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A NOTE ON THE FOURIER COEFFICIENTS OF A COHEN-EISENSTEIN SERIES

SRILAKSHMI KRISHNAMOORTHY

Abstract. We prove a formula for the coefficients of a weight 3/2 Cohen-Eisenstein series of square-

free level N . This formula generalizes a result of Gross and in particular, it proves a conjecture of

Quattrini. Let l be an odd prime number. For any elliptic curve E defined over Q of rank zero and

square-free conductor N , if l | |E(Q)|, under certain conditions on the Shafarevich-Tate group XD ,

we show that l divides |XD | if and only if l divides the class number h(−D) of Q(
√
−D).
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1. Introduction

Let E be an elliptic curve of prime conductor N and analytic rank 0. Let f be the new form of

weight 2 of level N on Γ0(N) associated to E. Gross (Section 12, [Gr87]) constructed

G =
∑

D

mDqD,

a weight 3/2 modular form interms of certain modular forms gi, associated with f. A special case of

Waldspurger’s formula (Proposition 13.5, [Gr87]) relates the product of the L-functions

L(f, 1)L(f × ǫ−D, 1)

tom2
D, where (−D

N
)sgn(WN ) 6= −1 and f×ǫ−D is the cusp form corresponding to the twist by −D of E,

and WN is the Atkin-Lehner involution. Bocherer and Schulze-Pillot generalized Gross’s construction

(Section 3, [BS90]) for square-free level N. Quattrini collected many numerical examples (Section 3.7,

[Qu11]) of certain definite quaternion algebras ramified at exactly one prime and presented a conjecture

(Conjecture 2.3) on the coefficients of the Cohen-Eisenstein series

H =

n
∑

i=1

1

wi

gi,

where gi and wi are certain orders defined in Section 2. We work with certain definite quaternion

algebras ramified at finitely many primes p1, p2, ...pk, and we compute the coefficients of H for square-

free level in theorem 5.1. As a consequence, we deduce the conjecture 2.3 (Corollary 5.3).
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The estimation of the number of imaginary quadratic fields whose ideal class group has an element

of order l ≥ 2 and the analogous questions for quadratic twists of elliptic curves has been the center

of interest in many results. For elliptic curves E of prime conductors, using the theory of p-adic L-

functions and Eisenstein quotients, Mazur [Ma79] showed that under certain conditions, the quadratic

twist of E by a primitive, odd quadratic Dirichlet character χ has finite Mordell-Weil group of order

not divisible by a prime l if and only if the quadratic field associated to χ has class number prime

to l. In [Fr88], Frey obtained the information about the elements of order l in the Selmer group of

ED, the quadratic twist of E by −D, by assuming the elliptic curve E over Q contains a Q-rational

torsion point of prime order l. In [Ja99], James proved that 3 divides the order of the Selmer group

of X0(11)D if and only if 3 divides the class number h(−D) under the similar assumption that the

elliptic curve E contains a rational torsion point of order 3. In [Wo99], Wong showed that there are

infinitely many negative fundamental discriminants −D such that the twist X0(11)D of the modular

curve X0(11) has rank 0 over Q and an element of order 5 in its Shafarevich-Tate group. Using the

circle method and results of Frey, Kolyvagin, Ono [Ono01] proved a result for the nontriviality of class

groups of imaginary quadratic fields and results on the nontriviality of the Shafarevich-Tate groups

of certain elliptic curves. It is also known that for almost all primes l, there exist infinitely many

square-free integers D such that l ∤ |XD| ([Ko99]).

We prove that (Theorem 2.6) if E is an elliptic curve with square-free conductor N and l is an odd

prime dividing |E(Q)|, under certain conditions on the Shafarevich-Tate group XD, the proportion of

XD in the family, divisible by l, is the same as the proportion of class numbers h(−D) divisible by l

in the family of negative quadratic fields Q(
√
−D) with the same Kronecker conditions.

To prove theorem 5.1, we follow the strategy of Gross and we use Eichler’s formula. The contents

of this paper are as follows. In section 2, we discuss some preliminaries. In section 3, we compute

the Fourier coefficients of the modular forms gi in terms of h(O−D, Ri), the number of all optimal

embeddings of the order of discrimiant D into certain maximal orders Ri. In section 4, we show that

a certain odd prime divides the order of Shafarevich-Tate group of quadratic twists of elliptic curves

if and only if it divides the class number of the corresponding imaginary quadratic field. In section 5,

we compute the coefficients of the Cohen-Eisenstein series and we deduce Conjecture 2.3.

2. Preliminaries and statement of results

Bocherer and Schulze-Pillot generalized Gross’s construction (Section 3, [BS90]) for square-free level

N as follows. Let B be a definite quaternion algebra ramified at primes p1, p2, ..., pk and at ∞. Let

N = p1p2...pkM (pi ∤ M) be a square-free integer. Let O be an order of level N . Let I1,I2,...,In be

a set of left ideals representing the distinct ideal classes of O, with I1 = O. Let R1,R2,...,Rn be the

respective right orders (of level N) of each ideal Ii. For each Ri, let Li be the rank 3 lattice Z+ 2Ri.
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Denote the trace zero elements of Li by S0
i . For b ∈ S0

i , let N(b) be the norm of b. Let wi be the order

of the finite group R∗
i /± 1 for i = 1 to n. Define

gi =
1

2

∑

b∈S0
i

qN(b).

The forms gi are in the Kohnen plus-space which is the space of modular forms
∑

anq
n of weight 3/2

on Γ0(4N) whose Fourier coefficients an are 0 if −n ≡ 2, 3 (mod 4).

2.1. Brandt matrices and Theta series. Let m be a positive integer. The Brandt matrix Bm is

defined by Bm = (bij(m))n×n, where bij(m) = 1
ej
|{α ∈ I−1

j Ii : N(α)
N(Ij)
N(Ii)

= m}|, where ej = |R∗
j |.

The sum of any row in the matrix Bm is given by

bm =

n
∑

j=1

bij(m) =
∑

d|m,(d, N
M

)=1

d.

It is also the m-th coefficient of the zeta function

ζO =
∑

I

1

N(I)2s
=

∞
∑

n=1

bn
n2s

,

where the sum runs over all integral O-left ideals I. The vector u = (1, 1, ..., 1) is an eigenvector of the

Brandt matrices, we have Bmut = bmut, for all positive integers m. Fix 1 ≤ i, j ≤ n.

These Bradnt matrices define a collection of theta series

θij(τ) =
1

ej

∑

x∈I
−1
j

Ii

q
N(x)N(Ij )

N(Ii) =

∞
∑

m=0

bij(m)qm

which are modular forms of weight 2 and level N.

The series e2(z) =
∑n

i=1
1

2wi
+
∑∞

m=1 bmqm is an Eisenstein series of weight 2 and level N.

Let f be a new form of square-free level N = PM with P = p1p2...pk on Γ0(N) such that

k is odd, sgn(Wp) = −1, if p | P, sgn(Wq) = +1, if q | M. (1)

Suppose the elliptic curve E corresponding to f has analytic rank 0 and l is an odd prime dividing the

order of the torsion group of E, then it can be shown that (Proposition 3.2, [Qu11])

f ≡ e2 (mod l). (2)

2.2. Waldspurger’s formula. The Shimura correspondence [Sh73] relates the modular forms of half

integral weight k + 1/2 with classical modular forms of even weight 2k. We will define the modular

form G of weight 3/2 which corresponds to the new form f satisfying (1). Consider the quaternion

algebra B ramified exactly at ∞ and at the primes pi | N, where sgn(Wpi
) = −1. The Brandt matrices

Bm act on the the vector space V of formal linear combinations
∑n

i=1 ciIi, ci ∈ C. By Eichler’s trace

formula there is a one to one correspondence between Hecke eigenforms of weight 2 and level N and

eigenvectors in V of all Brandt matrices (up to a constant multiple) (Section 2, [Po09]). Hence the
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normalized new form f ∈ S2(N) corresponds to a one-dimensional eigenspace 〈v = (v1, v2, ..., vn)〉, of
the Brandt matrices {Bp} (of level N and prime degree p) in B, such that Bpv

t = apv
t, where ap is

the eigenvalue satisfying Tpf = apf, for all p. We can assume that ( v1
w1

, v2
w2

, ..., vn
wn

) is primitive and has

integer coordinates. Then

G =

n
∑

i=1

vi
wi

gi =
∑

D

mDqD

is the weight 3/2 modular form which corresponds to f via the Shimura correspondence.

Let P = p1p2...pk. The modular form G is zero unless sgn(Wp) =











−1, for p | P

+1, for p | M
If −D is a fundamental discriminant such that (−D

p
)sgn(Wp) 6= −1 for every prime p | N

gcd(N,D) ,

then the following special case of Waldspurger’s formula [Wa81] holds (Section 3, [BS90]).

∏

p| N
gcd(N,D)

(1 + (
−D

p
)sgn(Wp))L(f, 1)L(f ⊗ ǫ−D, 1) =

2ω(N)(f, f)m2
D√

D
∑ v2

i

w2
i

. (3)

Definition 2.1. The Cohen-Eisenstein series is the Eisenstein series of weight 3/2 corresponding to

the eigenvector u = (1, 1, ..., 1), H :=
∑n

i=1
1
wi

gi.

Remark 2.2. (Multiplicity one modulo l). When N is prime, using the results of Mazur and Emerton

[Ma77], [Em02], one can show that the Brandt matrices {Bp} reduced modulo l have a dimension one

eigenspace for the eigenvalues σ(p)N (Theorem 3.6, [Qu11]). Since u and v are both eigenvectors for

the Brandt matrices {Bp}, we have λu ≡ v (mod l) for some λ ∈ F×
l . If N is square-free, then it is

not clear whether the eigenspace corresponding to u = (1, 1, ..., 1) is one dimensional modulo l.

Let D be a natural number and let O−D be the ring of integers in Q(
√
−D). Let h(−D) be

the cardinality of the group Pic(O−D), and let 2u(−D) be the cardinality of the unit group O∗
−D.

When N is a square-free number, Quattrini made the following conjecture by observations on known

congruences among weight two modular forms and known congruences among eigenvectors of Brandt

matrices. The details can be found in Section 3.1 – 3.5 of [Qu11].

Conjecture 2.3. (Conjecture 3.7, [Qu11])Let B be a definite quaternion algebra ramified at exactly

one finite prime p and let N = pM ( p ∤ M ) be a square-free integer. Let H =
∑n

i=1
1
wi

gi =
∑n

i=1
1

2wi
+
∑

D>0 H(D)qD. Let D ∈ N be such that −D is a fundamental discriminant and (−D
p
) 6= 1,

and (−D
q
) 6= −1 for every prime q | M . Then

H(D) =
2ω(N)−1−s(D)h(−D)

u(−D)
,

where ω(N) is the number of distinct primes that divide N and s(D) is the number of primes that

divide N and ramify in Q(
√
−D). If M = 1, then the above conjecture is the following result of Gross

(Section 1, [Gr87]).
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Proposition 2.4. If B is a definite quaternion algebra ramified only at a prime N and −D is a

fundamental discriminant such that (−D
N

) 6= 1, then the coefficients H(D) of the weight 3/2 Eisenstein

series are given by

H(D) =
(1− (−D

N
))

2

h(−D)

u(−D)
.

In Conjecture 2.3 and in Proposition 2.4, Gross and Quattrini considered definite quaternion algebras

ramified at exactly one prime p and at ∞. We consider the generalized case, square-free level and

definite quaternion algebras ramified at finitely many primes p1, p2,...pk and at ∞ (See Theorem 5.1).

From Cremona’s tables, the strong Weil curves of rank zero and prime conductor with an odd torsion

point, are listed by E = 11A1, E = 19A1 and E = 37B1. The first one has a 5-torsion point. The

other two curves have a 3-torsion point. For the (−D) quadratic twists of E, |XD| is m2
D, up to a

power of 2 and we also have λu ≡ v (mod l), for some λ ∈ F×
l (remark 2.2). We state the following

result of Quattrini (Proposition 3.8, [Qu11]).

Proposition 2.5. Let E be the strong Weil curve of rank 0 and prime conductor N . Consider the

family {ED} of negative quadratic twists of E, for −D a fundamental discriminant and satisfying

(−D
N

) = 1. Suppose E has a torsion point defined over Q, of odd prime order l. Then, |XD| is divisible
by l, if and only if the class number h(−D) of Q(

√
−D) is divisible by l.

We generalize the above proposition to square-free level N as follows.

Let E be an elliptic curve of analytic rank zero and square-free conductor N = PM with P =

p1p2...pk. Let f be the new form of level N on Γ0(N) corresponding to E satisfying

Assume k is odd, sgn(Wp) = −1, if p | P, sgn(Wq) = +1, if q | M. (4)

Consider the family {ED} of negative quadratic twists of E satisfying the Kronecker condition

(
−D

p
) 6= 1 for p | P, (−D

q
) 6= −1, for q | M. (5)

We consider the definite quaternion algebra B ramified exactly at all p | P and at ∞. We assume the

following.

If P is composite, then wi ∈ F×
l for l = 3, 5 or 7. (6)

The new form f and the Eisenstein series e2 of weight 2 correspond to the 3/2 weight forms G and

the Cohen-Eisenstein series H respectively, under the Shimura correspondence. Let v and u be the

eigenvectors of the Brandt matrices associated with the forms f and e2 respectively. Suppose λu ≡ v

(mod l) for some λ ∈ F×
l , then the congruence (2) in weight 2 can be lifted to a congruence in weight

3/2,

λG ≡ H (mod l). (7)

Thus we have the following result
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Theorem 2.6. Let E be an elliptic curve of analytic rank zero and square-free conductor N = PM.

Let f be the new form of level N corresponding to E satisfying (4). Consider the family {ED} of

negative quadratic twists of E satisfying the Kronecker condition (5). Suppose E has a torsion point

defined over Q, of odd prime order l and that |XD| = m2
D (upto a power of 2). Assume that λu ≡ v

(mod l), for some λ ∈ F×
l and (6) holds. Then, |XD| is divisible by l, if and only if the class number

h(−D) of Q(
√
−D) is divisible by l.

3. Optimal embeddings

We continue with the notation set out in the previous sections. Let K be a quadratic field over Q.

Let φ be an embedding of K into B. The field K is totally imaginary as B is a definite quaternion

algebra. Let O−D be an order of K of discriminant D.

Definition 3.1. We say that φ is an optimal embedding of the order O−D into Ri if φ is an embedding

of K into B such that φ(O−D) = φ(K) ∩Ri.

Two optimal embeddings i1, i2 are equivalent if they are conjugate to each other by an element in

R∗
i . In other words, if there exists x ∈ R∗

i such that i1(y) = xi2(y)x
−1 for all y ∈ K.

The Legendre symbol (−D
p
) is defined by (−D

p
) :=



























1, if p splits in K

0, if p ramifies in K

−1, if p is inert in K.

The Eichler symbol {−D
p
} is defined by {−D

p
} :=



























1, if p2 | D

0, if p | D, p2 ∤ D

(−D
p
), if p ∤ D.

We prove a lemma and a proposition. We will use them in the proof of Theorem 5.1.

Lemma 3.2. Let h(O−D, Ri) be the number of equivalence classes of optimal embeddings of the order

of discriminant D into Ri. Then

n
∑

i=1

h(O−D, Ri) = h(−D)

k
∏

i=1

(1− {−D

pi
})

∏

q|M
(1 + {−D

q
}).

Proof. Let {M} be a system of representatives of two-sided Ri ideals modulo two-sided Ri ideals of

the form Riξ where ξ is an O−D ideal. Let {B} be a system of representatives of the ideal classes in

O−D. Consider the set of all (M,B) such that

(1) The norm of M is square-free and if q is a prime divisor of the norm of M, then either q = pi (for

some i = 1 to k) with {−D
pi

} = −1 or q is a prime divisor of M with {−D
q
} = 1 and
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(2) B is an integral ideal coprime to the conductor of O−D.

It is easy to observe that the number of (M,B) satisfying (1) and (2) is equal to

h(−D)

k
∏

i=1

(1− {−D

pi
})

∏

q|M
(1 + {−D

q
}).

There is a one-to-one correspondence between the set of all (M,B) satisfying (1) and (2) and equiv-

alence classes of optimal embeddings of the order of discriminant −D into Ri. For the proof of this

correspondence, we refer to Section 3.2 of [Sh65] (or) Satz 6,7 of [Ei55]. �

We compute the Fourier coefficients of the modular forms gi, for i = 1 to k in the following

proposition.

Proposition 3.3. Let gi =
1
2 + 1

2

∑

D>0 ai(D)qD. Then ai(D) is the number of elements b ∈ Ri with

Tr(b) = 0, b ∈ Z+ 2Ri, N(b) = D. For i = 1 to n, we have

ai(D) = wi

∑

−D=df2

h(Od, Ri)

u(d)
,

where u(d) = 1 unless d = −3,−4 when u(d) = 3, 2 respectively.

Proof. Let S be the set of elements b ∈ Ri with Tr(b) = 0, b ∈ Z+ 2Ri and N(b) = D.

For a negative integer d, if f : Q(
√
d) →֒ B is an embedding of an order Od into Ri, then

b = f(
√
d) is an element with trace 0 and norm −d. Since Od = Z+Z (−d+

√
d)

2 , we have b ∈ (Z+2Ri).

Hence b ∈ S0
i = {x ∈ B|Tr(x) = 0} ∩ (Z+ 2Ri).

Conversely, if b is an element in S0
i with norm −d , then f(

√
d) = b gives rise to an embedding of the

order Od = Z+Z (−d+
√
d)

2 into Ri. The embedding f(
√
d) = b is optimal if and only if b /∈ f(Z+ 2Ri)

for some f > 1. Let h∗(O−D, Ri) be the the number of optimal embeddings of O−D into Ri. Using

the above connection we proved that

ai(D) = |S| =
∑

−D=df2

{b ∈ S,
b

f
∈ S0

i ,
b

f
/∈ n(Z+ 2Ri) for n > 1} =

∑

−D=df2

h∗(Od, Ri).

The group Γi = R∗
i / ± 1 acts on S. The Γi orbits of S correspond to equivalence classes of optimal

embeddings. Hence

|S/Γi| =
∑

−D=df2

h(Od, Ri).

The order of the stabilizer of an element b ∈ S is 1 unless the corresponding embedding extends to

Z[µ6] or Z[µ4], when it is 3 or 2 respectively. Thus we have shown that

ai(D) = wi

∑

−D=df2

h(Od, Ri)

u(d)
,

where wi = |Γi|. �
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Gross computed the traces of the Brandt matrices for prime level case

(cf. Proposition 1.9, [Gr87]). It holds for square-free level, as we state in the following.

Proposition 3.4. For all m ≥ 0,

Tr(B(m)) =
∑

s∈Z,s2−4m≤0

H(4m− s2).

Proof. The diagonal entry of the brandt matrix B(m) is bii(m) = 1
ei
|{b, b ∈ Ri,N(b) = m}|.

If m = 0, then

Tr(B(0)) =
1

24

k
∏

i=1

(pi − 1)
∏

q|M
(q + 1) =

n
∑

i=1

1

2wi

= H(0).

Let Ai(s,m) be the set of elements b ∈ Ri with Tr(b) = s and N(b) = m.

This is a finite set. If s2 − 4m > 0, then it is an empty set. Hence

Tr(B(m)) =

n
∑

i=1

bii(m) =

n
∑

i=1

∑

s2≤4m

|Ai(s,m)|
|R∗

i |
=

∑

s2≤4m

(

n
∑

i=1

|Ai(s,m)|
|R∗

i |
).

If s2 = 4m, then the inner sum

n
∑

i=1

|Ai(s,m)|
|R∗

i |
=

n
∑

i=1

1

2wi

= H(0).

Assume that D = 4m− s2 > 0. As in the proof of Proposition 3.3, we can show that

|Ai(s,m)|
|R∗

i |
=

∑

−D=df2

1

2

h(Od, Ri)

u(d)
.

By Lemma 3.2 and Theorem 5.1,

n
∑

i=1

|Ai(s,m)|
|R∗

i |
=

n
∑

i=1

∑

−D=df2

1

2

h(Od, Ri)

u(d)
= H(4m− s2).

�

4. The order of the Shafarevich-Tate group

Recall that we have equation (3) which relates the L-function of f with the coefficients m2
D,

∏

p| N
gcd(N,D)

(1 + (
−D

p
)sgn(Wp))L(f, 1)L(f ⊗ ǫ−D, 1) =

2ω(N)(f, f)m2
D√

D
∑ v2

i

w2
i

.

If E is the elliptic curve with conductor N associated with f ∈ S2(Γ0(N)), then we have L(E, 1) =

L(f, 1). Then the L-function L(f ⊗ ǫ−D, 1) = L(ED, 1), where ED is the −D quadratic twist of E

associated with f ⊗ ǫ−D ∈ S2(Γ0(ND2)). Assume that the rank of E is 0. The rank 0 case of Birch

and Swinnerton-Dyer Conjecture gives

L(f ⊗ ǫ−D, 1)

ΩD

=
L(ED, 1)

ΩD

=
|XD|∏ cp,D
|Tor(ED)|2 ,
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where cp,D’s are the Tamagawa numbers and Tor(ED) is the torsion subgroup of ED(Q), ΩD is the

real period of ED. Let

C(D) =

∏

p| N
gcd(N,D)

(1 + (−D
p
)sgn(Wp))

2ω(N)

ΩD

∏

cp,D
√
D

v2
i

w2
i

L(f, 1)

(f, f)|Tor(ED)|2 .

Then |XD| = m2
D

C(D) . Math softwares can be used to compute the term C(D).

4.1. Proof of Theorem 2.6.

Proof. We prove the theorem when P is prime. One can conclude the theorem similarly when P is

composite. If l is an odd prime dividing the order of the group of torsion points of the elliptic curve

E, by Mazur’s theorem, l = 3, 5 or 7. We know that wi | 12, the product
∏n

i=1 wi equals the exact

denominator of N−1
12 and 3 divides the exact numerator of N−1

12 . Hence wi ∈ F×
l for l = 3, 5 or 7.

From λH−G =
∑n

i=1
(λ−vi)

wi
gi, it follows that the congruence λu ≡ v (mod l), for some λ ∈ F×

l gives a

congruence λH ≡ G (mod l). This yields a congruence on the coefficients λH(D) ≡ m2
D (mod l). From

Corollary 5.2, we see that l divides H(D) if and only if l divides h(−D). We also have |XD| = m2
D

(up to a power of 2). Hence |XD| is divisible by l, if and only if the class number h(−D) of Q(
√
−D)

is divisible by l. �

By letting k = 1 in the above Theorem, we deduce the following corollary.

Corollary 4.1 (Proposition 3.9, [Qu11]). Let E, ED, l and XD be as in Theorem 2.6. Assume that

there is exactly one prime p | N such that the sign of Wp = −1. Then, |XD| is divisible by l, if and

only if the class number h(−D) of Q(
√
−D) is divisible by l.

5. Cohen-Eisenstein series

5.1. Examples. We calculate the Fourier coeffients of the weight 3/2 Eisenstein series H =
∑n

i=1
1
wi

gi

and the class numbers of imaginary quadratic fields K = Q(
√
−D) for d ≤ 2000 by using MAGMA.

Let D > 0 be a natural number and let O−D be the ring of integers in Q(
√
−D). Let h(−D) be the

cardinality of the group Pic(O−D), and let 2u(−D) be the cardinality of the unit group O∗
−D. A prime

l is inert, splits or ramifies in O∗
−D if the Kronecker symbol (−D

l
) is -1, 1, 0 respectively.

We consider the strong Weil curves of rank zero with an odd torsion point from Cremona’s table

[Cr97].

•N = 66 = 2.3.11

We have elliptic curve E = 66C(I) = [1, 0, 0,−45, 81] of level 66 with analytic rank zero and |Tor(E)| =
10. We have sgn(W2) = sgn(W3) = sgn(W11) = −1. We work in the quaternion algebra ramified at 2,

3, 11 and at ∞. We calculate the Brandt matrices for an order of level 66. We have, for D ≤ 2000

such that −D is a fundamental discriminant and (−D
2 ), (−D

3 ) and (−D
11 ) 6= 1 :
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H(D) :=











































22h(−D)
u(−D) , if none of the primes 2, 3, 11 ramifies in K

21h(−D)
u(−D) , if exactly one prime p | 66 ramifies in K

h(−D)
u(−D) , if exactly two primes p | 66 ramify in K

h(−D)
2u(−D) , if 2, 3 and 11 ramify in K.

•N = 210 = 2.3.5.7

We have elliptic curve E = 210A(A) = [1, 0, 0,−41,−39] of level 210 with analytic rank zero and

|Tor(E)| = 6. We have sgn(W2) = sgn(W3) = sgn(W7) = −1 and sgn(W5) = +1. We work in the

quaternion algebra ramified at 2, 3, 7 and at ∞. We calculate the Brandt matrices for an order of level

210. We have, for D ≤ 2000 such that −D is a fundamental discriminant and (−D
2 ), (−D

3 ), (−D
7 ) 6= 1

and (−D
5 ) 6= −1 :

H(D) :=























































23h(−D)
u(−D) , if none of the primes 2, 3, 5, 7 ramifies in K

22h(−D)
u(−D) , if exactly one of the primes p | 210 ramifies inK

21h(−D)
u(−D) , if exactly two of the primes p | 210 ramify in K

h(−D)
u(−D) , if exactly three primes p | 210 ramify in K

h(−D)
2u(−D) , if 2, 3, 5 and 7 ramify in K.

We have also computed the Fourier coefficients H(D) for the rank 0 elliptic curves E = 110A1(C) =

[1, 1, 1, 10,−45] with Tor(E) = 5, E = 114A(A) = [1, 0, 0,−8, 0] with Tor(E) = 6, E = 130B(A) =

[1,−1, 1,−7,−1] with Tor(E) = 4, E = 210B(A) = [1, 0, 1,−498, 4228] with Tor(E) = 6 and several

other examples. Based on our numerical examples, we observed a generalization of the conjecture 2.3

which we prove in Corollary 5.2.

Theorem 5.1. Let B be a definite quaternion algebra ramified at p1, p2, ..., pk. Let N = p1p2...pkM

( pi ∤ M ) be a square-free integer. Denote by H =
∑n

i=1
1
wi

gi =
∑n

i=1
1

2wi
+
∑

D>0 H(D)qD. Then we

have

H(D) =
1

2

∑

−D=df2

[h(d)

u(d)

k
∏

i=1

(

1− { d

pi
}
)

∏

q|M

(

1 + {d
q
}
)]

.

Proof. Consider the weight 3/2 Cohen-Eisenstein Series H,

H =

n
∑

i=1

1

wi

gi =
1

2

n
∑

i=1

1

wi

+
∑

D>0

n
∑

i=1

ai(D)

wi

qD.

By Proposition 3.3, we see that

n
∑

i=1

∑

D>0

ai(D)

wi

qD =
1

2

∑

D>0

∑

−D=df2

(

n
∑

i=1

h(Od, Ri)

u(d)

)

. (8)
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By Lemma 3.2, we have

n
∑

i=1

h(Od, Ri) = h(d)

k
∏

i=1

(

1− { d

pi
}
)

∏

q|M

(

1 + {d
q
}
)

. (9)

Substituting equations (8) and (9) in the Fourier expansion of H, we get

H =
n
∑

i=1

1

wi

gi =
1

2

n
∑

i=1

1

wi

+
1

2

∑

D>0

∑

−D=df2

[h(d)

u(d)

k
∏

i=1

(

1− { d

pi
}
)

∏

q|M

(

1 + {d
q
}
)]

qD.

Hence

H(D) =
1

2

∑

−D=df2

[h(d)

u(d)

k
∏

i=1

(

1− { d

pi
}
)

∏

q|M

(

1 + {d
q
}
)]

. (10)

This completes the proof. �

We deduce the following corollary which generalizes the result of Gross (Proposition 2.4) for square-

free level N.

Corollary 5.2. Let B and H be as in Theorem 5.1. If −D is the fundamental discriminant, ω(N) is

the number of distinct primes that divide N , s(D) is the number of primes that divide N and ramify

in Q(
√
−D), and (−D

pi
) 6= 1, for every i = 1 to k, and (−D

q
) 6= −1 for every prime q | M , then

H(D) =
2ω(N)−1−s(D)h(−D)

u(−D)
.

Proof. If −D is the fundamental discriminant satisfying the Kronecker conditions, then from the

equation (10), we have

H(D) =

k
∏

i=1

(

1− {−D

pi
}
)

∏

q|M

(

1 + {−D

q
}
)1

2

h(−D)

u(−D)
=

2ω(N)−1−s(D)h(−D)

u(−D)
.

�

Corollary 5.3. Conjecture 2.3 holds.

Proof. Conjecture 2.3 follows immediately from Corollary 5.2 by letting k = 1. �
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