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ON SIGN CHANGES FOR ALMOST PRIME COEFFICIENTS OF

HALF-INTEGRAL WEIGHT MODULAR FORMS

SRILAKSHMI KRISHNAMOORTHY AND M. RAM MURTY

Abstract. For a half-integral weight modular form f =
∑

∞

n=1
af (n)n

k−1

2 qn of

weight k = ℓ + 1

2
on Γ0(4) such that af (n)(n ∈ N) are real, we prove for a fixed

suitable natural number r that af (n) changes sign infinitely often as n varies over
numbers having at most r prime factors, assuming the analog of the Ramanujan
conjecture for Fourier coefficients of half-integral weight forms.

1. Introduction and Statement of Results

Let f =
∑∞

n=1 af (n)n
k−1

2 qn be a half-integral weight modular form in the Kohnen’s
+ subspace of weight k = ℓ+ 1

2
on Γ0(4) with ℓ ≥ 2. Throughout the article, we shall

assume that af(n)’s are real. In [8], Kohnen proved that for any half-integral weight
modular form f , not necessarily an eigenform, for a square-free natural number
t, the sequence af (tn

2)(n ∈ N) changes sign infinitely often, provided there exists
n0 such that af (tn

2
0) 6= 0. In [5], Hulse, Kiral, Kuan and Lim proved that if f is

an eigenform, then the sequence af(t), where t runs over all square-free integers,
changes sign infinitely often. In [11], Meher and Murty obtained some quantitative
results on the number of sign changes in the sequence af (n)(n ∈ N).
Motivated by the Sato-Tate equidistribution theorem for integral weight Hecke

eigenforms, it is natural to ask whether there is an equidistribution theorem in the
half-integral weight setting also. To understand this question, the first step is to
understand if the sequence af (p), where p runs over prime numbers, changes sign
infinitely often or not. Though we are not completely successful in answering this
question, we try to answer this question to some extent in this paper. To this end,
we consider the set Pr of numbers having at most r prime factors. Elements of Pr

are called almost primes. We sometimes say n is Pr or write n = Pr if n ∈ Pr. In
this context, this paper will focus on the sequence af(n) where n varies over Pr for
a suitable fixed r (to be specified later). The purpose of this paper is to prove the
following theorem:
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2 S. KRISHNAMOORTHY AND M. R. MURTY

Theorem 1.1. Let ℓ ≥ 2 be an integer and let f be an eigenform in the Kohnen +
subspace of weight k = ℓ+ 1/2 on Γ0(4). Write

f(z) =

∞
∑

n=1

af (n)n
k−1

2 qn. q = e2πiz,

and assume

(1) af (n) are real for all n ≥ 1,
(2) the Ramanujan conjecture holds for f ; that is, for all ǫ > 0, and all n ≥ 1,

we have af(n) ≪ǫ n
ǫ.

Then, there is an r ≥ 1 such that the sequence of numbers af (n) changes sign
infinitely often as n ranges over numbers in Pr. More precisely, the number of sign
changes with n = Pr and n ≤ x is ≫ log x.

In [13], the oscillations of Fourier coefficients of normalized Hecke eigenforms of
integral weight were studied. However, we can’t apply those techniques to half-
integral weight forms, since there is no multiplicative theory of eigenforms in this
setting. In spite of this, we prove Theorem 1.1 by using sieve theoretic techniques.
Of course, we would like to prove the theorem with r = 1, but this goal seems out
of reach with present knowledge and our sieve technique.
Here is our strategy. As outlined in [11], we need to have three ingredients to

deduce sign change results for any given sequence of numbers a(n). First, we need
an estimate of the form a(n) = O(nα). Second, we need an estimate

∑

n≤x

a(n) = O(xβ).

Third, we need an asymptotic formula
∑

n≤x

a(n)2 = cx+O(xγ)

with α, β, γ non-negative constants and c > 0. Then, if α+β < γ < 1, the sequence
has infinitely many sign changes. If max(α + β, γ) < b < 1, then the last condition
can be relaxed to

∑

x≤n≤x+y

a(n)2 ≫ y for any y > xb.

In our situation, the assumption of the Ramanujan conjecture (see section 2 below)
gives the first estimate for our sequence af (n) with n an almost prime. This can
be relaxed a bit. We make some comments in this context at the end of the paper.
For the second condition, we modify a result of Duke and Iwaniec [3] who showed
the required estimate when the argument is restricted over primes. We derive the
corresponding result for almost primes. We prove:
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Proposition 1.2. If af(n)’s are as in Theorem 1.1, then for any natural number r
and for sufficiently large x, we have for any ǫ > 0,

∑

1≤n≤x, n=Pr

af(n) = O
(

x
155

156
+ǫ
)

. (5)

For the third condition, we apply a lower bound sieve technique following a method
of Hoffstein and Luo [4]. We show:

Proposition 1.3. Let f be as in Theorem 1.1. Then there exists a natural number
r and δ > 0 such that for any Y > 3, we have

∑

n=Pr,Y δ<n<Y

a2f (n) ≫
Y

log Y
.

With these results in place, we derive our main theorem following the axiomatic
outline given above.

2. Notations and Preliminaries

For the sake of completeness, we review some rudimentary facts about half-integral
weight modular forms as well as highlight why one expects Ramanujan’s conjecture

to be true. Let f =
∑

n≥1 af(n)n
k−1

2 qn be a cusp form of weight k = ℓ+ 1
2
on Γ0(4).

Consider the Dirichlet series

L(f, s) :=
∑

n≥1

af (n)

ns

which converges for ℜ(s) > 3
2
and represents a holomorphic function in this domain.

Then by means of the usual Mellin formula and using some standard arguments one
proves that the series admits an analytic continuation and functional equation for
all complex values of s. The reader may consult [17, §5] or [9, p. 429].
From the results of Waldspurger [19] (see also [10]), we know that for all square-

free m, a2f (m) = O(L(1
2
, g, χm)), where χm is the quadratic character (m(−1)

l−1
2

·
)

and g =
∑

n≥1 cg(n)n
(2l−1)/2qn is the classical modular form of weight 2ℓ and level 2

corresponding to the half-integral modular form f via Shimura’s correspondence [17].

In [7], Iwaniec showed that af(p)’s are bounded by the factor p
3

14 . The exponent was
later improved by Blomer and Harcos to 3

16
+ ǫ in [2]. One expects a stronger

bound. Indeed, if we assume the analog of the Lindelöf hypothesis for L(1/2, g, χm)
in the conductor aspect (that is, the m -aspect), then it is reasonable to expect the
following:

Conjecture 2.1. (Ramanujan conjecture) Let f(z) =
∑∞

n=1 af (n)n
k−1

2 qn be a half-
integral weight modular form of weight k = ℓ + 1

2
on Γ0(4N), where k ∈ N, k ≥ 2

and q = e2πiz. Then, for any ǫ > 0,

af(n) = O
(

nǫ
)

. (1)
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We also need the following result of Duke-Iwaniec (see Section 8 of [3]).

Proposition 2.2. If af (p)’s are as in Theorem 1.1, then for sufficiently large x,
and for any ǫ > 0, we have

∑

1≤p≤x

af (p) = O
(

x
155

156
+ǫ
)

, (2)

where the sum runs over all prime numbers p ≤ x.

We need a modified version of Proposition 2.2. in the context of almost primes.
To this end, we introduce standard functions and apply Vaughan’s identity to obtain
this modified version. For any r ∈ N, let Λr denote the generalized von Mangoldt
function of order r. It is defined as

Λr(n) =
∑

d|n

µ(d)
(

log
n

d

)r

.

By Möbius inversion,

(logn)r =
∑

d|n

Λr(d).

For any r ∈ N, we know that

ζ (r)(s) = (−1)r−1

∞
∑

n=1

(logn)rn−s.

This implies that
ζ (r)(s)

ζ(s)
= (−1)r

∞
∑

n=1

Λr(n)n
−s.

The important feature of Λr(n) is that it vanishes whenever n has more than r
prime factors and so it is useful to detect when the condition ω(n) ≤ r holds. We
next recall a combinatorial partition of Λ1(n) which is a result of Vaughan [18] [cf.
equation (61) of [3]].

Proposition 2.3.

Λ1(n) =
∑

d|n,d≤R

µ(d)log
n

d
−

∑

lm|n,m≤R,l≤Q

µ(m)Λ1(l).

We need to generalize this identity to the case Λr(n). We do this below.

3. Sums over almost primes and the proof of Proposition 1.2

In Proposition 2.2, Duke-Iwaniec obtained the estimation for sums over primes.
We modify their proof to show more generally that for any r ≥ 1, we have Proposition
1.2.
The following combinatorial partition of Λr(n) can also be deduced from [Lemma

1, [16]] with c(n) = (−1)rΛr(n), b̃(n) = µ(n), b(n) = 1 and a(n) = (logn)r.
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Proposition 3.1.

Λr(n) =
∑

d|n,d≤R

µ(d)
(

log
(n

d

))r

−
∑

lm|n,m≤R,l≤Q

µ(m)Λr(l) (*)

+
∑

lm|n,l≤Q

µ(m)Λr(l) +
∑

lm|n,m>R,l>Q

µ(m)Λr(l).

Proof. We have for any y,

Λr(n) =
∑

d|n,d≤y

µ(d)
(

log
(n

d

))r

+
∑

d|n,d>y

µ(d)
(

log
(n

d

))r

Now taking the second sum in this last line we have, by Möbius inversion,
∑

d|n,d>y

µ(d)
(

log
(n

d

))r

=
∑

d|n,d>y

µ(d)
∑

c|(n/d)

Λr(c)

=
∑

cd|n,d>y

µ(d)Λr(c) =
∑

cd|n,d>y,c>z

µ(d)Λr(c) +
∑

cd|n,d>y,c≤z

µ(d)Λr(c), for any z > 0.

Here, z is a parameter chosen optimally in our later estimates. It should not be
confused with a complex variable. Again taking the second sum in the final line we
have,

∑

cd|n,d>y,c≤z

µ(d)Λr(c) =
∑

cd|n,c≤z

µ(d)Λr(c)−
∑

cd|n,d≤y,c≤z

µ(d)Λr(c)

Putting this together, with y = R, z = Q, we get the required partition of Λr(n). �

We obtain the following corollary which is a generalized statement of Proposi-
tion 2.3 to any r ∈ N.

Corollary 3.2. Suppose n ∈ N with Q < n ≤ QR = X. Then

Λr(n) =
∑

d|n,d≤R

µ(d)
(

log
(n

d

))r

−
∑

lm|n,m≤R,l≤Q

µ(m)Λr(l)

Proof. If n ≤ QR, note that the last sum in Proposition 3.1 is zero. If n > Q, then
the third sum in (*)

∑

lm|n,l≤Q µ(m)Λr(l) =
∑

l|n,l≤QΛr(l)
∑

m|n
l

µ(m) is zero since
n
l
> 1 because l ≤ Q and n = n

l
l > Q. �

Let f̂n = n
k−1

2 an(f). Take bn =
(

1− n
X

)

ψ̂(n), where ψ̂ is the Gauss sum of a
Dirichlet character ψ to modulus c ≡ 0 (mod 4) and X ≥ 2. Now, let us consider
the sum

P (X) =
∑

n≤X

bnf̂nΛr(n).

We follow closely the method of Duke and Iwaniec [3]. Similar to the proof of
Proposition 2.2 in [3], we shall split the second sum in Corollary 3.2 over the dyadic
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intervals L < l ≤ 2L, M < m ≤ 2M with 2L ≤ Q and 2M ≤ R, and we write
accordingly

Λr(n) = Λ∗
R(n)−

∑

L

∑

M

Λ∗
LM(n),

where

Λ∗
R(n) =

∑

d|n,d≤R

µ(d)
(

log
(n

d

))r

,Λ∗
LM(n) =

∑

lm|n,L<l≤2L,M<m≤2M

µ(m)Λr(l).

Lemma 3.3.

P (X) = PR(X)−
∑

L

∑

M

PLM(X) + O
(

Q
k+1

2 Xrǫ
)

,

where
PR(X) =

∑

n≤X

bnf̂nΛ
∗
R(n), PLM(X) =

∑

n≤X

bnf̂nΛ
∗
LM(n).

Proof. The contribution to the sum from n ≤ Q is clearly O
(

Q
k+1

2 Xǫ
)

by a simple
application of Cauchy’s inequality as in [3]. �

4. Proof of Proposition 1.2

Proof. We follow [3], but give more details as the proof in [3] is terse. To treat
PR(X), we apply partial summation and (58) of [3] which states

∑

n≤X,d|n

ψ̂(n)f̂n ≪ X
k

2 logX,

where the implied constant is independent of d. We deduce

PR(X) ≪ RX
k

2 (logX)r+1.

To treat PLM(X), we follow again [3] and split

PLM(X) = P ′
LM(X) + P ′′

LM(X)

where in the first term, n = lm is squarefree and in the second term n = lm is not
squarefree. Proceeding as in [3], we have (using (7) of [3]),

P ′
LM(X) ≪ LMX

k

2
− 1

4
+ǫ.

For P ′′
LM(X), we have (upon using (6) of [3]),

P ′′
LM(X) ≪

∑

l,m

|µ(m)||Λr(l)|(lm)
1

2X
k−1

2
+ǫ,

where the sum runs over l and m such that L ≤ l ≤ 2L, M ≤ m ≤ 2M and
µ(lm) = 0. Since µ(lm) = 00, and l is Pr, we see that (l, m) 6= 1 in the sum. We
write

L < l = p1...pr < 2L
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and suppose p1|m. Thus,

P
′′

LM(X) ≪ X(k−1)/2+ǫ
∑

L<p1<2L

∑

L/p1<p2...pr<2L/p1

M3/2

p1
≪ LM3/2X(k−1)/2+ǫ.

Hence

P ′′
LM(X) ≪ LM

3

2X
k−1

2
+ǫ.

Thus we get the first bound,

PLM(X) ≪ LMX
k

2
− 1

4
+ǫ + LM

3

2X
k−1

2
+ǫ.

For the second bound, one appeals to the estimate for the bilinear form:

|
∑

mn≤X,M<m≤2M

ambnf̂mn| ≪ (
∑

mn≤2X

|ambn|
2)

1

2 (X
1

2M− 1

2 +X
1

4M
3

4 )X
k−1

2
+ǫ

which is (57) in [3]. We put am = µ(m) to get

|
∑

mn≤X,M<m≤2M

µ(m)bnf̂mn| ≪ (M− 1

2 +M
3

4X− 1

4 )X
k+1

2
+ǫ.

Combining this with our earlier discussion of PLM(X) finally leads to

PLM(X) ≪ (M− 1

2 +M
3

4X− 1

4 )X
k+1

2
+ǫ

which is valid for any M,Q,R satisfying 1 ≤M ≤ R = X
Q
. Choosing M = X

1

26 , Q =

X
9

13 , R = X
4

13 gives

P (X) ≪ X
k+1

2
− 1

52
+ǫ.

The smoothing factor (1− n
X
) is removed as in [3]. Therefore, we obtain that

∑

n≤X

ψ̂(n)f̂nΛr(n) ≤ X
k+1

2
− 1

156
+ǫ.

Since Λr(n) vanishes if n has more than r prime factors, we have by partial summa-
tion

∑

n≤X,ω(n)≤r

ψ̂(n)af(n) ≤ X
155

156
+ǫ.

Hence
∑

1≤n≤x,ω(n)≤r

ψ̂(n)af(n) = O
(

x
155

156
+ǫ
)

.

As in [3], we may take ψ to be the principal character (mod 4), from which the
proposition follows.

�
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5. Proof of Proposition 1.3

Proof. Let r be as in the theorem of [4] and F a non-negative smooth function
compactly supported in (0, 1) with positive mean value. The argument on page 439
of [4] shows that there is a positive constant c such that

∑

n≤Y, ω(n)≤r

a2f (n)F (
n

Y
) ≥

cY

log Y
+O(Y 14/15).

Since F is bounded, this means there is a positive constant c1 such that

∑

n≤Y, ω(n)≤r

a2f (n) ≥
c1Y

log Y
+O(Y 14/15).

On the other hand, we have assuming the Ramanujan conjecture,
∑

n≤Y δ

a2f(n) ≪ Y δ+ǫ.

Actually, by the techniques of [14] and [15], the ǫ in the exponent can be removed
and one does not need to assume Ramanujan here. In any case, for δ > 0 and
sufficiently small, we have

∑

Y δ<n<Y, n=Pr

af (n)
2 ≫

Y

log Y
.

This completes the proof of Proposition 1.3. �

6. Proof of Theorem 1.1

Theorem 1.1 follows from the Conjecture 2.1, Proposition 1.2 and Proposition 1.3
but for the convenience of the reader we include a proof.

Proof. We choose δ sufficiently small and show that af (n) changes sign for n = Pr

and xδ < n < x. Suppose not. Without loss of generality, we can assume that af (n)
are positive for all n in the set T = {n : xδ < n ≤ x, ω(n) ≤ r}. From Proposition
1.2, for sufficiently large x, and sufficiently small δ > 0, we have

∑

n∈T

af (n) = O
(

x
155

156
+ǫ
)

(6)

Using Conjecture 2.1,
∑

n∈T

a2f (n) = O
(

x
155

156
+ǫ0+ǫ

)

(7)

Replacing Y by x in Proposition 1.3, we get
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∑

n=Pr

1≤n≤x

a2f (n) ≫
x

log x
.

(8)

Hence for sufficiently large x, we have

∑

n∈T

a2f (n) ≫
x

log x
. (9)

We have a contradiction from (7) and (9). Thus there is atleast one sign change of
af(n) with n = Pr in (xδ, x). Thus, there is a sign change in each of the intervals of

the form (xδ
t

, xδ
t−1

). The number of such disjoint intervals covering (1, x) is clearly
≫ log x. This completes the proof of our theorem.
The value of r is determined by the results of [4]. In their paper, the authors

suggest that by using metaplectic techniques, one can show that r = 4 is permissible.
Again based on comments of that paper, it is possible to sharpen this to r = 3 by
using weighted sieve techniques [cf. see section 3, [4] for the details]. This seems to
be the limit of present-day knowledge. �

7. Concluding Remarks

In this section, by assuming a Siegel-type conjecture, we deduce that the sequence
af(p), where p varies over primes, change signs infinitely often.

Conjecture 7.1. If L(1
2
, g, χp) 6= 0, then |L(1

2
, g, χp)| ≫ p−ǫ for any ǫ > 0.

Theorem 7.2. Let f be as in Theorem 1.1. Assume that the conjecture 7.1 holds.
Then the sequence that af (p), where p varies over primes, change signs infinitely
often.

Proof. Without loss of generality, for sufficiently large x, we can assume that af(p)
are positive for all p in the set T ′ = {n : x0 < p ≤ x} for some natural number x0.
From Proposition 2.2, we have

∑

p∈T ′

af(p) = O
(

x
155

156
+ǫ
)

(10)

Using Conjecture 7.1, and Waldspurger’s theorem

∑

p∈T ′

a2f(p) ≫ x1−ǫ′ . (11)

We have a contradiction from (10) and (11). Thus there is atleast one sign change
of af (p) for p prime in (x0, x]. As before, this argument can be fine-tuned to yield
≫ log x sign changes for p ≤ x. This completes the proof of our theorem.

�
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These results certainly extend to higher level since both the Duke-Iwaniec theorem
and the Hoffstein-Luo theorem do and our argument goes through. Finally, we
remark that the assumption of Ramanujan’s conjecture in our main theorem can be
relaxed somewhat. A weaker assumption, namely af(n) = O

(

nα
)

for any α such

that 0 < α < 1
156

is sufficient to prove the results.
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