC = GC/PC.
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Suppose λ lifts to a holomorphic representation of PC, then so does µ. We form a
GC-equivariant holomorphic vector bundle V and V∨ ⊗ΩXC

over XC associated to λ
and µ, respectively.

We consider the regular representation πµ of GC on C∞(GC/PC,V∨ ⊗ΩXC
). The

infinitesimal action will be denoted by dπµ, which is defined on C∞(U,V∨ ⊗ΩXC
∣U)

for any open subset U of GC/PC. In particular, we take U to be the open Bruhat cell
n− ↪ GC/PC, Z ↦ expZ ⋅ o, where o = ePC ∈ GC/PC. By trivializing the holomorphic
vector bundle V∨ ⊗ΩXC

→ GC/PC on it, we define a function F ∈ C∞(n−, V ∨) for a
section f ∈ C∞(GC/PC,V∨ ⊗ΩXC

) by
F (Z) ∶= f(expZ) for Z ∈ n−.

Then the action of g on C∞(n−, V ∨) given by

(dπµ(Y )F ) (Z) = = d

dt
∣
t=0

f(e−tY eZ)
= µ(γ(Y,Z))F (Z) − (β(Y, ⋅ )F )(Z) for Y ∈ g,(3.13)

where by a little abuse of notation µ stands for the infinitesimal action. The right-
hand side of (3.13) defines a representation of Lie algebra g whenever µ (or λ) is a
representation of the Lie algebra p without assuming that it lifts to a holomorphic
representation of the complex reductive group PC.

It follows from (3.13) and Lemma 3.8 that we obtain a Lie algebra homomorphism

(3.14) dπµ ∶ g→ D(n−)⊗End(V ∨),
for any representation λ of the Lie algebra p. By taking the algebraic Fourier trans-
form on the Weyl algebra D(n−) (see Definition 3.1), we get another Lie algebra
homomorphism:

(3.15) d̂πµ ∶ g→ D(n+)⊗End(V ∨).
We use the same letter πµ to denote the “action” of GC on C∞(n−, V ∨) given as

(3.16) (πµ(g)F ) (Z) = µ(po(g−1 expZ) exp(p+(g−1 expZ)))−1F (p−(g−1 expZ)).
This formula makes sense if F comes from C∞(GC/PC,V⊗Ω∨XC

), or if F ∈ C∞(n−, V ∨)
and g ∈ GC and Z ∈ n− satisfy g−1 expZ ∈ Greg

C
. In particular, if λ is trivial on the

nilpotent radical n+ for g = m expW with m ∈ LC and W ∈ n−, and if n+ is abelian
we have

(3.17) (πµ(g)F ) (Z) = µ(m)F (Ad(m)−1Z −W ).
Let us analyze dπµ(Y ) for Y ∈ l + n+. We begin with the case Y ∈ l. We let the

Levi subgroup LC act on Pol(n+) by
Ad#(l) ∶ f(⋅)↦ f(Ad(l−1)⋅), l ∈ LC.
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Since this action is algebraic, the infinitesimal action defines a Lie algebra homomor-
phism into the Weyl algebra:

ad# ∶ l→ D(n+), Y ↦ ad#(Y ),
where ad#(Y ) is a holomorphic vector field on n+ given by ad#(Y )x ∶= d

dt
∣
t=0

Ad(e−tY )x ∈
Tx(n+) for x ∈ n+.
Lemma 3.9. Let λ be a representation of the parabolic Lie algebra p = l + n+, and
µ ≡ λ∗ be as in (3.12). Then the following two representations of l on Pol(n+)⊗V ∨are
isomorphic:

(3.18) d̂πµ∣l ≃ ad#⊗id + id⊗ (µ −Trace ○ ad∣
n−

) = ad#(Y )⊗ id + id⊗ (−λ).
In particular, if λ lifts to a holomorphic representation of PC then the right-hand

side is the infinitesimal action of Ad# ⊗ λ∨ of LC on Pol(n+)⊗ V ∨.
Proof. For Y ∈ l, X ∈ n− we have γ(Y,X) = Y , and the formula (3.13) reduces, in
D(n−)⊗End(V ∨), to

dπµ(Y ) = id⊗ µ(Y ) − β(Y, ⋅ )⊗ id.

We apply Lemma 3.4 to the case where (σ,E) is the adjoint representation of l on
n−. Since β(Y, ⋅) = −dL(Y ) for Y ∈ l, we have Ψn− ○ ad = −β on l, with the notation
therein. Moreover, via the identification n∨− ≃ n+, the map Ψn∨

−
○ ad∨ amounts to

Ψn+ ○ ad = ad#. Therefore, we get

d̂πµ(Y ) = id⊗ µ(Y ) +Ψn∨
−
○ ad∨(Y )⊗ id + (Trace ○ ad(Y )∣

n−

) id⊗ id

= id⊗ µ(Y ) + ad#(Y )⊗ id − (Trace ○ ad(Y )∣
n+

) id⊗ id.

Thus, the lemma follows. �

The differential operators d̂πµ(Y ) with Y ∈ n+ play a central role in the F-method.
If the parabolic subalgebra p is associated to a k-gradation of g, then these differential
operators are at most of order 2k by Lemma 3.8. We describe their structure in the
case where k = 1, namely n+ is abelian.

Proposition 3.10. Assume that n+ is abelian. Let (λ,V ) be a representation of l,
extended trivially on n+, and µ = λ∗ be as in (3.12). For every Y ∈ n+ the operator

d̂πµ(Y ) is of the form

(3.19) ∑a
jk
i ζ

i ∂2

∂ζj∂ζk
+∑ bj

∂

∂ζj
,

where ajki and bj ∈ End(V ∨) are constants depending on Y .
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Proof. Since n+ is abelian, we can take a characteristic element H such that

Ad(esH)Y = esY for anyY ∈ n+.
We set m ∶= esH . Then tAd(m)−1 = e−sid on n− ≃ n∨+.

Taking the algebraic Fourier transform of the formula

dπµ(Ad(m)Y ) = πµ(m)dπµ(Y )πµ(m−1),
where (πµ(m)F )(Z) = µ(m)F (Ad(m−1)Z) = µ(m)F (Ad(m)#F )(Z) by (3.17), we
get

d̂πµ(Ad(m)Y ) = (tAd(m)−1)
∗
d̂πµ(Y )

by Lemma 3.3. Hence

(3.20) esd̂πµ(Y ) = (e−sid)∗ d̂πµ(Y )
If we write d̂πµ(Y ) in the form

∑
α,β∈Nn

Cα,βζ
α ∂
∣β∣

∂ζβ

then (3.20) implies that Cα,β ≠ 0 only when ∣α∣+ ∣β∣ = −1 because (e−sid)∗ ∂
∂ζj
= e−s ∂

∂ζj

and (e−sid)∗ζj = esζj (1 ≤ j ≤ n). As dπµ(Y ) is a vector field there is no term for∣α∣ > 1. Hence we get the expression (3.19). �

3.4. Fourier transform on the real flag varieties. In this subsection we define
“algebraic Fourier transform” of generalized Verma modules, see (3.23):

Fc ∶ ind
g
p(V ∨) ∼→ Pol(n+)⊗ V ∨.

As we shall prove in Proposition 3.11, the Lie algebra homomorphism d̂πλ∗ ∶ U(g)Ð→
D(n+)⊗End(V ∨) defined in (3.15) in the previous section can be reconstructed from

Fc, namely, d̂πλ∗(u) (u ∈ U(g)) is the operator S that is characterized by

SFc(v) = Fc(u ⋅ v) for any v ∈ indg
p(V ∨).

For later purpose, we work with a real form G of GC. From now on, let G be
a real semisimple Lie group, P a parabolic subgroup of G with Levi decomposition
P = LN+, and V a finite-dimensional representation of P .

Let LN− be the opposite parabolic subgroup of P = LN+. We write n+(R) and
n−(R) for the Lie algebras of N+ and N−, respectively, and set n+ = n+(R)⊗RC. The
open Bruhat cell is given as the image of the following embedding

ι ∶ n−(R)↪ G/P, X ↦ exp(X) ⋅ o,
where o = eP ∈ G/P .

Let λ ∶ P → GLC(V ) be a finite-dimensional representation of P , and V = G ×P V
the G-equivariant vector bundle over the real flag variety G/P . The pullback of the
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dualizing bundle V∗ ≡ V∨2ρ → G/P via ι is trivialized into the direct product bundle
n−(R) × V ∨ → n−(R) and thus we have a linear isomorphism:

(3.21) ι∗ ∶ E ′{o}(G/P,V∨2ρ) ∼

Ð→ E ′{0}(n−(R))⊗ V ∨,
through which we induce the (g, P )-action on E ′{0}(n−(R))⊗V ∨ from E ′{o}(G/P,V∨2ρ).

The Killing form of g identifies the dual space n−(R)∨ with n+(R), and thus the
Fourier transform Fc in (3.4) gives rise to a linear isomorphism:

(3.22) Fc ⊗ id ∶ E ′{0}(n−(R))⊗ V ∨ ∼

Ð→ Pol(n+)⊗ V ∨,
through which we induce the (g, P )-action further on the right-hand side.

In summary we have the following (g, P )-isomorphisms:

(3.23) Fc ∶ ind
g
p(V ∨)

(2.22)
∼

Ð→ E ′{o}(G/P,V∨2ρ)
(3.21)
∼

Ð→ E ′{0}(n−(R))⊗ V ∨
Fc⊗id
∼

Ð→ Pol(n+)⊗ V ∨.
We say that Fc is the algebraic Fourier transform of a generalized Verma module.

The (g, P )-module structure of Pol(n+)⊗ V ∨ is described by the following propo-
sition.

Proposition 3.11. Let (λ,V ) be a finite-dimensional representation of P and define
another representation of P on the dual space V ∨ by µ ∶= λ∗ ≡ λ∨ ⊗C2ρ. Then,

1) The g-action on Pol(n+)⊗V ∨ induced by Fc in (3.23) coincides with the one

given by d̂πµ in (3.15).
2) The L action on Pol(n+)⊗V ∨ induced by Fc in (3.23) coincides with the one

given by Ad# ⊗ λ∨.

Proof. 1) Let GC be a complexification of G and PC the connected subgroup of GC

with Lie algebra p = Lie(P )⊗R C. First we assume that λ extends to a holomorphic
representation of PC. Then the G-equivariant vector bundle V∨2ρ over X = G/P
is the restriction of the GC-equivariant holomorphic vector bundle V∨ ⊗ ΩXC

over
XC = GC/PC that was introduced in the previous subsection. Therefore, the action
of Y ∈ g on E ′{0}(n−(R)⊗V ∨) induced by ι∗ in (3.21) is given by the restriction of the

holomorphic differential operator dπµ(Y ).
In turn, the action of Y ∈ g on Pol(n+)⊗V ∨ induced by the isomorphism (3.22) is

given by

(Fc ⊗ id) ○ dπµ(Y ) ○ (F−1c ⊗ id),
which is equal to d̂πµ(Y ) by Remark 3.6.

To complete the proof in the general case we denote by Hom(PC,GLC(V )) the
set of holomorphic representations of PC on V and by Hom(p,End(V )) the set of
Lie algebra representations of p. Since the former is Zariski dense in the latter, the
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two g-actions on Pol(n+)⊗ V ∨ coincide for all λ because both depend algebraically
(actually affinely) on λ ∈ Hom(p,End(V )).

2) This statement is the analogue of Lemma 3.9 for the Lie group L. Indeed, since
the group L normalizes n−(R) and fixes the origin 0, the isomorphism ι∗ in (3.21)
respects the L-action when L acts diagonally on E ′{0}(n−(R))⊗ V ∨. To conclude the

proof we use (3.5). �

The map Fc does not depend on the choice of a real form G of GC that appears
in the two middle terms of (3.23). Moreover, the isomorphism Fc ∶ ind

g
p(V ∨) ∼

Ð→

Pol(n+) ⊗ V ∨ depends only on the infinitesimal action of P on V . In fact, the
following corollary follows immediately from the statement 1) of Proposition 3.11.

Corollary 3.12. The algebraic Fourier transform of generalized Verma modules (see
(3.23))

Fc ∶ ind
g
p(V ∨) ∼

Ð→ Pol(n+)⊗ V ∨
is given by

(u⊗ v∨)↦ ̂dπλ∗(u)(1⊗ v∨), u ∈ U(g), v∨ ∈ V ∨.
4. F-method

In Section 2 we have established a one-to-one correspondence between differential
symmetry breaking operators for vector bundles and certain Lie algebra homomor-
phisms (Theorem 2.9). Using this framework our aim is to find explicit formulæ for
such operators, in particular, when such operators are a priori known to be unique
up to scalar. For this purpose we propose a new method, which we call the F-method.
Its theoretical foundation is summarized in Theorem 4.1. This method becomes par-
ticularly simple when h is a parabolic subalgebra with abelian nilradical. In this case
we develop the F-method in more details, and give its recipe in Section 4.4. Some
useful lemmas for actual computations for vector-valued differential operators are
collected in Section 4.5.

4.1. Construction of equivariant differential operators by algebraic Fourier
transform. Let E be a finite-dimensional vector spaces over C and E∨ its dual
space. Let Diffconst(E) denote the ring of holomorphic differential operators on E

with constant coefficients. We define the symbol map

Symb ∶ Diffconst(E) ∼Ð→Pol(E∨), Dz ↦ Q(ζ)
by the following characterization

Dze
⟨z,ζ⟩ = Q(ζ)e⟨z,ζ⟩.

Then Symb is an algebra isomorphism. The differential operator on E with symbol
Q(ζ) will be denoted by ∂Qz .
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By the definition of the algebraic Fourier transform (Definition 3.1) one has

(4.1) ∂̂Pz = (−1)ℓP (ζ), Q̂(z) = ∂Qζ

for any homogeneous polynomial P on E∨ of degree ℓ and any polynomial Q on E
seen as a multiplication operator.

We recall from Corollary 3.12 that Pol(n+) ⊗ V ∨ is a (g, P )-module if V is a P -
module. Note that the action of exp(n+) (⊂ P ) on Pol(n+) ⊗ V ∨ is not geometric,
namely, it is not given by the pull-back of polynomials via the action on the base
space n+.

The key tool for the F-method that we explain in Section 4.4 is the following
assertion. We note that the two approaches (the canonical invariant pairing (2.20))
and the algebraic Fourier transform (3.23)) give rise to the same differential operators,
provided that n+ is abelian:

Theorem 4.1. Suppose that p is a parabolic subalgebra g and that P = L exp(n+)
is its Levi decomposition. Let P ′ be a closed subgroup of P such that P ′ has a
decomposition P ′ = L′ exp(n′+) with L′ ⊂ L and n′+ ⊂ n+. Let G′ be an arbitrary
subgroup of G containing P ′. For a representation (λ,V ) of P and a representation(ν,W ) of P ′, we form a G-equivariant vector bundle V = G×P V over X = G/P and a
G′-equivariant vector bundle W = G′ ×P ′ W over Y = G′/P ′, respectively. Let µ ∶= λ∗
be as in (3.12).

(1) There is a natural isomorphism

DiffG′(VX ,WY ) ≃ (Pol(n+)⊗HomC(V,W ))L′,d̂πµ(n′+)(4.2)

≃ (HomL′(V ⊗Pol(n+),W ))d̂πµ(n′+) .
Here the right-hand side of (4.2) consists of ψ ∈ Pol(n+)⊗HomC(V,W ) sat-
isfying

ν(ℓ) ○Ad#(ℓ)ψ ○ λ(ℓ−1) = ψ for all ℓ ∈ L′,(4.3)

(d̂πµ(C)⊗ idW + id⊗ν(C))ψ = 0 for allC ∈ n′+.(4.4)

(2) Assume that the nilradical n+ is abelian. Then the following diagram com-
mutes:

HomC(W ∨, indg
p(V ∨))

Fc⊗id
∼

Ð→ Pol(n+)⊗HomC(V,W )
Symb⊗id
∼

←Ð Diffconst(n−)⊗HomC(V,W )
∪ ↻ ∪

HomP ′(W ∨, indg
p(V ∨)) ∼

Ð→
DX→Y

DiffG′(VX ,WY ).
Remark 4.2. The convention on the Fourier transform Fc in Definition 3.5 makes the
diagram in Theorem 4.1 commutative without additional powers of

√
−1.
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Theorem 4.1 may be regarded as a construction of symmetry breaking operators
by using the Fourier transform of generalized Verma modules.

Corollary 4.3. Assume that n+ is abelian and that P ′ = L′ exp(n′+) with L′ ⊂ L and
n′+ ⊂ n+. Then the following diagram of three isomorphisms commutes.

HomL′ (V ⊗Pol(n+),W ))d̂πµ(n′+)

HomP ′(W ∨, indg
p(V ∨))

Fc⊗id
33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

DX→Y

∼ // DiffG′(VX ,WY )
Symb⊗id

jj❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

In the above corollary, HomL′ (V ⊗Pol(n+),W ))d̂πµ(n′+) consists of L′-equivariant,
HomC(V,W )-valued polynomial solutions ψ on n+ to a system of partial differential
equations of second order, see Sections 3.3 and 4.4. Corollary 4.3 implies that, once
we find such a polynomial solution ψ, we obtain a P ′-submodule W ∨ in indg

p(V ∨)
(sometimes referred to as singular vectors) by (Fc⊗ id)−1(ψ), and a differential sym-
metry breaking operator by (Symb ⊗ id)−1(ψ).

We first give proofs for the first statement of Theorem 4.1 here. The proof of the
second statement is postponed until the next subsection.

Proof of Theorem 4.1 (1). Combining the duality theorem (Theorem 2.9) with the
algebraic Fourier transform (Corollary 3.12) we have an isomorphism

HomP ′(W ∨,Pol(n+)⊗ V ∨) ∼

Ð→ DiffG′(VX ,WY )
where the P ′-action on Pol(n+) ⊗ V ∨ is defined via the algebraic Fourier transform
Fc, namely, the left-hand side consists of ψ ∈ HomC(W ∨,Pol(n+) ⊗ V ∨) ≃ Pol(n+) ⊗
HomC(V,W ) satisfying

(d̂πµ(C)⊗ idW + id⊗ ν(C))ψ = 0 for all C ∈ l′ + n+,
provided L′ is connected. Owing to Lemma 3.9, the condition for C ∈ l′ is equivalent
to that ψ ∈ (Pol(n+) ⊗ HomC(V,W ))l′ , where l′ acts on Pol(n+) ⊗ HomC(V,W ) by
ad# ⊗ id+ id⊗(λ∨ ⊗ id+ id⊗ν).

In a more general setting where we allow L′ to be disconnected, by the same
argument as in the proof of Lemma 3.9, we see that the P -action on Pol(n+) ⊗ V ∨
via the algebraic Fourier transform Fc of generalized Verma modules (Corollary 3.12)
coincides with the tensor product representation Ad#⊗λ∨ when restricted to the Levi
subgroup L. Thus the isomorphism (4.2) is proved. �

4.2. Symbol map and reversing signatures. The purpose of this section is to
carefully and clearly set up relations involving various signatures in connection with
the algebraic Fourier transform in a coordinates-free fashion.
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Denote by γ ∶ S(E) ∼Ð→ Pol(E∨) the canonical isomorphism, and define another
algebra isomorphism

γsgn ∶ S(E) ∼Ð→ Pol(E∨),
by γ ○a, where a ∶ S(E)→ S(E) denotes the automorphism of the symmetric algebra
S(E) induced by the linear map X ↦ −X for X ∈ E.

Now we regard E as an abelian Lie algebra over C, and identify its enveloping al-
gebra U(E) with the symmetric algebra S(E). Then, the right and left-infinitesimal
actions induce two isomorphisms:

dR ∶ S(E) ∼Ð→ Diffconst(E), dL ∶ S(E) ∼Ð→ Diffconst(E).
By the definition of the symbol map, we get,

Symb ○dR = γ, Symb ○dL = γsgn.
On the other hand, it follows from (4.1) that

d̂L(u) = γ(u), d̂R(u) = γsgn(u),
for every u ∈ S(E) ≃ U(E), where polynomials are regarded as multiplication oper-
ators. Hence we have proved

Lemma 4.4. Let E be an abelian Lie algebra over C. For any u ∈ U(E),
Symb ○dR(u) = d̂L(u), Symb ○dL(u) = d̂R(u).

4.3. Proof of Theorem 4.1 (2). We are ready to complete the proof of Theorem
4.1 (and Corollary 4.3).

Proof. Take an arbitrary ϕ ∈ HomC(W ∨, indg
p(V ∨)), which may be written as a finite

sum
ϕ =∑

j

uj ⊗ ψj ∈ U(n−)⊗HomC(V,W )
by the Poincaré–Birkhoff–Witt theorem U(g) ≃ U(n−)⊗U(p). Then it follows from
(2.22) and (3.23) that

Fcϕ =∑
j

Fc (dL(uj)δ)⊗ ψj ∈ Pol(n+)⊗HomC(V,W ).
Since δ = F−1c (1), we get

Fcϕ =∑
j

d̂L(uj)⊗ ψj.
On the other hand, by the construction (2.18),

DX→Y (ϕ) =∑
j

dR(uj)⊗ψj .
Now we use the assumption that n+ or equivalently n− is abelian. Then, in the
coordinates n−(R) ↪ G/P the operator dR(uj) for uj ∈ U(n−) defines a constant
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coefficient differential operator on n−. Thus DX→Y (ϕ) can be regarded as an element
of Diffconst(n−(R))⊗HomC(V,W ).

Applying the symbol map we have

(Symb⊗ id) ○DX→Y (ϕ) =∑
j

Symb ○dR(uj)⊗ψj =∑
j

d̂L(uj)⊗ψj ,
where the last equation follows from Lemma 4.4. Thus we have proved that

(Fc ⊗ id)ϕ = (Symb ⊗ id) ○DX→Y (ϕ),
whence the second statement of Theorem 4.1. �

4.4. Recipe of the F-method for abelian nilradical n+. Our goal is to find an
explicit form of a differential symmetry breaking operator from VX to WY . Equiva-
lently, what we call F-method provides a way to find an explicit element in the space

Homg′(indg′

p′(W ∨), indg
p(V ∨)) ≃ Homp′(W ∨, indg

p(V ∨)).
A semisimple element Z in g is called hyperbolic if all the eigenvalues of ad(Z) are

real. A hyperbolic element Z defines a parabolic subalgebra p(Z) = l(Z) + n+(Z),
where l(Z) and n+(Z) are the sum of eigenspaces of ad(Z) with zero and positive
eigenvalues, respectively.

Let g′ be a reductive subalgebra in g, in the sense that g′ itself is reductive and
the adjoint representation of g′ on g is completely reducible.

Definition 4.5. A parabolic subalgebra p is said to be g′-compatible if there exists
a hyperbolic element Z ∈ g′ such that p = p(Z).

If p = l + n+ is g′-compatible, then p′ ∶= p ∩ g′ becomes a parabolic subalgebra of g′

with the following Levi decomposition:

p′ = l′ + n′+ ∶= (l ∩ g′) + (n+ ∩ g′),
which satisfies the assumptions of Theorem 4.1 2).

In this case the space DiffG′(VX ,WY ) of differential symmetry breaking operators
is always finite-dimensional owing to Corollary 2.10 because:

dimCHomg′(indg′

p′(W ∨), indg
p(V ∨)) <∞

for any finite-dimensional representations V and W of p and p′, respectively [K14,
Proposition 2.8].
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Our assumption here is that p = l+n+ is a g′-compatible parabolic subalgebra of g
with abelian nilradical n+. Based on the following diagram (see Corollary 4.3),
(4.5)

(Pol(n+)⊗HomC(V,W ))L′,d̂πµ(n′+)

HomP ′(W ∨, indg
p(V ∨))

Fc⊗id
33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣

DX→Y

∼ // DiffG′(VX ,WY )
Symb⊗id

jj❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱

we develop a method as follows:

Step 0. Fix a finite-dimensional representation (λ,V ) of the parabolic subgroup P .
It defines a G-equivariant vector bundle VX = G ×P V over X = G/P .

Step 1. Let µ ∶= λ∨ ⊗ C2ρ and compute (see (3.14) and (3.15)),

dπµ ∶ g → D(n−)⊗End(V ∨),
d̂πµ ∶ g → D(n+)⊗End(V ∨).

According to (3.13), d̂πµ only depends on the infinitesimal representation λ

of the parabolic subalgebra p.

Step 2. Find a finite-dimensional representation (ν,W ) of the Lie group P ′ such that

HomP ′(W ∨, indg
p(V ∨)) ≠ {0}.

It defines a G′-equivariant vector bundle WY = G′ ×P ′W over Y = G′/P ′ such
that DiffG′(VX ,WY ) is non-trivial.

Step 3. Consider ψ ∈ Pol(n+)⊗HomC(V,W ) satisfying (4.3) and (4.4). Note that the
system of partial differential equations (4.4) is of second order (see Proposition
3.10).

Step 4. Take a slice S for generic L′
C
-orbits on n+. Use invariant theory for (4.3) and

consider the system of differential equations on S induced from (4.4). Find
polynomials ψ ∈ Pol(n+) ⊗ Hom(V,W ) satisfying (4.3) and (4.4) by solving
those equations on S.

Step 5. Let ψ be a polynomial solution to (4.3) and (4.4) obtained in Step 4. In
the diagram (4.5), (Symb⊗ id)−1(ψ) gives the desired differential symmetry
breaking operator in the coordinates n− of X by Theorem 4.1. In the same
diagram, (Fc ⊗ id)−1(ψ) gives an explicit element in Homp′(W ∨, indg

p(V ∨))
(≃ Homg′(indg′

p′(W ∨), indg
p(V ∨))), which is sometimes referred to as a singular

vector.
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This method gives all non-trivial differential symmetry breaking operators for given
data (Y ↪ X,VX) by providing G′-equivariant vector bundles WY and explicit ele-
ments in DiffG′(VX ,WY ). In fact, Step 2 based on Theorem 2.9 gives a necessary and
sufficient condition for a P ′-module W to ensure that DiffG′(VX ,WY ) is non-zero.
Steps 1, 3 and 5 based on Theorem 4.1 show that any differential symmetry breaking
operator is of the form (Fc ⊗ id)−1(ψ) where ψ is a polynomial solution to (4.3) and
(4.4).

Actual applications of the F-method include the following cases:
1. Holomorphic discrete series representations.
2. Principal series representations of real reductive groups (Corollary 2.13).
The latter is related to questions in conformal geometry (more generally parabolic

geometry), see [J09, KØSS13]. The former case includes the classical Rankin–Cohen
bidifferential operators as a prototype, and it is the main object of the second part
of this work [KP14-2]. The connection between these two is discussed in [KKP15].

Here we give some comments on the actual applications of the F-method when X
and Y are Hermitian symmetric spaces. In Theorem 5.3 we prove that all continuous
symmetry breaking operators in this case are given by holomorphic differential oper-
ators that extend to the complex flag varieties, so that the F-method for a parabolic
subalgebra with abelian nilradical applies.

Furthermore, if (G,G′) is a reductive symmetric pair, we know a priori that
DiffG′(VX ,WY ) is one-dimensional for line bundles VX with generic parameter [K14,
Theorem 2.7]. Thus, it is natural to look for explicit formulæ for such canonical op-
erators. In Step 2 we can use explicit branching laws (see [KP14-2, Fact ??]) to find
all W such that Homp′(W ∨, indg

p(V ∨)) is non-zero. Conversely, the differential equa-
tions in Step 3 are useful in certain cases to get a finer structure of branching laws,
e.g., to find the Jordan–Hölder series of the restriction for exceptional parameters λ
(see [KØSS13]).

The Rankin–Cohen operators as well as Juhl’s conformally covariant differential
operators are recovered by the F-method as a special case where generic L′

C
-orbits

on n+ are of codimension one. The induced system of (4.4) reduces to ordinary
differential equations on the one dimensional complex manifold S. In the second part
of this work [KP14-2] we shall treat all the six geometries with a one-dimensional
slice S.

4.5. F-method – supplement for vector valued cases. In order to deal with
the general case where the target WY is no longer a line bundle but a vector bundle,
i.e., where W is an arbitrary finite-dimensional irreducible l′-module, we may find
the condition (4.3) somewhat complicated in practice, even though it is a system
of differential equations of first order. In this section we give two useful lemmas to
simplify Step 3 in the recipe by reducing (4.3) to a simpler algebraic question on
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polynomial rings, so that we can focus on the crucial part consisting of a system of
differential equations of second order (4.4). The results here will be used in [KP14-2,
Sections ?? and ??].

We fix a Borel subalgebra b(l′) of l′. Let χ ∶ b(l′) → C be a character. For an
l′-module U , we set

Uχ ∶= {u ∈ U ∶ Zu = χ(Z)u for any Z ∈ b(l′)}.
Suppose that W is an irreducible representation of l′ with lowest weight −χ. Then

the contragredient representation W ∨ has a highest weight χ. We fix a non-zero
highest weight vector w∨ ∈ (W ∨)χ. Then the contraction map

U ⊗W → U, ψ ↦ ⟨ψ,w∨⟩,
induces a bijection between the following two subspaces:

(4.6) (U ⊗W )l′ ∼

Ð→ Uχ,

if U is completely reducible as an l′-module. By using the isomorphism (4.6), we
reformulate Step 3 of the recipe for the F-method as follows:

Lemma 4.6. Suppose we are in the setting of Section 4.4. Assume that W is an
irreducible representation of the parabolic subalgebra p′. Let −χ be the lowest weight
of W as an l′-module. Then we have a natural injective homomorphism

DiffG′(VX ,WY )↪ {Q ∈ (Pol(n+)⊗ V ∨)χ ∶ d̂πµ(C)Q = 0 for all C ∈ n′+} ,
which is bijective if L′ is connected.

Proof. Applying (4.6) to the l′-module U ∶= Pol(n+) ⊗HomC(V,W ), we get an iso-
morphism:

(4.7) (Pol(n+)⊗Hom(V,W ))l′ ∼

Ð→ (Pol(n+)⊗ V ∨)χ .
Since W is an irreducible p′-module, the Lie subalgebra n′ acts trivially on W and l′

acts irreducibly. In particular, the condition (4.4) amounts to

(d̂πµ(C)⊗ idW )ψ = 0 for all C ∈ n′+.
Therefore, the isomorphism (4.7) induces a bijection

{ψ ∈ (Pol(n+)⊗Hom(V,W ))l′ ∶ ψ satisfies (4.4)}
∼

→ {Q ∈ (Pol(n+)⊗ V ∨)χ ∶ d̂πµ(C)Q = 0 for all C ∈ n′+} .
Now Lemma follows from Theorem 4.1. �
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Since any non-zero vector in W ∨ is cyclic, the next lemma explains how to recover
DX→Y (ϕ) from Q given in Lemma 4.6.

We assume, for simplicity, that the l-module (λ,V ) lifts to LC, the l′-module(ν,W ) lifts to L′
C
, and use the same letters to denote their liftings.

Lemma 4.7. For any ϕ ∈ Homp′(W ∨, indg
p(V ∨)), ℓ ∈ L′C and w∨ ∈W ∨,

(4.8) ⟨DX→Y (ϕ), ν∨(ℓ)w∨⟩ = (Ad(ℓ)⊗ λ∨(ℓ)) ⟨DX→Y (ϕ),w∨⟩ .
Proof. We write ϕ = ∑j uj ⊗ ψj ∈ U(n−) ⊗HomC(V,W ). Since ϕ is p′-invariant, we
have the identity:

∑
j

uj ⊗ ψj =∑
j

Ad(ℓ)uj ⊗ ν(ℓ) ○ ψj ○ λ(ℓ−1) for l ∈ L′
C
.

In turn, we have

⟨DX→Y (ϕ), ν∨(ℓ)w∨⟩ = ∑
j

dR(Ad(ℓ)uj)⊗ ⟨ψj ,w∨⟩ ○ λ(ℓ−1)
= ((Ad(ℓ)⊗ λ∨(ℓ)) ⟨DX→Y (ϕ),w∨⟩ .

Thus, we have proved Lemma. �

We notice that the right-hand side of (4.8) can be computed by using the identity
in Diffconst(n−)⊗ V ∨:

⟨DX→Y (ϕ),w∨⟩ = (Symb−1 ⊗ idV ∨)(Q),
once we know the polynomial Q = ⟨ψ,w∨⟩ with ψ = (Fc ⊗ id)(ϕ) (see Theorem 4.1).
In [KP14-2, Sections ?? and ??], we find explicit formulæ for vector-bundle valued
equivariant differential operators by solving equations for the polynomials Q.

5. Localness and extension theorem for symmetry breaking

operators

Let G ⊃ G′ be a pair of real reductive Lie groups. In general, continuous sym-
metry breaking operators between two principal series representations of G and G′

are not always given by differential operators. Actually, generic ones are supposed
to be given by integral transforms and their meromorphic continuation, as one can
see from a classification result [KS14]. In this section, however, we formulate and
prove a quite remarkable phenomenon (localness theorem) that any continuous G′-
intertwining operator between two representation spaces consisting of holomorphic
sections over Hermitian symmetric spaces is given by differential operators, see The-
orem 5.3. In particular, the covariant holomorphic differential operators which we
shall obtain explicitly in the second part [KP14-2] of this work exhaust all continuous
symmetry breaking operators.
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5.1. Formulation of the localness theorem. Let G be a connected reductive
Lie group, θ a Cartan involution, and G/K the associated Riemannian symmetric
space. We write c(k) for the center of the complexified Lie algebra k ∶= Lie(K)⊗RC ≡
k(R) ⊗R C. In order to formulate a localness theorem, we suppose that G/K is a
Hermitian symmetric space. This means that there exists a characteristic element
Z ∈ c(k) such that the eigenvalues of ad(Z) ∈ End(g) is 0 or ±1 and that we have an
eigenspace decomposition

g = k + n+ + n−
of ad(Z) with eigenvalues 0, 1, and −1, respectively. We note that c(k) is one-
dimensional if G is simple. With the notation of the previous sections, the complex
Lie algebra k plays the role of the Levi subalgebra l.

Let GC be a complex reductive Lie group with Lie algebra g, and PC the maximal
parabolic subgroup with Lie algebra p ∶= k + n+, with abelian nilradical n+. The
complex structure of the homogeneous G/K is induced from the open embedding

G/K ⊂ GC/KC expn+ = GC/PC.

Let G′ be a connected reductive subgroup of G. Without loss of generality we may
and do assume that G′ is θ-stable. We set K ′ ∶= K ∩ G′. Our crucial assumption
throughout this section is

(5.1) Z ∈ k′.
Lemma 5.1. If (5.1) holds, then the parabolic subalgebra p is g′-compatible (see
Definition 4.5), and the homogeneous space G′/K ′ is a Hermitian sub-symmetric
space of G/K such that the embedding G′/K ′ ↪ G/K is holomorphic.

Proof. Let G′
C
be the connected complex subgroup of GC with Lie algebra g′ ∶=

Lie(G′) ⊗R C. Then p′ ∶= k′ + n′+ ≡ (k ∩ g′) + (n+ ∩ g′) is the sum of the eigenspaces
of ad(Z) in g′ with 0 and +1 eigenvalues, respectively, and therefore is a parabolic
subalgebra of g′. We set P ′

C
∶= PC ∩ G′. Then, the Riemannian symmetric space

G′/K ′ becomes a Hermitian symmetric space, for which the complex structure is
induced from the open embedding in the complex flag variety YC ∶= G′C/P ′C:

G′/K ′ ↪ G/K
open ⋂ ⋂ open

YC = G′
C
/P ′

C
↪ GC/PC =XC.

Since YC is a complex submanifold of XC = GC/PC, the embedding G′/K ′ ↪ G/K is
holomorphic. �

Notice that in the setting of Lemma 5.1 the complexified Lie algebra of K ′ is a
Levi subalgebra of the parabolic subalgebra p′.
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Example 5.2. (1) Let G′ be a connected simple Lie group such that the asso-
ciated Riemannian symmetric space G′/K ′ is a Hermitian symmetric space.
We take a characteristic element Z ′ ∈ c(k′). Let G ∶= G′ × G′, and we re-
alize G′ as the diagonal subgroup ∆(G′) ∶= {(g, g) ∶ g ∈ G′} of G. Then
Z ∶= (Z ′,Z ′) ∈ c(k) satisfies (5.1), yielding a holomorphic embedding ∆ ∶
G′/K ′ ↪ G/K = G′/K ′ ×G′/K ′.

(2) Let G be a connected simple Lie group such that the associated symmetric
space G/K is a Hermitian symmetric space with Z a characteristic element in
c(k). Suppose τ is an automorphism of G of finite order such that τ(Z) = Z.
Let G′ be the identity component of the subgroup Gτ

∶= {g ∈ G ∶ τ(g) = g},
and K ′ ∶= G′ ∩K. Then the assumption (5.1) is satisfied, and G′/K ′ is a
Hermitian sub-symmetric space of G/K. We shall focus on the case where(G,Gτ) is a symmetric pair, namely, τ is of order two in [KP14-2] for detailed
analysis.

Consider a finite-dimensional representation of K on a complex vector space V .
We extend it to a holomorphic representation of PC by letting the unipotent subgroup
exp(n+) act trivially, and form a holomorphic vector bundle VXC

= GC×PC
V over XC =

GC/PC. The restriction to the open set G/K defines a G-equivariant holomorphic
vector bundle V ∶= G×K V . We then have a natural representation of G on the vector
space O(G/K,V) of global holomorphic sections endowed with the Fréchet topology
of uniform convergence on compact sets.

Likewise, given a finite-dimensional representation W of K ′, we form the G′-
equivariant holomorphic vector bundleW = G′×K ′W and consider the representation
of G′ on O(G′/K ′,W). By definition, it is clear that

(5.2) Diffhol
G′ (VX ,WY ) ⊂ HomG′ (O (G/K,V) ,O(G′/K ′,W)) .

Theorem 5.3 below shows that the two spaces do coincide.

Theorem 5.3. Let G′ be a reductive subgroup of G satisfying (5.1). Let V and W
be any finite-dimensional representations of K and K ′, respectively. Then,

(1) (localness theorem) any continuous G′-homomorphism from O(G/K,V) to
O(G′/K ′,W) is given by a holomorphic differential operator, in the sense
of Definition 2.1, with respect to a holomorphic map between the Hermitian
symmetric spaces G′/K ′ ↪ G/K, that is,

Diffhol
G′ (VX ,WY ) = HomG′ (O (G/K,V) ,O(G′/K ′,W)) ;

(2) (extension theorem) any such a differential operator (or equivalently, any
continuous G′-homomorphism) extends to a G′

C
-equivariant holomorphic dif-

ferential operator with respect to a holomorphic map between the flag varieties



38 TOSHIYUKI KOBAYASHI, MICHAEL PEVZNER

YC = G′C/P ′C ↪ XC = GC/PC, namely, the injection

(5.3) Diffhol
G′

C

(VXC
,WYC)↪ Diffhol

G′ (VX ,WY )
is bijective.

Remark 5.4. More generally, we may ask whether an analogous statement to Theorem
5.3 (1) holds or not if we replace O (G/K,V) and O(G′/K ′,W) by some other topo-
logical vector spaces having the same underlying (g,K)-module and (g′,K ′)-module,
respectively (e.g. the Casselman–Wallach globalization, Hilbert space globalization,
etc.). This question was raised by D. Vogan in May 2014. It turns out that this
generalization is also true, as we shall show in the proof of Theorem 5.3, that the
natural injection

(5.4) Diffhol
G′

C

(VXC
,WYC)↪ Hom(g′,K ′) (O (G/K,V)K-finite ,O(G′/K ′,W)K ′-finite)

is surjective if the assumption (5.1) is satisfied.

Remark 5.5. An analogous statement for real parabolic subgroups is not true. For
instance, for the pair (G,G′) = (O(n + 1,1),O(n,1)) there always exists a non-zero
continuous G′-equivariant map from the spherical principal series representations
C∞(G/P,Lλ) of G to the one C∞(G′/P ′,Lν) of G′ for any (λ, ν) ∈ C2, however,
non-zero G′-equivariant differential operators exist if and only if ν − λ ∈ 2N [KS14].

Remark 5.6. Suppose that V is a generic character of K and (G,G′) is a symmetric
pair. Then owing to Theorems 2.12 and 5.3 (2), Diffhol

G′ (VXC
,WYC) is at most one-

dimensional for any irreducibleK ′-moduleW , and [KP14-2, Fact ??] tells us precisely
when it is non-zero.

In [KP14-2] we describe explicit formulæ of such differential operators by using
the F-method (Theorem 4.1) for the six complex geometries arising from symmetric
pairs of split rank one.

5.2. Proof of the localness theorem. Theorem 5.3 is a reflection of the theory of
discretely decomposable restrictions (see [K94, K98]). The proof is based on a careful
analysis of the following three objects:

(g,K)-modules, (g,K ′)-modules, and (g′,K ′)-modules.

We say that a K ′-module Z is K ′-admissible if the multiplicity

[M ∶ F ] ∶= dimHomK ′(F,M ∣K ′)
is finite for any F ∈ K̂ ′. Then, K ′-admissibility is preserved by taking the tensor
product with finite-dimensional representations.

We write O(G/K,V)K-finite for the space of K-finite vectors of O(G/K,V), which
becomes naturally a (g,K)-module.
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Lemma 5.7. The (g,K)-module O(G/K,V)K-finite is K ′-admissible if Z ∈ g′.
Proof. As a K-module, we have the following isomorphism

O(G/K,V)K−finite ≃ S(n+)⊗ V
≃ (⊕

a≥0

Sa(n+))⊗ V,
where Sa(n+) denotes the space of symmetric tensors of homogeneous degree a.

Since exp(R√−1Z) acts on Sa(n+) as the scalar e
√
−1at (t ∈ R), the whole S(n+)

is admissible as a module of the one-dimensional subgroup exp(R√−1Z), and so is
O(G/K,V)K−finite. Hence it is also admissible as a K ′-module by [K94, Theorem
1.2]. Alternatively, the lemma follows as a special case of the general result [K94,
Theorem 2.7] or [K98, II, Theorem 4.1]. �

Given a (g,K ′)-module M , we consider the contragredient representation on the
dual space M∨

∶= HomC(M,C). Collecting K ′-finite vectors in M∨, we get a (g,K ′)-
module (M∨)K ′-finite.
Lemma 5.8. Let M be a K ′-admissible (g,K ′)-module. Then,

(1) M is discretely decomposable as a (g′,K ′)-module.
(2) The (g,K ′)-module (M∨)K ′-finite is K ′-admissible and one has the following

K ′-isomorphism

(M∨)K ′-finite ≃ ⊕
F ∈K̂ ′

[M ∶ F ]F ∨.
For the proof we refer to [K98, Part III, Proposition 1.6].

Lemma 5.9. Let M be a K ′-admissible (g,K)-module. Then,

(M∨)K-finite = (M∨)K ′-finite .
Proof. There is an obvious inclusion (M∨)K-finite ⊂ (M∨)K ′-finite. We shall prove that
the multiplicities in (M∨)K-finite and (M∨)K ′-finite are both finite and are the same.
Indeed, M being K ′-admissible, one has

[M ∶ F ] = ⊕
E∈K̂

[M ∶ E][E ∶ F ] <∞.
Conversely, (M∨)K ′-finite ≃⊕F ∈K̂ ′[M ∶ F ]F ∨ and thus,

(M∨)K-finite ≃ ⊕
E∈K̂

[M ∶ E]E∨ ≃ ⊕
F ∈K̂ ′

(⊕
E∈K̂

[M ∶ E][E ∶ F ])F ∨,
which concludes the proof. �
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The next lemma is known to experts, but for the sake of completeness, we give a
proof.

Lemma 5.10. There is a natural (g,K)-isomorphism:

((O(G/K,V)K-finite)∨)K-finite
≃ indg

p(V ∨).
Proof. As in Lemma 2.15, there is a natural non-degenerate g-invariant bilinear form

O(G/K,V)K-finite × ind
g
p(V ∨)→ C.

Hence, we have an injective (g,K)-homomorphism indg
p(V ∨) ⊂ (O(G/K,V)K-finite)∨.

Taking K-finite vectors we get the following commutative diagram of K-modules
isomorphisms:

indg
p(V ∨) ⊂ ((O(G/K,V)K-finite)∨)K-finite

S(n−)⊗ V ∨ ≃ ((Pol(n−)⊗ V )∨)K-finite .

Hence the first row is also bijective. �

Combining Lemmas 5.7, 5.9 and 5.10 we have shown the following key result:

Proposition 5.11. There is a natural (g,K)-isomorphism:

((O(G/K,V)K-finite)∨)K ′-finite ≃ indg
p(V ∨).

Proof of Theorem 5.3. Let T ∶ O(G/K,V)→ O(G′/K ′,W) be a continuousG′-intertwining
operator. It induces a (g′,K ′)-homomorphism

(5.5) TK ∶ O(G/K,V)K-finite → O(G′/K ′,W)K ′-finite.
We shall prove that any such (g′,K ′)-homomorphism TK comes from aG′

C
-equivariant

differential operator on the flag variety.
To see this, we take the dual map (5.5), and apply Lemma 5.10 and Proposition

5.11. Then there is a (g′,K ′)-homomorphism ψ ∶ indg′

p′(W ∨) → indg
p(V ∨) such that

the following diagram commutes:

(O(G′/K ′,W)∨K ′-finite)K ′-finite T∨
K //

Lemma5.10

(O(G/K,V)∨K-finite
)
K ′-finite

Proposition5.11

indg′

p′(W ∨) ψ
// indg

p(V ∨)
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The correspondence TK ↦ ψ is one-to-one, and thus we have obtained the following
natural injective map

Hom(g′,K ′)(O(G/K,V)K-finite,O(G′/K ′,W)K ′-finite)↪ Homg′(indg′

p′(W ∨), indg
p(V ∨)).

According to Theorems 2.12 and 4.1 the latter space is isomorphic to Diffhol
G′ (VX ,WY ).

This shows that (5.4) is surjective.
Since the injective map (5.4) factors the two injective maps (5.2) and (5.3), both

(5.2) and (5.3) are bijective. �

5.3. Automatic continuity theorem in the unitary case. Any unitary high-
est weight module is realized as a subrepresentation of O(G/K,V) for some G-
equivariant holomorphic vector bundle V over G/K. In this subsection, we prove that
any continuous homomorphism between Fréchet modulesO(G/K,V) andO(G′/K ′,W)
induces a continuous homomorphism between their unitary submodules.

Definition 5.12. For a Fréchet G-module F , we say a G-submodule H is a unitary
submodule if H is a Hilbert space such that the inclusion map H ↪ F is continuous
and that G acts unitarily on H.

If V is an irreducible K-module, then there exists at most one non-zero unitary
submodule (up to a scaling of the inner product) of O(G/K,V). We denote by HGV
the unitary submodule of O(G/K,V). The classification of irreducible K-modules
V for which HGV ≠ {0} was accomplished in [EHW83]. We shall prove that any G′-
equivariant differential operator in Theorem 5.3 preserves the unitary submodules in
the following sense:

Theorem 5.13. Let G′ be a reductive subgroup of G satisfying (5.1). Let V andW be
any irreducible finite-dimensional representations of K and K ′, respectively. Suppose
that T ∶ O(G/K,V) Ð→ O(G′/K ′,W) is a G′-equivariant differential operator such

that T ∣
HG

V

/≡ 0. Then HG′W /= {0} and T induces a continuous G′-equivariant linear

map from the Hilbert space HGV onto the Hilbert space HG′W .

Applying Theorems 5.3 and 5.13 to the setting of Example 5.2 (1), we have:

Example 5.14. Any symmetry breaking operator for the tensor product of two holo-
morphic discrete series representations is given by a holomorphic differential op-
erator if those representations are realized in the space of holomorphic sections for
G-equivariant holomorphic vector bundles over the Hermitian symmetric space G/K.
The Rankin–Cohen bidifferential operators are such operators for G = SL(2,R).
Remark 5.15. As we shall see in the proof, the unitary representation HGV decom-
poses discretely when restricted to G′ if the condition (5.1) is satisfied. The unitary
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submodule HG′W occurs as a discrete summand of the restriction of the unitary rep-
resentation HGV of G to the subgroup G′.

Let V be an irreducible representation of K as before. Then, there exists a unique
K-submodule of O(G/K,V)K-finite ≃ S(n+)⊗V isomorphic to V , namely S0(n+)⊗V ≃
V.

Lemma 5.16. Let M be a non-zero (g,K)-submodule of O(G/K,V)K-finite. Then,

1) The module M contains V .
2) If M is unitarizable, then its Hilbert completion can be realized in O(G/K,V)

and M = (HGV )K-finite
.

Proof. 1) Since any non-zero quotient of the (generalized) Verma module indg
p(V ∨)

contains V ∨, the first statement follows from Lemma 5.10. Alternatively, since the
infinitesimal action of n− on O(G/K,V)K-finite ≃ Pol(n−) ⊗ V is given by directional
derivatives, iterated operators of n− yield non-zero elements in V .

2) Denote by (π,M) the unitary representation of G obtained as an (abstract)
Hilbert completion of the (g,K)-module M . We regard V as a K-submodule of M ,
and also of M . Then the map

G ×M × V Ð→ C, (g,w, v)↦ (w,π(g)v)M ,
induces an injective G-homomorphism ι ∶M Ð→ O(G/K,V). Since HGV is the unique
non-zero unitary submodule, ι is an isomorphism onto HGV . �

Proof of Theorem 5.13. By Lemma 5.7, the module (HGV )K-finite
is K ′-admissible.

Therefore, the unitary representation HGV decomposes into a Hilbert direct sum of
irreducible unitary representations {Uj} of G′:
(5.6) HGV ≃ ∑⊕

j

mjUj ,

with mj < ∞ for all j ([K94, Theorem 1.1]) and the underlying (g,K)-module(HGV )K-finite
is isomorphic to an algebraic direct sum of irreducible and unitarizable(g′,K ′)-modules

(5.7) (HGV )K-finite
= (HGV )K ′-finite ≃⊕

j

mj (Uj)K ′-finite ,
with the same multiplicities [K98, Part III]. (We remark that an analogous statement
fails for the restriction π∣G′ of an irreducible unitary representation π of G if the
branching law contains continuous spectrum).

As we saw in the proof of Theorem 5.3, the G′-equivariant differential operators
T induces a (g′,K ′)-homomorphism

TK ∶ (HGV )K-finite
Ð→ O(G′/K ′,W)K ′-finite.
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By (5.7), M ∶= TK ((HGV )K-finite
) is an algebraic direct sum of some irreducible unita-

rizable (g′,K ′)-modules. Since O(G′/K ′,W)K ′-finite contains at most one irreducible
unitarizable (g′,K ′)-module, M is irreducible as a (g′,K ′)-module, and we can re-
alize its Hilbert completion as HG′W by Lemma 5.16.

In view of (5.6) and (5.7), there exists a continuous G′-homomorphism between
Hilbert spaces:

T̃ ∶HGV Ð→H
G′

W

such that T̃ ∣(HG
V
)
K-finite

= T ∣(HG
V
)
K-finite

. Since the inclusion map HGV ↪ O(G/K,V) and
the differential operator T ∶ O(G/K,V) Ð→ O(G′/K ′,W) are both continuous, we
get T̃ = T on HGV . Hence Theorem is proved. �

5.4. Orthogonal projectors. If V is one-dimensional and (G,G′) is a reductive
symmetric pair satisfying (5.1), then all the multiplicities mj in (5.6) are equal to
one (see [K08]) and it becomes meaningful to describe the projector from HGV to each
G′-irreducible summand. We explain briefly the relationship between the projector
for the unitary representation and the symmetry breaking operator.

For this, suppose T ∶ O(G/K,V) → O(G′/K ′,W) is a G′-equivariant differential
operator such that T ∣HG

V
/≡ 0. By Theorem 5.13, T induces a continuous map T ∶

HGV → H
G′

W . Let T ∗ ∶ HG′W → H
G
V be its the adjoint operator. Then the composition

T ∗T ∶HGV →H
G
V is a G′-intertwining operator onto the G′-irreducible summand which

is isomorphic to HG′W . Since T vanishes on the orthogonal complement to T ∗ (HG′W ),
it is (up to scaling) the orthogonal projector onto HG′W .

Explicit description of such differential operators T will be the main concern of
the second part [KP14-2] of this work.
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DIFFERENTIAL SYMMETRY BREAKING OPERATORS.

II. RANKIN–COHEN OPERATORS FOR SYMMETRIC PAIRS

TOSHIYUKI KOBAYASHI, MICHAEL PEVZNER

Abstract. Rankin–Cohen brackets are symmetry breaking operators for the ten-
sor product of two holomorphic discrete series representations of SL(2,R). We
address a general problem to find explicit formulæ for such intertwining operators
in the setting of multiplicity-free branching laws for reductive symmetric pairs.

For this purpose we use a new method (F-method) developed in [KP14-1] and
based on the algebraic Fourier transform for generalized Verma modules. The
method characterizes symmetry breaking operators by means of certain systems of
partial differential equations of second order.

We discover explicit formulæ of new differential symmetry breaking operators
for all the six different complex geometries arising from semisimple symmetric pairs
of split rank one, and reveal an intrinsic reason why the coefficients of orthogonal
polynomials appear in these operators (Rankin–Cohen type) in the three geome-
tries and why normal derivatives are symmetry breaking operators in the other
three cases. Further, we analyze a new phenomenon that the multiplicities in the
branching laws of Verma modules may jump up at singular parameters.

Key words and phrases: branching laws, Rankin–Cohen brackets, F-method, sym-
metric pair, invariant theory, Verma modules, Hermitian symmetric spaces, Jacobi
polynomial.
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1. Introduction

What kind of differential operators do preserve modularity? R. A. Rankin [Ra56]
and H. Cohen [C75] introduced a family of differential operators transforming a given
pair of modular forms into another modular form of a higher weight. Let f1 and f2
be holomorphic modular forms for a given arithmetic subgroup of SL(2,R) of weight
k1 and k2, respectively. The bidifferential operators, referred to as the Rankin–Cohen
brackets of degree a and defined by

(1.1) RCk3k1,k2(f1, f2)(z) ∶=
a∑
ℓ=0
(−1)ℓ ( k1 + a − 1

ℓ
)( k2 + a − 1

a − ℓ )f (a−ℓ)1 (z)f (ℓ)2 (z),

where f (n)(z) = dnf

dzn
(z), yield holomorphic modular forms of weight k3 = k1 + k2 + 2a

(a = 0,1,2,⋯). (In the usual notation, these operators are written as RCa
k1,k2

.)
The Rankin–Cohen bidifferential operators have attracted considerable attention

in recent years particularly because of their applications to various areas including

- theory of modular and quasimodular forms (special values of L-functions,
the Ramanujan and Chazy differential equations, van der Pol and Niebur
equalities) [CL11, MR09, Z94],

- covariant quantization [BTY07, CMZ97, CM04, OS00, DP07, P08, UU96],
- ring structures on representations spaces [DP07, Z94].

Existing methods for the SL(2,R)-case. A prototype of the Rankin–Cohen
brackets was already found by P. Gordan and S. Guldenfinger [Go1887, Gu1886]
in the 19th century by using recursion relations for invariant binary forms and the
Cayley processes. For explicit constructions of the equivariant bidifferential operators
(1.1), several different methods have been developed:

- Recurrence relations [C75, El06, HT92, P12, Z94].
- Taylor expansions of Jacobi forms [EZ85, IKO12, Ku75].
- Reproducing kernels for Hilbert spaces [PZ04, UU96, Zh10].
- Dual pair correspondence [B06, EI98].
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In the first part of our work [KP14-1] we proposed yet another method (F-method)
to find differential symmetry breaking operators in a more general setting of branch-
ing laws for infinite-dimensional representations, based on the algebraic Fourier trans-
form of generalized Verma modules. Even in the SL(2,R)-case, the method is orig-
inal and simple, and yields missing operators for singular parameters (k1, k2, k3),
see Corollary 9.3 for the complete classification. Moreover, the F-method leads us
to discover new families of covariant differential operators for six different complex
geometries beyond the SL(2,R) case (see Table 1.1).

Branching laws for symmetric pairs. By branching law we mean the decom-
position of an irreducible representation π of a group G when restricted to a given
subgroup G′. An important and fruitful source of examples is provided by pairs of
groups (G,G′) such that G′ is the fixed point group of an involutive automorphism
τ of G, called symmetric pairs.

The decomposition of the tensor product of two representations is a special case
of branching laws with respect to symmetric pairs (G,G′). Indeed, if G = G1 ×G1

and τ is an involutive automorphism of G given by τ(x, y) = (y, x), then G′ ≃ G1 and
the restriction of the outer tensor product π1 ⊠π2 to the subgroup G′ is nothing but
the tensor product π1 ⊗ π2 of two representations π1 and π2 of G1. The Littlewood–
Richardson rule for finite-dimensional representations is another classical example
of branching laws with respect to the symmetric pair (GL(p + q,C),GL(p,C) ×
GL(q,C)). Our approach relies on recent progress in the theory of branching laws
of infinite-dimensional representations for symmetric pairs even beyond completely
reducible cases (see Section 9 for instance).

Rankin–Cohen operators as intertwining operators. From the view point of
representation theory the Rankin–Cohen operators are intertwiners in the branching
law for the tensor product of two holomorphic discrete series representations πk1 and
πk2 of SL(2,R). More precisely, the discrete series representation πk1+k2+2a (a ∈ N)
occurs in the following branching law [Mo80, Re79]:

(1.2) πk1 ⊗ πk2 ≃ ∑
a∈N
⊕
πk1+k2+2a,

and the operator (1.1) gives an explicit intertwining operator from πk1 ⊗ πk2 to the
irreducible summand πk1+k2+2a.

In our work [KP14-1] we developed a new method to find explicit intertwining
operators for irreducible components of branching laws in a broader setting of sym-
metric pairs. Such operators are unique up to scalars if the representation π is a
highest weight module of scalar type (or equivalently π is realized in the space of
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holomorphic sections of a homogeneous holomorphic line bundle over a bounded sym-
metric domain) and (G,G′) is any symmetric pair, by the multiplicity-free theorems
([K08, K12]).

The subject of this paper is to study concrete examples where the F-method turns
out to be surprisingly efficient.

Let VX → X be a homogeneous vector bundle of a Lie group G and WY → Y a
homogeneous vector bundle of G′. Then we have a natural representation π of G on
the space Γ(X,VX) of sections on X , and similarly that of G′ on Γ(Y,WY ). Assume
G′ is a subgroup of G. We address the following question:

Question 1. Find explicit G′-intertwining operators from Γ(X,VX) to Γ(Y,WY ).
To illustrate the nature of such operators we also refer to them as continuous

symmetry breaking operators. They are said to be differential symmetry breaking
operators if the operators are differential operators.

The F-method proposed in [KP14-1] provides necessary tools to give an answer to
Question 1 for all symmetric pairs (G,G′) of split rank one inducing a holomorphic
embedding Y ↪X (see Table 2.1). We remark that the split rank one condition does
not force the rank of G/G′ to be equal to one (see Table 1.1 (1), (5) below).

Normal derivatives and Jacobi–type differential operators. In representation
theory, taking normal derivatives with respect to an equivariant embedding Y ↪X is
a standard tool to find abstract branching laws for representations that are realized
on X (see [JV79] for instance).

However, we should like to emphasize that the common belief “normal derivatives
with respect to Y ↪ X are intertwining operators in the branching laws” is not true.
Actually, it already fails for the tensor product of two holomorphic discrete series of
SL(2,R) where the Rankin–Cohen brackets are not normal derivatives with respect
to the diagonal embedding Y ↪ Y × Y with Y being the Poincaré upper half plane.

We discuss when normal derivatives become intertwiners in the following six com-
plex geometries arising from real symmetric pairs of split rank one:

(1) PnC ↪ PnC × PnC (4) Grp−1(Cp+q) ↪ Grp(Cp+q)
(2) LGr(C2n−2) × LGr(C2) ↪ LGr(C2n) (5) PnC ↪ Q2nC

(3) QnC ↪ Qn+1C (6) IGrn−1(C2n−2) ↪ IGrn(C2n)
Table 1.1. Equivariant embeddings of flag varieties

Here Grp(Cn) is the Grassmanian of p-planes in Cn, QmC ∶= {z ∈ Pm+1C ∶ z20 +⋯+
z2m+1 = 0} is the complex quadric, and IGrn(C2n) ∶= {V ⊂ C2n ∶ dimV = n, Q∣V ≡ 0}
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is the Grassmanian of isotropic subspaces of C2n equipped with a non-degenerate
quadratic form Q, and LGrn(C2n) ∶= {V ⊂ C2n ∶ dimV = n, ω∣V ×V ≡ 0} is the
Grassmanian of Lagrangian subspaces of C2n equipped with a symplectic form ω.

For Y ↪X as in Table 1.1 and any equivariant line bundle Lλ → X with sufficiently
positive λ we give a necessary and sufficient condition for normal derivatives to
become intertwiners:

Theorem A. (1) Any continuous G′-homomorphism from O(X,Lλ) to O(Y,W) is
given by normal derivatives with respect to the equivariant embedding Y ↪ X if the
embedding Y ↪X is of type (4), (5) or (6) in Table 1.1.

(2) None of normal derivatives of positive order is a G′-homomorphism if the
embedding Y ↪X is of type (1), (2) and (3) in Table 1.1.

See Theorem 5.3 for the precise formulation of the first statement. For the three
geometries (1), (2), and (3) in Table 1.1, we construct explicitly all the continuous G′-
homomorphisms which are actually holomorphic differential operators (differential

symmetry breaking operators). For this, let P α,β
ℓ
(x) be the Jacobi polynomial, and

C̃α
ℓ (x) the normalized Gegenbauer polynomial (see Appendix 11.3). We inflate them

into polynomials of two variables by

P
α,β
ℓ (x, y) ∶= yℓP α,β

ℓ (2x
y
+ 1) and C̃α

ℓ (x, y) ∶= x ℓ
2 C̃α

ℓ ( y√
x
) .

In what follows, Lλ stands for a homogeneous holomorphic line bundle, and Wa
λ a

homogeneous vector bundle with typical fiber Sa(Cm) (m = n in (1); = n − 1 in (2);
m=1 in (3)) with parameter λ (see Lemma 5.5 for details). Then we prove:

Theorem B. (1) For the symmetric pair (U(n,1)×U(n,1), U(n,1)) the differential
operator

P λ′−1,−λ′−λ′′−2a+1
a ( n∑

i=1
vi
∂

∂zi
,

n∑
j=1
vj

∂

∂zj
)

is an intertwining operator from O(Y,L(λ′
1
,λ′

2
))⊗̂O(Y,L(λ′′

1
,λ′′

2
)) to O(Y,Wa(λ′

1
+λ′′

1
,λ′

2
+λ′′

2
)),

for any λ′1, λ′′1 , λ′2, λ′′2 ∈ Z, and a ∈ N. Here we set λ′ = λ′1 − λ′2 and λ′′ = λ′′1 − λ′′2 .
(2) For the symmetric pair (Sp(n,R), Sp(n − 1,R) ×Sp(1,R)) the differential op-

erator

Cλ−1
a ( ∑

1≤i,j≤n−1
2vivj

∂2

∂zij∂znn
, ∑
1≤j≤n−1

vj
∂

∂zjn
)

is an intertwining operator from O(X,Lλ) to O(Y,Wa
λ), for any λ ∈ Z, and a ∈ N.

(3) For the symmetric pair (SO(n,2), SO(n − 1,2)) the differential operator

C̃
λ−n−1

2

a (−∆z
Cn−1 ,

∂

∂zn
)
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is an intertwining operator from O(X,Lλ) to O(Y,Lλ+a), for any λ ∈ Z and a ∈ N.
See Theorems 8.1, 7.1, and 6.3 for the precise statements, respectively. By the

localness theorem [KP14-1, Theorem ??], any continuous G′-homomorphisms are
differential operators. Then we prove that the above operators exhaust all continuous
symmetry breaking operators in (2) and (3), and for generic parameter (λ′, λ′′) in (1),
see (8.7) for the exact condition on the parameter. The first statement of Theorem B
corresponds to the decomposition of the tensor product, and gives rise to the classical
Rankin–Cohen brackets in the case where n = 1. An analogous formula for Theorem
B (3) was recently found in a completely different way by A. Juhl [J09] in the setting
of conformally equivariant differential operators with respect to the embedding of
Riemannian manifolds Sn−1 ↪ Sn.

The proof of Theorem B is built on the F-method, which establishes in the present
setting a bijection between the space

HomG′(O(X,Lλ),O(Y,Wa
λ))

of symmetry breaking operators and the space of polynomial solutions to a certain
ordinary differential equation, namely

SolJacobi(λ′ − 1,−λ′ − λ′′ − 2a + 1, a) ∩Pola[s]
SolGegen(λ − 1, a) ∩Pola[s]even
SolGegen(λ − n − 1

2
, a) ∩Pola[s]even,

for the geometries (1), (2), and (3) in Table 1.1, respectively. Here SolJacobi(α,β, ℓ)∩
Pola[s] and SolGegen ∩ Pola[s] denote the space of polynomial solutions of degree at
most a to the Jacobi differential equation (11.4) and to the Gegenbauer differential
equation (11.14), respectively. (The subscript “even” stands for a parity condition
(6.12).)

Surprisingly, the dimension of the space of symmetry breaking operators for the
tensor product case (1) jumps up at some singular parameters. We illustrate this
phenomenon by the the following result in the sl2-case:

Theorem C (Theorem 9.1). The following three conditions on the parameters(λ′, λ′′, λ′′′) ∈ Z3 are equivalent:

(i) dimCHomSL(2,R)(O(Lλ′)⊗̂O(Lλ′′),O(Lλ′′′)) = 2.
(ii) dimCHomg(indg

b(−λ′′′), indg

b(−λ′) ⊗ indg

b(−λ′′)) = 2, where indg

b(−λ) is the
Verma module U(g)⊗U(b) C−λ of g = sl(2,C).

(iii) λ′, λ′′ ≤ 0,2 ≤ λ′′′, λ′ + λ′′ ≡ λ′′′ mod 2, −(λ′ + λ′′) ≥ λ′′′ − 2 ≥ ∣λ′ − λ′′∣.
We also prove that the analytic continuations of the Rankin–Cohen bidifferential

operators RCλ′′′λ′,λ′′ vanish exactly at these singular parameters (λ′, λ′′, λ′′′) in this



RANKIN–COHEN OPERATORS FOR SYMMETRIC PAIRS 7

case. Moreover, we construct explicitly three symmetry breaking operators in this
case, and prove that any two of the three are linearly independent. Furthermore we
show that each of these three symmetry breaking operators factors into two natural
intertwining operators as follows:

O(L2−λ′)⊗̂O(Lλ′′)
RCλ′′′

2−λ′,λ′′

**❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚

O(Lλ′)⊗̂O(Lλ′′)
( ∂
∂z1
)1−λ

′

⊗ id 44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤ id⊗( ∂
∂z2
)1−λ

′′

//

RC2−λ′′′
λ′,λ′′ **❱❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

O(Lλ′)⊗̂O(L2−λ′′)RCλ
′′′

λ′,2−λ′′
// O(Lλ′′′),

O(L2−λ′′′) ( d
dz
)λ′′′−1

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

whereas the linear relation among the three is explicitly given by using Kummer’s
connection formula for Gauss hypergeometric functions via the F-method.

In Section 10 we briefly discuss some new applications of the explicit formulæ of
differential symmetry breaking operators. Namely, we describe an explicit construc-
tion of the discrete spectrum of complementary series representations of O(n + 1,1)
when restricted to O(n,1) by means of the differential operator given in Theorem B
(3).

In Appendix (Section 11) we collect some results on classical ordinary differential
equations with focus on singular parameters for which there exist two linearly inde-
pendent polynomial solutions which correspond, via the F-method, to the failure of
multiplicity-one results in the branching laws.

The authors are grateful to the referee for his/her enlightening remarks and for
suggesting to divide the original manuscript into two parts and to write more detailed
proofs and explanations for the second part for those who are interested in analysis
and also in geometric problems. Special thanks are also due to Dr. T. Kubo who
read very carefully the revised manuscript and made constructive suggestions on its
readability.

Notation: N = {0,1,2,⋯}, N+ = {1,2,⋯}.
2. Geometric setting: Hermitian symmetric spaces

In this section we describe the geometric setting in which Question 1 will be
answered.

2.1. Complex submanifolds in Hermitian symmetric spaces. Let G be a con-
nected real reductive Lie group, θ a Cartan involution, and G/K the associated
Riemannian symmetric space. We write c(k) for the center of the complexified Lie
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algebra k ∶= Lie(K) ⊗R C ≡ k(R) ⊗R C. We suppose that G/K is a Hermitian sym-
metric space. This means that there exists a characteristic element Ho ∈ c(k) such
that we have an eigenspace decomposition

g = k + n+ + n−
of ad(Ho) with eigenvalues 0, 1, and −1, respectively. We note that c(k) is one-
dimensional if G is simple.

Let GC be a complex reductive Lie group with Lie algebra g, and PC the max-
imal parabolic subgroup having Lie algebra p ∶= k + n+ with abelian nilradical n+.
The complex structure of the homogeneous space G/K is induced from the Borel
embedding

G/K ⊂ GC/KC expn+ = GC/PC.

Let G′ be a θ-stable, connected reductive subgroup of G. We set K ′ ∶=K ∩G′ and
assume

(2.1) Ho ∈ k′.
Then the homogeneous space G′/K ′ carries a G′-invariant complex structure such

that the embedding G′/K ′ ↪ G/K is holomorphic by the following diagram:

(2.2)
Y = G′/K ′ ↪ G/K =X

open ⋂ ⋂ open

G′
C
/P ′

C
↪ GC/PC,

where G′
C
and P ′

C
= K ′

C
exp n′+ are the connected complex subgroups of GC with Lie

algebras g′ ∶= Lie(G′)⊗R C and p′ ∶= k′ + n′+ ≡ (k ∩ g′) + (n+ ∩ g′), respectively.
Given a finite-dimensional representation of K on a complex vector space V , we

extend it to a holomorphic representation of PC by letting the unipotent subgroup
exp(n+) act trivially, and form a holomorphic vector bundle VGC/PC

= GC ×PC
V over

GC/PC. The restriction to the open set G/K defines a G-equivariant holomorphic
vector bundle V ∶= G×K V . We then have a natural representation of G on the vector
space O(G/K,V) of global holomorphic sections.

Likewise, given a finite-dimensional representation W of K ′, we form the G′-
equivariant holomorphic vector bundleW = G′×K ′W and consider the representation
of G′ on O(G′/K ′,W).

Let V ∨ and W ∨ be the contragredient representations of V and W , respectively,
and we define g- and g′-modules (generalized Verma modules) by

indg
p(V ∨) ∶= U(g)⊗U(p) V ∨,

indg′

p′(W ∨) ∶= U(g′)⊗U(p′)W ∨,
where U(g) and U(g′) denote the universal enveloping algebras of the Lie alge-
bras g and g′, respectively. We endow the spaces O(G/K,V) and O(G′/K ′,W)



RANKIN–COHEN OPERATORS FOR SYMMETRIC PAIRS 9

with the Fréchet topology of uniform convergence on compact sets, and denote by
HomG′( ⋅ , ⋅ ) the space of continuous symmetry breaking operators (i.e. continu-
ous G′-homomorphisms), and by Diffhol

G′
C

(VGC/PC
,WG′

C
/P ′

C
) the space of G′

C
-equivariant

holomorphic differential operators with respect to the holomorphic map G′
C
/P ′

C
↪

GC/PC (see [KP14-1, Definition ??] for the definition of differential operators between
vector bundles with different base spaces). Then the localness theorem [KP14-1,
Theorem ??] and the duality theorem (op. cit., Theorem ??) assert:

Theorem 2.1. We have the following natural isomorphisms:

HomG′(O(G/K,V),O(G′/K ′,W)) ≃ Diffhol
G′

C

(VGC/PC
,WG′

C
/P ′

C
)

≃ Homg′(indg′

p′(W ∨), indg
p(V ∨)).

2.2. Semisimple symmetric pairs of holomorphic type and split rank. Let
τ be an involutive automorphism of a semisimple Lie group G. Without loss of
generality we may and do assume that τ commutes with the Cartan involution θ of
G. We define a θ-stable subgroup by

Gτ ∶= {g ∈ G ∶ τg = g}.
Then the homogeneous space G/Gτ carries a G-invariant pseudo-Riemannian struc-
ture g induced from the Killing form of g(R) = Lie(G), and becomes an affine sym-
metric space with respect to the Levi-Civita connection. We use the same letters τ
and θ to denote the differentials and also their complex linear extensions. We set
g(R)τ ∶= {Y ∈ g(R) ∶ τY = Y }, the Lie algebra of Gτ . The pair (g(R),g(R)τ ) is
said to be a semisimple symmetric pair. It is irreducible if g(R) is simple or is a
direct sum of two copies of a simple Lie algebra g′(R) with g(R)τ ≃ g′(R). Then any
semisimple symmetric pair is isomorphic to a direct sum of irreducible ones.

Definition 2.2. Geometrically, the split rank of the semisimple symmetric space
G/Gτ is the dimension of a maximal flat, totally geodesic submanifold B inG/Gτ such
that the restriction of g to B is positive definite. Algebraically, it is the dimension
of a maximal abelian subspace of g(R)−τ,−θ ∶= {Y ∈ g(R) ∶ τY = θY = −Y }. The
dimension is independent of the choice of the data, and the geometric and algebraic
definitions coincide. We denote it by rankRG/Gτ .

The automorphism τθ is also an involution because τθ = θτ . Since
g(R)τθ,−θ ∶= {Y ∈ g(R) ∶ τθY = Y, θY = −Y }

coincides with g(R)−τ,−θ, we have rankRG/Gτ = rankRGτθ, the split rank of the re-
ductive Lie group Gτθ.

Suppose now that G/K is a Hermitian symmetric space with a characteristic ele-
ment Ho as in Section 2.1.
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g(R) g(R)τ g(R)τθ
1 su(n,1)⊕ su(n,1) su(n,1) su(n,1)
2 sp(n + 1,R) sp(n,R)⊕ sp(1,R) u(1, n)
3 so(n,2) so(n − 1,2) so(n − 1)⊕ so(1,2)
4 su(p, q) s(u(1)⊕ u(p − 1, q)) s(u(1, q)⊕ u(p − 1))
5 so(2,2n) u(1, n) u(1, n)
6 so∗(2n) so(2)⊕ so∗(2n − 2) u(1, n − 1)

Table 2.1. Split rank one irreducible symmetric pairs of holomorphic type

Definition 2.3. An irreducible symmetric pair (g(R),g(R)τ ) (or (G,Gτ)) is said to
be of holomorphic type (with respect to the complex structure on G/K defined by
the characteristic element Ho) if τ(Ho) =Ho, namely Ho ∈ kτ .

If (G,Gτ) is of holomorphic type, then Gτ/Kτ carries a Gτ -invariant complex
structure such that the embedding Gτ/Kτ ↪ G/K is holomorphic.

Among irreducible symmetric pairs (g(R),g(R)τ ) of holomorphic type Table 2.1
gives the infinitesimal classification of those of split rank one.

The pairs of flag varieties (see (2.2)) associated with the six pairs (G,Gτ) in Table
2.1 correspond to the six complex parabolic geometries given in Table 1.1.

3. F-method in holomorphic setting

In this section we reformulate the recipe of the F-method ([KP14-1, Section ??])
in the holomorphic setting, that is, in the setting of Section 2.1 where G′/K ′ is a
complex submanifold of the Hermitian symmetric space G/K.

3.1. F-method for Hermitian symmetric spaces. The algebraic Fourier trans-
form on a vector space E is an isomorphism of the Weyl algebras of holomorphic
differential operators with polynomial coefficients on a complex vector spaces E and
its dual space E∨:

D(E)→ D(E∨), T ↦ T̂

induced by

(3.1)
∂̂

∂zj
∶= −ζj, ẑj ∶= ∂

∂ζj
, 1 ≤ j ≤ n = dimE,

where (z1, . . . , zn) are coordinates on E and (ζ1, . . . , ζn) are the dual coordinates on
E∨.

Let GC be a connected complex reductive Lie group with Lie algebra g and PC =
KCN+,C be a parabolic subgroup with Lie algebra p = k+n+. Let λ be a holomorphic
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representation ofKC on V . We extend it to PC by letting N+,C = exp(n+) act trivially,
and form a GC-equivariant holomorphic vector bundle V = GC×PC

V over GC/PC. Let
C2ρ be the holomorphic character defined by p ↦ det(Ad(p) ∶ p → p), and define a
twist of the contragredient representation (λ∨, V ∨) of PC by λ∗ ∶= λ∨ ⊗C2ρ. We setV∗ ≡ V∨2ρ ∶= GC ×PC

(V ∨ ⊗C2ρ), which is isomorphic to the tensor bundle of the dual
bundle V∨ and the canonical line bundle of GC/PC. We shall apply the algebraic
Fourier transform to the infinitesimal representation dπλ∗ of g on O(GC/PC,V∗) as
follows.

We recall that the Gelfand–Naimark decomposition g = n− + k + n+ induces a dif-
feomorphism

n− ×KC × n+ → GC, (X,ℓ,Y )↦ (expX)ℓ(expY ),
into an open dense subset, denoted by Greg

C
, of GC. Let p± ∶ Greg

C
→ n±, po ∶ Greg

C
→KC,

be the projections characterized by the identity

exp(p−(g))po(g) exp(p+(g)) = g.
Furthermore, we introduce the following maps:

α ∶ g × n− → k, (Y,Z) ↦ d

dt
∣
t=0
po (etY eZ) ,(3.2)

β ∶ g × n− → n−, (Y,Z) ↦ d

dt
∣
t=0
p− (etY eZ) .(3.3)

For F ∈ O(n−, V ∨) ≃ O(n−)⊗V ∨, we set f ∶ Greg

C
Ð→ V ∨ by f(expZp) = λ∗(p)−1F (Z)

for Z ∈ n− and p ∈ PC. Then the infinitesimal action of g on O(n−, V ∨) is given by

(dπλ∗(Y )F ) (Z) = d

dt
∣
t=0
f(e−tY eZ)

= λ∗(α(Y,Z))F (Z) − (β(Y, ⋅ )F )(Z) for Y ∈ g,(3.4)

where we use the same letter λ∗ to denote the infinitesimal action of p on V ∨. This
action yields a Lie algebra homomorphism

(3.5) dπλ∗ ∶ g→ D(n−)⊗End(V ∨).
In turn, we get another Lie algebra homomorphism by the algebraic Fourier transform
on the Weyl algebra D(n−):
(3.6) d̂πλ∗ ∶ g→ D(n+)⊗End(V ∨),
where we identify n∨− with n+ by a g-invariant non-degenerate bilinear form on g (e.g.
the Killing form).

Theorem 3.1 (F-method for Hermitian symmetric spaces). Suppose we are in the
setting of Section 2.1.
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(1) We have the following commutative diagram of three isomorphisms:
(3.7)

HomK ′(V,Pol(n+) ⊗W )d̂πλ∗(n′+)

Homp′(W
∨, indgp(V ∨))

Fc⊗id
33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

DX→Y

∼ // HomG′(O(X,V),O(Y,W)).

Symb⊗idkk❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲

(2) Let b(k′) be a Borel subalgebra of k′, and assume that W is the irreducible repre-
sentation of K ′ with lowest weight −χ. Then we have the following isomorphism:

HomK ′(V,Pol(n+) ⊗W )d̂πλ∗(n′+) ∼→ {P ∈ Pol(n+) ⊗ V ∨ ∶ P satisfies (3.8) and (3.9)}

ZP = χ(Z)P, for all Z ∈ b(k′).(3.8)

d̂πλ∗(C)P = 0, for all C ∈ n′+.(3.9)

Proof. 1) The first statement follows from Theorem 2.1 and [KP14-1, Corollary ??].
2) Via the linear isomorphism HomC(V,Pol(n+) ⊗W ) ≃ Pol(n+) ⊗ HomC(V,W ),

we have an isomorphism

HomK ′(V,Pol(n+)⊗W )d̂πλ∗(n′+)

≃ {ψ ∈ Pol(n+)⊗HomC(V,W ) ∶ ψ satisfies (3.10) and (3.11)},
ν(ℓ) ○Ad♯(ℓ)ψ ○ λ(ℓ−1) = ψ for all ℓ ∈K ′,(3.10)

(d̂πλ∗(C)⊗ idW )ψ = 0 for allC ∈ n′+,(3.11)

where Ad♯(ℓ) ∶ Pol(n+)→ Pol(n+), ϕ ↦ ϕ ○Ad(ℓ)−1.
On the other hand, if −χ is the lowest weight of the irreducible representation W

of K ′, we have an isomorphism

(3.12) HomK ′(V,Pol(n+)⊗W ) ≃ (Pol(n+)⊗ V ∨)χ,
where

(Pol(n+)⊗ V ∨)χ ∶= {P ∈ Pol(n+)⊗ V ∨ ∶ P satisfies (3.8)} .
Therefore, Theorem 3.1 (2) is deduced from Theorem 3.1 (1) and from the following
natural isomorphism:

{ψ satisfying (3.10) and (3.11)} ∼→ {P satisfying (3.8) and (3.9)}.
See also [op. cit., Lemma ??]. �

The F-method (see [op.cit., Section ??]) in this setting consists of the following
five steps:
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Step 0. Fix a finite-dimensional representation (λ,V ) of the maximal compact sub-
group K. Form a G-equivariant holomorphic vector bundle VX ≡ V = G×K V
on X = G/K.

Step 1. Extend λ to a representation of the Lie algebra p = k + n+ by letting n+
act trivially, and define another representation λ∗ ∶= λ∨ ⊗ C2ρ of p on V ∨.
Compute dπλ∗ and d̂πλ∗ .

Step 2. Find a finite-dimensional representation (ν,W ) of the Lie group K ′ such that

Homg′(indg′

p′(W ∨), indg
p(V ∨)) ≠ {0},

or equivalently,

Homk′(W ∨, indg
p(V ∨)) ≠ {0}.

Form a G′-equivariant holomorphic vector bundle WY ≡ W = G′ ×K ′ W on
Y = G′/K ′. According to the duality theorem [KP14-1, Theorem ??] the
space of differential symmetry breaking operators DiffG′(VX ,WY ) is then non-
trivial.

Step 3. Write down the condition on HomK ′(V,Pol(n+) ⊗W )d̂πλ∗(n′+), namely, the
space of ψ ∈ Pol(n+)⊗HomC(V,W ) satisfying (3.10) and (3.11) or equivalently
P ∈ Pol(n+)⊗ V ∨ satisfying (3.8) and (3.9).

Step 4. Use the invariant theory and give a simple description of

HomK ′(V,Pol(n+)⊗W ) ≃ (Pol(n+)⊗ V ∨)χ , ψ↔ P

by means of “regular functions g(s) on a slice” S for generic K ′
C
-orbits on

n+. Induce differential equations for g(s) on S from (3.11) (or equivalently
(3.9)). Concrete computations are based on the technique of the T -saturation
of differential operators, see Section 3.2. Solve the differential equations of
g(s).

Step 5. Transfer a solution g obtained in Step 4 into a polynomial solution ψ to
(3.10) and (3.11). In the diagram (3.7), (Symb⊗ id)−1(ψ) gives the desired
differential symmetry breaking operator in the coordinates n− of X . As a

byproduct, obtain an explicit K ′-type W ∨ annihilated by n′+ in indg′

p′(V ∨)
(sometimes referred to as singular vectors) as (Fc ⊗ id)−1(ψ).

We shall give some comments on Steps 3 and 4 in Sections 3.3 and 3.2 respectively.
For Step 2, there are two approaches: one is to use (abstract) branching laws for the
restriction of indg

p(V ∨) to the subalgebra g′ (e.g. Fact 4.2) or the restriction ofO(G/K,V) to the subgroup G′ (e.g. Fact 4.3). The other one is to apply the F-
method and reduce it to a question of solving differential equations of second order.
The former approach works well for generic parameters. We shall see that the latter
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approach is efficient for singular parameters in our setting (Theorems 6.1, 7.1 and
8.1, see also [KØSS13]).

3.2. T-saturation of differential operators. In order to implement Step 4, our
idea is to introduce saturated differential operators as follows. For simplicity con-
sider the case when dimC V = 1. Then HomK ′(V,Pol(n+) ⊗W ) is identified with
a subspace of Pol(n+) via the isomorphism (3.12). Let C(n+) denote the field of
rational functions on n+. Suppose that we have a morphism T ∶ C[S]Ð→ C(n+) such
that T induces an isomorphism

T ∶ Γ(S) ∼→ HomK ′(V,Pol(n+)⊗W )
for some algebraic variety S (“slice” of a generic K ′

C
-orbit on n+), and for some

appropriate function space Γ(S) (e.g. Γ(S) = Pola[t]even, see (6.12)). In the special
case where V and W are the trivial one-dimensional representations of K and K ′,
respectively, we may take S = n+//K ′C (geometric quotient) and T is the natural

morphism C[S] ∼
Ð→ C[n+]K ′C.

Definition 3.2. A differential operator R on n+ with rational coefficients is T-
saturated if there exists an operator D such that the following diagram commutes:

C[S] T //

D
��

C(n+)
R
��

C[S] T // C(n+).
Such an operator D is unique (if exists), and we denote it by T ♯R. Then we have

(3.13) T ♯(R1 ⋅R2) = T ♯(R1)T ♯(R2)
whenever it makes sense.

Proposition 3.3. Let C1,⋯,Ck be a basis of n′+. Suppose there exist non-zero Qj ∈
C(n+) such that Qj d̂πλ∗(Cj) is T -saturated (1 ≤ j ≤ k) and set Dj ∶= T ♯(Qj d̂πλ∗(Cj)).
Then T induces a bijection

{g ∈ Γ[S] ∶Djg = 0, (1 ≤ j ≤ k)}
∼
→ {ψ ∈ HomK ′(V,Pol(n+)⊗W ) ∶ ψ satisfies (3.10)and (3.11)}
≃ {P ∈ (Pol(n+)⊗ V ∨)χ ∶ P satisfies (3.9)} .

We shall use this idea in Sections 6-8 where S is one-dimensional and Dj are
ordinary differential operators. We note that Djg = 0 (1 ≤ ∀j ≤ k) is equivalent to a
single equation Dig = 0 if K ′ acts irreducibly on n′+.
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3.3. Complement for the F-method in vector-valued cases and highest

weight varieties. If the target WY is no longer a line bundle but a vector bun-
dle, i.e., if W is an arbitrary finite-dimensional, irreducible k′-module, we recall two
supplementary ingredients of Step 3 in the recipe by reducing (3.10) to a simpler
algebraic question on polynomial rings, so that we can focus on the crucial part con-
sisting of a system of differential equations of second order (3.11). This construction
is based on the notion of highest weight variety of the fiber W and is summarized in
the following two lemmas (see [KP14-1, Lemmas ?? and ??].

We fix a Borel subalgebra b(k′) of k′. Let χ ∶ b(k′) → C be a character. For a
k′-module U , we set

Uχ ∶= {u ∈ U ∶ Zu = χ(Z)u for any Z ∈ b(k′)}.
Suppose thatW is the irreducible representation of k′ with lowest weight −χ. Then

the contragredient representation W ∨ has a highest weight χ. We fix a non-zero
highest weight vector w∨ ∈ (W ∨)χ. Then the contraction map

U ⊗W → U, ψ ↦ ⟨ψ,w∨⟩,
induces a bijection between the following two subspaces:

(3.14) (U ⊗W )k′ ∼
Ð→ Uχ,

if U is completely reducible as a k′-module. By using the isomorphism (3.14), we
reformulate Step 3 of the recipe for the F-method as follows:

Lemma 3.4. Assume that W is an irreducible representation of the parabolic subal-
gebra p′. Let −χ be the lowest weight of W as a k′-module. Then we have a natural
injective homomorphism

DiffG′(VX ,WY )↪ {Q ∈ (Pol(n+)⊗ V ∨)χ ∶ d̂πµ(C)Q = 0 for all C ∈ n′+} ,
which is bijective if K ′ is connected.

See [KP14-1, Lemma ??] for the proof.
Since any non-zero vector in W ∨ is cyclic, the next lemma explains how to recover

DX→Y (ϕ) from Q given in Lemma 3.4.
We assume, for simplicity, that the k-module (λ,V ) lifts to KC, the k′-module(ν,W ) lifts to K ′

C
, and use the same letters to denote their liftings.

Lemma 3.5. For any ϕ ∈ Homp′(W ∨, indg
p(V ∨)), k ∈K ′C and w∨ ∈W ∨,

(3.15) ⟨DX→Y (ϕ), ν∨(k)w∨⟩ = (Ad(k)⊗ λ∨(k)) ⟨DX→Y (ϕ),w∨⟩ .
See [KP14-1, Lemma ??] for the proof.
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4. Branching laws and Hermitian symmetric spaces

The existence, respectively the uniqueness (up to scaling) of differential symmetry
breaking operators from VX to WY are subject to the conditions

(4.1) dimDiffG′(VX ,WY ) ≥ 1, respectively ≤ 1.
So we need to find the geometric settings (i.e. the pair Y ⊂ X of generalized flag
varieties and two homogeneous vector bundles VX → X and WY → Y ) satisfying
(4.1). This is the main ingredient of Step 2 in the recipe of the F-method, and
thanks to [KP14-1, Theorem ??], the existence and uniqueness are equivalent to the
following question concerning (abstract) branching laws: Given a p-module V , find
all finite-dimensional p′-modules W such that dimHomp′(W ∨, indg

p(V ∨)) = 1, and
equivalently,

(4.2) dimHomg′(indg′

p′(W ∨), indg
p(V ∨)) = 1.

This section briefly reviews what is known on this question (see Fact 4.2).
Let g be a complex semisimple Lie algebra, and j a Cartan subalgebra of g. We

fix a positive root system ∆+ ≡ ∆+(g, j), write ρ for half the sum of positive roots,
α∨ for the coroot for α ∈ ∆, and gα for the root space. Define a Borel subalgebra
b = j + n with nilradical n ∶=⊕α∈∆+ gα.

The BGG category O is defined as the full subcategory of g-modules whose objects
are finitely generated, j-semisimple and locally n-finite [BGG76].

As in the previous sections, fix a standard parabolic subalgebra p with Levi decom-
position p = k+n+ such that the Levi factor k contains j. We set ∆+(k) ∶=∆+∩∆(k, j).
The parabolic BGG category Op is defined as the full subcategory of O whose objects
are locally k-finite.

We define
Λ+(k) ∶= {λ ∈ j∗ ∶ ⟨λ,α∨⟩ ∈ N for any α ∈ ∆+(k)},

the set of linear forms λ on j whose restrictions to j∩[k, k] are dominant integral. We
write Vλ for the finite-dimensional simple k-module with highest weight λ, regard it
as a p-module by letting n+ act trivially, and consider the generalized Verma module

indg
p(λ) ≡ indg

p(Vλ) ∶= U(g)⊗U(p) Vλ.
Then indg

p(λ) ∈ Op and any simple object in Op is the quotient of some generalized
Verma module. If

(4.3) ⟨λ,α∨⟩ = 0 for all α ∈∆(k),
then Vλ is one-dimensional, to be denoted also by Cλ. In this case we say indg

p(λ) is
of scalar type.

Let τ ∈ Aut(g) be an involutive automorphism of the Lie algebra g. We write

g±τ ∶= {v ∈ g ∶ τv = ±v}
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for the ±1 eigenspaces of τ , respectively. We say that (g,g′) is a symmetric pair if
g′ = gτ for some τ .

For a general choice of τ and p, the space considered in (4.2) may be reduced to
zero for all p′-modules W . Suppose V ≡ Vλ with λ ∈ Λ+(k) generic. Then a necessary
and sufficient condition for the existence of W such that the left-hand side of (4.2) is
non-zero is given by the geometric requirement on the generalized flag variety GC/PC,
namely, the set Gτ

C
PC is closed in GC, see [K12, Proposition 3.8].

Consider now the case where the nilradical n+ of p is abelian. Then, the following
result holds :

Fact 4.1 ([K12]). If the nilradical n+ of p is abelian, then for any symmetric pair(g,gτ) the restriction of a generalized Verma module of scalar type indg
p(−λ)∣ι(gτ ) is

multiplicity-free for any embedding ι ∶ gτ → g such that ι(Gτ
C
)PC is closed in GC and

for any sufficiently positive λ.

A combinatorial description of the branching law is given as follows. Suppose that
p is gτ -compatible (see [KP14-1, Definition ??]). Then the involution τ stabilizes k

and n+, respectively, the nilradical n+ decomposes into a direct sum of eigenspaces
n+ = nτ+ + n−τ+ and Gτ

C
PC is closed in GC. Fix a Cartan subalgebra j of k such that

jτ ∶= j ∩ gτ is a Cartan subalgebra of kτ .
We define θ ∈ End(g) by θ∣k = id and θ∣n++n− = − id. Then θ is an involution

commuting with τ . Moreover it is an automorphism if n+ is abelian. The reductive
subalgebra gτθ = kτ + n−τ− + n−τ+ decomposes into simple or abelian ideals ⊕i g

τθ
i , and

we write the decomposition of n−τ+ as n−τ+ = ⊕i n
−τ+,i correspondingly. Each n−τ+,i is a

jτ -module, and we denote by ∆(n−τ+,i, jτ) the set of weights of n−τ+,i with respect to jτ .
The roots α and β are said to be strongly orthogonal if neither α + β nor α − β is a

root. We take a maximal set of strongly orthogonal roots {ν(i)1 ,⋯, ν(i)ki
} in ∆(n−τ+,i, jτ)

inductively as follows:

1) ν
(i)
1 is the highest root of ∆(n−τ+,i, jτ).

2) ν
(i)
j+1 is the highest root among the elements in ∆(n−τ+,i, jτ) that are strongly

orthogonal to ν
(i)
1 ,⋯, ν(i)j (1 ≤ j ≤ ki − 1).

We define the following subset of Nk (k =∑ki) by
(4.4) A+ ∶=∏

i

Ai, Ai ∶= {(a(i)j )1≤j≤ki ∈ Nki ∶ a(i)1 ≥ ⋯ ≥ a
(i)
ki
≥ 0}.

Introduce the following positivity condition:

(4.5) ⟨λ − ρg, α⟩ > 0 for any α ∈∆(n+, j).
Fact 4.2 ([K08]). Suppose p is gτ -compatible, and λ satisfies (4.3) and (4.5). Then
the generalized Verma module indg

p(−λ) decomposes into a multiplicity-free direct sum
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of irreducible gτ -modules :

(4.6) indg
p(−λ)∣gτ ≃ ⊕

(a(i)
j
)∈A+

indgτ

pτ (−λ∣jτ −∑
i

ki

∑
j=1
a
(i)
j ν

(i)
j ).

In particular, for a simple pτ -module W (namely, a simple kτ -module with trivial
action of nτ ),

dimHomgτ (indgτ

pτ (W ∨), indg
p(C−λ)) = 1

if and only if the highest weight of the kτ -moduleW is of the form λ∣jτ +∑i∑
ki
j=1 a

(i)
j ν

(i)
j

for some (a(i)j ) ∈ A+.
Notice that when τ is a Cartan involution, Gτ is compact and gτ = pτ . In this case,

the formula (4.6) is due to L. K. Hua [H63] (classical case), B. Kostant (unpublished),
and W. Schmid [Sch69]. In general Gτ is non-compact, and we need to consider
infinite-dimensional irreducible representations of Gτ when we consider the branching
law G ↓ Gτ .

In remaining Sections 5, 6, 7 and 8 we construct a family of equivariant differ-
ential operators for all symmetric pairs (g,gτ) with Gτ non-compact and k = 1 (in
particular, ∆(n−τ+,i, jτ) is empty for all but one i).

In conclusion, we recall the corresponding branching laws in the category of uni-
tary representations, which are the dual of the formulæ in Fact 4.2. We denote byH2(M,V) the Hilbert space of square integrable holomorphic sections of the Hermit-
ian vector bundle V over a Hermitian manifold M . If the positivity condition (4.5)
holds, then H2(G/K,Lλ) ≠ {0}, and G acts unitarily and irreducibly on it.

Given a = (a(i)j ) ∈ A+ (⊂ Nk), we write Wa

λ for the Gτ -equivariant holomorphic

vector bundle over Gτ/Kτ associated to the irreducible representation Wa

λ of kτ with

highest weight λ∣jτ +∑i∑
ki
j=1 a

(i)
j ν

(i)
j .

Fact 4.3 ([K08]). If the positivity condition (4.5) is satisfied, then H2(Gτ/Kτ ,Wa

λ)
is non-zero and Gτ acts on it irreducibly and unitarily for any a ∈ A+. Moreover, the
branching law for the restriction G ↓ Gτ is given by

(4.7) H2(G/K,Lλ) ≃ ∑⊕
a∈A+
H2(Gτ /Kτ ,Wa

λ) (Hilbert direct sum).

5. Normal derivatives versus intertwining operators

Let G′/K ′ be a subsymmetric space of the Hermitian symmetric space G/K as in
Section 2.1. Consider the Taylor expansion of any holomorphic function (section)
on G/K with respect to the normal direction. Then the coefficients give rise to
holomorphic sections of a family of vector bundles over the submanifold G′/K ′. This
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idea was used earlier by Jakobsen and Vergne [JV79], and by the first author [K08]
for filtered modules to find abstract branching laws.

However, it should be noted that normal derivatives do not always give rise to
symmetry breaking operators. In this section we clarify the reason in the general
setting, and then give a classification of all irreducible symmetric pairs (g(R),g(R)τ )
of split rank one for which it happens.

5.1. Normal derivatives and the Borel embedding. Suppose E = E′ ⊕E′′ is a
direct sum of complex vector spaces. Let VE ∶= E × V and WE′ ∶= E′ ×W be direct
product vector bundles over E and E′, respectively. Clearly, we have isomorphismsO(E,VE) ≃ O(E)⊗ V , and O(E′,WE′) ≃ O(E′)⊗W .

Take coordinates y = (y1,⋯, yp) in E′ and z = (z1,⋯, zn) in E′′. The subspace
E′ is given by the condition z = 0 in E = {(y, z) ∶ y ∈ E′, z ∈ E′′}. A holomorphic

differential operator T̃ ∶ O(E)⊗ V Ð→ O(E′)⊗W, f(y, z)↦ (T̃ f)(y) is said to be a
normal derivative with respect to the decomposition E = E′ ⊕E′′ if it is of the form

(5.1) (T̃ f) (y) = ∑
α∈Nq

Tα(y)(∂∣α∣f(y, z)
∂zα

∣
z=0
) ,

for some Tα ∈ O(E′)⊗HomC(V,W ).
We write NDiffhol(VE ,WE′) for the space of (holomorphic) normal derivatives.

This notion depends on the direct sum decomposition E = E′ ⊕E′′.
Since the commutative groups E ⊃ E′ act on the direct product bundles VE andWE′, respectively, we can consider symmetry breaking operators in this abelian set-

ting, namely, E′-equivariant normal derivatives, which amount to the condition that
Tα(y) in (5.1) is a differential operator with constant coefficients for every α ∈ Nq.
We denote NDiffconst(VE ,WE′) the subspace of NDiffhol(VE ,WE′) consisting of those
operators.

Thus we have seen the following:

Lemma 5.1. There is a natural isomorphism:

HomC(V,W )⊗ S(E′′) ∼
Ð→ NDiffconst(VE ,WE′).

Suppose we are in the setting of Section 2.1. We apply the concept of normal
derivatives to the subsymmetric space G′/K ′ in the Hermitian symmetric space
G/K. Let V be a homogeneous vector bundle over X = G/K associated with a
finite-dimensional representation V of K. Similarly, let W be a homogeneous vector
bundle over the subsymmetric space Y = G′/K ′ associated with a finite-dimensional
representation W of K ′.

By using the Killing form, we take a complementary subspace g′′ of g′ in g so that
g = g′⊕g′′ is a direct sum of G′-modules. We set n′′− ∶= n−∩g′′. Since the characteristic
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element Ho ∈ g′ (see (2.1)), we have a direct sum decomposition of K ′-modules:

(5.2) n− = n′− ⊕ n′′−.
Accordingly, we can consider the space NDiffhol(Vn− ,Wn′−

) of holomorphic normal
derivatives with respect to (5.2).

We writeNDiffhol(VX ,WY ) andNDiffconst(VX ,WY ) for the images ofNDiffhol(Vn− ,Wn′−
)

and NDiffconst(Vn− ,Wn′−
), respectively, under the natural injective map:

Diffhol(Vn− ,Wn′−
) � � // Diffhol(VX ,WY )

induced by the following map:

O(n−, V ) //
� _

restriction

��

O(n′−,W )
_�

restriction

��O(G/K,V) // O(G′/K ′,W).

(5.3)

Since the trivialization of the vector bundle GC ×PC
V

n− × V � � //

��

GC ×PC
V

��

VX
��

? _oo

n− �
�

// GC/PC X = G/K? _oo

is KC-equivariant, Lemma 5.1 implies:

Proposition 5.2. There is a natural isomorphism:

HomK ′(V,S(n′′−)⊗W ) ∼
Ð→ NDiffconst

K ′ (VX ,WY ).
We study whether or not the following two subspaces

● NDiffK ′(VX ,WY ) of K ′-equivariant normal derivatives and
● HomG′(O(VX),O(WY )) of symmetry breaking operators

coincide in HomC(O(VX),O(WY )). Owing to Theorem 3.1 and Proposition 5.2, it
reduces to an algebraic problem to compare

● HomK ′(V,S(n′′−)⊗W ) and
● HomK ′(V,Pol(n+)⊗W )d̂πλ∗(n′+)

in HomC(V,Pol(n+)⊗W ) ≃ HomC(V,S(n−)⊗W ). We shall see in the next subsection
that they actually coincide for the three families of symmetric pairs out of the six
listed in Table 2.1.
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5.2. When are normal derivatives intertwining operators? Let dim V = 1,
and we write as before Lλ for the homogeneous line bundle over X = G/K associated
to the character Cλ of K.

Theorem 5.3. Suppose (g(R),g(R)τ ) is a split rank one irreducible symmetric pair
of holomorphic type (see Definition 2.3). Then, the following three conditions on the
pair (g(R),g(R)τ ) are equivalent:

(i) For any λ satisfying the positivity condition (4.5) and for any irreducible
Kτ -module W , all continuous Gτ -homomorphisms

O(X,Lλ)Ð→ O(Y,W),
are given by normal derivatives with respect to the decomposition n− = nτ−⊕n−τ− .

(ii) For some λ satisfying (4.5) and for some irreducible Kτ -module W , there
exists a non-trivial Gτ -intertwining operator

O(X,Lλ)Ð→ O(Y,W)
which is given by normal derivatives of positive order.

(iii) The symmetric pair (g(R),g(R)τ ) is isomorphic to one of (su(p, q), s(u(1)⊕
u(p − 1, q))), (so(2,2n),u(1, n)) or (so∗(2n), so(2)⊕ so∗(2n − 2)).

Notice that the geometric nature of embeddings Y ↪X mentioned in the condition
(iii) corresponds to the following inclusions of flag varieties:

Grp−1(Cp+q) ↪ Grp(Cp+q);
P
n
C ↪ Q2n

C;

IGrn−1(C2n−2) ↪ IGrn(C2n),
where Grp(Ck) ∶= {V ⊂ Ck ∶ dimV = p} is the complex Grassmanian, QmC ∶={z ∈ Pm+1C ∶ z20 + ⋯ + z2m+1 = 0} is the complex quadric and IGrn(C2n) ∶= {V ⊂
C2n ∶ dimV = n, Q∣

V
≡ 0} is the isotropic Grassmanian for C2n equipped with a

non-degenerate quadratic form Q.

5.3. Outline of the proof of Theorem 5.3. The implication (i)⇒(ii) is obvious.
On the other hand, for split rank one symmetric spaces there are three other cases
(i.e., (1), (2) and (3) in Table 2.1) where the Gτ -intertwining operators are not given
by normal derivatives. In Sections 6, 7 and 8 we construct them explicitly. This will
conclude the implication (ii)⇒(iii). For the rest of this section we shall give a proof
for the implication (iii)⇒(i).

Consider a homomorphism: T ∶ W ∨ Ð→ S(n−τ− ) ⊗ V ∨. We regard S(n−τ− ) ⊗ V ∨ as

a subspace of Pol(n+)⊗ V ∨ on which the Lie algebra g acts by d̂πλ∗ , see (3.6). If T

is a Kτ -homomorphism, the differential operator T̃ ∶ O(G/K,VX)→ O(Gτ/Kτ ,WY )
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is Kτ -equivariant. The following statement gives a sufficient condition for T̃ to be
Gτ -equivariant.

Proposition 5.4. The normal derivative T̃ ∈ NDiffconst(VX ,WY ) induces a Gτ -
equivariant differential operator from VX to WY if and only if T is a Kτ -homo-

morphism and T (W ∨) is contained in (Pol(n+)⊗ V ∨)d̂πλ∗(nτ+).

Proof. The proof is a direct consequence of the F-method. Indeed, by Theorem 3.1,
T̃ ∈ NDiffconst(VX ,WY ) ⊂ Diffconst(n−)⊗HomC(V,W ) is a Gτ -equivariant differential

operator if and only if (Symb⊗ id)(T̃ ) ∈ (Pol(n+)⊗Hom(V,W ))d̂πλ∗ (pτ ) where

(Pol(n+)⊗Hom(V,W ))d̂πλ∗(pτ )

= (Pol(n+)⊗Hom(V,W ))d̂πλ∗(kτ ) ∩ (Pol(n+)⊗Hom(V,W ))d̂πλ∗ (nτ+).

Furthermore, by Theorem 3.1, for T̃ ∈ NDiffconst(VX ,WY ), we have (Symb⊗ id)(T̃ ) ∈(Pol(n+) ⊗ Hom(V,W ))d̂πλ∗(kτ ) if and only if T ∈ Homkτ (W ∨, S(n−τ− ) ⊗ V ∨), as(Symb⊗ id)(T̃ ) = (Fc ⊗ id)(T ). Hence the statement is proved. �

Lemma 5.5. Suppose (g(R),g(R)τ ) is a split rank one irreducible symmetric pair of
holomorphic type and λ satisfying (4.3) and (4.5). For a ∈ N we define a Kτ -module:

(5.4) W a
λ ∶= Sa(n−τ− )⊗Cλ.

(1) The module W a
λ is irreducible for any a ∈ N.

(2) If for an irreducible Kτ -module W there exists a non-zero continuous Gτ -
homomorphism O(G/K,Lλ)→ O(Gτ/Kτ ,W), then the module W is isomor-
phic to W a

λ for some a ∈ N.
(3) Assume that

(5.5) Homkτ (Sa(n−τ− ), Sa1(nτ−)⊗ Sa−a1(n−τ− )) = {0} for any 1 ≤ a1 ≤ a.
Then, the normal derivative T̃ corresponding to the natural inclusion T ∶(W a

λ )∨ → S(n−τ− )⊗ (Cλ)∨ is a Gτ -equivariant differential operator.

Proof. If rankRG/Gτ = 1, then the non-compact part of g(R)τθ is isomorphic to
su(1, n) for some n. Thus the first statement follows from the observation that
Sa(Cn) is an irreducible gln(C)-module for any a ∈ N because the action of kτ on n−τ+
corresponds to the natural action of gln(C) on Cn.

The second statement is due to the localness theorem [KP14-1, Theorem ??] for
k = rankRG/Gτ = 1.

To show the third statement, observe that we have the following natural inclusions
A ⊂ B ⊃ C, where

A ∶= Pola(n−τ+ )⊗C∨λ, B ∶= Pola(n+)⊗C
∨
λ, C ∶= (Pola(n+)⊗C

∨
λ) ̂dπλ∗(nτ+).
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Therefore

Homkτ ((W a
λ )∨,A)↪ Homkτ ((W a

λ )∨,B)↩ Homkτ ((W a
λ )∨,C).

By Proposition 5.2 and Theorem 3.1, we have

NDiffconst
Kτ (VX ,WY )↪ Homkτ ((W a

λ )∨,B)↩ HomG′(O(X,V),O(Y,W)).
Since Pola(n+) ≃ a

⊕
a1=0

Pola1(nτ+) ⊗ Pola−a1(n−τ+ ), the assumption (5.5) implies that

Homkτ ((W a
λ )∨,A) ∼→ Homkτ ((W a

λ )∨,B), and therefore the first inclusion is an iso-
morphism. Moreover, since A is isomorphic to the irreducible kτ -module (W a

λ )∨, the
first term is one-dimensional by Schur’s lemma. The last one is also one-dimensional
according to the multiplicity-one decomposition given in Fact 4.2. Therefore, all the
three terms coincide.

Hence the canonical isomorphism T ∶ (W a
λ )∨ → S(n−τ− ) ⊗ (Cλ)∨ satisfies the as-

sumption of Proposition 5.4. Thus Lemma follows. �

Remark 5.6. The highest weight vectors of the generalized Verma module indg
p(C∨λ)

with respect to pτ have a particularly simple form if the condition (5.5) is satisfied.
In fact, by Poincaré–Birkhoff–Witt theorem indg

p(C∨λ) is isomorphic, as a k-module,
to S(n−)⊗C∨λ, when n− is abelian. Under the assumption (5.5) we thus have

(indg
p(C∨λ))nτ+ ≃ ∞⊕

a=0
Sa(n−τ− )⊗C∨λ.

This formula is an algebraic explanation of the fact that Gτ -equivariant operators
are given by normal derivatives in this setting.

In order to conclude the proof of Theorem 5.3 we have to show that in all cases
mentioned in (iii) the condition (5.5) is fulfilled. It will be done in the next subsection.

5.4. An application of the classical branching rules. In what follows, we shall
verify the condition (5.5) for the last three cases (4), (5) and (6) in Table 2.1 by
using some classical branching rules of irreducible representations of glm(C).

Denote by F (glm(C), µ) the finite dimensional irreducible glm(C)-module with
highest weight µ. For example, the natural representation of the Lie algebra glm(C)
on Cm corresponds to F (glm(C), (1,0, . . . ,0)) and its contragredient representation
on (Cm)∨ to F (glm(C), (0,0, . . . ,0,−1)), while the action of glm(C) on the space
of symmetric matrices Sym(m,C) ≃ S2(Cm) given by C ↦ XC tX for X ∈ glm(C)
and C ∈ Sym(m,C) corresponds to F (glm(C), (2,0, . . . ,0)). More generally, the
action of glm(C) on the space of i-th symmetric tensors is no longer irreducible and
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decomposes as follows:

Si (Sym(m,C)) ≃ Si (S2(Cm))
≃ ⊕

i1≥⋯≥im≥0
i1+⋅⋅⋅+im=i

F (glm(C), (2i1,2i2, . . . ,2im)).(5.6)

In turn, classical Pieri’s rule gives the following irreducible decomposition for the
tensor product of such modules:

Si (S2(Cm))⊗ Sk (Cm) ≃ ⊕
i1≥⋯≥im≥0,
i1+⋅⋅⋅+im=i

⊕
ℓ1≥2i1≥⋯≥ℓm≥2im,

∑m
r=1(ℓr−2ir)=k

F (glm(C), (ℓ1, . . . , ℓm)).
Remark 5.7. The summand of the form F (glm(C), (ℓ,0, . . . ,0)) occurs in the right-
hand side if and only if i2 = ⋯ = im = 0, hence i1 = i and ℓ − 2i = k. This remark will
be used in Section 7.

Example 5.8. Let G = U(p, q), Gτ = U(1) × U(p − 1, q) and kτ = kτ(R) ⊗R C ≃
gl1(C) ⊕ glp−1(C) ⊕ glq(C). Then, the decomposition n− = nτ− ⊕ n−τ− as a kτ -module
amounts to (Cp)∨ ⊠Cq ≃ (C ⊠ (Cp−1)∨ ⊠Cq)⊕ (C−1 ⊠C ⊠Cq),
where ⊠ stands for the outer tensor product representation. Therefore, for a = a1+a2,

Homkτ (Sa(n−τ− ), Sa1(nτ−)⊗ Sa2(n−τ− ))≃ Homgl1(C)(C−a,C−a2)⊗Homglp−1(C)(C, Sa1((Cp−1)∨))⊗Homglq(C)(Sa(Cq), Sa2(Cq))
is not reduced to zero if and only if a1 = 0 and a2 = a. Thus, the condition (5.5) is
satisfied.

Example 5.9. Let G = SO(2,2n), Gτ = U(1, n) and kτ = gl1(C)⊕ gln(C). Then the
decomposition n− = nτ− ⊕ n−τ− as a kτ -module amounts to

C−1 ⊠C2n ≃ (C−1 ⊠Cn)⊕ (C−1 ⊠ (Cn)∨).
Therefore, for a = a1 + a2, we have

Homkτ (Sa(n−τ− ), Sa1(nτ−)⊗ Sa2(n−τ− ))≃ Homgl1(C)(C−a,C−a1−a2)⊗Homgln(C)(Sa((Cn)∨), Sa1(Cn)⊗ Sa2((Cn)∨))
≃ min(a1,a2)

⊕
b=0

Homgln(C)(F (gln(C), (0,⋯,0,−a)), F (gln(C), (a1 − b,0,⋯,0,−a2 + b))),
where the second isomorphism follows from Pieri’s rule. Thus, the left-hand side is
not reduced to zero if and only if a1 = 0 and a2 = a. Hence, the condition (5.5) is
satisfied.
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Example 5.10. Let G = SO∗(2n), Gτ = SO∗(2n − 2) × SO(2) and kτ = gln−1(C) ⊕
gl1(C). In this case, the decomposition n− = nτ− ⊕ n−τ− as a kτ -module amounts to

(Alt(Cn−1)∨ ⊠ 1)⊕ ((Cn−1)∨ ⊠C−1).
Therefore, for a = a1 + a2

Homkτ (Sa(n−τ− ), Sa1(nτ−)⊗ Sa2(n−τ− ))≃ Homgln−1(C)(Sa((Cn−1)∨), Sa1(Alt(Cn−1)∨)⊗ Sa2((Cn−1)∨))⊗Homgl1(C)(C−a,C−a2).
In view of the gl1(C)-action on the right-hand side, it is non-zero only if a2 = a

(and therefore a1 = 0). Thus the condition (5.5) is satisfied.

Hence we have verified the assumption (5.5) for all the three symmetric pairs(g(R),g(R)τ ) corresponding to the three complex geometries (4), (5) and (6) in
Table 1.1, and have proved the implication (iii)⇒ (i) in Theorem 5.3 by Lemma 5.5
(3).

6. Symmetry breaking operators for the restriction

SO(n,2) ↓ SO(n − 1,2)
Let n ≥ 3. In what follows, we realize the indefinite orthogonal group SO(n,2) in

a slightly non-standard way, namely, use a non-degenerate quadratic form on Cn+2

defined by

Q̃(w) ∶= w2
0 +⋯+w

2
n −w

2
n+1 for w = (w0,⋯,wn+1) ∈ Cn+2,

and restrict it to a certain real form E(R) (see (6.3) below) of Cn+2. (The restriction
to the standard real form Rn+2 yields conformally covariant differential operators
corresponding to another pair of real forms (SO(n + 1,1), SO(n,1)), see Remark
6.13.)

Let GC be the complex special orthogonal group SO(Cn+2, Q̃) with respect to the

quadratic form Q̃. Then GC acts transitively on the isotropic cone

ΞC ∶= {w ∈ Cn+2 ∖ {0} ∶ Q̃(w) = 0},
and also on the complex quadric

Qn
C ∶= ΞC/C∗ ⊂ Pn+1

C

by w → g ⋅ [w] ∶= [gw] for w ∈ Cn+1 ∖ {0}. Let wo = t(1,0,⋯,0,1) ∈ ΞC, and PC be
the stabilizer of the base point [wo] = [1 ∶ 0 ∶ ⋯ ∶ 0 ∶ 1] ∈ QnC, which is a maximal
parabolic subgroup of GC. Then we have an isomorphism QnC ≃ GC/PC. We define
an embedding

(6.1) ι ∶ Cn → ΞC, z ↦ t(1 −Qn(z),2z1,⋯,2zn,1 +Qn(z)),
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where Qn(z) ∶=∑n
j=1 z2j for z = (z1,⋯, zn) ∈ Cn. Then we get coordinates on QnC by

(6.2) C
n ↪ Qn

C, z ↦ [ι(z)]
which define the open Bruhat cell (see (6.7) below).

The quadratic form Q̃ is of signature (n,2) when restricted to the real vector space

(6.3) E(R) ∶=√−1Re0 + n+1

∑
j=1

Rej ,

where {ej ∶ 0 ≤ j ≤ n+1} is the standard basis in Cn+2. Thus we have an isomorphism:

SO(Cn+2, Q̃) ∩GLR(E(R)) ≃ SO(n,2).
Let G be its identity component SOo(n,2). Then the G-orbit through the base point[wo] in QnC is still contained in Cn, and is identified with the Lie ball X ∶= {z ∈
C

n ∶ ∣z tz∣2 + 1− 2z tz > 0, ∣z tz∣ < 1} ≃ G/K which is the bounded Hermitian symmetric

domain of type IV in the É. Cartan classification.
Let τ be the involution of GL(n + 1,C) by conjugation by diag(1, . . . ,1,−1,1). It

leaves G invariant, and we denote by G′ the identity component of the fixed point
group Gτ . The group G′ = SOo(n − 1,2) acts on the subsymmetric domain

Y ∶=X ∩ {zn = 0}.
Then Y ≃ G′/K ′ = SOo(n − 1,2)/SO(n − 1) × SO(2) a subsymmetric space of X of
complex codimension one.

We take Ho ∶= E0,n+1 +En+1,0.Then Ho is a characteristic element as in Section 2.1.
For λ ∈ Z we define a character of c(k) by tHo ↦ λt, and lift it to a character Cλ of K.
Let Lλ be the G-equivariant holomorphic line bundle G×KCλ. The holomorphic line
bundle Lλ → X is trivialized by using the open Bruhat cell, and the representation
of G on O(X,Lλ) is identified with the multiplier representation πλ ≡ πG

λ of the same
group on O(X) given by

(6.4) F (z)↦ (πλ(g)F )(z) = J(g−1, z)−λF (g−1 ⋅ z),
where we define a map J ∶ G ×X → C∗ by

J(g, z) ∶= 1
2
twogι(z), for g ∈ G and z ∈X.

Since Ho ∈ k′ (see (2.1)), we can also define a G′-equivariant holomorphic line bundleLν = G′ ×K ′ Cν over Y = G′/K ′ for ν ∈ Z.
Let G̃ be the universal covering group of G = SOo(n,2). Then for any λ ∈ C one can

define a G̃-equivariant holomorphic line bundle Lλ = G̃×K̃ Cλ over X = G/K ≃ G̃/K̃,
and a representation of the same group on O(X,Lλ). Similarly, for ν ∈ C, the

universal covering group G̃′ of G′ = SOo(n − 1,2) acts on O(Y,Lν).
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Here is a complete classification of symmetry breaking operators from O(X,Lλ)
to O(Y,Lν) with respect to the symmetric pair G̃ ⊃ G̃′:

Theorem 6.1. Let n ≥ 3 and G̃′ be the universal covering group of SOo(n − 1,2).
Suppose λ, ν ∈ C. Then the following three conditions on the parameters (λ, ν) ∈ C2

are equivalent:

(i) HomG̃′(O(X,Lλ),O(Y,Lν)) ≠ {0}.
(ii) dimCHomG̃′(O(X,Lλ),O(Y,Lν)) = 1.
(iii) ν − λ ∈ N.

Remark 6.2. The equivalence (i)⇔(ii) in Theorem 6.1 is not true for singular param-
eters (λ, ν) in the case of n = 2. This situation will be treated carefully in Section
9. In fact, the symmetric pair (SOo(2,2), SOo(2,1)) is locally isomorphic to the
pair (SL(2,R) × SL(2,R),∆(SL(2,R)) modulo the center. We note that n = 2 in
Theorem 6.1 corresponds to λ′ = λ′′ in Theorem 9.1.

Let C̃α
ℓ (x) be the renormalized Gegenbauer polynomial (see Appendix 11.3). We

inflate it to a polynomial of two variables x and y:

C̃α
ℓ (x, y) ∶= x

ℓ
2 C̃α

ℓ ( y√
x
)(6.5)

= [ ℓ
2
]
∑
k=0
(−1)k Γ(ℓ − k + α)

Γ (α + [ ℓ+1
2
])Γ(k + 1)Γ(ℓ − 2k + 1)(2y)ℓ−2kxk.

For instance, C̃α
0 (x, y) = 1, C̃α

1 (x, y) = 2y, C̃α
2 (x, y) = 2(α + 1)y2 − x, etc. Notice that

C̃α
ℓ (x2, y) is a homogeneous polynomial of x and y of degree ℓ.

Theorem 6.3. Retain the setting of Theorem 6.1. Let a ∶= ν − λ ∈ N. Then the
differential operator from O(X) to O(Y ) defined by

(6.6) DX→Y,a ∶= C̃λ−n−1
2

a (−∆z
Cn−1 ,

∂

∂zn
)

intertwines the restriction πG̃
λ ∣

G̃′
with πG̃′

λ+a (see (6.4)). Here ∆z
Cm ∶=∑m

k=1 ∂2

∂z2
k

denotes

the holomorphic Laplacian on Cm in the coordinates (z1,⋯, zm).
It follows from Theorems 6.1 and 6.3 that any symmetry breaking operator fromO(X,Lλ) to O(Y,Lλ+a) is proportional to DX→Y,a for any λ ∈ C and a ∈ N.

Remark 6.4. If λ ∈ R and λ > n−1, then H2(X,Lλ) ∶= O(X,Lλ)∩L2(X,Lλ) is a non-

zero Hilbert space on which G̃ acts unitarily and irreducibly, giving a holomorphic
discrete series representation of G̃ modulo the center. By [KP14-1, Theorem ??]
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the same statement as Theorems 6.1 and 6.3 remains true for symmetry breaking
operators between the unitary representations H2(X,Lλ) and H2(Y,Lλ+a).

In order to prove Theorems 6.1 and 6.3 we apply the F-method (see Section 3.1).

The Lie algebra g = so(Cn+2, Q̃) has a direct sum decomposition

g = n− + k + n+
of −1,0, and 1 eigenspaces of ad(Ho), respectively. Then the maximal parabolic
subgroup PC has a Levi decomposition PC =KCN+,C, where N+,C = exp n+.

As Step 1 of the F-method we define a standard basis of n+ ≃ Cn by

Cj ∶= Ej,0 −Ej,n+1 −E0,j −En+1,j (1 ≤ j ≤ n),
and similarly a standard basis of n− ≃ Cn by

Cj ∶= Ej,0 +Ej,n+1 −E0,j +En+1,j (1 ≤ j ≤ n).
Then the decomposition n+ = nτ+ ⊕ n+−τ is given by

n+ = n−1

∑
j=1

CCj ⊕CCn.

Let Z = ∑n
i=1 ziC i ∈ n− and Y = ∑n

j=1 yjCj ∈ n+. By a simple computation we have

(6.7) exp(Z) ⋅wo = ι(z) ∈ Cn+2,

the open Bruhat cell is given by (6.2). Moreover, by using

exp(tY ) exp(Z)wo = ι(z) − 2t⎛⎜⎝
(y, z)
Q(z)y(y, z)

⎞⎟⎠ + o(t),
we obtain formulæ of the maps (3.2) and (3.3), as

α(Y,Z) = −2(z, y)Ho mod so(n,C);
β(Y,Z) = 2(z, y)Ez −Qn(z) n

∑
j=1
yj

∂

∂zj
,

where we regard β(Y, ⋅) as a holomorphic vector field on n− and recall that Ez ∶=
∑n

j=1 zj ∂
∂zj

, Qn(z) = z21 +⋯+ z2n and (z, y) = z1y1 +⋯ + znyn.
Then the infinitesimal action dπλ∗(Cj) with

λ∗ = λ∨ ⊗C2ρ = −λ + n,
is given by

(6.8) dπλ∗(Cj) = 2(λ − n)zj − 2zjEz +Qn(z) ∂
∂zj

.
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Lemma 6.5. For C ∈ Cn ≃ n+ and ζ ∈ Cn ≃ n− one has,

d̂πλ∗(Cj) = 2λ
∂

∂ζj
+ 2Eζ

∂

∂ζj
− ζj∆

ζ
Cn , 1 ≤ j ≤ n,

where Eζ ∶=∑n
i=1 ζi ∂

∂ζi
and ∆ζ

Cn = ∂2

∂ζ2
1

+⋯ ∂2

∂ζ2n
.

Proof. According to Definition 3.1 we have ẑj = ∂
∂ζj

and hence Êz = −Eζ − n. On the

other hand, using the commutation relations of the Weyl algebra (see e.g. [KP14-1,
(??)]) we get

∆ζ
Cnζj = ζj∆ζ

Cn + 2
∂

∂ζj
,

∂

∂ζj
Eζ = Eζ

∂

∂ζj
+

∂

∂ζj
.

Thus the above formula for the algebraic Fourier transform d̂πλ∗(Cj) of the differen-
tial operator (6.8) follows. �

For Step 2 we apply Lemma 5.5 (2) and get the following.

Proposition 6.6. Assume λ > n − 1. If
HomG′(O(G/K,Lλ),O(G′/K ′,W)) ≠ {0}

for an irreducible representation W of K ′, then W must be one-dimensional and of
the form

(6.9) W a
λ ∶= Sa(n−τ− )⊗Cλ ≃ Pola(n−τ+ )⊗Cλ

for some a ∈ N.
We denote by ν the action of K ′ on W a

λ . In our setting where dimV = dimW a
λ = 1

we write ζ = (ζ ′, ζn) ∈ Cn with ζ ′ = (ζ1, . . . , ζn−1) ∈ Cn−1, and identify an element of
HomC(Cλ,Pol(n+)⊗W a

λ
) with a polynomial ψ(ζ) of n variables. Then, for Step 3,

the condition (3.10) implies that ψ(ζ) is homogeneous of degree a and the condition
(3.11) amounts to the system of differential equations:

d̂πλ∗(Cj)ψ = (2λ ∂

∂ζj
+ 2Eζ

∂

∂ζj
− ζj∆

ζ
Cn)ψ = 0, 1 ≤ j ≤ n − 1

by Lemma 6.5.
To be prepared for Step 4, observe that the K ′

C
-action on n− = nτ−⊕n−τ− is identified

with the action of SO(n − 1,C) × SO(2,C) on Cn given as

C
n ⊠C−1 ≃ (Cn−1 ⊠C−1)⊕ (C ⊠C−1).

Then generic K ′
C
-orbits are of codimension one in n−, and the K ′

C
-orbit space in

{ζ ∈ Cn ∶ Qn−1(ζ ′) ≠ 0} has coordinates ζ2n
Qn−1(ζ ′) .
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For a ∈ N, we introduce an operator Ta by

(6.10) (Tag) (ζ) ∶= Qn−1(ζ ′)a2 g ⎛⎝
ζn√

Qn−1(ζ ′)
⎞
⎠ ,

for g ∈ C[t]. We note that Tag is a (multi-valued) meromorphic function of ζ1, . . . , ζn.
We set

Pola[t] ∶= C -span ⟨ta−i ∶ 0 ≤ i ≤ a⟩ ,(6.11)

Pola[t]even ∶= C -span ⟨ta−2j ∶ 0 ≤ j ≤ [a
2
]⟩ .(6.12)

Then (Tag) (ζ) is a homogeneous polynomial of degree a if g ∈ Pola[t]even.
Remark 6.7. In this section we have assumed n ≥ 3, and therefore Qn−1(ζ ′) 12 =(ζ21 +⋯ + ζ2n−1) 12 is not a polynomial and the parity condition in (6.12) is necessary.
However, for n = 2, Tag is a polynomial for g ∈ Pola[t] as we can take a branch as

Q1(ζ ′) 12 = ζ1.
The first half of Step 4 is summarized in the following lemma:

Lemma 6.8. For n ≥ 3 we have,

Homk′(Cλ,Pol(n+)⊗Cν) ≃ { {0} if ν − λ /∈ N,
Tν−λ(Polν−λ[t]even) if ν − λ ∈ N.

Proof. As modules of k′ = so(n−1,C)⊕so(2,C), we have the following isomorphisms:

Pol(n+) ≃ S(n−) ≃ ⊕
a1,a2∈N

Sa1(nτ−)⊗ Sa2(n−τ− ) ≃ ∞⊕
a=0

a

⊕
a1=0

Sa1(Cn−1) ⊠C−a.
Therefore

Homk′(Cλ,Pol(n+)⊗Cν) ≃ ∞⊕
a=0

a

⊕
a1=0
(Sa1(Cn−1))SO(n−1,C) ⊠ (Cν−a−λ)SO(2,C) .

The right-hand side is non-zero only when ν − λ ∈ N. In this case the summand is
non-trivial only when a = ν − λ. On the other hand, since n ≥ 3, we have

Sa1(Cn−1)SO(n−1,C) ≃ {CQn−1(ζ ′)a12 if a1 ∈ 2N,
0 if a1 /∈ 2N.

Hence the lemma follows. �

To implement the second part of Step 4 we apply Proposition 3.3 to the map
(6.10). For this we collect some formulæ for saturated differential operators that we
shall use later.
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Lemma 6.9. For every 0 ≤ j ≤ n − 1 one has:

T ♯a (ζjEζ′ −Qn−1(ζ ′) ∂
∂ζj
) = 0,(6.13)

T ♯a ((a − 1)ζn −Eζ

∂

∂ζj
) = 0.(6.14)

Proof. The proof of both statements is straightforward from the definition of Ta. �

Lemma 6.10. Let Ta be the operator defined in (6.10). We write ζ ′ = (ζ1,⋯, ζn−1)
and ϑt ∶= t d

dt
. One then has:

(1) T ♯a(Eζ′) = a − ϑt.
(2) T ♯a (Qn−1(ζ′)

ζj

∂
∂ζj
) = a − ϑt, (1 ≤ j ≤ n − 1).

(3) T ♯a (Qn−1(ζ′)
ζj

Eζ
∂
∂ζj
) = (a − 1)(a − ϑt), (1 ≤ j ≤ n − 1).

(4) T ♯a(ζ2n∆ζ

Cn−1) = t2(ϑt − a)(ϑt − n − a + 3).
(5) T ♯a(Qn−1(ζ ′)∆ζ

Cn−1) = (ϑt − a)(ϑt − n − a + 3).
(6) T ♯a(Qn−1(ζ ′) ∂2

∂ζ2n
) = t−2(ϑ2t − ϑt).

(7) T ♯a(ζn ∂
∂ζn
) = ϑt.

(8) T ♯a(ζ2n ∂2

∂ζ2n
) = ϑ2t − ϑt.

Proof. Notice first that the identity (1) is equivalent to (2) according to (6.13) and
that the identity (3) may be deduced from (1) or (2) by (6.14). Furthermore, identi-
ties (4) and (5) on the one hand and (6) and (8) on the other are equivalent according
to the definition of the T -saturation as t = ζn√

Qn−1(ζ′) .
Thus, it would be enough to show the identities (1), (4), (7) and (8). We give

a proof for the first statement, and the remaining cases can be treated in a similar
way. Let 1 ≤ j ≤ n − 1. Then

(T ♯a(Eζ′)g) (t) = n−1

∑
j=1

ζj
∂

∂ζj

⎛
⎝Qn−1(ζ ′)a2 g ⎛⎝

ζn√
Qn−1(ζ ′)

⎞
⎠
⎞
⎠

= aQn−1(ζ ′)a2−1g ⎛⎝
ζn√

Qn−1(ζ ′)
⎞
⎠

n−1

∑
j=1

ζ2j −Qn−1(ζ ′)a2 g′ ⎛⎝
ζn√

Qn−1(ζ ′)
⎞
⎠

n−1

∑
j=1

ζ2j ζn√
Q3

n−1(ζ ′)
= aQn−1(ζ ′)a2 g ⎛⎝

ζn√
Qn−1(ζ ′)

⎞
⎠ −

ζn√
Qn−1(ζ ′)Qn−1(ζ ′)a2 g′⎛⎝

ζn√
Qn−1(ζ ′)

⎞
⎠

= (a − t d
dt
) g(t).

�
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For the second half of Step 4 we apply the idea of T -saturated differential operators
(see Definition 3.2). Although the differential operator d̂πλ∗(Cj) itself is not Ta-

saturated, we shall see that Qj d̂πλ∗(Cj) is Ta-saturated if we set Qj = ζ−1j Qn−1(ζ ′).
In the following lemma, we note that the right-hand side is independent of j.

Lemma 6.11. The Ta-saturation of the differential operators d̂πλ∗(Cj) with Cj ∈ nτ+
is given for any 1 ≤ j ≤ n − 1 by

T ♯a (Qn−1(ζ ′)
ζj

d̂πλ∗(Cj)) = −1
t2
((1 + t2)ϑ2t − (1 − (2λ − n + 1)t2)ϑt − a(a + 2λ − n + 1)t2) .

Proof. Suppose 1 ≤ j ≤ n − 1. Applying (2), (3) and (5), (6) of Lemma 6.10, respec-
tively, we have following identities:

T ♯a (Qn−1(ζ ′)
ζj

∂

∂ζj
) = a − θt,

T ♯a (Qn−1(ζ ′)
ζj

Eζ

∂

∂ζj
) = (a − 1)(a − ϑt),

T ♯a (Qn−1(ζ ′)
ζj

ζj∆
ζ
Cn) = T ♯a (Qn−1(ζ ′)(∆ζ

Cn−1 +
∂2

∂ζ2n
))

= (ϑt − a)(ϑt − n + 3 − a) + t−2(ϑ2t − ϑt).
We recall from Lemma 6.5 that d̂πλ∗(Cj) = 2λ ∂

∂ζj
+ 2Eζ

∂
∂ζj
− ζj∆

ζ
Cn . Summing up

these terms we get the lemma. �

Proposition 6.12. Let a ∈ N, and Ta be as in (6.10). The polynomial ψ(ζ) =(Tag)(ζ) of n variables satisfies the system of partial differential equations (3.11) if
and only if g(t) satisfies the following single ordinary differential equation:

(6.15) ((1 − s2)ϑ2s − (1 + (2λ − n + 1)s2)ϑs + a(a + 2λ − n + 1)s2)g(−√−1s) = 0,
or equivalently, g(t) is proportional to the normalized Gegenbauer polynomial

C̃
λ−n−1

2

a (√−1t). (For the Gegenbauer polynomial, see Section 11.3.)

Proof. The statement follows from Lemma 6.11 after the change of variable t =
−
√
−1s. �

We have carried out the crucial part of the F-method. Let us complete the proof
of Theorems 6.1 and 6.3.

Proof of Theorems 6.1 and 6.3. By the general result of the F-method (see Theorem
3.1), the symbol map of differential operators gives an isomorphism

HomG̃′(O(X,Lλ),O(Y,Lν))
Symb∼
→ Homk′(Cλ,Pol(n+)⊗Cν)d̂πλ∗(n′+).
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By Lemma 6.8, the right-hand side is reduced to zero if ν − λ /∈ N. From now on, we
assume a ∶= ν − λ ∈ N, and identify the right-hand side with a subspace of Pol(n+).
Then it follows from Lemma 6.8 and Proposition (6.12) that the bijections

Pola[s]even Ta∼
Ð→ Pola[t]even ∼

Ð→ Homk′(Cλ,Pol(n+)⊗Cν)
h(s) ↦ g(t) = h(√−1t)↦ Qn−1(ζ ′)a2 g ⎛⎝

ζn√
Qn−1(ζ ′)

⎞
⎠

induces an isomorphism

SolGegen (λ − n − 1
2

, a) ∩Pola[s]even ∼
Ð→ Homk′(Cλ,Pol(n+)⊗Cν)d̂πλ∗(n′+).

Since the left-hand side is always one-dimensional (see Theorem 11.4 in Appendix),
the first statement follows.

Furthermore, since SolGegen (λ − n−1
2
, a) ∩ Pola[s]even is spanned by C̃

λ−n−1
2

a (s) by
Theorem (11.4) (2), the space HomG̃′(O(X,Lλ),O(Y,Lν)) is spanned by

Symb−1 ○ Ta C̃
λ−n−1

2

a (√−1t) = (−1)−a
2 C̃

λ−n−1
2

a (−∆z
Cn−1 ,

∂

∂zn
) .

Hence Theorems 6.1 and 6.3 are proved. �

Remark 6.13. Theorem 6.3 is a “holomorphic version” of the conformally covariant
operator considered by A. Juhl [J09] in the setting Sn−1 ↪ Sn, with equivariant ac-
tions of the pair of groups SO(n,1) ⊂ SO(n+1,1), respectively. Our proof based on
the F-method is much shorter than the original proof in [J09, Chapter 6] that relies
on combinatorial argument using recurrence relations of the coefficients of differen-
tial operators. The F-method gives a conceptual explanation for the appearance of
Gegenbauer polynomials in Theorem 6.3. The relationship of symmetry breaking op-
erators between real flag varieties (e.g. [J09, KØSS13]) and the holomorphic setting
is illustrated by an SL2-example in [KKP15].

7. Symmetry breaking operators for the restriction

Sp(n,R) ↓ Sp(n − 1,R) × Sp(1,R)
Let n ≥ 2. In what follows, we realize the real symplectic group G = Sp(n,R) as a

subgroup of the indefinite unitary group U(n,n), so that we can directly apply the
computation of dπλ∗(C) (C ∈ n+) in [KP14-1, Example ??].

Let GC be the complex symplectic group Sp(n,C) which preserves the standard
symplectic form ω defined on C2n by

ω(u, v) ∶= tuJnv, for u, v ∈ C2n,
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where Jn ∶= ( 0 −In
In 0

). Let E(R) ∶= {(z
z̄
) ∶ z ∈ Cn} be a totally real vector subspace

of C2n, and we set

G ∶= GLR(E(R)) ∩ Sp(n,C) ≃ Sp(n,R).
Then the Lie algebra g(R) ≃ sp(n,R) of G is given by

g(R) = glR(E(R)) ∩ sp(n,C) = {(A B

B A
) ∶ A = −tA,B ∈ Sym(n,C)} ,

where we recall that Sym(n,C) is the space of complex symmetric matrices.
Let Hn ∶= {Z ∈ Sym(n,C) ∶ ∥Z∥op < 1} be the bounded symmetric domain of

type CI in the É. Cartan classification, where ∥Z∥op denotes the operator norm of
Z ∈ End(Cn). The Lie group G = Sp(n,R) acts biholomorphically on Hn by

g ⋅Z = (aZ + b)(cZ + d)−1 for g = (a b

c d
) ∈ G, Z ∈Hn.

The isotropy subgroup K of G at the origin 0 is identified with U(n) by the isomor-
phism:

K
∼
→ U(n), (A 0

0 tA−1
)↦ A.

We write G̃ for the universal covering of G, and K̃ for the connected subgroup with
Lie algebra k(R).

Let G′ be the subgroup of G = Sp(n,R) that preserves the direct sum decomposi-
tion E(R) ≃ R2n = R2n−2 ⊕R2 in the standard coordinates. Then G′ is isomorphic to
the connected group Sp(n − 1,R) × Sp(1,R). The pair (G,G′) is a symmetric pair
as G′ is the fixed point subgroup of an involution τ of G defined by

τ(g) = (In−1,1 0
0 In−1,1

) g (In−1,1 0
0 In−1,1

) ,
where In−1,1 = diag(1,⋯,1,−1).

We set X ∶= Hn ≃ G/K and Y ∶= X ∩ {(a 0
0 d
) ∶ a ∈ Sym(n − 1,C), d ∈ C} ≃ Hn−1 ×

H1 ≃ G′/K ′. The symmetric pair (G,G′) is of holomorphic type, and the embedding
of the complex manifold Y ↪ X is G′-equivariant.

Let j be the standard Cartan subalgebra ∑n
i=1C(Eii −En+i,n+i) of k, and {e1,⋯, en}

the standard basis. Then j is a Cartan subalgebra of g and we choose ∆+(k, j) = {ei−
ej ∶ 1 ≤ i < j ≤ n} and ∆(n+, j) = {−(ei+ej) ∶ 1 ≤ i ≤ j ≤ n} so that ρg = (−1,−2,⋯,−n).
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Then we have the following decomposition of the Lie algebra

g = sp(n,C) = n− + k + n+, (A B

C −tA)↦ (B,A,C)
with B = tB and C = tC. Here we have chosen a realization of n+ in the lower
triangular matrices. Accordingly, we adopt the following notation for characters of
k ≃ gln(C): for λ ∈ C the character Cλ of k is defined by:

kÐ→ C, (A 0
0 −tA)↦ −λTraceA.

Its restriction to j is given by (−λ,⋯,−λ) ∈ j∨ ≃ Cn.

For λ ∈ C, the character Cλ lifts to K̃ and defines a G̃-equivariant holomorphic
line bundle Lλ over X = G̃/K̃ ≃ G/K. It descends to a G-equivariant bundle if λ ∈ Z.
In our parametrization, Ln+1 is the canonical line bundle of X = G/K, namely,
C2ρ = Cn+1.

We shall construct differential symmetry breaking operators from O(X,Lλ) toO(Y,WY ) where WY is a G′-equivariant holomorphic vector bundle over Y . Unlike
in the previous section, we have to deal with vector bundles rather than line bundles
because, by Proposition 7.4 below, there exists a non-trivial G′-intertwining operator
from O(X,Lλ) to O(Y,WY ) only if dimW > 1 for generic λ except for the case whenWY = Lλ∣Y or n = 2.

More precisely, such an irreducible representation W of k′ ≃ gln−1(C)⊕gl1(C) must
be isomorphic to

W a
λ = F (gln−1(C), (−λ,⋯,−λ,−λ − a)) ⊠F (gl1(C), (−λ − a)en),(7.1)

for some a ∈ N. This is a representation of K ′ = GL(n − 1,C) × GL(1,C) on the
space Pola[v1,⋯, vn−1] of homogeneous polynomials of degree a on Cn−1 twisted by
the one-dimensional representation (detn−1)−λ(det1)−λ−a of K ′ where detkA denotes
the determinant of A ∈M(k,C).

In order to give a concrete model for the natural action of G on O(X,V) consider
an irreducible representation ν of U(m) with highest weight (ν1,⋯, νm) acting on a
finite-dimensional complex vector space W . We extend it into a holomorphic repre-
sentation denoted by the same letter ν of GL(m,C) on W . Then the holomorphic
vector bundle W = Sp(m,R) ×U(m)W over Hm is trivialized using the open Bruhat
cell, and the regular representation of Sp(m,R) on O(Hm,W) is identified with the
multiplier representation of the same group on O(Hm)⊗W given by

(πSp(m,R)
(ν1,⋯,νm)(g)F) (Z) = ν (t(cZ + d))F ((aZ + b)(cZ + d)−1) ,



36 TOSHIYUKI KOBAYASHI, MICHAEL PEVZNER

for g−1 = (a b

c d
) ∈ Sp(m,R), Z ∈ Hm. For λ ∈ Z, the one-dimensional representation

Cλ of K has a highest weight (−λ,⋯,−λ) and we shall simply write π
Sp(m,R)
λ for the

representation π
Sp(m,R)
(−λ,⋯,−λ) of Sp(m,R) on O(Hm) given by

(πSp(m,R)
λ (g)F) (Z) = det(cZ + d)−λF ((aZ + b)(cZ + d)−1) ,

for g−1 = (a b

c d
) ∈ Sp(m,R), Z ∈ Hm. For λ ∈ C, it gives a representation of ̃Sp(m,R)

on the same space O(Hm). Similarly, for a ∈ N, we denote by π
Sp(m,R)
λ,a the represen-

tation π
Sp(m,R)
(0,⋯,0,−a)+(−λ,⋯,−λ) of the same group on O(Hm)⊗Pola[v1,⋯, vm].

The representationW a
λ may be realized on the space Pola[v1,⋯, vn−1] where (v1,⋯, vn−1)

are the standard coordinates on n−τ− ≃ Cn−1. Hence, the differential symmetry break-

ing operators can be thought of as elements of C [ ∂
∂zij
]⊗Pola[v1, . . . , vn−1], where zij

(1 ≤ i, j ≤ n) are the standard coordinates on n− ≃ Sym(n,C).
Theorem 7.1. Let n ≥ 2. Suppose λ ∈ C and a ∈ N.

(1) The vector space

Hom ̃Sp(n−1,R)×Sp(1,R)(O(Hn,Lλ),O(Hn−1 ×H1,Wa
λ))

is one-dimensional.
(2) The vector-valued differential operator from O(X) to O(Y )⊗W defined by

(7.2)

DX→Y,a ∶= C̃λ−1
a ( ∑

1≤i,j≤n−1
2vivj

∂2

∂zij∂znn
, ∑
1≤j≤n−1

vj
∂

∂zjn
) ∈ C [ ∂

∂zij
]⊗Pola[v1,⋯, vn−1]

intertwines the restriction π
Sp(n,R)
λ ∣

Sp(n−1,R)×Sp(1,R) and π
Sp(n−1,R)
λ,a ⊠ πSp(1,R)

λ+a .

Here the polynomial C̃λ−1
a (x, y) is the inflated normalized Gegenbauer polyno-

mial defined in (6.5).

It follows from Theorem 7.1 that any symmetry breaking operator from O(X,Lλ)
to O(Y,Wa

λ
) is proportional to DX→Y,a.

Remark 7.2. If λ > n then H2(X,Lλ) ∶= O(X,Lλ) ∩L2(X,Lλ) is a non-zero Hilbert
space on which G acts unitarily and irreducibly. Then, H2(Y,Wa

λ) ∶= O(Y,Wa
λ) ∩

L2(Y,Wa
λ) ≠ {0} for any a ∈ N, and the same statements as in Theorem 7.1 remain

true for symmetry breaking operators between the representation spaces H2(X,Lλ)
and H2(Y,Wa

λ).
In order to prove Theorem 7.1 we apply the F-method. Its Step 1 is given by
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Lemma 7.3. For λ ∈ C, we set λ∗ = λ∨ ⊗C2ρ = −λ + n + 1. For C ∈ Sym(n,C) ≃ n+
and Z ∈ Sym(n,C) ≃ n− we have

dπλ∗(C) = (−λ + n + 1)Trace(CZ) +∑
i≤j
∑
k,ℓ

Ckℓzikzjℓ
∂

∂zij
,

d̂πλ∗(C) = −λ∑
i≤j
Cij

∂

∂ζij
−
1

2

⎛
⎝ ∑i≤k,j≤ℓCkℓζij

∂2

∂ζik∂ζjℓ
+ ∑

i≥k,j≥ℓ

Ckℓζij
∂2

∂ζik∂ζjℓ

⎞
⎠ .

Proof. We embed the group Sp(n,R) into U(n,n) and apply the results of [KP14-1,
Example ??] with p = q = n. Thus, the first statement follows from the formula (3.4).

We consider a bilinear form

n+ × n− → C, (C,Z)↦ Trace(C tZ),
where n+ ≃ Sym(n,C) ≃ n−. Recall that ζij with 1 ≤ i ≤ j ≤ n are the coordinates on
n+ ≃ Sym(n,C). However, it is convenient for the computations below to allow us to
use ∂

∂ζij
(i > j) for the same meaning with ∂

∂ζji
. Then

ẑij = 1
2
(1 + δij) ∂

∂ζij
,

∂̂

∂zij
= (δij − 2)ζij.

Thus the algebraic Fourier transform of the first term of dπλ∗(C) amounts to

(Trace(CZ))̂ = 1
2
∑
i,j

Cij(1 + δij) ∂

∂ζij
=∑

i≤j

Cij

∂

∂ζij
,

whereas that of the second term of dπλ∗(C) amounts to

⎛
⎝∑i≤j∑k,ℓ Ckℓzikzjℓ

∂

∂zij

⎞
⎠
̂
= −(n + 1)∑

i≤j

Cij

∂

∂ζij
−
1

4
∑

i,j,k,l

Ckl(1 + δik)(1 + δjl)ζij ∂2

∂ζik∂ζjℓ

= −(n + 1)∑
i≤j

Cij

∂

∂ζij
−
1

2

⎛
⎝ ∑i≤k,j≤ℓCkℓζij

∂2

∂ζik∂ζjℓ
+ ∑

i≥k,j≥ℓ

Ckℓζij
∂2

∂ζik∂ζjℓ

⎞
⎠ .

Hence the formula for d̂πλ∗(C) follows. �

The condition (4.5) amounts to ⟨(−λ + 1,⋯,−λ + n),−(ei + ej)⟩ > 0 for any 1 ≤ i ≤
j ≤ n, namely λ > n.

For the Step 2 we apply Lemma 5.5.

Proposition 7.4. Assume λ > n. If
HomG′(O(G/K,Lλ),O(G′/K ′,W)) ≠ {0}

for an irreducible representation W of K ′, then W is of the form

W =W a
λ = Sa(n−τ+ )⊗ (−λTracen),
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for some a ∈ N see (7.1).

From now on, we aim to construct (differential) symmetry breaking operators fromO(X,Lλ) to O(Y,W) in the case W =W a
λ .

Define a Borel subalgebra b(k′) corresponding to the positive root system ∆+(k′, j) ∶=
∆+(k, j) ∩∆(k′, j).

For Step 3 we apply Lemma 3.4 and we get:

Lemma 7.5. Let W a
λ be the irreducible k′-module defined in (7.1).

(1) The highest weight of (W a
λ )∨ is given by

χ = (a,0, . . . ,0;a) + (λ, . . . , λ;λ).
(2) For the k-module Pol(n+)⊗C∨λ, the χ-weight space for b(k′) is given by:

(7.3) (Pol(n+)⊗C
∨
λ)χ ≃ ⊕

2j+k=a
Cζ

j
11ζ

k
1nζ

j
nn,

where we identify Pol(n+)⊗C∨λ with Pol(n+) as vector spaces.

Proof. The statement (1) is clear from the definition of W a
λ given in (7.1). Notice

that in our convention ∆(n−) is given as ∆(n−) = {ei + ej ∶ 1 ≤ i ≤ j ≤ n}. Thus n−
decomposes into irreducible representations of k′ as

n− ≃ (Sym(n − 1),C) ⊠C)⊕ (C ⊠C2)⊕ (Cn−1 ⊠C1)
≃ (F (gln−1,2e1) ⊠F (gl1,0))⊕ (F (gln−1,0) ⊠ F (gl1,2en))(7.4)

⊕ (F (gln−1, e1) ⊠F (gl1, en)) .
Accordingly we get an isomorphism of k′-modules:

Pol(n+) ≃ S(n−) ≃⊕
i,j,k

(Si(Sym(n − 1),C))⊗ Sk(Cn−1)) ⊠C2j+k.(7.5)

Since ζ11, ζnn and ζ1n are highest weight vectors in the k′-module n− with respect
to ∆+(k′) (see (7.4)), so is any monomial ζ i11ζ

j
nnζk1n in the k′-module S(n−) ≃ Pol(n+)

of weight (2i + k)e1 + (k + 2j)en.
According to the irreducible decomposition (7.5) and Remark 5.7, it follows that

the right-hand side of (7.3) exhausts all highest weight vectors in Pol(n+) of weight
a(e1 + en). Thus, taking into account the k′-action on C∨λ ≃ λTracen, we get Lemma.

�

As Step 4, we reduce the system of differential equations (3.11), i.e. d̂πλ∗(C)ψ = 0,
to an ordinary differential equation. For this, we identify Pol(n+)⊗V ∨ with the space
of polynomials in ζ on n+ ≃ Sym(n,C). For a polynomial g(t) ∈ Pola[t]even (see (6.12))
we set

(Tag) (ζ) ∶= (√2ζ11ζnn)ag ( ζ1n√
2ζ11ζnn

) .
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Proposition 7.6. Let χ be as in Lemma 7.5 (1).

(1) Ta ∶ Pola[t]even ∼→ (Pol(n+)⊗ V ∨)χ.
(2) The map Ta induces an isomorphism

SolGegen(λ − 1, a) ∩Pola[t]even ∼→ (Pol(n+)⊗ V ∨)d̂πλ∗(n′+)
χ .

(3) Any polynomial ψ(ζ) ≡ ψ(ζij) in the right-hand side of (7.3) is given by

(7.6) ψ(ζ) = (Tag) (ζ) ∶= (√2ζ11ζnn)ag ( ζ1n√
2ζ11ζnn

) ,
for some g(t) ∈ Pola[t]even.

(4) The polynomial ψ(ζ) on Sym(n,C) satisfies the system of partial differen-

tial equations d̂πλ∗(C)ψ = 0 for any C ∈ n′+ if and only if g(t) satisfies the
Gegenbauer differential equation

(7.7) ((1 − t2)ϑ2t − (1 + 2(λ − 1)t2)ϑt + a(a + 2(λ − 1))t2)g(t) = 0,
where we denote ϑt = t d

dt
as before.

Proof. The first two statements follow from Theorem 3.1, Proposition 3.3 and Lemma
3.4. The third statement is clear from (7.3). The proof of the last assertion is similar
to the one of Lemma 6.11 and uses the following identities for Ta-saturated differential
operators:

T ♯aϑζ11 = T ♯aϑζnn
= 1

2
(a − ϑt), T ♯aϑζ1n = ϑt,

where ϑζij = ζij ∂
∂ζij

. �

We are ready to complete the proof of Theorem 7.1.

Proof of Theorem 7.1. By the general result of the F-method (see Theorem 2.1) and
owing to Proposition 3.3 and Lemma 3.4, we have the following isomorphism

SolGegen(λ − 1, a) ∩Pola[t]even ≃ HomG̃′(O(X,Lλ),O(Y,Wa
λ)).

Hence, the uniqueness of the G′-intertwining operator amounts to the fact that the
Gegenbauer differential equation has a unique polynomial solution up to a scalar
multiple (see Theorem 11.4 (2) in Appendix).

Let us prove that DX→Y,a defined in (7.2) belongs to DiffG′(Lλ,Wa
λ). Using the F-

method we have proved that if D ∈ DiffG′(Lλ,Wa
λ) and w∨ is a highest weight vector

in (W a
λ
)∨, then ⟨D,w∨⟩ is of the form (Symb−1 ⊗ id)Tag, where g(t) is a polynomial

satisfying (7.7). Hence g(t) is, up to a scalar multiple, the Gegenbauer polynomial

C̃λ−1
a (t). In turn, (Tag)(ζ) = C̃λ−1

a (2ζ11ζnn, ζ1n) up to a scalar.
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Thus, in order to show DX→Y,a ∈ DiffG′(Lλ,Wa
λ) it is sufficient to verify for all

ℓ ∈K ′
C
:

(7.8) (Symb ⊗ id)⟨DX→Y,a, ν
∨(ℓ−1)w∨⟩ = (Ad♯(ℓ−1)⊗ λ∨(ℓ−1))(Tag),

by Lemma 3.5 and by the observation that every non-zero w∨ ∈ W ∨ is cyclic. The
left-hand side of (7.8) amounts to

⟨C̃λ−1
a ( ∑

1≤i,j≤n−1
2vivjζijζnn, ∑

1≤j≤n−1
vjζjn) , ν∨(ℓ−1)w∨⟩

= (det ℓ)−λ ⟨C̃λ−1
a ( ∑

1≤i,j≤n−1
2(ℓv)i(ℓv)jζijζnn, ∑

1≤j≤n−1
(ℓv)jζjn) ,w∨⟩ ,

where v = t(v1, . . . , vn−1) stands for the column vector. Since ⟨Q(v),w∨⟩ gives the
coefficients of va1 in the polynomial Q(v), it is equal to

(det ℓ)−λC̃λ−1
a ( ∑

1≤i,j≤n−1
2ℓi1ℓj1ζijζnn, ∑

1≤j≤n−1
ℓj1ζjn)

= (det ℓ)−λC̃λ−1
a ( ∑

1≤i,j≤n−1
2(tℓζℓ)11ζnn, ∑

1≤j≤n−1
(tℓζ)1n) .

On the other hand, the action of Ad(ℓ−1) on Pol(n+) is generated by

ζij ↦ (tℓζℓ)ij, ζin ↦ (tℓζ)in.
Hence, the right-hand side of (7.8) amounts to

(det ℓ)−λC̃λ−1
a ( ∑

1≤i,j≤n−1
2(tℓζℓ)11ζnn, ∑

1≤j≤n−1
(tℓζ)1n) ,

whence the equality (7.8).
For the existence, we know that HomG′(O(G/K,Lλ),O(G′/K ′,Wa

λ
)) ≠ {0}for λ >

n by Theorem 2.1 and the branching law given by Fact 4.2. In this case, it is given by
the differential operator (7.2) by the F-method. The same formula defines a non-zero

differential operator which depends holomorphically on λ ∈ C. Since the actions of G̃
on O(G/K,Lλ) and that of G̃′ on O(G′/K ′,Wa

λ) can be realized on Hn and Hn−1 ×
H1, respectively, by operators depending holomorphically on λ ∈ C, the differential
operator (7.2) respects the G̃′ for all λ ∈ C by holomorphic continuation. �

8. Symmetry breaking operators for the tensor product

representations of U(n,1)
In this section we discuss a higher dimensional generalization of the Rankin–Cohen

bidifferential operators by considering the symmetric pair (G′ × G′,G′) with G′ =
U(n,1). First we fix some notations. Let U(n,1) be the Lie group of all matrices
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preserving the standard Hermitian form of signature (n,1) on Cn+1 given by In,1 =
diag(1,⋯,1,−1) ∈ GL(n + 1,C).

Let D be the unit ball {Z ∈ Cn ∶ ∥Z∥ < 1}, where ∥Z∥2 ∶= ∑n
j=1 ∣zj ∣2 for Z =

(z1,⋯, zn). It is the Hermitian symmetric domain of type AIII in Cn in É. Cartan
classification. Then the Lie group U(n,1) acts biholomorphically on D by

g ⋅Z = (aZ + b)(cZ + d)−1 for g = (a b

c d
) ∈ U(n,1), Z ∈D,

and the isotropy subgroup at the origin is isomorphic to U(n)×U(1). Since cZ +d ∈
GL(1,C), we identify cZ + d as a non-zero complex number and write aZ+b

cZ+d instead
of (aZ + b)(cZ + d)−1 from now on.

We adapt the same convention as in [KP14-1, Example ??] with p = n and q = 1.
In particular, we use the decomposition of the Lie algebra

Lie(U(n,1)) ⊗R C ≃ gln+1(C) = n′− + k′ + n′+, (A B

C d
)↦ (B, (A,d),C).

Given a representation ν = ν1 ⊠ ν2 of U(n)×U(1) on a finite-dimensional complex
vector space W , we extend it to a holomorphic representation, denoted by the same
letter ν = ν1⊠ν2, of GL(n,C)×GL(1,C) onW . Then the holomorphic vector bundleW = U(n,1)×U(n)×U(1)W over D is trivialized by using the open Bruhat cell n′− ≃ Cn,
and the regular representation of U(n,1) on O(D,W) is identified with the multiplier
representation πW of the same group on O(D)⊗W given by

(8.1) (πW (g)F )(Z) ∶= ν1 (a − (aZ + b)c
cZ + d

)−1 ν2(cZ + d)−1F (aZ + b
cZ + d

) ,
for F ∈ O(D)⊗W,g−1 = (a b

c d
) ∈ U(n,1) and Z ∈D. We note that cZ + d ≠ 0.

For λ1, λ2 ∈ C, the map

(8.2) gln(C)⊕ gl1(C)→ C, (A,d) ↦ −λ1TraceA − λ2d
is a one-dimensional representation of the Lie algebra k′, which we denote by C(λ1,λ2).
The negative signature in (8.2) is chosen according to our realization of n+ in the
lower triangular matrices. For integral values of λ1 and λ2 the character C(λ1,λ2)
lifts to U(n) × U(1). The restriction of the one-dimensional representation (8.2)

to the Cartan subalgebra
n+1

⊕
i=1

CEii is given by (−λ1,⋯,−λ1;−λ2) in the dual basis

{e1,⋯, en+1}.
For λ1, λ2 ∈ Z, we form a U(n,1)-equivariant holomorphic line bundle Lλ1,λ2

=
U(n,1)×U(n)×U(1)C(λ1,λ2) overD. By (8.1), the representation of U(n,1) onO(D,Lλ1,λ2

)
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is identified with the multiplier representation, denoted simply by πλ1,λ2
, of U(n,1)

on O(D) given by

(πλ1,λ2
(g)F ) (Z) = (cZ + d)−λ1+λ2(det g)−λ1F (aZ + b

cZ + d
) .

In our normalization, the canonical bundle of D is given by L(1,−n) associated with
C2ρ = Trace(ad(⋅) ∶ n+ → n+) ≃ C(1,−n) with the notation of (8.2), and the dualizing
bundle of Lλ1,λ2

is given as

(8.3) L∗λ1,λ2
= L∨λ1,λ2

⊗C2ρ ≃ L−λ1+1,−λ2−n,

associated with
C
∗(λ1,λ2) = C(−λ1,−λ2) ⊗C2ρ ≃ C(−λ1+1,−λ2−n).

Now we consider the setting of symmetry breaking operators for the tensor product
representations. We set X ∶= D ×D and Y ∶= ∆(D). Thus, we have the following
diagram:

X =D ×D ⊂ Cn ×Cn ≃ n− ⊂ PnC × PnC

∪ ∪ ∪ ∪
Y =∆(D) ⊂ ∆(Cn) ≃ n′− ⊂ ∆(PnC).

We also set
G ∶= U(n,1) ×U(n,1),

and let τ be the involution of G acting by τ ∶ (g, h) ↦ (h, g). Then the fixed point
subgroup Gτ is isomorphic to ∆(U(n,1)). Its identity component G′ coincides with
Gτ which is already connected. We consider the symmetric pair of holomorphic type(G,G′).

According to the branching law in Fact 4.3, for (λ′1, λ′2, λ′′1 , λ′′2) ∈ Z4 with λ′1−λ
′
2 > n

and λ′′1 − λ
′′
2 > n, there exists a non-trivial G′-intertwining operator DX→Y (ϕ) fromO(X,L(λ′

1
,λ′

2
) ⊠ L(λ′′

1
,λ′′

2
)) to O(Y,WY ) if and only the irreducible representation W

of U(n) ×U(1) has the highest weight (−λ1,⋯,−λ1,−λ1 − a;−λ2 + a) for some a ∈ N.
We denote it by W a(λ1,λ2) and realize on the space Pola[v1,⋯, vn] of homogeneous

polynomials of degree a where (v1, . . . , vn) are the standard coordinates on n−τ− ≃ Cn.
Then the vector-valued differential symmetry breaking operators can be thought of
as elements of

(8.4) C [ ∂
∂z′1

, . . . ,
∂

∂z′n
,
∂

∂z′′1
, . . . ,

∂

∂z′′n
]⊗Pola[v1, . . . , vn],

where z′i, z
′′
j (1 ≤ i, j ≤ n) are the standard coordinates on n− ≃ Cn ⊕Cn.

Let P α,β
ℓ (t) be the Jacobi polynomial defined by

P
α,β
ℓ (t) = Γ(α + ℓ + 1)

Γ(α + β + ℓ + 1)
ℓ

∑
m=0
( ℓ
m
) Γ(α + β + ℓ +m + 1)

ℓ!Γ(α +m + 1) (t − 1
2
)m ,(8.5)
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see Appendix 11.2 for more details. We inflate it to a homogeneous polynomial of
two variables x and y by

(8.6) P
α,β
ℓ (x, y) ∶= yℓP α,β

ℓ (2x
y
+ 1) .

For instance, P α,β
0 (x, y) = 1, P α,β

1 (x, y) = (2 + α + β)x + (α + 1)y, etc.
We write Ũ(n,1) for the universal covering of the group U(n,1). Then we can

define a Ũ(n,1)-equivariant holomorphic line bundle L(λ1,λ2) over D for all λ1, λ2 ∈ C,
as well as a representation of Ũ(n,1) on O(D,L(λ1,λ2)).

We denote by ⊗̂ the completion of the tensor product of two nuclear spaces.

Theorem 8.1. Suppose that λ′1, λ
′
2, λ

′′
1 , λ

′′
2 ∈ C and a ∈ N. We set λ′ ∶= λ′1 − λ′2 and

λ′′ ∶= λ′′1 − λ′′2 .
(1) The dimension of the vector space

Hom
Ũ(n,1) (O(D,L(λ′1,λ′2)) ⊗̂O(D,L(λ′′1 ,λ′′2)),O(D,Wa(λ′

1
+λ′′

1
,λ′

2
+λ′′

2
)))

is either one or two. It is equal to two if and only if

(8.7) λ′, λ′′ ∈ {−1,−2,⋯} and a ≥ λ′ + λ′′ + 2a − 1 ≥ ∣λ′ − λ′′∣.
(2) The vector-valued differential operator from O(D×D) to O(D)⊗Pola[v1,⋯, vn]

defined by

(8.8) DX→Y,a ∶= P λ′−1,−λ′−λ′′−2a+1
a ( n

∑
i=1
vi
∂

∂zi
,

n

∑
j=1
vj

∂

∂zj
)

intertwines πλ′
1
,λ′

2
⊠ πλ′′

1
,λ′′

2
∣
G′

and πW , where W ≃W a
λ′
1
+λ′′

1
,λ′

2
+λ′′

2

.

(3) If the triple (λ′, λ′′, a) satisfies (8.7), then DX→Y,a = 0. Otherwise, any sym-
metry breaking operator is proportional to DX→Y,a.

Remark 8.2.

(1) The representation theoretic interpretation of the condition (8.7) will be clar-
ified in Section 9 in the case n = 1, where we construct three symmetry break-
ing operators for singular parameters satisfying (8.7) and discuss their linear
relations.

(2) The fiber of the vector bundle Wa(λ1,λ2) is isomorphic to the space Sa(Cn) of
symmetric tensors of degree a. It is a line bundle if and only if a = 0 or n = 1.
In the case n = 1, the formula (8.8) reduces to the classical Rankin–Cohen
bidifferential operators (see (1.1)) with an appropriate choice of spectral pa-
rameters, namely, for a ∶= 1

2
(λ′′′ − λ′ − λ′′) ∈ N, the following identity holds:

(8.9) RCλ′′′λ′,λ′′ = (−1)aP λ′−1,1−λ′′′

a ( ∂
∂z1

,
∂

∂z2
) ∣

z1=z2=z.



44 TOSHIYUKI KOBAYASHI, MICHAEL PEVZNER

Remark 8.3. (1) If λ′1, λ
′
2, λ

′′
1 , λ

′′
2 ∈ Z and a ∈ N, then the linear groups G and G′

act equivariantly on the two bundles L(λ′
1
,λ′

2
)⊠L(λ′′

1
,λ′′

2
) → D×D andWa(λ1,λ2) →

D, respectively.
(2) If λ′, λ′′ > n, then analogous statements as in Theorem 8.1 remain true for con-

tinuousG′-homomorphisms between the Hilbert spacesH2 (X,L(λ′
1
,λ′

2
) ⊗L(λ′′

1
,λ′′

2
)))

and H2 (Y,Wa(λ′
1
+λ′′

1
,λ′

2
+λ′′

2
)).

(3) Similar statements hold for continuousG′-homomorphisms between the Casselman–
Wallach globalizations by the localness theorem [KP14-1, Theorem ??].

In order to prove Theorem 8.1, we apply again the F-method. Its Step 1 is given
by

Lemma 8.4. For (λ′1, λ′2) ∈ C2, we set (µ′1, µ′2) ∶= (−λ′1 + 1,−λ′2 − n) and likewise we
define (µ′′1 , µ′′2) from (λ′′1 , λ′′2). Let C ∶= C ′ + C ′′ = (c′1, . . . , c′n) + (c′′1 , . . . , c′′n) ∈ n+ ≃
Cn ⊕Cn. Then

dπµ′
1
,µ′

2
(C ′)⊕ dπµ′′

1
,µ′′

2
(C ′′) = n

∑
i=1
c′iz
′
i(Ez′ − λ′ + n + 1) + n

∑
j=1
c′′j z

′′
j (Ez′′ − λ′′ + n + 1),

d̂πµ′
1
,µ′

2
(C ′)⊕ d̂πµ′′

1
,µ′′

2
(C ′′) = −(λ′ n

∑
i=1
c′i
∂

∂ζ ′i
+

n

∑
i,j=1

c′iζ
′
j

∂2

∂ζ ′i∂ζ
′
j

)
−(λ′′ n

∑
j=1
c′′j

∂

∂ζ ′′j
+

n

∑
i,j=1

c′′i ζ
′′
j

∂2

∂ζ ′′i ∂ζ
′′
j

) .
For the Step 2 we apply Lemma 5.5.

Proposition 8.5. Assume λ′ = λ′1 − λ′2 > n and λ′′ = λ′′1 − λ′′2 > n . If

HomG′(O(G/K,L(λ′
1
,λ′

2
) ⊗L(λ′′

1
,λ′′

2
),O(G′/K ′,W)) ≠ {0}

for an irreducible representation W of K ′, then W is of the form

W = W a(λ′
1
+λ′′

1
,λ′

2
+λ′′

2
) = Sa(n−τ+ )⊗C(λ′

1
+λ′′

1
,λ′

2
+λ′′

2
)(8.10)

≃ (Sa ((Cn)∨)⊗ (−λ1Tracen)) ⊠F (gl1, (−λ2 + a)en+1)
for some a ∈ N.

For Step 3 we apply Lemma 3.4 and we get:

Lemma 8.6. Suppose λ′1, λ
′
2, λ

′′
1 , λ

′′
2 ∈ C and a ∈ N. Let V be the one-dimensional

representation C(λ′
1
,λ′

2
) ⊠ C(λ′′

1
,λ′′

2
) of k, and W the irreducible representation of k′ ≃

gln(C)⊕ gl1(C) defined in (8.10).

(1) The highest weight of the contragredient representation W ∨ with respect to
the standard Borel subalgebra b(k′) of k′ is given by

χ = (a,0,⋯,0;−a) + (λ′1 + λ′′1 ,⋯, λ′1 + λ′1;λ′2 + λ′′2).
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(2) We regard the k-module Pol(n+)⊗ V ∨ as a b(k′)-module. Then the χ-weight
space is given by

(8.11) (Pol(n+)⊗ V ∨)χ ≃ ⊕
i+j=a

C(ζ ′1)i(ζ ′′1 )j ,
where we identify Pol(n+)⊗ V ∨ with Pol(n+) as vector spaces.

Proof. 1) Since the highest weight of W is given by

(−λ′1 − λ′′1 ,⋯,−λ′1 − λ′′1 ;−λ′2 − λ′′2) + (0,⋯,0,−a;a),
see (7.1), the first statement is clear.

2) The Lie algebra k′ ≃ gln(C)⊕ gl1(C) acts on n+ ≃ Cn ⊕Cn as the direct sum of
two copies of irreducible representations

F (gln(C), (0,⋯,0;−1)) ⊠F (gl1(C),1),
and thus one has the following irreducible decomposition

Pol(n+) ≃ ⊕
i,j

Poli(Cn)⊗Polj(Cn)
≃ ⊕

i,j

(F (gln(C), (i,0,⋯,0)) ⊗F (gln(C), (j,0,⋯,0))) ⊠F (gl1(C),−(i + j))
≃ ⊕

i,j

⊕
s

F (gln(C), (s1, s2,0,⋯,0))⊗ F (gl1(C),−(i + j)),
where the sum in the last line is taken over all s = (s1, s2,0,⋯,0) ∈ Nn satisfying
s1 ≥ s2 ≥ 0, and i + j ≥ s1 ≥ max(i, j) and s1 + s2 = i + j. In particular, the weight χ
occurs a highest weight in Pol(n+)⊗ V ∨, or equivalently, the one-dimensional b(k′)-
module (a,0,⋯,0;−a) occurs in Pol(n+), if and only if i + j = a and s2 = 0. In this
case the weight vectors are the monomials (ζ ′1)i(ζ ′′1 )j . Lemma follows. �

As Step 4, we reduce the system of differential equations (3.9) to an ordinary
differential equation. For this, we recall from (6.11) that Pola[t] is the space of
polynomials in one variable t of degree at most a. We identify Pol(n+)⊗V ∨ with the
space of polynomials in (ζ ′, ζ ′′) on n+ ≃ Cn ⊕Cn. For g ∈ Pola[t] we set

(Tag)(ζ ′, ζ ′′) ∶= (ζ ′′1 )ag ( ζ ′1ζ ′′1 ) .
Proposition 8.7. Let χ be the character of b(k′) given in Lemma 8.6.

(1) The map Ta induces an isomorphism Ta ∶ Pola[t] ∼→ (Pol(n+)⊗ V ∨)χ .
(2) The polynomial Tag satisfies the system of partial differential equations (3.9)

if and only if the polynomial g(t) solves the single ordinary differential equa-
tion

(8.12) ((t + t2) d2
dt2
+ (λ′ − (λ′′ − 2a + 2)t) d

dt
+ a(λ′′ + a − 1)) g(t) = 0.
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For the proof of Proposition 8.7 we use the following identities for Ta-saturated
operators whose verification is similar to the one for Lemma 6.10.

Lemma 8.8. One has:

(1) T ♯a (ζ ′′1 ∂
∂ζ′

1

) = d
dt
.

(2) T ♯a (ζ ′1ζ ′′1 ∂2

∂(ζ′
1
)2 ) = t d2

dt2
.

(3) T ♯a (ζ ′′1 ∂
∂ζ′′

1

) = a − t d
dt
.

(4) T ♯a ((ζ ′′1 )2 ∂2

∂(ζ′′
1
)2) = a(a − 1) − 2(a − 1)t d

dt
+ t2 d2

dt2
.

Proof of Proposition 8.7. The general condition (3.9) of the F-method amounts to
the following differential equation:

(8.13) (λ′ ∂
∂ζ ′i
+ ζ ′i

∂2

∂(ζ ′i)2 + λ
′′ ∂

∂ζ ′′i
+ ζ ′′i

∂2

∂(ζ ′′i )2)ψ(ζ
′, ζ ′′) = 0,

for Ci = (0, . . . ,0,´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
i−1

1,0,⋯,0) + (0, . . . ,0,´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
i−1

1,0,⋯,0) ∈ ∆(n+) ≃ n′+ ≃ Cn (1 ≤ i ≤ n).
Applying this to ψ = Tag, and using Lemma 8.8, we obtain the differential equation
(8.12) for g(t). �

We give a proof of Theorem 8.1 below. Note that the proof requires some general
argument on the Jacobi polynomials, which is summarized in Appendix, namely,
Section 11.2. We naturally quote necessary facts from the section, although they are
discussed later.

Proof of Theorem 8.1. We set

h(s) ∶= g (s − 1
2
) .

Then g(t) ∈ Pola[t] if and only if h(s) ∈ Pola[s], and g(t) satisfies (8.12) if and only
if h(s) satisfies
(8.14) ((1 − s2) d2

ds2
+ (β − α − (α + β + 2)s) d

ds
+ a(a + α + β + 1))h(s) = 0,

where α ∶= λ′ − 1 and β ∶= −λ′ − λ′′ − 2a + 1. Thus, combining with Theorem 3.1, we
have shown the following bijection

Hom
Ũ(n,1) (O(D,L(λ′1,λ′2))⊗̂O(D,L(λ′′1 ,λ′′2)),O(D,Wa(λ′

1
+λ′′

1
,λ′

2
+λ′′

2
)))

≃ SolJacobi(λ′ − 1,−λ′ − λ′′ − 2a + 1, a) ∩Pola[s],(8.15)

where SolJacobi(α,β, ℓ) ∩ Pola[s] denotes the space of polynomials of degree at most
a satisfying the Jacobi differential equation (11.4).
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By the bijection (8.15) the first statement is reduced to Theorem 11.2 in Appendix
on the dimension of polynomial solutions to the Jacobi differential equation.

Since the Jacobi polynomial P λ′−1,−λ′−λ′′−2a+1
a (s) belongs to the right-hand side of

(8.15), it follows from Theorem 3.1 (2) and Lemma 3.5 that DX→Y,a is a symmetry
breaking operator. The last statement follows from the fact that Jacobi polynomial

P λ′−1,−λ′−λ′′−2a+1
a (t) is identically zero as a polynomial of t if and only if the triple(λ′, λ′′, a) satisfies (8.7), by Theorem 11.2 (1) in Appendix. �

Remark 8.9. In all the three cases we have reduced a system of partial differential
equations to a single ordinary differential equation in Step 4 of the F-method. The
latter equation has regular singularities at t = ±1 and ∞. We describe the corre-
sponding singularities via the map Ta as follows:

(1) The singularities of the differential equation (6.15) correspond to the varieties
given by ζn = 0 and Qn−1(ζ ′) = 0.

(2) The singularities of the differential equation (7.7) correspond to the varieties

given by ζ1n = 0 and det ∣ζ11 ζ1n
ζ1n ζnn

∣ = 0.
(3) The singularities of the differential equation (8.14) correspond to the varieties

given by ζ ′1 = 0 and ζ ′1 = ±ζ ′′1 .
9. Higher multiplicity phenomenon for singular parameter

It is well-known that the branching law for the tensor product of two holomorphic
discrete series representations of SL(2,R) (≃ SU(1,1)) is multiplicity free. More
generally, the branching laws for holomorphic discrete series representations of scalar
type in the setting of reductive symmetric pairs remain multiplicity free for positive
parameters [K08], as well as their counterpart for generalized Verma modules for
generic parameters [K12]. However, we discover that such multiplicity one results
may fail for singular parameters. In this section, we examine why and how it happens
in the example of SL(2,R). We shall see that the F-method reduces it to the question
of finding polynomial solutions to the Gauss hypergeometric equation with all the
parameters being negative integers. We give a complete answer to this question in
Appendix.

9.1. Multiplicity two results for singular parameters. From now on, we con-
sider the setting of the previous section for n = 1, and let G = SU(1,1) rather than
U(1,1).

For λ ∈ Z, we write Lλ for the G-equivariant holomorphic line bundle over the unit
disk D = {z ∈ C ∶ ∣z∣ < 1}, where λ = λ1 − λ2 in the notations of the previous section.
Using the Bruhat decomposition, we trivialize the line bindle Lλ and identify the
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regular representation of G on O(D,Lλ) with the following multiplier representation
on O(D):

(πλ(g)F ) (z) = (cz + d)−λF (az + b
cz + d

) , for g−1 = (a b

c d
) and F ∈ O(D).

For λ ∈ C, we extend πλ to a representation of the universal covering group G̃ =̃SU(1,1).
We write indg

b(ν) for the Verma module U(g) ⊗U(b) Cν of the Lie algebra g =
sl(2,C). In our parametrization, if λ = 1 − k (k ∈ N), then the k-dimensional irre-
ducible representation occurs as a subrepresentation of (πλ,O(D)) and as a quotient
of indg

b(−λ).
We consider symmetry breaking operators from the tensor product representationO(Lλ′) ⊗̂O(Lλ′′) to O(Lλ′′′), where ⊗̂ denotes the completion of the tensor product

of two nuclear spaces. As we saw in (1.1), the Rankin–Cohen bidifferential operator

RCλ′′′λ′,λ′′ is an example of such an operator when λ′′′ − λ′ − λ′′ ∈ 2N (see also Example
9.9 below).

For (λ′, λ′′, λ′′′) ∈ C3, we set

H(λ′, λ′′, λ′′′) ∶= HomG̃(O(Lλ′)⊗̂O(Lλ′′),O(Lλ′′′))= DiffG̃(O(Lλ′)⊗̂O(Lλ′′),O(Lλ′′′))≃ Homg(indg

b(−λ′′′), indg

b(−λ′)⊗ indg

b(−λ′′)),
where the second equality and the third isomorphism follow from Theorem 2.1. The
general theory (see Fact 4.2) shows that H(λ′, λ′′, λ′′′) is generically equal to 0 or 1.
Here is a precise dimension formula:

Theorem 9.1. The vector spaceH(λ′, λ′′, λ′′′) is finite dimensional for any (λ′, λ′′, λ′′′) ∈
C3. More precisely,

(1) dimCH(λ′, λ′′, λ′′′) ∈ {0,1,2}.
(2) H(λ′, λ′′, λ′′′) ≠ {0} if and only if

(9.1) λ′′′ − λ′ − λ′′ ∈ 2N.
(3) Suppose (9.1) is satisfied. Then the following three conditions are equivalent:

(i) dimCH(λ′, λ′′, λ′′′) = 2.
(ii)

(9.2) λ′, λ′′, λ′′′ ∈ Z, 2 ≥ λ′ + λ′′ + λ′′′, and λ′′′ ≥ ∣λ′ − λ′′∣ + 2.
(iii) RCλ′′′λ′,λ′′ = 0.
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Next, let us give an explicit basis of H(λ′, λ′′, λ′′′). For this consider the polyno-
mials of one variable g̃j (j = 1,2,3) which will be defined in Lemma 11.3 with

α = λ′ − 1, β = 1 − λ′′′, and ℓ = 1
2
(−λ′ − λ′′ + λ′′′).

We inflate g̃j into homogeneous polynomials of degree ℓ of two variables by

Gj(x, y) ∶= (−y)ℓg̃j (1 + 2x

y
) ,

and set

Dj ∶= Restz1=z2=z ○Gj ( ∂
∂z1

,
∂

∂z2
) ,

for j = 1,2,3.
Theorem 9.2. Suppose the conditions (9.1) and (9.2) hold.

(1) The operators Dj (j = 1,2,3) are G-homomorphisms from O(Lλ′)⊗̂O(Lλ′′)
to O(Lλ′′′).

(2) 1− λ′,1 − λ′′ and 1 − λ′′′ ∈ N+, and the operators Dj (j = 1,2,3) factorize into
two natural intertwining operators as follows:

D1 = RCλ′′′2−λ′,λ′′ ○ (( ∂∂z1 )
1−λ′

⊗ id) ,
D2 = RCλ′′′λ′,2−λ′′ ○ (id⊗ ( ∂∂z2 )

1−λ′′) ,
D3 = ( d

dz
)λ′′′−1 ○RC2−λ′′′λ′,λ′′ .

(3) The following linear relation holds:

D1 −D2 + (−1)λ′D3 = 0.
The factorizations in Theorem 9.2 are illustrated by the following diagram:

(9.3)

O(L2−λ′) ⊗̂O(Lλ′′)
RCλ′′′

2−λ′,λ′′

++❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲

O(Lλ′)⊗̂O(Lλ′′)
( ∂
∂z1
)1−λ

′

⊗ id 33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢ id⊗( ∂
∂z2
)1−λ

′′

//

RC2−λ′′′
λ′,λ′′ ++❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳

O(Lλ′) ⊗̂O(L2−λ′′) RCλ′′′
λ′,2−λ′′

// O(Lλ′′′),

O(L2−λ′′′) ( d
dz
)λ′′′−1

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣

To summarize we consider the following three cases.
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Case 0. λ′′′ − λ′ − λ′′ /∈ 2N.
Case 1. λ′′′ − λ′ − λ′′ ∈ 2N but the condition (9.2) is not fulfilled.
Case 2. λ′′′ − λ′ − λ′′ ∈ 2N and the condition (9.2) is satisfied.

Corollary 9.3.

H(λ′, λ′′, λ′′′) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
{0} Case 0,

C ⋅RCλ′′′λ′,λ′′ Case 1,
C⟨D1,D2⟩ = C⟨D1,D3⟩ = C⟨D2,D3⟩ Case 2.

The rest of this section is devoted to the proof of Theorems 9.1 and 9.2.

9.2. Application of the F-method. For α,β ∈ C, and ℓ ∈ N, we denote by
SolJacobi(α,β, ℓ) ∩ Polℓ[t] the space of polynomials g(t) of degree at most ℓ satis-
fying the Jacobi differential equation (see Appendix 11.2):

(1 − t2)g′′(t) + (β − α − (α + β + 2)t)g′(t) + ℓ(ℓ + α + β + 1)g(t) = 0.
Lemma 9.4. Suppose (λ′, λ′′, λ′′′) ∈ C3. Then,

(1) H(λ′, λ′′, λ′′′) = {0} if λ′′′ − λ′ − λ′′ /∈ 2N.
(2) Suppose λ′′′ − λ′ − λ′′ ∈ 2N. Then the F-method gives a bijection

H(λ′, λ′′, λ′′′) ∼→ SolJacobi(α,β, ℓ) ∩Polℓ[t],
with α = λ′ − 1, β = 1 − λ′′′, and ℓ = 1

2
(λ′′′ − λ′ − λ′′) ∈ N.

Proof. By Step 3 of the F-method, the symbol map induces a bijection between
H(λ′, λ′′, λ′′′) and the space of polynomials ψ(ζ1, ζ2) of two variables satisfying the
following two conditions

● ψ(ζ1, ζ2) is homogeneous of degree 1
2
(λ′′′ − λ′ − λ′′),

● (λ′ ∂
∂ζ1
+ ζ1 ∂2

∂ζ2
1

)ψ = (λ′′ ∂
∂ζ2
+ ζ2 ∂2

∂ζ2
2

)ψ = 0,
corresponding to (3.10) and (3.11), respectively. Hence the first statement follows.

The second statement follows from Step 4 of the F-method, namely, Proposition
8.7 with n = 1 shows that there is a correspondence between ψ(ζ1, ζ2) and g(t) ∈
SolJacobi(α,β, ℓ) ∩Polℓ[t] with α,β and ℓ as above given by

ψ(ζ1, ζ2) = ζℓ2 g (2ζ1ζ2 + 1) .
�

We consider the transformation (λ′, λ′′, λ′′′)↦ (α,β, ℓ) given by

(9.4) α ∶= λ′ − 1, β ∶= 1 − λ′′′, ℓ ∶= 1
2
(λ′′′ − λ′ − λ′′).
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For ℓ ∈ N, we define a finite set by

(9.5) Λℓ ∶= {(α,β) ∈ Z2 ∶ α + ℓ ≥ 0, β + ℓ ≥ 0, α + β ≤ −(ℓ + 1)}.
We note that Λℓ ∈ (−N+) × (−N+) and #Λℓ = 1

2
ℓ(ℓ + 1).

Lemma 9.5. Suppose α,β, ℓ are given by (9.4). Then ℓ ∈ N and (α,β) ∈ Λℓ if and
only if (λ′, λ′′, λ′′′) ∈ C3 satisfies the following two conditions:

λ′, λ′′, λ′′′ ∈ Z, λ′ + λ′′ ≡ λ′′′mod2,(9.6)

−(λ′ + λ′′) ≥ λ′′′ − 2 ≥ ∣λ′ − λ′′∣.(9.7)

Since the proof is elementary and follows from the definition, we omit it. Note
that the conditions (9.6) and (9.7) imply that

λ′ ≤ 0, λ′′ ≥ 0, and 2 ≤ λ′′′,

which are equivalent to α ≤ −1, α + β + 2ℓ ≥ 0, and β ≤ −1, respectively.

Proof of Theorem 9.1. By Lemma 9.4, the proof is reduced to the computation of
the dimension of SolJacobi(α,β, ℓ) ∩Polℓ[t].

1) Since the Jacobi differential equation is of second order, the space of its poly-
nomial solutions is at most two-dimensional.

2) If ℓ = 1
2
(λ′′′−λ′−λ′′) ∈ N, then Theorem 11.1 (1) shows that dimSolJacobi(α,β, ℓ)∩

Polℓ[t] ≥ 1 for any α,β ∈ C.
3) The equivalence follows from Theorem 11.2 (1) in light of Lemma 9.5. �

9.3. Factorization of symmetry breaking operators. We have seen in Theorem
9.1 that

dimCHomG̃(O(Lλ′)⊗̂O(Lλ′′),O(Lλ′′′)) = 2,
when (λ′, λ′′, λ′′′) satisfies (9.6) and (9.7). In this subsection, we show that the other
three symmetry breaking operators in the diagram (9.3) are unique up to scalars. To
be precise, we prove the following.

Proposition 9.6. Suppose (λ′, λ′′, λ′′′) satisfies (9.6) and (9.7). Then

dimCHomG̃(O(L2−λ′)⊗̂O(Lλ′′),O(Lλ′′′))= dimCHomG̃(O(Lλ′)⊗̂O(L2−λ′′),O(Lλ′′′))= dimCHomG̃(O(Lλ′)⊗̂O(Lλ′′),O(L2−λ′′′)) = 1.
Proof. The transformation (λ′, λ′′, λ′′′)↦ (α,β, ℓ) given by (9.4) yields

(2 − λ′, λ′′, λ′′′) ↦ (−α,β,α + ℓ),
(λ′,2 − λ′′, λ′′′) ↦ (α,β,−α − β − ℓ − 1),
(λ′, λ′′,2 − λ′′′) ↦ (α,−β,β + ℓ).

Moreover, if (α,β) ∈ Λℓ for some ℓ ∈ N, then
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(1) α + ℓ ∈ N and (−α,β) /∈ Λα+ℓ,
(2) −α − β − ℓ − 1 ∈ N and (α,β) /∈ Λ−α−β−ℓ−1,
(3) β + ℓ ∈ N and (α,−β) /∈ Λβ+ℓ.

Then the proposition follows from Lemma 9.4 (2) and Theorem 11.2 (1). �

9.4. Differential intertwining operators for SL2. Obviously, both the F -method
and the localness theorem hold in the case when G = G′, for which symmetry break-
ing operators are usual intertwining operators, and have been extensively studied.
Lemma 9.7 below is well-known, but we illustrate its proof by using the F-method.

The operators ( d
dz
)k are used for the factorization of Dj (j = 1,2,3) in Theorem 9.2.

For (λ, ν) ∈ C2, we set

H(λ, ν) ∶= HomG̃(O(Lλ),O(Lν))= DiffG̃(O(Lλ),O(Lν))≃ Homg(indg

b(−ν), indg

b(−λ)).
Lemma 9.7.

(1) dimCH(λ, ν) ≤ 1, and the equality holds if and only if λ = ν or (λ, ν) =(1 − k,1 + k) for some k ∈ N.
(2) If (λ, ν) = (1 − k,1 + k) for some k ∈ N, then

H(λ, ν) = C( d
dz
)k .

Proof. By the F-method, we have the following bijection between H(λ, ν) and the
space of polynomials g(t) of one variable satisfying the following two conditions

● g(t) is a monomial of degree 1
2
(ν − λ), i.e. g(t) = C t ν−λ2 for some C ∈ C,

● (λ d
dt
+ d2

dt2
) g(t) = 0,

according to (3.10) and (3.11).
The first condition forces ν − λ to be in 2N in order to have H(λ, ν) not reduced

to zero, whereas the second one implies (ν − λ)(λ + ν − 2) = 0. Hence either λ = ν or(λ, ν) = (1 + k,1 − k) for some k ∈ N. In the latter case, g(t) = Ctk for some k ∈ N,
which yields ( d

dz
)k as a G̃-intertwining operator from O(Lλ) to O(Lν). �

9.5. Construction of homogeneous polynomials by inflation. In order to an-
alyze symmetry breaking operators in the setting when the Rankin–Cohen bidiffer-
ential operators RCλ′′′λ′,λ′′ vanish identically, we introduce the following notation.

For a polynomial g(s) of degree at most ℓ, we set a polynomial of two variables

(Iℓg)(x, y) = (−y)ℓg (−x
y
) .
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The proof of factorization of symmetry breaking operators will be reduced to
the following elementary factorization of homogeneous polynomials (Iℓg)(x, y). The
following observation follows immediately from the definition.

Lemma 9.8.

(1) Suppose g1(s) is of the form g1(s) = smh1(s) for some polynomial h1(s) of
degree ℓ −m, then

(Iℓg1)(x, y) = (−x)m(Iℓ−mh1)(x, y).
(2) Suppose g2(s) is a polynomial of degree ℓ −m, then

(Iℓg2)(x, y) = (−y)m(Iℓ−mg2)(x, y).
(3) Suppose g3(s) is a polynomial of the form g3(s) = (1 − s)mh3(s) for some

polynomial h3(s) of degree ℓ −m, then

(Iℓg3)(x, y) = (−1)m(x + y)m(Iℓ−mh3)(x, y).
Suppose ℓ = 1

2
(λ′′′−λ′−λ′′) ∈ N. Then it follows from the proof of Lemma 9.4 that

the inverse of the following bijection

(9.8) H(λ′, λ′′, λ′′′) ∼→ SolJacobi(λ′ − 1,1 − λ′′′, ℓ) ∩Polℓ[t], D ↦ g

is given (up to multiplication by (−1)ℓ) by
D = Restz1=z2=z ○ (Iℓg(1 − 2s)) ( ∂∂z1 ,

∂

∂z2
) .

Example 9.9. The Rankin–Cohen bidifferential operator (1.1) is given for (λ′, λ′′, λ′′′) ∈
C3 with ℓ ∶= 1

2
(λ′′′ − λ′ − λ′′) ∈ N by

(9.9) RCλ′′′λ′,λ′′ = Restz1=z2=z ○ (IℓP λ′−1,1−λ′′′

ℓ (1 − 2s)) ( ∂
∂z1

,
∂

∂z2
) .

Proof of Theorem 9.2. 1) Since g̃j ∈ SolJacobi(λ′−1,1−λ′′′, ℓ)∩Polℓ[t] with ℓ = 1
2
(λ′′′−

λ′ − λ′′) ∈ N by Theorem 11.2 in the Appendix, we have Dj ∈H(λ′, λ′′, λ′′′) by (9.8).
2) Combining Lemmas 9.8 and 11.3 we have the following identities of the homo-

geneous polynomials Gj(x, y):
G1(x, y) = (−x)−α (Iα+ℓP −α,βα+ℓ (1 − 2s)) (x, y),
G2(x, y) = (−y)−β (Iβ+ℓP α,β

−α−β−ℓ−1(1 − 2s)) (x, y),
G3(x, y) = (−x − y)−β (Iβ+ℓP α,−β

β+ℓ (1 − 2s)) (x, y).
The first two identities yield the factorization of D1 and D2, and the last one yields
the factorization of G3 in light of the formula:

Restz1=z2=z ○ ( ∂∂z1 +
∂

∂z2
)j = ( d

dz
)j ○Restz1=z2=z, for all j ∈ N.
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3) The identity is reduced to the linear relations among the polynomials g̃j(s) (j =
1,2,3) (see Lemma 11.3) which are obtained by Kummer’s connection formula for
the Gauss hypergeometric function at the regular singularities s = 0 (g̃1(s) and g̃2(s))
and s = 1 (g̃3(s)). Hence Theorem 9.2 is proved. �

10. An application of differential symmetry breaking operators

10.1. Remark on the discrete spectrum of the branching rule for comple-

mentary series for O(n + 1,1) ↓ O(n,1). B. Kostant proved in [Kos69] the exis-
tence of the “long” complementary series representations of SO(n,1) and SU(n,1).
In general, branching problems for the complementary series are more involved than
the ones for principal series representations because the Mackey machinery does not
apply.

In this section we explain briefly how the differential operators DX→Y,a (a ∈ N)
given in Theorem 6.3 explicitly characterize discrete summands in the branching
laws of the complementary series representations of O(n + 1,1) when restricted to
the subgroup O(n,1).

For this we first observe that G′
C
-equivariant holomorphic differential operators

DX→Y,a associated to the embedding of complex flag varieties GC/PC ↩ G′
C
/P ′

C
induce

GR-equivariant differential operators associated to the embedding of the real flag
varieties GR/PR ↩ G′

R
/P ′

R
for any pair (GR,G

′
R
) of real forms of (GC,G

′
C
) as far as(PC, P

′
C
) have real forms (PR, P

′
R
) in (GR,G

′
R
).

In particular, for the pair (G,G′) = (SOo(n,2), SOo(n − 1,2)) and (GR,G
′
R
) ∶=(SOo(n + 1,1), SOo(n,1)) whose complexifications are the same, we see that G-

equivariant holomorphic differential operatorsDX→Y,a ∶ O(G/K,Lλ)→ O(G′/K ′,Lλ+a)
induce a G′

R
-equivariant differential operators

(10.1) DXR→YR,a ∶ C
∞(GR/PR,Lλ)→ C∞(G′

R
/P ′

R
,Lλ+a),

for two spherical principal series representations of GR and G′
R
, owing to [KP14-1,

Theorem ?? (2)] (extension theorem). In our parametrization, for 0 < λ < n, there is
a complementary series Hλ that contains C∞(GR/PR,Lλ) as a dense subset.

We define a family of Hilbert spaces L2(Rn)s with parameter s ∈ R by

L2(Rn)s ∶= L2(Rn, (ξ21 +⋯+ ξ2n) s2dξ1⋯dξn).
Then, for 0 < λ < n, the Euclidean Fourier transform FRn on the N -picture gives a
unitary isomorphism

FRn ∶ Hn−λ
∼
Ð→ L2(Rn)2λ−n.

Correspondingly to the explicit formula

DXR→YR,a = C̃λ−n−1
2

a (−∆Cn−1 ,
∂

∂zn
)
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that was established in Theorem 6.3, we see that the multiplication of the inflated

Gegenbauer polynomial C̃
λ−n−1

2

a (∣ξ∣2, ξn) (see (6.5)) yields an explicit construction of
discrete summands of the branching law for the restriction of complementary series
as follows:

Proposition 10.1. Suppose a ∈ N and 0 < λ < n−1
2
− a. For ξ = (ξ1,⋯, ξn−1) ∈ Rn−1,

we set ∣ξ∣ ∶= (ξ21 +⋯ + ξ2n−1) 12 . Then,

L2(Rn−1)2(λ+a)−n−1 ↪ L2(Rn)2λ−n, v(ξ)↦ C
λ−n−1

2

a (∣ξ∣2, ξn)v(ξ)
is an isometric and G′

R
-intertwining map from the complementary series of G′

R
=

SOo(n,1) to that of GR = SOo(n + 1,1).
See [KS13, Chapter 15] for the proof that (10.1) implies the proposition in the

case a ∈ 2N (with both GR and G′
R
replaced by disconnected groups O(n + 1,1) and

O(n,1), respectively).
11. Appendix: Jacobi polynomials and Gegenbauer polynomials

11.1. Polynomial solutions to the hypergeometric differential equation. In
this subsection we discuss polynomial solutions to the Gauss hypergeometric differ-
ential equation

(11.1) (z(1 − z) d2
dz2
− (c − (a + b + 1)z) d

dz
− ab)u(z) = 0.

For c /∈ −N, the hypergeometric series

(11.2) 2F1(a, b; c; z) = ∞∑
j=0
(a)j(b)j(c)jj! zj

is a non-zero solution to (11.1). It is easy to see from (11.2) that 2F1(a, b; c; z) is a
polynomial if and only if a ∈ −N or b ∈ −N.

Furthermore, we may ask if there exist two linearly independent polynomial solu-
tions to (11.1). In fact, this never happens when c /∈ −N. More precisely, we have the
following:

Theorem 11.1. Suppose a, b, c ∈ C.
(1) The following two conditions are equivalent.

(i) There exists a non-zero polynomial solution to (11.1).
(ii) a ∈ −N or b ∈ −N.

(2) The following two conditions are equivalent.
(iii) There exist two linearly independent polynomial solutions to (11.1).
(iv) a, b, c ∈ −N and either (iv-a) or (iv-b) holds:

(iv-a) a ≥ c > b,
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(iv-b) b ≥ c > a.
In this case the two linearly independent polynomial solutions are of degree
−a and −b.

Proof. (1) We have already discussed the case where c /∈ −N. Suppose now that
c ∈ −N. Since 1− c > 0, we have linearly independent solutions to (11.1) near z = 0 as
follows

h1(z) = z1−c2F1(a − c + 1, b − c + 1; 2 − c; z),
h2(z) = g(z) + (Resγ=c 2F1(a, b;γ; z)) log z,

where g(z) is a holomorphic function near z = 0 satisfying g(0) = 1. We divide the
proof into two cases depending on whether Resγ=c 2F1(a, b;γ; z) = 0 or not.

Case 1. Assume Resγ=c 2F1(a, b;γ; z) = 0. In view of the residue formula

Resγ=c 2F1(a, b;γ; z) = (−1)c(a)1−c(b)1−c(−c)!(1 − c)! z1−c2F1(a + 1 − c, b + 1 − c; 2 − c; z)
this expression vanishes if and only if (a)1−c(b)1−c = 0, namely

−N ∋ a ≥ c or −N ∋ b ≥ c.

In this case 2F1(a, b;γ; z) is holomorphic in γ near γ = c, and
lim
γ→c

2F1(a, b;γ; z) = L

∑
j=0
(a)j(b)j(c)jj! zj ,

where L = −a or −b, is a polynomial solution to (11.1).
Case 2. Assume Resγ=c 2F1(a, b;γ; z) ≠ 0. Since the logarithmic term does not

vanish, there exists a non-zero polynomial solution to (11.1) if and only if h1(z) is a
polynomial, or equivalently,

a − c + 1 ∈ −N or b − c + 1 ∈ −N,
namely,

−N ∋ a < c or −N ∋ b < c.
Combining Case 1 and Case 2, we conclude the equivalence of (i) and (ii) in (1) for
c ∈ −N.

(2) We recall that the differential equation (11.1) has regular singularities at z =
0,1, and ∞, and its characteristic exponents are indicated in the Riemann scheme

P

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z = 0 1 ∞
0 0 a

1 − c c − a − b b
; z

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.
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(iii)⇒(iv). Suppose (iii) holds. Since the space of local solutions to (11.1) is two
dimensional, any solution must be a polynomial. This forces the characteristic ex-
ponents to satisfy the following conditions:

1 − c, c − a − b ∈ N, and a, b ∈ N.
Furthermore, the condition (iii) shows that there is no local solution which involves
a non-zero logarithmic term near each regular singularity point, which in particular
implies that the two characteristic exponents at z = 0,1 or∞ cannot coincide. Hence
we get

1 − c ≠ 0, c − a − b ≠ 0, and a ≠ b.
Thus we have shown that the condition (iii) implies

(11.3) a, b, c ∈ −N.
From now we assume c ∈ −N. As in the proof of (1), the condition (iii) implies that
Resγ=c 2F1(a, b;γ; z) = 0, and h1(z) is a polynomial. The latter conditions amount to

−N ∋ a ≥ c or −N ∋ b ≥ c,
−N ∋ a < c or −N ∋ b < c,

respectively. Equivalently, we have either a ≥ c > b or b ≥ c > a under the condition
that a, b, c ∈ −N (see (11.3)). Hence the implication (iii)⇒(iv) is proved.

(iv)→(iii). Conversely, suppose (iv) holds. Then as we saw in the proof of (1),
h1(z) and

lim
γ→c

2F1(a, b;γ; z) = min(−a,−b)
∑
j=0

(a)j(b)j(c)jj! zj
are both polynomial solutions to (11.1), corresponding to the characteristic exponents
1−c and 0, respectively. Thus they are linearly independent, and we have completed
the proof of the equivalence of (iii) and (iv). �

11.2. Jacobi polynomials. In this subsection, we discuss polynomial solutions to
the Jacobi differential equation with emphasis on singular parameters where the
corresponding Jacobi polynomial P α,β

ℓ (t) vanishes. In particular, we give a criterion
for the space of polynomial solutions to be two-dimensional, and find its explicit
basis.

First we quickly review the classical facts on Jacobi polynomials. Suppose α,β ∈ C
and ℓ ∈ N. The Jacobi differential equation

(11.4) ((1 − t2) d2
dt2
+ (β − α − (α + β + 2)t) d

dt
+ ℓ(ℓ +α + β + 1)) y = 0

is a particular case of the Gauss hypergeometric equation (11.1), and has at least
one non-zero polynomial solution by Theorem 11.1 (1).
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The Jacobi polynomial P α,β
ℓ (t) is the normalized polynomial solution to (11.4)

that is subject to the Rodrigues formula

(1 − t)α(1 + t)βP α,β
ℓ (t) = (−1)ℓ2ℓℓ!

( d
dt
)ℓ ((1 − t)ℓ+α(1 + t)ℓ+β) ,

from which we have

(11.5) P
β,α
ℓ (−t) = (−1)ℓP α,β

ℓ (t).
The Jacobi polynomial P α,β

ℓ (t) is generically non-zero (see Theorem 11.2 below for

a precise condition) and is a polynomial of degree ℓ satisfying P
α,β
ℓ (1) = Γ(α+ℓ+1)

Γ(α+1)ℓ! .
Explicitly, for α /∈ −N+,

P
α,β
ℓ (t) = Γ(α + ℓ + 1)

Γ(α + 1)ℓ! 2F1 (−ℓ,α + β + ℓ + 1;α + 1; 1 − t
2
)(11.6)

= Γ(α + ℓ + 1)
Γ(α + β + ℓ + 1)

ℓ

∑
m=0
( ℓ
m
) Γ(α + β + ℓ +m + 1)

Γ(α +m + 1)ℓ! (t − 1
2
)m .

Here are the first three Jacobi polynomials.

● P α,β
0 (t) = 1.

● P α,β
1 (t) = 1

2
(α − β + (2 +α + β)t).

● P α,β
2 (t) = 1

2
(1+α)(2+α)+ 1

2
(2+α)(3+α+β)(t−1)+ 1

8
(3+α+β)(4+α+β)(t−1)2 .

If α > −1 and β > −1, then the Jacobi polynomials P α,β
ℓ (t) (ℓ ∈ N) form an orthogonal

basis in L2([−1,1], (1 − t)α(1 + t)βdt).
When α = β these polynomials yield Gegenbauer polynomials (see the next section

for more details), and they further reduce to Legendre polynomials in the case when
α = β = 0.
Theorem 11.2. Suppose ℓ ∈ N. We recall from (9.5) that Λℓ ⊂ (−N)2 is a finite set
of the cardinality 1

2
ℓ(ℓ + 1).

(1) The following three conditions on (α,β) ∈ C2 are equivalent:

(i) The Jacobi polynomial P α,β
ℓ (t) is equal to zero as a polynomial of t.

(ii) There exist two linearly independent polynomial solutions to (11.4) of
degree less than or equal to ℓ, namely,

dimC(SolJacobi(α,β, ℓ) ∩Polℓ[t]) = 2.
(iii) (α,β) ∈ Λℓ.

(2) If one of (therefore any of) the equivalent conditions (i)-(iii) is satisfied, then

(11.7) lim
ε→0

2F1(−ℓ,α + β + 1;α + ε + 1; z)
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exists and is a polynomial in z, which we denote by 2F1(−ℓ,α+β +1;α+1; z).
Then any two of the following three polynomials

g1(z) ∶= z−α2F1(−α − ℓ, β + ℓ + 1; 1 − α; z),(11.8)

g2(z) ∶= 2F1(−ℓ,α + β + ℓ + 1;α + 1; z),(11.9)

g3(z) ∶= (1 − z)−β2F1(−β − ℓ,α + ℓ + 1; 1 − β; 1 − z),(11.10)

with z = 1
2
(1 − t) are linearly independent polynomial solutions to (11.4) of

degree ℓ, −(α + β + ℓ + 1), and ℓ, respectively. In particular, any polynomial
solution is of degree at most ℓ.

Proof. (1). (i)⇔(iii). By the expression

P
α,β
ℓ (t) = ℓ

∑
j=0
(α + j + 1)ℓ−j(α + β + ℓ + 1)j

j!(ℓ − j)! (t − 1
2
)j ,

one has P α,β
ℓ (t) ≡ 0 as a polynomial of t if and only if

(11.11) (α + j + 1)⋯(α + ℓ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ℓ−j

(α + β + ℓ + 1)⋯(α + β + ℓ + j)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
j

= 0, for all j (0 ≤ j ≤ ℓ).
The condition (11.11) implies α ∈ {−1,⋯,−ℓ} by taking j = 0. Conversely, if

α ∈ {−1,⋯,−ℓ}, then (α + j + 1)⋯(α + ℓ) = 0 for all j (0 ≤ j ≤ ℓ), and therefore
(11.11) is equivalent to (α + β + ℓ + 1)⋯(α + β + ℓ + j) = 0 with j = 1 − α, namely,
α + β + ℓ + 1 ≤ 0 ≤ β + ℓ + 1. Hence the equivalence of (i) and (iii) is proved.

(ii)⇔(iii). We recall from Theorem 11.1 that if the condition (iii), or equivalently
(iv), is satisfied, then there are two linearly independent polynomial solutions to
(11.1) of degrees −a and −b, respectively. Applying Theorem 11.1 (2) with

a = −ℓ, b = α + β + ℓ + 1, and c = 1 +α,
we see that the condition on the degree of polynomials in (ii) corresponds to the con-
dition −a ≥ −b, which excludes (iv-b) in Theorem 11.1, and therefore, the condition
(ii) is equivalent to

−ℓ,α + β + ℓ + 1,1 + α ∈ −N, α + β + ℓ + 1 ≥ 1 +α > −ℓ,

which is nothing but (α,β) ∈ Λℓ.
(2). Suppose (α,β) ∈ Λℓ for some ℓ ∈ N.
Since −α − ℓ ∈ −N and β + ℓ + 1,1 − α /∈ −N, the polynomial g1(z) is of degree

−α + (α + ℓ) = ℓ.
Secondly, the expression −(α+β+ℓ+1) defines a non-negative integer smaller than

−ℓ and we have:

2F1(−ℓ,α + β + 1;α + ε + 1; z) = −(α+β+ℓ+1)∑
j=0

(−ℓ)j(α + β + ℓ + 1)j(α + ε + 1)jj! zj .



60 TOSHIYUKI KOBAYASHI, MICHAEL PEVZNER

Since α+ j ≤ −(β + ℓ+1) < 0 for all j with 0 ≤ j ≤ −(α+β + ℓ+1), the denominator in
each summand does not vanish at ε = 0, and therefore, g2(z) is well-defined and is a
polynomial of degree −(α + β + ℓ + 1).

Thirdly, since −β − ℓ ∈ −N and α + ℓ + 1,1 − β ∈ N+, the function 2F1(−β − ℓ,α +
ℓ + 1; 1 − β; 1 − z) is a polynomial of homogeneous degree ℓ + β, and thus g3(z) is a
polynomial of degree ℓ.

Moreover, since gj(z) (j = 1,2,3) are local solutions to

(11.12) (z(1 − z) d2
dz2
− ((α + 1) − (α + β + 2)z) d

dz
+ ℓ(α + β + ℓ + 1))u(z) = 0

near zero depending meromorphically on parameters (α,β) ∈ C2, and since they do
not admit poles at any point of Λℓ, they are actually solutions to (11.12). Since
g1(0) = 0 and g2(0) = 1, these functions are linearly independent.

Finally, we apply Kummer’s connection formula (see [EMOT53, 2.9 (4.3)])

(1 − z)c−a−b2F1(c − a, c − b; c − a − b + 1; 1 − z)
= Γ(c − 1)Γ(c − a − b + 1)

Γ(c − a)Γ(c − b) z1−c2F1(a + 1 − c, b + 1 − c; 2 − c; z)
+

Γ(1 − c)Γ(c − a − b + 1)
Γ(1 − a)Γ(1 − b) 2F1(a, b; c; z)

with

a = −ℓ, b = α + β + ℓ + 1, c = 1 + α + ε,
and taking the limit ε→ 0, we obtain

(11.13) g3(z) = (−1)α+β+ℓ (−β)!(β + ℓ)!(−α)!(α + ℓ)! g1(z) + (−α − 1)!(−β)!l!(−α − β − ℓ − 1)! g2(z).
Since the scalars of this linear combination are non-zero, both pairs {g1(z), g3(z)}
and {g2(z), g3(z)} are linearly independent. �

To end this subsection, we express gj(z) (j = 1,2,3) in terms of the Jacobi polyno-
mials. As a byproduct, we also give an identity among the Jacobi polynomials when(α,β) ∈ Λℓ, or equivalently, when P

α,β
ℓ (t) ≡ 0 (Theorem 11.2).
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Lemma 11.3. Suppose (α,β) ∈ Λℓ. Then,

(1) g̃1(z) ∶= ( ℓ−α) ⋅ g1(z) = z−αP −α,βℓ+α (1 − 2z);
g̃2(z) ∶= (−1)−ℓ−α−β−1(−α − 1

ℓ + β
) ⋅ g2(z) = P α,β

−ℓ−α−β−1(1 − 2z);
g̃3(z) ∶= (−1)β+ℓ( ℓ−β) ⋅ g3(z) = (1 − z)−βP α,−β

ℓ+β (1 − 2z).
(2) (−1)α g̃3(z) = g̃1(z) − g̃2(z), namely,

P α,β
−ℓ−α−β−1(t) = (−1)α+1 (1 + t2

)−β P α,−β
β+ℓ (t) + (1 − t2

)−αP −α,β
α+ℓ (t).

Proof. 1) The first and third formulæ follow from the equation (11.6) and the identity
Γ(λ)Γ(1 − λ) = λ

sinπλ
. The second one is more subtle because g2(z) is defined as the

limit of the Gauss hypergeometric function in a specific direction (see (11.7)). Taking
this into account, we deduce the second formula from (11.6).

2) The second identity follows directly from the first statement and (11.13). �

11.3. Gegenbauer Polynomials. Let ϑt ∶= t t
dt
. For α ∈ C and ℓ ∈ N, the Gegen-

bauer differential equation

((1 − t2) d2
dt2
− (2α + 1)t d

dt
+ ℓ(ℓ + 2α)) y = 0

or, equivalently,

(11.14) ((1 − t2)ϑ2t − (1 + 2αt2)ϑt + ℓ(ℓ + 2α)t2) y = 0
is a particular case of the Jacobi differential equation (11.4) where (α,β) are set to be(α−1

2
, α−1

2
), and has at least one non-zero polynomial solution owing to Theorem 11.1

(1). The Gegenbauer (or ultraspherical) polynomial Cα
ℓ (t) is a solution to (11.14)

given by the following formula:

Cα
ℓ (t) = Γ(ℓ + 2α)

Γ(2α)Γ(ℓ + 1)2F1 (−ℓ, ℓ + 2α;α + 1

2
;
1 − t
2
)

= [ ℓ
2
]
∑
k=0
(−1)k Γ(ℓ − k + α)

Γ(α)Γ(k + 1)Γ(ℓ − 2k + 1)(2t)ℓ−2k.
It is a specialization of the Jacobi polynomial

(11.15) Cα
ℓ (t) = Γ(α + 1

2
)Γ(ℓ + 2α)

Γ(2α)Γ(ℓ + α + 1
2
)P α− 1

2
,α− 1

2

ℓ
(t).
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The Gegenbauer polynomial Cα
ℓ (t) is a polynomial of degree ℓ. Here are the first

five Gegenbauer polynomials.

● Cα
0 (t) = 1.

● Cα
1 (t) = 2αt.

● Cα
2 (t) = −α(1 − 2(α + 1)t2).

● Cα
3 (t) = −2α(α + 1)(t − 2

3
(α + 2)t3).

● Cα
4 (t) = 1

2
α(α + 1)(1 − 4(α + 2)t2 + 4

3
(α + 2)(α + 3)t4).

We note that Cα
ℓ (t) ≡ 0 if ℓ ≥ 1 and α = 0,−1,−2,⋯,− [ ℓ−1

2
] . Slightly differently from

the usual notation in the literature, we renormalize the Gegenbauer polynomial by

(11.16) C̃α
ℓ (t) ∶= Γ(α)

Γ (α + [ ℓ+1
2
])Cα

ℓ (t).
Then C̃α

ℓ (t) is a non-zero solution to (11.14) for all α ∈ C and ℓ ∈ N.
As in the case of the Jacobi differential equation, there are some exceptional param-

eters (α, ℓ) for which the Gegenbauer differential equation (11.14) has two linearly
independent polynomial solutions. For this we denote by

SolGegen (α, ℓ) ∩Pol[t]
the space of polynomial solutions to (11.14), and consider its subspace SolGegen (α, ℓ)∩
Polℓ[t]even where Polℓ[t]even = C -span ⟨tℓ−2j ∶ 0 ≤ j ≤ [ ℓ

2
]⟩. Then we have the following:

Theorem 11.4. (1) Suppose ℓ ∈ N and α ∈ C. Then

dimC(SolGegen (α, ℓ) ∩Pol[t]) = 2
if and only if (α, ℓ) satisfies
(11.17) α ∈ Z + 1

2
and 1 − 2ℓ ≤ 2α ≤ −ℓ.

(2) For any ℓ ∈ N and any α ∈ C, the space SolGegen (α, ℓ) ∩ Polℓ[t]even is one-

dimensional, and is spanned by C̃α
ℓ (t).

Proof. (1) The first statement follows immediately from Theorem 11.2 by replacing(α,β) with (α − 1
2
, α − 1

2
).

(2) Clearly, C̃α
ℓ (t) ∈ SolGegen (α, ℓ) ∩ Polℓ[t]even for all α ∈ C and ℓ ∈ N. Hence it

suffices to show that another solution (see Theorem 11.2 and (11.7))

2F1 (−ℓ,2α + ℓ;α + 1

2
;
1 − t
2
) /∈ Polℓ[t]even

when α satisfies (11.17). Indeed 2F1 (−ℓ,2α + ℓ;α + 1
2
; 1−t

2
) is a polynomial in t whose

top term is a non-zero multiple of t−(2α+ℓ), but −(2α+ ℓ) /≡ ℓ mod 2 because α ∈ Z+ 1
2
.

Hence Theorem is proved. �
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Räumen. Invent. Math. 9 (1969/1970), pp. 61–80.

[UU96] A. Unterberger, J. Unterberger, Algebras of symbols and modular forms, J. Anal. Math.
68 (1996), pp. 121–143.

[Z94] D. Zagier, Modular forms and differential operators, Proc. Indian Acad. Sci. (Math. Sci.)
104 (1994), pp. 57–75.

[Zh10] G. Zhang, Rankin–Cohen brackets, transvectants and covariant differential operators.Math.
Z. 264 (2010), pp. 513–519.

T. Kobayashi. Kavli IPMU and Graduate School of Mathematical Sciences, The University of
Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8914 Japan; toshi@ms.u-tokyo.ac.jp.
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