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ADDITIVE GROUP ACTIONS ON AFFINE T-VARIETIES OF COMPLEXITY
ONE IN ARBITRARY CHARACTERISTIC

KEVIN LANGLOIS AND ALVARO LIENDO

ABSTRACT. Let X be a normal affine T-variety of complexity at most one over a perfect field k, where
T = G, stands for the split algebraic torus. Our main result is a classification of additive group actions
on X that are normalized by the T-action. This generalizes the classification given by the second author
in the particular case where k is algebraically closed and of characteristic zero.

With the assumption that the characteristic of k is positive, we introduce the notion of rationally
homogeneous locally finite iterative higher derivations which corresponds geometrically to additive
group actions on affine T-varieties normalized up to a Frobenius map. As a preliminary result, we
provide a complete description of these Ga-actions in the toric situation.
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INTRODUCTION

Let k be an arbitrary field. In this paper a variety X is an integral separated scheme of finite type
over the field k. We assume further that k is algebraically closed in the field of rational functions
k(X). A point in X is a not necessarily rational closed point. A variety is called normal if all its local
rings are integrally closed domains. All algebraic group actions are, in particular, regular morphisms.

Let T = G} be the n-dimensional split algebraic torus, where G,, stands for the multiplicative
group of k. A T-variety is a normal variety endowed with an effective action of T. The complexity of
a T-variety X is the non-negative integer dim X — dim T. If the base field k is algebraically closed,
then the complexity of X can be read off geometrically as the codimension of the generic orbit. The
best known examples of T-varieties are those of complexity zero, called toric varieties.

Let G, be the additive group of the field k. The main result of this paper is a classification of the
Ga-actions on an affine T-variety X that are normalized by T in the cases where X is of complexity
zero or one. This generalizes a paper by the second author [LielOa], where the same result is obtained
in the particular case where k is algebraically closed and of characteristic zero. The case of normalized
Ga-actions on an affine Gp,-surface over the field of complex numbers was first studied in [FZ05].

Date: January 28, 2016.

2000 Mathematics Subject Classification: 14R05, 14R20, 13N15, 14M25.

Key words: torus actions, locally finite iterative higher derivations, affine varieties.
1


http://arxiv.org/abs/1408.1373v2

2 KEVIN LANGLOIS AND ALVARO LIENDO

Let M be the character lattice of T and let IV be the lattice of one-parameter subgroups. We have a
natural duality Mg x Ng — R given by (m,v) — (m,v) between the vector spaces Mr = M ®7z R and
Nr = N ®zR. Recall that T-actions on an affine variety corresponds to M-gradings on its coordinate
ring.

Affine T-varieties can be described in combinatorial terms. In the case of toric varieties, there is
the well-known description of affine toric varieties via strongly convex rational polyhedral cones in
Ngr [Dem70, Oda88]. In 2006, Altmann and Hausen gave a combinatorial description of affine T-
varieties of arbitrary complexity over an algebraically closed field of characteristic zero [AH06]. This
intersects with previous works by several authors [KKMS73, Dem88, Tim97, FZ03, Tim08] (see also
[AHS08, AIPSV12] for the theory of non-necessarily affine T-varieties). Furthermore, in a recent paper,
the first author generalized the combinatorial description due to Altmann and Hausen to the case of
affine T-varieties of complexity one over an arbitrary field [Lanl5].

The combinatorial description of affine T-varieties of complexity one that we will use in this paper
encodes an affine T-variety X with a triple (C,0,®), where C is a regular curve, o is a strongly
convex rational polyhedral cone in Ng and ® is a o-polyhedral divisor on C, i.e., a divisor in C' whose
coefficients instead of integers are polyhedra in Ny that can be decomposed as a Minkowski sum Q)+ o
with @ a compact polyhedron (see Section 1 for details).

It is well known that the additive group actions on an affine variety X = Spec A are in one to
one correspondence with certain sequences 0 = {8(i) : A — Atiez., of k-linear operators on A called
locally finite iterative higher derivations [Miy68, Cra04, CMO05], or LFIHDs for short (see Definition 2.1
for details). Now, assume that X = Spec A is an affine T-variety and let 0 be an LFIHD on A.
The LFIHD 9 is called homogeneous of degree e € M if every 9 is homogeneous of degree ie.
Furthermore, in positive characteristic, we introduce the technical notion of rationally homogeneous
LFIHDs as follows: let p > 0 be the characteristic of k and let r € Z>¢, then 0 is called rationally
homogeneous of degree e/p” if 9UP") is homogeneous of degree ie and ) = 0 whenever p” does not
divide j.

In the case where k is algebraically closed, the notion of (rationally) homogeneous LFTHD translates
into geometric terms in the following way. An LFIHD on A is homogeneous if and only if the corre-
sponding G,-action on X is normalized by the T-action. Moreover, let F),- : G, — G, be the Frobenius
map sending ¢+ tP". If @ is an LFIHD and ¢ : G, — Aut(X) is the corresponding G,-action, then 9
is rationally homogeneous if and only if ¢ o Fp_r1 is normalized by the T-action for some r € Z> (see
Proposition 2.8). In this case we say that ¢ is normalized by the T-action up to a Frobenius map.

The kernel ker 8 of an LFIHD 9 is defined as the intersection of ker 9@ for all i € Z~; it is equal to
the ring k[ X]®= of G,-invariant regular functions on X and Frac(ker 9) corresponds to the field k(X )%=
of G,-invariant rational functions on X. Denote by k(X)T the field of T-invariant rational functions on
X. A (rationally) homogeneous LFTHD is called vertical if k(X)T C k(X)® and horizontal otherwise.
When k is algebraically closed, the horizontal condition means geometrically that the general G,-orbits
are transverse to the rational fibration defined by the T-action.

Let X = Spec A be the affine toric variety given by the strongly convex rational cone o C Ng.
We denote by o(1) the set of extremal rays of the cone 0. In Theorem 3.5 we classify normalized
Ga-actions on affine toric varieties. They are described by Demazure roots of the cone o, i.e., vectors
e € M such that there exists p € o(1) with (e,p) = —1 and (e, p’) > 0, for all p’ € o(1) different
from p. We also classify G,-actions on affine toric varieties that are normalized up to a Frobenius
map (see Corollary 3.7). Let us mention some developments from the theory of Demazure roots. The
reader may consult [Dem70, Cox95, Nil06, Baz13, Cox14, AHHL14] for the study of automorphisms
of complete T-varieties via Demazure’s roots and [Liell, Kot11] for the roots of the affine Cremona
groups. See also [LP14] for a geometric description in the setting of affine spherical varieties.
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Let now X = Spec A be an affine T-variety of complexity one given by the triple (C,0,D). The
classification of normalized G,-actions on such an X is divided into two theorems corresponding to
vertical and horizontal LFIHDs. The classification of vertical LFITHDs on A is given in Theorem 4.4.
They are described by pairs (e, ), where e is a Demazure root of ¢ and ¢ is a global section of the
invertible sheaf O¢(D(e)). The Q-divisor D(e) is uniquely determined by © and e in a combinatorial
way. The classification of horizontal LFTHDs on A is only available when k is perfect, see Theorem 5.11.
Its combinatorial counterpart is different from the characteristic zero case (compare with [LielOa,
Theorem 3.28]) and is related to the description of rationally homogeneous LFIHDs on affine toric
varieties.

The content of the paper is the following. In Section 1 we present the combinatorial description of
affine T-varieties of complexity one that will be used in this paper. In Section 2 we introduced the
background results on G,-actions. In Section 3 we obtain our classification result for toric varieties.
Finally, the classification of normalized G,-actions on affine T-varieties of complexity one is divided
in Sections 4 and 5 corresponding to the vertical and horizontal cases, respectively.

1. GENERALITIES ON AFFINE T-VARIETIES OF COMPLEXITY ONE

In this section, we recall a combinatorial description of affine T-varieties of complexity one over an
arbitrary field [Lanl5, Section 3]. Let k be field and let X = Spec A be an affine variety over k. We
start by introducing some notation from convex geometry (see e.g. [Oda88] or [AH06, Section 1]).

1.1. Let T ~ G}, be a split algebraic torus over k. Denote by M = Hom(T, G,,) the character lattice
of T and let N = Hom(Gy,, T) be the lattice of one-parameter subgroups. We have a natural duality
Mg x Ng — R given by (m,v) — (m,v), where Mg = M ®7z R and Ng = N ®z R are the associated
real vector spaces. We also let Mg = M ®7Q and Ng = N ®z Q be the corresponding rational vector
spaces.

A rational cone in Ng is a cone generated by a finite subset of N. If o C Ny is a rational cone, then
we let 0¥ C Mg be its dual cone, i.e., the cone of real linear forms on Mg that are non-negative on
0. Recall that the dual cone ¢V of a rational cone is again rational. The relative interior of a rational
cone o C Ng, denoted by rel.int(o), is the topological interior of o in the span of o inside Ng.

For any face F' C ¢ the set F* stands for the dual face of F in 0¥, i.e., F* = F- N¢V. A rational
cone o is strongly convex if 0 is a face of o. This is equivalent to say that the dual 0¥ C My is full
dimensional. For any rational cone w C Mg we let wy; = w N M.

Furthermore, given a subsemigroup S C M we let

k[S] = 5 kx™

meS

be the semigroup algebra of S defined by the relations -y = x™t™ for all m,m’ € S and x° = 1.
For any integer d > 0 and any polyhedron A C Nr we let A(d) be the set of faces of dimension d.
In particular, A(0) is the set of vertices of A.
Let 0 C N be a strongly convex rational cone. We define Pol,(/Ng) as the set of polyhedra in Ny
that can be written as a Minkowski sum () + o, where () C Ny is a rational polytope, i.e., a bounded
polyhedron having its vertices in the rational vector space Ng.

1.2. A T-wvariety is a normal variety endowed with an effective action of the algebraic torus T. Recall
that a T-action X = Spec A is equivalent to an M-grading of the algebra A. In algebraic terms, a
T-action on X is effective if and only if the semigroup of weights of A generates M. In this case the
weight cone 0¥ of A is the dual of a strongly convex rational cone ¢ C Ng.
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1.3. Let X = Spec A be an affine T-variety. Letting Ko = k(X)T be the field of T-invariant rational
functions on X we can write
i= @ A

Vv
meo,,

as an M-graded subalgebra of Ky[M]. Here, 0¥ C My is the weight cone of A, X" is a weight vector
in k(X), Ag = KgN A, and A, is an Ap-module contained in K. Furthermore, the weight vectors
satisfy X0 = 1, and x™ - " = x""™ for all m,m’ € M.

The complexity of the T-variety X is the transcendence degree of the field extension Kj/k. Since
the action is effective, it is also equal to rank M — dim X. In geometrical terms, when k = k is
algebraically closed the complexity is the codimension of the generic T-orbit.

A toric variety is a T-variety of complexity zero. An affine toric variety X = Spec A is completely
determined by the weight cone o¥ of A. Conversely, given a strongly convex rational cone o C Ng,
we can define an affine toric variety by letting X, := Speck|o},].

Another important class of affine T-varieties is provided by the surface case. If X is an affine G-
surface, then the coordinate ring A = k[X] is endowed with a Z-grading. Up to reversing the grading,
we can assume that the subspace A, = € A x™ is nonzero. We distinguish three cases (see
[FK91]).

(i) The elliptic case: A_ =€P,,cz_, Amx™ = 0 and 49 = k.

(73) The parabolic case: A_ =0 and Ay # k.
(#3¢) The hyperbolic case: A_ # 0.

More generally, an affine T-variety X = Spec A of complexity one is called elliptic if Ag = k (see
[LielOa, Section 1.1}).

m€Z>0

To provide a description of affine T-varieties of complexity one, we need to consider the Weil divisors
theory on regular algebraic curves. In the next paragraph, we recall the definitions we need.

1.4. Let C be a regular curve over k. By a point belonging to C we mean a closed point. Letting
z € C we let [k, : k| be the degree of the point z defined as the dimension of residue field , of z
over k (see [Sti93, Proposition 1.1.15]). A point z € C' of degree one is called a rational point. For a
nonzero rational function f € k(C)* the associated principal divisor is

divf:Zordzf-z,

zeC

where ord, f is the order of f at the point z. The degree of a Weil Q-divisor D = ) - a. - z is the
rational number

degD = Z[Hz k| -a,.
zeC

If C is projective, then we have degdiv f = 0 (see [Sti93, Theorem 1.4.11]). In addition, we let
D] =3 .cclaz] -z be the integral Weil divisor obtained by taking the integral part of each coefficient
of D. Similary, the Q-divisor {D} = D — | D| stands for the fractional part of D. The space of global
sections of the Q-divisor D is defined by

H°(C,0¢(D)) := H(C,0c(|D))) = {f € k(C)"| div f + D > 0} U {0}.
When C is projective, H(C,O¢ (D)) is usually called the Riemann-Roch space of D.

The following has been introduced in [AHO06] for any complexity in the case where k is algebraically
closed of characteristic zero. In our context, we give a similar definition.
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Definition 1.5. Let C' be a regular curve over k. Consider ¢ C Ng a strongly convex rational cone. A
o-polyhedral divisor over C'is a formal sum ® =" _~ A. -z, where each A, € Pol,(Ng) and A, = o
for all but finitely number of z. For every coefficient A, of the o-polyhedral divisor © we define h, as
the piecewise linear map h, : Mg — R given by m — min,ca_ (o) (m,v). We remark that h, restricted
to 0¥ C Mg corresponds to the support function of A..

For any m € Mg we define the evaluation of © as the Q-divisor

D(m) = Z ho(m) - z.
zeC
We denote by A(D) the coarsest refinement of the quasifan of ¥ such that the map m +— D(m) is
linear in each cone. We also define the degree of ® as

deg® = ) [k, : K]+ A, € Poly(Ng).
zeC

A o-polyhedral divisor ® = )~ A, -z is called proper if it satisfies one of the following conditions.

(i) the curve C is affine, or
(ii) the curve C is projective, the polyhedron deg® is a proper subset of o, and for every m € oy,
such that deg®(m) = 0, a nonzero integral multiple of ©(m) is principal.

Actually, polyhedral divisors are combinatorial objects that allow us to construct multigraded al-
gebras, as explained in the following.

Notation 1.6. To a o-polyhedral divisor ® = Y  _~ A, -z over C we associate the rational T-
submodule

AlC,D] = P Am- X" C Ko[M], where An = H°(C,00(®(m))) and Ko =k(C).

v
meoy,

Given m,m’ € o), the evaluations satisfy ©(m)+D(m') < D(m+m'). Hence, for every f € A, and
every g € Ay, the product fg lies on A,;,1,,,». This multiplication rule turns the vector space A[C,D]
into an M-graded subalgebra.

For a non-empty open subset Cy C C we let

Doy = A,z

z€Co
be the restriction of © to Cjy.

The following yields a description of the coordinate ring of an affine T-variety of complexity one (for
a proof see [Lanl5, Theorem 4.3]). This description intersects with some classical cases; see [Tim0§],
[Tim97] for complexity one case, [AHO6] for higher complexity, and [FZ03] for the Dolgachev-Pinkham-
Demazure presentation of affine complex C*-surfaces. For the functorial properties of this description
see [Lanl5, Proposition 4.5].

Theorem 1.7. (i) If © is a proper o-polyhedral divisor on a reqular curve C' over k, then the
M-graded algebra A[C,D] = @,,covan Am, where

Am = HO(C7 OC(Q(m)))v

s the coordinate ring of an affine T-variety of complexity one over k.
(7i) Conversely, to any affine T-variety X = Spec A of complezity one over k, one can associate a
pair (Cx,Dx ) as follows.
(a) Cx is the abstract regular curve over k defined by the conditions k[Cx] = k[X]T and k(Cx) =
E(X)T.
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(b) Dx, is a proper ox-polyhedral divisor over Cx, which is uniquely determined by X and by
a sequence v = (X" )mem of k(X) as in 1.3.

We have a natural identification A = A[Cx,Dx 4] of M-graded algebras with the property that

every homogeneous element f € A of degree m is equal to fi,x™, for a unique global section fy,

of the sheaf Ocy (D x,(m)).

Example 1.8. Let M = Z? and let ¢ be the first quadrant in the vector space Ng = R?. We also let
Ao =(1/2,0)4+0, Ay = L+0 and Ay = (1/2,0) + o, where L is the line segment joining the points
(0,0) and (—1/2,1/2).

IAOCNR .AchR IAooCMR
0 0 0

Letting k be an arbitrary field and C' = P} we let D be the o-polyhedral divisor ® = Ay - [0] + A; -
[1] + Ay - [00] over C. The degree of © is deg® = L' + o, where L’ is the line segment joining the
points (1,0) and (1/2,1/2).

Hence deg® C o and © is proper. Let A = A[C,®] and X = Spec A. A direct computation shows
that the elements
t=1% o

t—1
up = —— X0 up = x OV, g =y = X0 and s =

generate the algebra A. Furthermore, a minimal set of relations satisfied by these generators is given
by usus — ugug = 0, ugus — u%uz — ujuguy = 0 and u% — u%u4 — ului = 0. Hence

t—1)
% NED)

2 2 2 2
A ~ klx1,xo, 23,24, x5)/(T2x5 — T3y, T3Ts — T]To — T1XT2X4 , TE — TIT4 — T127) .

The following result provides a calculation of the Altmann—Hausen presentation in terms of poly-
hedral divisors when we extend the scalars to an algebraic closure of k, see [Lanl5, Proposition 3.9].

Lemma 1.9. Assume that k is a perfect field, and let k be an algebraic closure of k. The absolut
Galois group of (’51;/1( acts on the closed points of the curve

Ck = C Xgpeck Speck
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which can be identified with the set of the k-rational points of C(k). The orbit space C(k )/@k/k can
be identified with C. We denote by S : C(k) — C the quotient map. If ® = Y .ecD. -z is a proper
o-polyhedral divisor over C, then

AlC, D] ok = A[C(k),Dg],
where Dy, is the proper o-polyhedral divisor over C (k) defined by

D = ZAZ - 8*(z) with S*(z) = Z 7.
zeC 2’eS—1(z)
The proof of the following result is exactly the same as in [LielOa, Lemma 1.6].

Lemma 1.10. Let A = A[C, D], where C' is a reqular curve over k with field of rational functions K
and © =3 oA, -z is a proper o-polyhedral divisor. Consider the normalization A’ of the cyclic
extension A[sx®], where e € M, s* € A homogeneous of degree de, and d € Z~q. If k is algebraically
closed in A’, then A" = A[C',D'] where C' and ®' are defined by the following.
(i) If A is elliptic, then A" is also and C' is the regular projective curve associated with the algebraic
function field Ko[s].
(it) If A is non-elliptic, then A’ is also and C' = Spec Ay, where Aj, is the normalization of Agy in
Kos].
(iii) In both cases ®' =3 A, -7*(z), where m: C" — C' is the natural projection.

2. GENERALITIES ON G,-ACTIONS

Let X = Spec A be an affine T-variety over an arbitrary field k. In this section, we study the
relation between G,-actions on X that are normalized by the torus action and homogeneous locally
finite iterative higher derivations.

Definition 2.1. Let 0 = {8@}2‘6220 be a sequence of k-linear operators on A. We say that 0 is a
locally finite iterative higher derivation (LFTHD for short) if it satisfies the following conditions:

(i) The operator ) is the identity map.
(73) For any i € Z>¢ and for all fi, fo € A we have the Leibniz rule

Vf1- f) Za )- 00 (fa).

(7i1) The sequence 0 is locally finite, i.e. for any f € A there exists a positive integer r such that for
any i > r, 9 (f) = 0.
(tv) For all 4, j € Z>( and for any regular function f € A we have

<5(i) o 8@) (f) = <Z +J> AU (1.

1

Furthermore, if 0 verifies only (1), (i), (iv), we say that 0 is a iterative higher derivation. If O verifies
only (7), (ii), we say 0 is a Hasse-Schmidt derivation (see [VojOT7]).

Consider an action
o:Gyx X > X

of the additive group G, over k. Then the comorphism ¢* gives a sequence 0 = {a(i) }iEZZO of k-linear
operators on A defined by the following way. For any f € A we write

f) = Za@( f)-a2' € Aok k[z], where k[z] = k[G,]
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is the polynomial algebra in one variable. An easy computation shows that 9 is an LFTHD [Miy68|.
Conversely, given an LFTHD 0 on A, its exponential map

e = i(‘?(i) z
i=0

is the comorphism of a G,-action on X = Spec A.

Remark 2.2. Consider an LFTHD 0 on A. For a positive integer i we let
(am)” —9Wo... 09W

be the composition of ¢ copies of d1). Denoting by p the characteristic of the field k, we have the
equality

(a(n)”O o (a(m)”l 0. .0 (3(pr>)°ir
(i0)!(21)!- .. (ip)! ’

where ¢ = Z;:() ij - p? is the p-adic expansion® of 7. If further p = 0, then the G,-action is therefore

o) —

uniquely determined by the locally nilpotent derivation d(1).

In characteristic zero, the algebra of invariants of a G,-action on the variety X = Spec A is the kernel
of the associated locally nilpotent derivation on A. The following definition describes the arbitrary
characteristic case.

Definition 2.3. For an LFIHD 0 on the algebra A its kernel is the subset
ker 9 := {f e A|0D(f) =0, forall i Z>0}.

This is the subalgebra of invariants A% C A for the G,-action corresponding to d. The LFIHD 9
is non-trivial if ker 0 # A. A subspace V C A is called 0-invariant if for any i € Z>(, we have the
inclusion 8(i)(V) C V. In particular, the subspace ker 0 is O-invariant. For any f € A we define the

multiplication f0 as the sequence of k-linear operators f0 = { fiﬁ(i)}iez>0. It is easy to check that
f0 is an LFIHD if and only if f € ker 0. -

The next result provides some useful properties of G,-actions, see [CM05, 2.1, 2.2] and [Cra04,
Example 3.5].

Proposition 2.4. For every non-trivial LFIHD 0 on the algebra A the following hold.

(a) The subring ker 0 C A is factorially closed, i.e., for all f1,fo € A we have fi1fs € kerd \ {0}
implies f1, fo € ker 9.

(b) The subring ker O is algebraically closed in A.
(¢) The subring ker 0 is a subring of codimension one in A.
(d) If char(k) = p > 0 and A = k[y| is the polynomial ring in one variable, then there are some

c1,-..,¢ € k" and some integers 0 < s1 < ... < s, such that
T
ey)=y+Y ci-a”
i=1

(e) If A* is the set of units of A, then A* C ker d so that A* = (ker 9)".
(f) A principal ideal (f) = fA is O-invariant if and only if f € ker 9.

1 When p = 0 we make the convention that the p-adic expansion is ¢ = io.
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Proof. Assertions (a), (b) and (c) are obtained by using the degree function
AN{0} = Zo, f > deg, e*(f).

In particular, we remark that (b) implies that the ring ker 0 is normal whenever A is normal. Assertion
(d) is proven in [Cra04, Example 3.5]. Assertion (e) is an easy consequence of (a).

Using arguments from [FZ03, 2, 1.2 (b)] we give a short proof of (f). Assume that f is nonzero. By
Definition 2.1 (i7i) we can consider d € Z>( such that f’ := D (f) # 0 and belongs to ker d. If the
ideal (f) is O-invariant, then f’ € ker N (f) so that f' = af for some a € A. By Proposition 2.4 (a)
we obtain f € kerd. Conversely, let o’ € A. By Definition 2.1 (ii), for any i € Z>o we have
09 (a'f) = 0% (a’) f and so the ideal (f) is O-invariant. O

In the next lemma, we study the extensions of LFTHDs on the algebra A to the localization ring
T—'A given by a multiplicative system 7" C A. We were inspired by well-known computations with
the Hasse-Teichmiiller derivatives (cf. [JKS05, Section 2]). For this lemma, we let

J
E(i,j) = {(81, e 8j) ETL | Zsz = z} for all integers i, j € Z~q, such that j <i.
(=1

Lemma 2.5. Let T be a subset of A stable under multiplication such that 0 ¢ T and 1 € T.

(1) If O be an iterative higher derivation on the algebra A, then O extends to a unique iterative higher
derivation 0 = {8(i)}i6220 on the algebra T~*A given by

50 (%) -y (f—j}r)l’ 3 9D (f) ... 0E)(f)

Jj=1 (517"'75j)€E(ivj)

for all f €T and all i € Z~y. B
(ii) Furthermore, if O is an LFIHD on A and if T C kerd, then the extension 0 on T™'A is an
LFIHD.

Proof. The existence and the uniqueness of 0 is given in [Maul0, 3.7, 5.8], [Voj07, Section 3]. Pro-
ceeding by induction the computation of 8(i)(%) is an easy consequence of Definition 2.1 (ii). The rest
of the proof is straightforward. O

As a consequence of the previous lemma, we obtain a result on equivariant cyclic coverings of an
affine variety with a G,-action (see also [FZ05, Lemma 1.8]).

Corollary 2.6. Let K = Frac A. Consider an LEIHD 0 on A and let f € ker O be a nonzero element.
Let d € Zq be an integer and let u be an algebraic element over K satisfying u® — f = 0. If B is the
integral closure of Alu] in its field of fractions, then O extends to a unique LFIHD O’ on the algebra
B such that u € ker 0.

Proof. By Lemma 2.5 we can extend the LFIHD 0 on A to an iterative higher derivation on the field
K, and on the polynomial ring K[t] by letting oW (t) = 0 for any ¢ > 1. Consider the morphism of
K-algebras ¢ : K[t] — KJu], t = u. Let P € K[t] be the monic polynomial generating the ideal ker ¢.

We can write t¢ — f = FP, for some F € K[t]. Remark that F is monic since P and t¢ — f are
monic. Since A is integrally closed, we obtain F, P € A[t]. Furthermore, for any i € Z~o we have
O (FP) = 0% (t? — f) = 0. Note that A[t] is d-invariant and the restriction of 0 to A[t] is an LFTHD.
Therefore, by Proposition 2.4 (a), we have P € A[t] Nker d defining an iterative higher derivation &’
on Klu]. Clearly, the normalization B of the ring Afu| is again d'-invariant. The rest of the proof is
straightforward and we omitted it. O
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In the sequel, we let
A= D Anx™ C Ko[M]

Y
meo,,

as in Section 1, where x is also seen as the character of the split torus T corresponding to the lattice
vector m € M. Let us introduce the notion of homogeneous iterative higher derivations.

Definition 2.7. Let d be an iterative higher derivation. The sequence 0 is homogeneous if there
exists e € M such that

O (A X™) C Apmpiex™ ¢ forall ic Z>o and m € M .

If 9 is non-trivial, then the vector e is called the degree of 0 and is denoted by degd. For the case
where k is of characteristic p > 0 we have the more general definition. Given r € Z>¢ we say that 0
is rationally homogeneous of degree e/p” (or of bidegree (e,p") if we need to emphasize the vector e)
if it satisfies the following.

(1) 0P (ApX™) C Apriex™ e, for all i € Zsg, and m € M.
(i) dU) = 0 whenever p” does not divide j.

In [LielOa, Section 1.2] it is shown that a usual derivation on a multigraded algebra which sends
graded pieces into graded pieces is homogeneous. However this does not hold for higher derivations.
Note also that the kernel of a homogeneous LFIHD 0 on A is an M-graded subalgebra of A. In the
sequel, we introduce some notation in order to have a geometrical interpretation of homogeneous and
rationally homogeneous LFTHDs in the case where k is an algebraically closed field?.

Notation 2.8. Assume that k is algebraically closed. Letting e € M be a vector we denote by G,
the group whose underlying set is T x G, and multiplication law is defined by

(t1,an) - (t2, ) = (t1 - t2, x “(t2) - a1 + a2),

where t; € T and «; € G,. Actually, every semidirect product of T x G, given by a character
T — Aut G, ~ Gy, is isomorphic to some G.

The following proposition is similar to [FZ05, Lemma 2.2]. For the convenience of the reader we
give a short proof.

Proposition 2.9. Assume that the field k is algebraically closed.

(i) If A is M-graded and O is a homogeneous LFIHD on A of degree e, then the corresponding G,-
action is normalized by the T-action. This means that the actions of the torus and the additive
group induce a Ge-action with comorphism given by

Y (ta) =t e*0(f),

where (t,a) € Ge and f € A.

(11) Conversely, if G. acts on X = Spec A, then the actions of the subgroups T and G, give an
M -grading on A and a homogeneous LFIHD of degree e.

(i4i) Assume further that char(k) =p > 0. Let Fpr : Gy — Ga, t + t?" be the Frobenius map. Giving
a rationally homogeneous LFIHD O on A of degree e/p” is equivalent to having a G,-action on
X equal to ¢ o (Fpr,idx), where ¢ is a G,-action normalized by T.

2Note that the Notation 2.8 and Proposition 2.9 can be generalized in the setting of group schemes and of Hopf
algebras when k is arbitrary.
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Proof. (i) Given (t,a) € G, and f € A, by homogeneity of 9 we have
t-00(f) = x" () 0V (t - f), Vi € Zxo. (1)
This gives

t-e?(f) = i X (D)ol 9Dt - f) = e D0t f).
=0

Hence for all (t1, 1), (t2, as) € G we obtain

U ((t1, 0n) - (2, 02))(f) = X" ()10 o x"(12)020 (44, . £y = p* (11, 01) (1" (t2, 02) (f))-

We conclude that ¥* defines a G.-action on the variety X = Spec A.
(7) The action of the subgroup G, C G, yields an LFIHD 0 on the algebra A. For a € G, and
f € A we have ¥*(1,a)(f) = e®?(f). So for any t € T we have

t-e*?(f) = " (L x“ (D) - (1,0))(f) = X (¢ f).

Identifying the coefficients we obtain (1). Thus the LFTHD 0 is homogeneous for the M-grading given
by the action of the subgroup T C G..
Assertion (7i7) follows immediately from (i) and (i). O

For an arbitrary field k we consider the following natural definition.

Definition 2.10. Assume that the torus T acts on X = Spec A. A G,-action on X is normalized (resp.
normalized up to a Frobenius map) by the T-action if the corresponding LFITHD 0 is homogeneous
(resp. rationally homogeneous).

To classify normalized G,-action it is convenient to separate them into two types (see [FZ05, 3.11]
and [LielOa, Lemma 1.11] for special cases).

Definition 2.11. A homogeneous LFTHD @ is of vertical type (or of fiber type) if 9% (Ky) = {0} for
any i € Z~g. Otherwise 0 is of horizontal type. We use similar terminology for normalized G,-actions.
An affine T-variety endowed with a non-trivial vertical (resp. horizontal) G,-action is called vertical
(resp. horizontal).

A homogeneous LETHD of horizontal type is automatically non-trivial. In the vertical case, one can
extend a homogeneous LFIHD on A to an LFTHD on the semigroup algebra Ko[oy,].

Lemma 2.12. Let 0 be a homogeneous LFIHD of vertical type on the M-graded algebra A. Then O
extends to a unique homogeneous locally finite iterative higher Ko-derivation on the semigroup algebra
Koloy]-

Proof. By Lemma 2.5, the LFTHD 0 extends to an iterative higher derivation & on Ky[M]. Since 0 is
of vertical type, Definition 2.1 (i7) implies that each 9'® is Kj-linear. Consequently, if S C M is the
subsemigroup of weights of the M-graded algebra A, then B := Ky[S] = A ®y Ky is ¢'-invariant.

Let us show that 0’| is an LFIHD on B. Let fx™ € B be a homogeneous element with f € K.
Write fx™ = f'hx™ for some f’ € K{ and for some h € A,,. There exists r € Z~ such that for any
1>,

oI(fx™) = f'09 (hx™) = 0.
Since every element of B is a sum of homogeneous elements we conclude that &'|g is a locally finite

iterative higher Ky-derivation on B. Thus, d'|p extends to an LFTHD on the integral closure B =
Koloy,]. O
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In the next lemma, we prove an elementary result concerning the LEFIHDs of the polynomial algebra
in one variable. It will be useful in order to study horizontal G,-actions in Section 5. We let ordg be
the natural valuation

ordg : k[t]\ {0} = Z0, Y _ait' +> min{i|a; # 0} .

Lemma 2.13. Assume that char(k) =p > 0. Let O be an LFIHD on the polynomial algebra k[t] in
one variable such that

s
e*(t) =t + Z NP
i=1

where \; € k* and 0 < s1 < ... < s, are integers. We also fiz a non-negative integer i € Z>g.
If U € Z>¢ wverifies £ > ip®', then

ol () = M <€> £

i
and therefore ordy 0UP°1) (') = ¢ — i whenever (f) # 0.

Proof. First of all, we have

T ¢ T
e0(t) = (1) = <t+ZAix7f”> S R PR [0 | C
2 iy

i0+...+ir=~,i0,...,ir >0 a=1
Considering the term of degree ip®! in x of the previous sum, we get the following conditions:
= apt+.. +iip and dg+i1+...+ 0. =4, (2)

where (ig,41,...,1,) € Zg{)l. Note that such a (r + 1)-tuple (ip, 1, ...,1,) exists since £ > ip®! and so
we can take

(i0s i1, .. ir) = (£ —,i,0,...,0).
Let us show that this is the minimal choice for iy € Z>¢. Indeed, let (y0,71,...,7) € Zrzo be an
(r + 1)-uplet satisfying (2) with ~p minimal. Then we have

T
C—i=10— Zvap%‘_sl </{- Z%‘ =Y.
a=1 a=1

Hence by minimality, vo = £ — ¢, so that ¢ = )| _; 7. Thus,
T T
(Z ’m) P =Y Yap™
Yo a=1

We obtain (v9,71,...,7%) = (£—1,7,0,...,0). This implies in particular that 8(“’81)(#) =\ (lf)tg_i as

7

required. O

3. G,-ACTIONS ON AFFINE TORIC VARIETIES

Let k be a field. In this section, we present a combinatorial description of normalized G,-actions
up to a Frobenius map on affine toric varieties over k.

For a rational cone 0 C Nr we recall that o(1) denotes its set of extremal rays. As usual we write
by the same letter a ray of ¢ and its primitive vector. The following is a classical definition, see for
instance [Dem?70, LielOa, AL12].

Definition 3.1. Let ¢ C Ny be a strongly convex rational cone. A vector e € M is called a Demazure’s
root (or for simplicity called root) if the following hold.
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(1) There exists p € o(1) such that (e, p) = —1.

(it) For any p' € o(1) \ {p} we have (e, p’) > 0.
The extremal ray p satisfying (e, p) = —1 is called the distinguished ray of the root e € M. We denote
by Rt o the set of Demazure’s roots of the cone o. By [LielOa, Remark 2.5] every element of o(1) is
the distinguished ray of a root of Rt o.

Since the subset k[T]* generates the algebra k[T|, Proposition 2.4 (e) implies that k[T] has no
non-trivial LFTHDs. So without loss of generality, in the sequel, we may only consider toric varieties
X, = Speck|o),] given by a nonzero strongly convex rational cone o C Ng.

Example 3.2. Let e € Rt o be a root. Consider the homogeneous derivation E?él) on the semigroup
algebra k[oy,] given by

A (™) = (m, ™ for all m € oY),
where p is the distinguished ray of e. Then 8§1) is locally nilpotent and yields a G,-action on X, in
the following natural way: the homogeneous LFIHD 4, is given by the formula®

aéi)(xm) - <<mZ’ p>> .Xm"'ie forall i€Z>9p and me O‘}\/4.

The kernel of 9, is k[p},], where p* C ¢V is the dual face of p.
Assume now that char(k) = p > 0. Starting from 0, and an integer r € Z>(¢ we can also define a
rationally homogeneous LFIHD 0, , of degree e/p" € Mg. Its exponential map is

o
e:cﬁe,r _ Z agz) xipr .
=0
We check easily that ker 8., = k[p},]. In addition, for any m € o}, we have

deg,, e*% (™) = p" (m, p).

We start by describing the kernel and the possible degree vectors of a homogeneous LFTHD on
k[o )], where o is a nonzero strongly convex rational cone.

Lemma 3.3. Consider a non-trivial homogeneous LFIHD 0 on k[oy,]. Then the following statements
hold.
(i) There exists p € o(1) such that ker 0 = k[p* N M].
(ii) The degree e € M of the sequence O is a Demazure’s root of o and p is the distinguished ray of
e.

Proof. (i) By Proposition 2.4 (a) we have ker @ = k[W N oy,| for some linear subspace W C M.
Assume that WNo" is not a face of o¥. Then W divides 0" into two parts. We can find m € oy, such
that for any r € Z>o, m+re ¢ W. Since x"" ¢ ker 0, there is some rg € Z~ satisfying Aro) (™) £ 0.
Hence 8(T0)(Xm) is homogeneous of degree m + rge. By the previous argument

) o a(ro)(xm) # 0 for some 7"1 € Z~o.

By Definition 2.1 (iv) we have d"0F71)(x™) # 0 and so we let 71 = 79+ 7. Proceeding by induction
we can build a strictly increasing sequence of positive integers {r;};cz., verifying 8(’3)()(’”) = 0 for
any j € Z>o. This contradicts the fact that 0 is an LFIHD. Thus W N oV is a face of V. Since ker
is a subring of codimension one, we have W N oy, = p* N M for some extremal ray p € o(1).

(ii) If e € oy, then the same argument as before gives a contradiction. The rest of the proof follows
as in [LielOa, Lemma 2.4]. O

3We set the convention that (:;) =0, for all r1, r2 € Z>¢ with r1 < ra.
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In the following lemma, we state some properties of a homogeneous LFTHD on k[o),].

Lemma 3.4. Let 9 be a non-trivial homogeneous LFIHD on k[oy,] of degree e and with distinguished
ray p. For every i € Z>o we let ¢; : o, — k be such that O (x™) = ¢;(m)x™ . Then the sequence
{Ci}iezzo of functions on oy, satisfies the following conditions.

(i) The map cq is the constant map m — 1.
(ii) For all m,m’ € o), we have

(m +m) Zcz _i(m) - ¢;(m). (3)

iii) For every m € oy, there exists v € Z>q such that c;(m) =0 for all i > r.
M >
(iv) For everyi,j € Z>o we have

<Z —rj> citj(m) = ci(m + je) - cj(m) for all m € ay;.
(v) For every i € Z>o we have c;(m +m') = ¢;(m) for all m € o, and all m' € p* N M.
Proof. Assertions (i), (ii), (i) and (iv) follow from the definition of LFTHD. Let us show (v). Since
Y™ € ker 9, for any j € Z( we have cj(m’) = 0. Applying (3) we obtain ¢;(m +m’) = ¢;(m). O

The next result provides a classification of normalized G,-actions on X,,. See [Liel0a, Theorem 2.7]
for the case where char(k) = 0.

Theorem 3.5. Let 0 C Ng be a nonzero strongly convexr rational cone. Every non-trivial G,-action
on X, normalized by the T-action is given by a homogeneous LEIHD of the form AO., where O, is as
i Fxample 3.2, e € Rt o and A € k*.

Proof. Let d be a non-trivial homogeneous LFIHD of degree e on k[oy,]. By Lemma 3.3, e is a root
of o and ker 9 = k[p* N M|, where p € o(1) is the distinguished ray of the root e.

Let us first show that there exists a lattice vector m € oy, such that (m,p) = 1. Let m’' € oy,
not contained in the face p* so that (m’,p) > 1. By [LielOa, Lemma 2.4], we have that m :=
m/ + ((m/,p) — 1) - e € oy, satisfies (m, p) = 1.

We let ¢; : o), — k be the maps defined in Lemma 3.4. Let B = k[z] be the polynomial algebra of
one variable. Using the basis (1,z,22,...) we define a sequence of linear operators 9 = {5@)}2,6220 on
the k-linear space B as follows: fixing a vector m € oy, verifying (m, p) = 1 we define

AW (z") = ¢i(rm)2"™" for all i1 € Zsg.
We claim that 9 is well defined. Indeed, let 7,7 € Z>( be such that i > r, then
AW (x"™) = ci(rm)x"™ T e k[o),] and (rm4ie,p) =7 —i <0 sothat c¢;(rm)=0.

Hence, 0% (2") = ¢;(rm)a"~* = 0 for all i > r. B
By Lemma 3.4, the sequence of operators 0 is an LFIHD on B. For instance, let us show that 0
satisfies Definition 2.1 (iv). Letting 4, j € Z>( we have

W 08V (2" = 8D (¢j(rm)z" ) = ci((r — J)m) - ¢j(rm)z" .
Since e € Rt o is a root having p as distinguished ray, it follows that
vi=rm+je—(r—jm=jm+e) € p*NM.
By Lemma 3.4 (v), we have
ci((r—jgm) =ci((r—j)m+v) = ¢i(rm+ je).
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Therefore by Lemma 3.4 (iv), we conclude that

5(1) o 5(])(.’1,’T) _ (Z ‘i“])ci_’_j(rm)xr—i—j — ('l +]>5(2+])(xr)7

] ]

as required. Conditions (i), (i7), (#4i) of Definition 2.1 follow from similar straightforward computa-
tions.
Since d is homogeneous for the natural graduation of B, by Proposition 2.4 (d) there exists A € k

such that every c¢; verifies
ci(rm) = (T> Y
)

for any r € Z>o. We use the convention A\’ = 1 whenever A = 0. Let w € o}, be a lattice vector. The
elements

w ~+ (w, p)e, (w, p)e + (w, p)m
belong to p* N M. By Lemma 3.4 (v) this implies

w, i
) = s (1 + (wsphe + (. phm) = s (o, pym) = (57 ) v (@)
Since 0 is non-trivial, we have A € k*. By virtue of (4) the sequence 9 is given by the LFIHD \d,
(see Example 3.2). O

Example 3.6. Let M = Z? and let o be the strongly convex rational cone generated in the vector
space Ng = R? by the vectors and p = (0,1) and p' = (2,—1). The dual cone ¢" is the cone in Mg
generated by the vectors (1,0) and (1,2). Let A = k[o);] and let X = Spec A be the corresponding
toric variety. The algebra A is generated by the elements

ur =y uy =D and  ug = 2 |

The generators satisfy the relation ujus = u3 and so A = k[z,y, z]/(zz — y?). The lattice vector
e =(0,—1) € M is a root of o since (e, p) = —1 and (e, p/) = 1.

0 U1

ce=(0,-1)

The corresponding LFTHD 0, of Example 3.2 is given by
850) (z) ==z, ot () =0, foralli>O0;

e

0Oy =y, V) =z, 0D(y)=0, foralli>1;

e

() =2 M) =2y, 9P ()=2, 0PD(z)=0, foralli>2.

e

Hence, the corresponding normalized G,-action ¢ is defined by

$:Gyx X = X, where (X (z,y,2)) = (z,y + Az, 2 + 20y + A\22).
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As an immediate consequence of Theorem 3.5, we obtain a description of all normalized G,-actions
up to a Frobenius map.

Corollary 3.7. Let 0 C Ngr be a nonzero strongly convex rational cone. Then for every root e € Rt o
with distinguished ray p, every integer r € Z>q, and every scalar A € K*, there is a non-trivial rationally
homogeneous LFIHD O on the algebra k[o),] whose exponential is given by

Exa(xm) = Z <<m’ p>>/\z Xm—l—ie:EiQDT' for all m e O'}\//[ )

, i
=0
Conversely, every rationally homogeneous LEIHD on K[oy,] arises in this way.

In the next corollary, we generalize to the case of positive characteristic some results in [Liel0Oa,
Section 2]. See also [Kur(03, Corollary 3.5] for a more general statement in the characteristic zero case.
The proofs are similar to those in [Liel0a] so we omit them.

Corollary 3.8. Let 0 C Ny be a strongly convex rational, then the following hold.

i) For any normalized up to a Frobenius map G,-actions in Speck|oY,| the algebra of invariants is
Y M g
finitely generated.
(ii) There is a finite number of rationally homogeneous LFIHDs on k[oy,| with pairwise distinct
kernels.

4. G,-ACTIONS OF VERTICAL TYPE

In this section, we classify normalized G,-actions of vertical type on an affine T-variety X = Spec A
of complexity one over a field k. See [Liel0b] for higher complexity when the base field is algebraically
closed of characteristic zero.

To achieve our classification, we place ourselves in the context of Section 1 by letting A = A[C, D],
where C' is a regular curve over k and ® =) _~ A, -z is a proper o-polyhedral divisor. Hence,

AlC,D] = P Am- X" C Ko[M], where An =H°(C,00(®(m))) and Ko =k(C).
meoy,

The following result gives some general properties of homogeneous LFTHDs on the M-graded algebra
A. Recall that the affine T-variety X = Spec A is called elliptic if Ag = k.

Lemma 4.1. Let 0 be a homogeneous LFTHD on A of degree e. Then the following statements hold.

(i) If O is vertical, then e & oV and ker & = ®m€7']w ApX™ for some codimension one face T of the
cone oV. In particular, the algebra ker @ is finitely generated.
(i7) If A is non-elliptic, then O is vertical if and only if e € 0.

Proof. (i) By Lemma 2.12 we may extend 0 to a homogeneous LFIHD 0 on the semigroup Ky-algebra
Kolo);]. By Lemma 3.3 we have e € Rto and so e ¢ 0. Moreover, we obtain kerd = Ky[rp] for
some codimension one face 7 of o¥. Thus,

ker0 = ANkerd = EB AmXx™.

MmeT)N

As a consequence of [AH06, Lemma 4.1], the algebra ker 9

is finitely generated. (ii) Assume that A is non-elliptic and let d be the extension of d on the Ko-
algebra Ko[M]. If e € 0V, then for any i € Z~( we have o) (Ag) = A;e = {0}. Since Ky = Frac A,
we conclude that d is vertical. O
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As remarked in [LielOa, Remark 3.2], in the elliptic case, the M-graded algebra admits in general
LFIHDs 0 of horizontal type satisfying degd & oV.

In the following, we introduce some combinatorial data on A = A[C,D] in order to describe its
vertical normalized G,-actions.

Notation 4.2. Let ¢ € Rto be a root of ¢ with distinguished ray p and recall that ©(e) =
> .ccminyen, (o) (€, v) - 2. We denote by @, the Ag-module H(C, O¢(D(e))). Furthermore, if ¢ € O,
is a nonzero section, then for any vector m € " belonging to Mgy we have

divp > —D(e) > D(m) — D(m +e). (5)

Starting with the previous combinatorial data, we may construct a homogeneous LFTHD of vertical
type, as follows:

Lemma 4.3. Let e € Rt o be a root of o with distinguished ray p and let ¢ € ®. be a section. Denote

0 = ¢ e, where O, is the LFIHD on the Ky-algebra Koloy,] corresponding to the root e as in Example
3.2. Then for any i € Z>o we have o) (A) C A. Consequently, the sequence

Oeipi= {014 : A A}

iEZZo

defines a homogeneous LFIHD of vertical type on A.

Proof. Fix i € Z~q and let f € A,, be nonzero such that div f + |D(m)] > 0. If 9@ (fx™) # 0 and
¢ # 0, then by (5) we have

div (a@(fxm)/xm*"@) + | D(m +ie)| = idive +div f + [ D(m +ie)|

>i(®D(m/i) —D(m/i+e)) — [D(m)]| + |D(m + ie)]
>{D(m)} — {D(m + ie)}.

Since the coefficients of the Q-divisor {D(m)} — {®(m + ie)} belong to | — 1, 1] we have
div (09 (Fx™) /X" ) + [D(m + ie)| =0,
proving that A is O-invariant. The rest of the proof is straightforward and left to the reader. O

Our next theorem gives a classification of normalized vertical G,-actions on an affine T-variety
X = Spec A[C, D] of complexity one.

Theorem 4.4. Let A = A[C,D]. If e € Rto is a root of o with distinguished ray p and ¢ € P, is
a section, then O, is a homogeneous vertical LFIHD on A. Conversely, every homogeneous vertical
LFIHD on A is of the form O, ,, where e € Rt o and ¢ € ®.

Proof. The direct implication corresponds to Lemma 4.3. To prove the converse statement, let 9 be a
non-trivial homogeneous vertical LFTHD on A. By Lemma 2.12, 0 extends to a locally finite iterative
higher Ky-derivation 0 on the semigroup algebra K [o};]. By Theorem 3.5, d is given by 0, as in
Example 3.2, for some ¢ € K and some root e € Rto.

To conclude the proof, let us show that ¢ € ®.. Let p be the distinguished ray of e. For every point
z € C we let v, be a vertex of A, where the minimum min,ca_(g){e,v) is achieved so that

D(e) = Z(e,vz>  Z.
zeC

For every z € C we let w, = {m € 0¥ | ha_(m) = (m,v,)}. The set w, C My is a full dimensional cone
in Mg (see [AHO6, Section 1]).
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Let also m, € oy, \ p}; be a lattice vector such that m, and m, + e belong to w,, deg®(m,) > g
and (m,, p) & pZ, where p is characteristic of the field k and g the genus of the curve C. It is always
possible to choose such m, since w, is full dimensional, the polyhedral divisor ® is proper, and the
lattice vector p is primitive. According to the Riemann-Roch Theorem we have A, # {0}.

Furthermore, the inclusion 9 (A,,.x™) C Ap.1ex™ ¢ implies pA,,. € Ap.ie. Consequently,
for any z € C we have

divp >D(m,) —D(m, +e).
The coefficient of the divisor ®(m,) —D(m, +e) at the point z € C is —(v,,e). Thus, divy > —D(e)
and we have ¢ € ®., as required. O

In analogy with the toric case, the family of vertical normalized G,-actions on X = Spec A having
pairwise distinct kernels is a finite set. The next result provides a combinatorial criterion for A to
admit a homogeneous non-trivial LFIHD of vertical type.

Corollary 4.5. Let A = A[C,D] and let p C o be an extremal ray. Then, the M-graded algebra A
admits a non-trivial vertical homogeneous LFIHD such that the distinguished ray of e = degd € Rt o
is p if and only if one of the following conditions holds.

(7) C is affine, or

(i1) C is projective and p N deg® = (.

Proof. If C' is an affine curve, then every divisor on C' has a global nonzero section and so for any
e € Rt o we have dim ®, > 0. In this case, the corollary follows from Theorem 4.4.

Assume that C' is projective and fix a root e € Rt o with distinguished ray p. Let us notice that for
any m € py; we have e + m € Rt o. Furthermore

D(e+m)>D(m)+D(e) and so deg®D(m +e) > deg®(m) + degD(e).

Hence, if pNdeg® = (), then we have dim ®.,, > 0 for some m € p},, by the Riemann-Roch Theorem
and by the properness of 2.

Conversely, assume that p N deg® # (). Since we have (e, p) = —1, there exists a vertex v of deg®
such that (e,v) < 0 and therefore deg ®(e) < 0. Under these latter conditions we have dim ®, = 0.
Again, we conclude by Theorem 4.4 in the case where C' is projective. O

Example 4.6. Let the notation be as in Example 1.8. Let p be the ray of o spanned by (1,0) and let
p" be the ray of o spanned by (0,1). We have deg® N p # 0 and deg® N p’ = (). Hence, Corollary 4.5
shows that only p’ can be the distinguished ray of the degree e¢ of an LFIHD 9 of vertical type.

5. G4-ACTIONS OF HORIZONTAL TYPE

The purpose of this section is to classify all horizontal G,-actions on affine T-varieties of complexity
one over a perfect field in terms of polyhedral divisors. The reader may consult [LielOa, Section 3.2]
for the case where k is algebraically closed and of characteristic zero. Let as before A = A[C, D],

where C' is a regular curve over k and ® = Y _~ A, - z is a proper o-polyhedral divisor. Hence,

AlC,D] = P Am- X" S Ko[M], where A = H°(C,00(D(m))) and Ko =k(C).

Vv
meo

In this section, several results will require the assumption that k is perfect so the classification will
only hold in this case. Nevertheless, the statements that we can prove without asking for k to be
perfect are stated in general.

According to the Rosenlicht Theorem [Ros63], in the case where k is algebraically closed, the
following lemma implies in particular that an affine horizontal T-variety of complexity one has an
open orbit for its corresponding T x G,-action.
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Lemma 5.1. Let X = Spec A, where A = A[C,D] and let O be a homogeneous LFIHD on A. Then
0 is horizontal if and only if k(X)® Nk(X)T = k.

Proof. Let L = k(X)® Nk(X)T. Assume that 0 is horizontal and that k(X)¥/L is an algebraic field
extension. Consider I € k(X)T a nonzero invariant rational function. Remarking that k(X )% is the
field of fractions of the ring ker 0, we can find a € ker @ such that aF is integral over ker 0. Since A
is normal, aF’ € A, and by Proposition 2.4(b) we have aF € ker 9. Hence F € k(X )%, contradicting
the fact that 9 is of horizontal type. Since k(X)” /k is of transcendence degree one, we have that L/k
is algebraic. By our convention k is algebraically closed in k(X) which yields L = k. The converse
implication follows directly from the definition of horizontal and vertical LFIHDs. U

Our next lemma shows that the existence of a homogeneous LFTHD on the algebra A = A[C, D]
imposes some restrictions on the curve C. We refer the reader to [FZ05, 3.5], [LielOa, 3.16] for the
case where the base field is algebraically closed of characteristic zero.

Lemma 5.2. Assume that A = A[C, D] admits a homogeneous LFIHD O of horizontal type. Consider
w (resp. L ) the cone (resp. sublattice) generated by the weights of ker O and let wy, = w N L. Then
the following statements hold.

(i) The kernel of O is a semigroup algebra, i.e.,

ker 0 = EB k-pnx™, where o €k(C)".

mewry,

(i1) We have C ~PL, in the case where A is elliptic.
(731) If k is perfect, then C ~ A}( in the case where A is non-elliptic.

Proof. (i) Let a,a’ € kerd \ {0} be homogeneous elements of the same degree. By Lemma 5.1, we
have a/a’ € k(X)® Nk(X)T = k. Thus ker 9 is a semigroup algebra. By Proposition 2.4 (b) we have
that ker 0 is integrally closed, hence normal. This yields (7).

(i) Let K = Frac A and consider E = K. By [CMO05, Lemma 2.2] there exists a variable x over
the field E such that E(x) = K. By (i), the extension E/k is purely transcendental and so is K/k.
Since k(C') C K, the regular projective curve C' is unirational. According to the Luréth Theorem, it
follows that C' ~ Pj.

(iii) Assume that A is non-elliptic. Let k be an algebraic closure of k, so that the field extension
k/k is separable. Let B be the algebra A ®, k. Then B is a normal finitely generated M-graded
domain (see Lemma 1.9). Note th at the graded piece By is Ay ®y k. Consequently, & extends to
a homogeneous LFIHD of horizontal type on the k-algebra B. Now, we can apply the geometrical
argument in [Liel0a, Lemma 3.16] to conclude that we have By ~ k[t], for some variable t over k. By
separability of k/k, this yields Ay ~ k[t] (see e.g. [Rus70, Asa05]). O

The preceding lemma implies that the kernel of a horizontal homogeneous LFTHD on A is finitely
generated. This result can be obtained independently from [Kur03, Theorem 1.3] in the characteristic
zero case. Note also that the kernel of a non-trivial LFTHD on a normal unirational surface V' over a
perfect field k such that k[V]* = k* is a polynomial algebra (see [Nak78, Theorem 2]).

5.3. In view of the above results, in the following we let C' = All( or C = IP’11<. Assume that A has a
homogeneous LFIHD 9 of horizontal type and let

ker 0 = EB k- omx™
mewy,

be the kernel of 0. We also assume that k(C') = k(t) for some local parameter ¢t and, when C is affine,
we let k[C] = k[t] be its coordinate ring.
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Lemma 5.4. Keeping the notation as above, the following statements hold.
(i) If C = AL, then for any m € wy, we have div py, + D (m) = 0.
(i) Assume that C' = ]P’ll(. Then there exists a point zo, € C' such that for any m € wy, the effective
Q-divisor div ¢, + D (m) has at most z in its support.
(i7i) The cone w is a mazimal cone of the quasifan A (D) (see Definition 1.5) in the non-elliptic case,
and of A(@]Pi\{%o}) for the elliptic case.

(iv) The rank of the lattice L is equal to n = rank M. The lattice M is spanned by e := deg d and L.
Furthermore, if d is the smallest positive integer such that de € L, then we can write every vector
m € M in an unique way as m = [+ re for some l € L and some r € Z such that 0 < r < d.
(v) If k is perfect, then the point zo in (it) is rational, i.e., the residue field of zo is k.

Proof. (i) Given a lattice vector m € o), we let
Am = fm - k[t] )
where f,, € k(t). Assume that m € wy. Then we have ¢,, = F'f,,, for some nonzero F' € k[t|. By
proposition 2.4(a) the polynomial F' is constant. Hence,
div o, + [D(m)| = 0.
Consequently, for any r € Z>( we obtain
r@D(m)] = —rdive, = —dive, = [D(rm)].

This shows that ©(m) is integral when m € wr,.
(77) Assume that there exists m € wy, such that

div o, + D (m) > [200] + [20] 5

where 2z, 2z are distinct points of C'. Denote by oo the point at the infinity in C' = IP’11< for the local
parameter t. Let po(t), peo(t) € k() be two rational functions verifying the following: if the point 2
(resp. zoo) belongs to Aj = Specklt], then po(t) (resp. pso(t)) is the monic polynomial generator of
the ideal of zy (resp. zoo) in k[t]. Otherwise, zp = 0o (resp. zoo = 00) and we let po(t) = 1/t (resp.
Poo (t) = 1/ t).

Let f := po(t)/Poo(t). The rational functions fi,, and f~'¢,, belong to A,,. By Proposition 2.4 (a)
we have

FomX™ - [ lomx™ = @anx™™ €kerd, andso  foux™, [T romx™ € ker 8,

yielding a contradiction with Lemma 5.2 (). Hence, div ¢,, +©(m) is supported in at most one point.

(731) By (i) and (i), the map m — ©(m) in the non-elliptic case, and the map m — ©|Pl1<\{%o}(m)
in the elliptic case, are linear in the cone w. This implies that there exists a maximal cone wy belonging
to A(®) in the non-elliptic case, and belonging to A(©|]P>11< \{zo0}) it the elliptic case, such that w C wy.

Let us show the reverse inclusion wy C w. Let m € wy. Changing m by an integral multiple, we
may assume m € L and ©(m) integral. By Lemma 5.2 (i) and Proposition 2.4 (c), the cone w is full
dimensional in M. Hence, there exists m’ € wy, such that m +m’ € wy. Consider a nonzero section
fm € A, such that

div fr, +D(m) =0

in the non-elliptic case, and such that

(div frn +D(m)) 1\ 20y = 0
in the elliptic case. It follows that
mem : Spm’Xml = )‘(Pm+m’Xm+m/
for some A € k*. Therefore, f,,,x™ € ker 0 and again by Proposition 2.4 (a) we have m € w.
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(iv) According to the fact that o), spans M and that 9 is a homogeneous LFIHD on A, for any
m € M we have m + se € L for some s € Z. Changing r := —s by the remainder of the euclidian
division of r by d, if necessary, we obtain m = [ + re, where [ € L and 0 < r < d. The minimality of
d implies that this latter decomposition is unique.

(v) Assume that k is perfect and fix k an algebraic closure of k. Consider the algebra B = A ®y k.
If welet © =3 A, -z, then by Lemma 1.9 the polyhedral divisor

D= A.-5%(2)
zeC
over ]P’ll—( satisfies
0/l
B= P Bnx™ where B, =H(P Op1 (D (m))).
meoy,

We can also extend 0 to a homogeneous LFTHD 0 of horizontal type on B. For any m € wy, we have
emX™ € ker Og and there exists a rational non-negative number )\, such that

divny, +D(m) = Ay - 2oo-
Applying S* to the previous equality we obtain

divi ©m + Dr(m) = A - S*(200)-

Assume that z,, is not a rational point and that A, > 0 for some lattice vector m € wr,. Changing m
by a multiple we may suppose that A, is greater than 1. Since the field extension k/k is separable,

the polynomial p.__(t) in the proof of (ii) has at least two distinct roots, say 21, z2 € k. Note that the
points z1, zo belong to the support of S*(z4,). Considering the non-constant rational function

f=t—21)/(t - 2),

we fall again into a contradiction with Lemma 5.2 (i) since

FemX™ - F L omx™ = pomx>™ € ker Ok, andso fonx™, Ftomx™ € ker O -
O

In the sequel, we let the notation be as in 5.3. Without loss of generality, whenever k is perfect, in
the elliptic case we can assume that z, is the rational point co for the local parameter ¢.

Lemma 5.5. Let k be a perfect field. The following statements hold.
(i) If C = PL, then the normalization of the subalgebra Alt] C k(t)[M] is A’ = A[A}{,@]Ai], where
Al = Speck[t].
(7i) If the degree of O belongs to w and the evaluation of the polyhedral divisor CD\A}( is linear, then

0 extends to a homogeneous LEIHD &' on A’ of horizontal type. Furthermore, we have ker 0 =
ker &' .

(7i1) Let d be the smallest positive integer such that for any m € wyy the divisor D(d - m) is integral.
Then we have d- M C L.

Proof. (i) This follows from [Lanl15, Theorem 2.5].
(77) Letting
A= @ A", where A, = H'(AL, Oy (D] (m))),
meoy,
for any m € o), we can write A}, = ¢y, - k[t] with ¢, is a nonzero rational function satisfying
div 9y + D]y ()| = 0.

If m € wr, we can assume that ¢, is as in Lemma 5.4 (i).
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By Lemma 2.5, we may extend 0 to a homogeneous iterative higher derivation 9’ on the semigroup
algebra k(t)[M]. Denote by &) the i-th term of &. Consider f € A/, for a lattice vector m € oy,
and fix an integer i € Z-o. We will show that &) (fx™) € A’.

By the properness of ® and Lemma 5.4 (i7) with 2, = 0o, we can find a lattice vector m’ € wy,
verifying the following. The vectors m, m’ belong to a same maximal cone of A(D) and the coefficient
in oo of the divisor div ¢, + D (m’) is integral, positive, and greater than that of —div f — [D(m)].
Therefore

div fom + [D(m' +m)| = div f + [D(m) ]| + div oy + D(m') > 0.

In particular, ¢, f belongs to A, +,,,/. Hence it follows that

Pm/ Xm 8/(2) (me) = 8(i)(()0m’fxm +m) € Am’+m+ieXm +m+z’e'
By our assumption we have e € w = ¢" so that m + ie € o). Since ©|A11< is linear and D (m’) is
integral, we obtain the following identities of Q-divisors over A%{:

— div @ ymie = [Dlpr (m' +m+ie)| = [Dp1 ()] + [Dlg1 (m +ie)] .
Hence,
Om/tmtie = \Pm! * Pmtie for some A\ € k*.
Consequently, this implies
me’Xmlal(i)(me) € Am’+m+ieXm,+m+ie c Pm’ * Pmtie k[t] Xm’-i—m—i—ie .
This yields
ODV(FX™) € Pmic - KX = Ao x ™ C A,
as required. We conclude that the subalgebra A’ is §’-invariant.

Next, we show that & is a homogeneous LFTHD on A’. Let m’ be as above. We have tp,, x™ € A.
Thus, there exists s € Z~g such that

EmX™ 0D (1) = 0D (b x™) =0 for any i > s.
Hence &' acts locally finitely on ¢ and so the same holds for Aft]. Let f € A/, and choose s’ € Z~g
such that the sheaf Op: (|D (m + s'm')]) is globally generated. Thus,

gps/m/fxm-i-s’m/ c A/ , = k[t] Rk Am—l—s’m’ - A[t] i

m+s'm

Since %/mlxs’m’ is in the kernel of 0 we conclude that & acts locally finitely on fx™. This proves
that @' is an LFIHD. The fact that @ is of horizontal type is straightforward and the proof is left to
the reader.

It remains to show that ker & = ker &'. By Lemma 5.2 (i) the kernel ker @' is the semigroup algebra
given by wy,, where L’ is a sublattice of maximal rank. Since ker @ C ker &' we have L C L' and L'/L
is a finite abelian group. Let

ker 0 = @ k(pmxm and kerd = @ kSD/me

mewr, mewrs

Letting m € L' we let r € Z~( be such that rm € L. Then, by Lemma 5.4 (i) and (i) we can write
Aorm = @h = ()", where A € k*. So ¢] x™ is integral over ker . By normality of A and since
ker 9 is algebraically closed in A one has ¢}, x™ € ker 9. Hence L' = L and so ker @ = ker &'.

(797) Up to multiplying the LFTHD O by a homogeneous kernel element, we may assume that
deg 0 = e € w. In particular, the algebra

A, = EB Apnx™ is O-invariant.

mew s
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By virtue of assertions (i) and (ii) in the lemma, we may suppose that C' = Aj. Let m € wy;. We
have Agmam' = Adm - Ami = @am Ay for all m’ € wyy. Hence, the principal ideal (g, x¥™) in the ring
A, is 0|4 -invariant. By Proposition 2.4 (f), we have pgm,x?™ € ker 0 and so dm € wy. This yields
d-wp Cwr and (ii3) follows. O

The following result provides a geometrical characterization of horizontal non-hyperbolic affine Gy,-
surfaces. See [FZ05, Theorem 3.3 and 3.16] for the case where the base field is C.

Corollary 5.6. Assume k is perfect. Let N =7 and 0 = R>q, so that ® is uniquely determined by
the Q-divisor ®(1). If the graded algebra A admits a homogeneous LFIHD of horizontal type, then the
following statements hold.

(i) If C = AL, then the fractional part {D(1)} has at most one point in its support.

(i3) If C =PL, then {D(1)} has at most two points in its support.
In each case, the support of {D(1)} consists of rational points. In particular, every horizontal non-
hyperbolic affine Gy, -surface over k is toric.

Proof. (i) We first prove the result in the case where k is algebraically closed. Let d be the smallest
positive integer such that ©(d) is an integral divisor. Letting f € k(t) a generator of Ay, i.e. Ay =
f - Ao, we let B be the integral closure of A[v/fx] in its field of fractions. Up to a principal divisor,
we may assume D (1) < 0 and so f € k[t] is a polynomial. By Lemma 5.5 (i), we have fx¢ € ker 0.

By Corollary 2.6, we obtain the existence of an LFIHD &' on B extending 9 and satisfying /fx €
ker . Write B = A[C’,D’] for some polyhedral divisor ©’ on a regular affine curve C’ = Spec By.
Actually, By is the normalization of k[t, / f] and also a polynomial algebra of one variable over k (see
Lemma 5.2 (7i7)). The fact that Bj = k* and that By is an unique factorization domain implies that
f=(t—2)" for some z € k and some r € Z~g. Since div f +d - D(1) = 0 one concludes that {D(1)}
is supported in at most on the point z.

Assume now that k is not algebraically closed and that {©(1)} is supported in at least two points.
Extending the scalar to the algebraic closure k gives a contradiction by Lemma 1.9.

(74) Multiplying 0 by a homogeneous element in its kernel, we may assume that the degree of 0 is
non-negative. By Lemma 5.5 (4i), the LFTHD 0 extends to a homogeneous LFTHD 0’ of horizontal type
on the normalization A’ of the algebra A[t]. Note that the graded algebra A’ is given by the polyhedral
divisor ®| AL- Applying (7) for the non-elliptic graded algebra A’, the fractional part {©| AL (1)} has at
most one point in its support. So {D(1)} is supported in at most two points. This yields (7).

Let us show the latter claim. By a similar argument, we deduce that in any case the support of
{D(1)} consists of rational points (see Lemma 1.9). Assume that A is non-elliptic. Since {D(1)} is
supported in at most one rational point, without loss of generality, we can let

@(1):—2'0, where 0<e<d, and ged(ed)=1.

A straightforward computation shows that

A= P k¥,

>0, ad—be>0

see e.g. [FZ05, Lemma 3.8] and [Liel0Oa, Example 3.20]. The algebra A admits an effective Z?-grading
endowing X = Spec A with a structure of a toric surface. Assume that A is elliptic. Using the fact that
every integral divisor over P! of degree 0 is principal, we can reduce to the case where ® is supported
in the points 0 and co. We conclude by a similar argument as in [LielOa, Example 3.21]. O

As a consequence of Corollary 5.6, we obtain the following result.
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Corollary 5.7. With the notation in 5.3, we let A, = @mewM ApX™ and let 7 = wY C Ngr. Then
A, ~ AlC,D,] as M-graded algebras, where ®,, is T-proper polyhedral divisor over the curve C
satisfying the following conditions.
(2) If A is non-elliptic, then ®, = (v+7) -0 for some v € Ng.
(it) If A is elliptic, then D, = (v+7) -0+ AL - o0 for some v € Ny and some AL, € Pol,(Ng)
satisfying v + AL, C 7.

Proof. (i) We will follow the argument in [LielOa, Lemma 3.23]. Note that the degree e of 0 belongs
to w. For £ € wy, denote by 9y the homogeneous LFIHD ¢, - 9. The subalgebra

B(Z—i—e) g @ AT’(Z-‘,—E)XT(ZJ’_G)
r>0

is Op-invariant. Since the homogeneous LFIHD 9| Bloye) 18 of horizontal type, we can apply Corollary 5.6
to conclude that {D(¢+e)} is supported in at most one point. By Lemma 5.4 (¢), for all £,¢' € wy, we
have

—divpy + DU +e)=DU+ L +e) =D +e) —divp,, andso {D({l+e)}={D +e)}.

Thus, the union of the supports of the divisors {D (¢ + )} has at most one element, where ¢ runs
over wy,. By the linearity of © in w and Lemma 5.4 (iv), up to a principal polyhedral divisor, the
polyhedral divisor ®,, of A, is supported in at most one point. This point needs to be rational so (i)
follows.

(i4) By multiplying 0 with a kernel element, we may assume e € w. Let A/, be the normalization of
A, [t]. By Lemma 5.5, elements of degree m € wy in A/, correspond to the product of a global section
of D| Al( ) and the character x™. In addition, 0 extends to a homogeneous LFIHD of horizontal type
on A/,. By (i), the union of the supports of the divisors {D| A1( )}, where m runs trough wyy, has at
most one rational point. This concludes the proof. O

For our next theorem, which is a key ingredient in our classification result, we introduce the following
notation. Let ® be a proper o- polyhedral divisor over A or IP’k such that the coefficient Ag at zero
is v + o for some v € Ng. Let M =M xZ and let N =N x Z. We also let & be the cone in N
generated by (v,1) and (0,0) if C = Al and by (v,1),(¢,0) and (A, —1) if C =PL.

Theorem 5.8. Let D be a o-proper polyhedral divisor over a reqular curve C. Assume that © satisfies
one of the following conditions.

(i) If C is affine, then C' = Al = Speck]t] and ® = (v+ o) - 0 for some v € Ng.

(ii) If C is projective, then C = PL and ® = (v + 0) -0+ A - 00 for some v € Ng and for some
Ay € Pol, (NR).

Let d be the smallest positive integer such that dv € N. For any m € M we let h(m) = (m,v).
Then there exists a homogeneous LFIHD O of horizontal type on A = A[C, D] with degd = e if and
only if the following statements hold.

(a) If chark = p > 0, then there exists a sequence of integers 0 < s1 < S9 < ... < S, such that for
i=1,...,r we have (p*e,—1/d — h(pe)) € Rt5.

(b) Ifchark =0, then (e,—1/d — h(e)) € Rto.

Under these latter conditions, the LFIHD O is of following form. Let ( = /t. Let us consider the

LFIHD O¢ on the algebra K[(] with exponential map

() = C+ Y Nt (6)
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where A\i,..., A\ € K* (resp. with 84(}) = )\d%, where X € k*) whenever chark > 0 (resp. chark =0).
Then the i-th term of 0 is given by the equality

o) (tlxm) _ <—dh(m+ie)aéi)(th(m)tl)xm—l—ie for all thm cA. (7)

Proof. Assume that © satisfies (i) and fix an LFIHD 0 on the algebra A of horizontal type and of
degree e. Let B be the normalization of the subalgebra

Al O] < k().
Consider the affine line ¢’ = Speck[(] and the polyhedral divisor ®' = (dv + o) - 0 over C’. Since
d = min{r € Zso | re € L} (see Lemma 5.4 (iv)), the algebra A[C’,D’] is precisely B (see [Lanl5,
Theorem 2.5]). According to Lemma 4.1 (ii) we have e € 0 and so A [¢ —dh(e) x¢] is a cyclic extension

of the ring A. Since @g.x% € ker @ by Corollary 2.6, 9 extends to a unique LFIHD @ on B. Using
further that dv € N we obtain a natural isomorphism of M-graded algebras

Q: B - E, Cle — th(m)-i-lxm’
where E = k[o,][¢]. Consider ¢,d the homogeneous LFTHD of horizontal type on E given by
00D = oot

where i € Z>g. Now, Lemma 5.5 (i¢) implies that ker ¢,0" = ko] so that .0’ = x°- 9, for some
non-trivial LFTHD ;. An easy computation shows that the LFIHD 0 = ¢ (¢.d’) is as in (7).

Assume that chark = p > 0 and let us show that (a) holds. By Proposition 2.4 (d), the exponential
map of J¢ is given as in (6) for some integers 0 < s; < ... < s,. If p does not divide d, then consider
| € Z>0 \ pZ such that dl > p*t. Note that t! € A. By Lemma 2.13 and (7) we obtain the equality

OP () = Aydit— /ATy pte.

Since 9P (t!) € A\ {0}, it follows that —1/d — h(p°‘e) € Z.

Otherwise, assume that p divide d. By the minimality of d there exists m € oy, such that dh(m) is
not divisible by p. Taking [ € Z>q such that dl > max{p*t, —dh(m)} we have t/x™ € A\ {0} and so
Lemma 2.13 implies

AP (t ™) = Ajdh(m)t~Ya-hEreF mipie ¢ A\ {0}

Hence in any case e; := (p*le,—1/d — h(p®'e)) € M, where M = M x Z.
Let us remark that
_ (myl) _ 1,12V
AleD] = P kx"™Y =k[L],

i
(m,l)EUﬁ

where x(™!) = t!x"™ and & is the cone generated by (v, 1) and (,0). Since e € ¢V, an easy computation
shows that e; = (p*te, —1/d—h(p®'e)) € Rt o for the distinguished ray p = (dv, d). So by Corollary 3.7
the M-graded algebra A admits rationally homogeneous LFTHDs of degree e;/p®' coming from the
root e1. One of such rationally homogeneous LFIHDs is given by the equality
[o¢]
e (fhm) = 3 <d(l + ﬁ(m))>)\iltz—z'(l/dJrh(pﬁe))Xmeﬁexips‘l
i
i=0

9

where A\; € k* is as (6). Furthermore, by Corollary 2.6 we extend d; to a homogeneous LFIHD 04
on the M-graded algebra B. Assume that r > 2. One can see ¢*? and ¢*% as automorphisms of the
algebra B[z] by letting ¢*?' (z) = % (z) = . Hence, using this convention we have

ewal o (exai)—l — €x¢;1(Xea<’1),



26 KEVIN LANGLOIS AND ALVARO LIENDO

where O;; is the LFTHD on k[(] defined by
ex6<,1 (C) — é’ + Z )\iiﬂp% )
=2

Consequently, the map ¢*?’ o (emai)_1 yields a homogeneous LFTHD 0/ on A. Actually, replacing O¢
by Oc, the LIFHD 9 satisfies (7). Again, it follows that ey := (p*?e, —1/d — h(p®2e)) € M is a root of

o. One concludes by induction that (a) holds.

If char k = 0, then the locally nilpotent derivation aé” on the algebra k[(] is equal to )\6% for some

A € k*. Using (7) we have
a(l)(t) _ /\dt—l/d—h(e)-i-lxe c A\{O}
and so assertion (b) holds. This concludes the proof in the case where condition (z) holds.

Assume now that (i7) holds. Let A’ be the normalization of A[t] in the field Frac A. By Lemma 5.5 (7i)
, we have d- M = h='(Z) C L, where L is the sublattice of M generated by the set of weights of ker 0.
Hence, changing d by ¢, - @ for m € oy ,,, without loss of generality, we may assume e € oy;.

More precisely, replacing e by e + m for some m € oy ,, does not change assertions (a), (b) in the
Theorem. With this new assumption, again by Lemma 5.5, we extend O to a homogeneous LFIHD 0
on A’ of horizontal type. By the previous argument (the case where C' = Al) applied to (A’,d) and
since 0 stabilizes k[g" N M | we obtain (a) and (b).

It remains to show that if a lattice vector e verifies assertions (a), (b), then one can build a homo-
geneous LFTHD on A = A[C, D] of horizontal type and of degree e as in (7). Assume that chark > 0
and let e; = (e,—1/d — h(p®e)). By (a) we have e¢; € Rto and we can consider the rationally ho-
mogeneous LFIHDs O, s,,..., 0, s on the semigroup algebra k[&JYw\] (see Example 3.2). Using the

isomorphism ¢ and considering every i as automorphism of the ring Alz], a computation shows

that the composition

egcael, 20es, 20ey sy

‘1oe 20...0€

defines an LFIHD as in (7). In the case where chark = 0, a similar argument can be applied (see also
[LielOa, Examples 3.20 and 3.21]). We leave the details to the reader. O

For the proof of our next lemma, which is the last ingredient for our main theorem, we need the
following remark.

Remark 5.9. Assume that k is perfect and let r € Z~y. Then the Frobenius map F' : k — k mapping
A = M is a field automorphism. Let ¢ be a new variable and let z = tP". We will compute the
ramification of the field extension k(¢)/k(z). Let P(z) = > a;z" € k[z] be an irreducible polynomial.
Then
P(x) = P(t"") = (F*(P)(1))"", where F*(P)(t) =) F'(a)t'.

Hence F*(P)(t) is irreducible in k[t]. Let C and C’ be unique projective curves over k whose
function fields are k() and k(z), respectively (both isomorphic to P). The inclusion k(z) C k(t)
induces a purely inseparable morphism 7 : C' — C’. Our previous computation shows that for every

z € C the pullback of z as Weil divisor is given by 7*(2) = p" - 2/, where 2’ € C' lies in the schematic
fiber of z.

Let ® = > .o A. - 2 be proper o-polyhedral divisor over a regular curve C. Recall that h. stands
for the support function of the o-polyhedron A, for all z € C, see Definition 1.5.

Lemma 5.10. Assume that k is perfect. Let ® be a proper o-polyhedral divisor over C' = All( or
C = P, respectively. Assume that there exists a mazimal cone w on the quasifan A(D) or A(”}D‘Ai),

respectively, such that for any z € C different from 0 and oo we have h,|, = 0. Let 9 be an LFIHD
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of degree e on the algebra A[C, D] given by formula (7). Let p = chark if chark > 0 and p =1 if
chark = 0. Then 0 extends to an LFIHD on A = A[C,D)] if and only if for any m € oy, such that
m + pte € o), the following hold.

(1) If ho(m + p*te) # 0, then |pFh.(m + p*te)| — |pFh.(m)] > 1,Vz € C, 2z # 0, .

(1) If ho(m + pte) # h(m + p®te), then |dho(m + p*te)] — [dho(m)| > 1+ dh(p®‘e).
(iii) If C =Py, then |dhoo(m + p*te)| — |dhoo(m)| > —1 — dh(p®'e).
Here h is the linear extension of hgl, to Mg, d € Z~q is the smallest positive integer such that dh is
integral and k is the unique non-negative integer such that d = d'p* with ged(d',p) = 1.

Proof. Considering m € oy, we can write h(m) = (m,v) for some v € Ng. Since every h, is upper
convex, h,(m) <0Vze C\ {0,000}, and obviously ho(m) < h(m). Letting

Ay = P Kt emx™,

meM

where ¢, =t~ and localizing by a homogeneous element of ker @, by Lemma 2.5, d extends to
a homogeneous LFHID on Aj;. We also denote this extension by 9. Hence, 0 extends to an LFTHD
on A if and only if the extension 9 on Ajs stabilizes A. In addition, we may assume that k = k is
algebraically closed since the extension 9 of d on Ay @y k stabilizes A ®y k if and only if 0 stabilizes
A.

For the characteristic zero case, the proof is available in [LielOa, Lemma 3.26]. In the sequel, we
assume chark = p > 0. The proof is divided into three steps, (similar to [LielOa, Lemma 3.26]) where
we assume h = 0, h(m) integral for all m and finishing with the general case.

Case h = 0. In this case we have d = 1, L = M and by Theorem 5.8, @ = x°0; for some LFTHD 0; on
k[t]. By Proposition 2.4 (d), the LFIHD 9, is determined by a sequence of integers 0 < 51 < ... < ;.
Furthermore, since h, < 0 for any z € Ail{, then ho > 0 in the elliptic case. Fixing m € oy, such that
m + ple € oy, the conditions of our lemma become:

(i) If ho(m + pte) # 0, then |h(m + pie)| — |h.(m)| > 1Vz € Al
(i4i') If C =Py, then |hoo(m + pte)| — [hoo(m)] > —1.
Under the above assumption we have
Ay = H'(C,00(D(m))) C K[t]
and 0 stabilizes A if and only if
Ft) € A = 0 (f(t)) € Ampie,Ym € oy, Vi € T,
or equivalently,
div f + |D(m)| > 0= divd (f) + |D(m +ie)] >0, Vme o), Vi€ Zs.

This is also equivalent to

ord, f + [ho(m)] > 0= ord, 0 (f) + |ho(m +1ie)| >0, Vme o), Vi€ Zso, V2 C. (8)

We will first show the lemma in the case where C' = Al. Let us show first that (i’) implies (8)
and so O stabilizes A. If h,(m + p®te) # 0 with m € oy, such that m + p*'e € oy,;. Then we have
h.(m) # 0 so that f € (¢t — z)k[t].

Let i € Z>o. If at(i)(f) = 0, then 8t(i)(f) € Aptie. Otherwise, at(i)(f) # 0 and so m + ie € 0.
Letting ¢ = Ip°** for some [ € Z>(, we have ord, agi)(f) > ord,(f) — . Hence it follows that

ord, 3V (f) + [ha(m + ie)| = ordz(f) + Lha(m)] + (Lhs(m + 9™ €)] — |hz(m)] — 1)
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By convexity of ¢V for 1 < j < | we have m + jp*le € ¢¥. If h,(m + ie) = 0, then ord, d®(f) +
Lho(m +ie)] > 0 and (8) holds. Otherwise, h.(m + ie) # 0 and again h;(m + (I — j)p*'e) # 0 for
1 < j < 1. Combining the previous inequality with (i'), and the fact that ord, f + |h.(m)] > 0 we
obtain

ord, 89 (f) + |ha(m + ie)| >ord.(f) + |h.(m)]+
l
D (Lhe(m+ (1= j)p*e+p*ie)| — [ha(m+ (1= j)pe)] — 1) > 0.
j=1
This yields (8) in the case where C = Aj.

Now, we show the converse. Assume that C = A11{ and that O stabilizes A. Recall that 0 stabilizes
A if and only if (8) holds. If w is the unique maximal cone in A(®D), then h, is identically zero for all
z € C and so (¢') is trivially satisfied. Therefore the lemma follows in this case.

In the sequel, we assume that A(®) has at least two maximal cones. Let wy € A(D) be a maximal
cone different from w. Then there exists a lattice vector m € rel.intwy such that h,(m) € Z and
U™ (p,,) # 0 for some [ € Z>¢. Note that here ker 0 = @meM k- pnx™. Taking m big enough we
may suppose that —h,(m) > Ip®! and by Lemma 2.13 we may suppose that

ord, E?t(lpsl)(gpm) = —h,(m) — L.
By (8) we have

[hz(m +1p™e)| —hz(m) —1=0. (9)
Letting h, be the linear extension of hz|w, we have

Lh(m + Ip*re) | = [hz(m) + lha(p™e)] = h.(m) + [lh.(p™e)] . (10)
Now, (9) and (10) yield ) )
th-(p™e) 2 [lh=(p*'e)] = 1
and so h;(p°'e) > 1. Finally, letting m € oy, we obtain
[he(m +p*e)] = [ha(m)] + [h=(p™e)] = [ho(m)] +1.

This yields (i) and so concludes the proof of the lemma in the case where C' = Aj.

Assume now that C' = PL. Then for z € C'\ {oo} and for any m € o), such that A4, # 0, we can
find ¢y, . € Ay, satisfying ord, (¢m,.) + [h-(m)| = 0. Replacing ¢, by ¢, . in the previous argument
and using Lemma 2.13 for z = oo in an analog way as in the above proof, we obtain the equivalence
between (8) and ('), ().

Case h integral. Again in this case we have d = 1. Let v € N be such that (m,v) = h(m) for
all m € wys. Let us consider the polyhedral divisor defined by @' = D + (—v + o) - 0 if C is affine,
and by ' =D+ (—v+0) -0+ (v+0) - 00 if C is projective. Now A is equivariantly isomorphic to
A[C,D'] and A[C,D'] is as in the case where h = 0. Conjugating d by the equivariant isomorphism
A ~ A[C,D'] (see [Lanlb, Proposition 4.5]), the algebra A is O-invariant if and only if assertions
("), (4i7") hold for the polyhedral divisor ©’. An easy computation shows that this is equivalent to ©
satisfying (4), (i), (7).

General case. Now, we assume that h is not integral, i.e., that d > 1. Let us consider the nor-
malization B of the cyclic extension A[¢~®)y*] C k(¢)[M], where ¢¢ =t and w € rel.int(w) N M
satisfies ged(dh(w),d) = 1. We remark that B is naturally M-graded. Furthermore,

Kéz{%m,bEBm, me M, andb#O}:k(C).
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Hence, B = A[C",D'], where C' ~ P if A is elliptic and C’ ~ A otherwise. We let k and d' be
the unique pair of positive integers such that d = d'p* with ged(d’,p) = 1. Let m : C' — C be the
morphism induced by the field inclusion Ky = k(t) C k(¢) = K. Then by Lemma 1.10, Remark 5.9
and [Sti93, Section 3.12, Exercise 3.8], we obtain

o _ Jd Do 0] + X conoy P - Ax - 2, if C=AL
d-Do-[0]+ Y iconome PF - Az 7 +d- Ao - [o0], if C =PL

This yields h{y = dho, h’y, = dhs and h., = p*h,, where 7(z) = z and K., is the support function of
the coefficient A’, of @ at z’. Moreover, hyl, is integral and so the algebra B satisfies the conditions
of the previous case (h integral). We let A’ : Mg — R be the linear extension of A, .

Let

By = €P ¢, k[¢]-x™, where ¢, =¢ M.
meM
Since Ay € By is a cyclic extension, by Corollary 2.6 the LFIHD 0 on Aj; extends to an LFIHD
d on Bys. Furthermore, 9 stabilizes A if and only if & stabilizes B (see the argument in [Liel0Oa,
Lemma 3.26]).
By the previous case, B is stabilized by @ if and only if for every m € o)/, such that m+p®te € oy,
the following conditions are satisfied.
(") If B, (m + p®te) # 0, then |h.,(m+p*e)| — [, (m)] > 1,V2' € C', 2/ # 0, 0.
(i7") If hi(m + pte) # W' (m + p°te), then |ho(m + p®te)] — [hh(m)| > 1+ dh/(p®te).
(i4d") If C = PL, then |hl,(m +pte)| — [l (m)] > —1 — B/ (p®le).
Now, the lemma follows replacing h' by dh, hly by dho, h'y by dhs and k. by pFh, for all 2/ € C’,
z # 0, 00. O

The following is our main result in this section. It gives a classification of horizontal LFITHDs on
affine T-varieties of complexity one over a perfect field. It is a direct consequence of the results in this
section.

Theorem 5.11. Assume that the base field k is perfect. Let p = chark if chark > 0 and p = 1 if
chark = 0. Let © be a proper o-polyhedral divisor over a regular curve C and let A = A[C,D]. Let
w C Mg be a rational cone and let e € M be a lattice vector.

Then there exists a homogeneous LFIHD on A of horizontal type with degd = e and with w as
weight cone of ker 0 if and only if the following conditions hold.

(i) C=Al or C =Pl
(ii) If C = AL, then w is a mazimal cone in the quasifan A(D), and there exists a rational point
20 € C such that h,,, is integral Vz € C,z # 2.

(ii") If C =Py, then there exists a rational point z such that (ii) holds for Co := P} \ {zs0}-
Without loss of generality, we may suppose that zg = 0, zeo = 00, and h,|, = 0Vz € C,z # 0,00.
Let also h be the linear extension of hol, to Mg given by h(m) = (m,v) for some v € Ng, let d > 0
be the smallest integer such that dh is integral and let k be the unique non-negative integer such that
d = d'p*, with gcd(d',p) = 1. Let 7 = w" and denote by T the cone in Ng generated by (v,1) and
(1,0) if C = AL and by (v,1), (1,0) and (Aso, —1) if C =PL.

(iii) There exists sy € Z>o such that (p*'e,—1/d — h(p*'e)) € RtT.

For any m € o), such that m + p*‘e € o), the following hold.
(iv) If ho(m + pte) # 0, then [p*h.(m + p*te)| — |pFh.(m)] > 1, Vz € C,z # 0, 0.
(v) If ho(m + p*te) # h(m + p*te), then |dho(m + p®te)| — [dho(m)] > 1+ dh(p®te).
(vi) If C =Py, then |dhoe(m + pte)] — |dhoo(m)] > —1 — dh(p®'e).
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More precisely, all possible homogeneous LFIHD O on A of horizontal type with e,w satisfying (i) — (iv)
are given by the formula (7) in Theorem 5.8. If chark > 0, then O is described by a sequence of integers
0<s1 <89 <...< 8y, where every (psie, —1/d — h(psie)) belongs to Rt 7. Moreover,

ker 0 = @ kpmx™,
mewr,
where L = h™Y(Z) and ¢, € A, satisfies the relation
div, +D(m) =0 if C=AL; or  (divem)le, +D(m)|c, =0 if C =P

Example 5.12. Let the notation be as in Example 1.8. By Theorem 5.11, there exists a homogeneous
LFIHD on A with degree degd = e = (1, 2) and with weight cone w of ker 0 equal to the cone generated
by (0,1) and (1,1) in Mg. Indeed, (i) holds since C' = Py and (ii)’ holds with zp = 0 and 2z, = oo.
With this choice, h,|, = 0 for all z € C,z # 0,00. The vector v € Ny such that h(m) = (m,v)
corresponds to v = (1/2,0). The cone 7 is generated in Ng by (1,0) and (—1, 1) and the cone 7 in Ng is
generated by (1,0,2), (—1,1,0) and (1,0, —2). Taking s; = 0, we have that (e, —1) = (1,2,—1) € Rt T
so that (iii) holds. Furthermore, a straightforward verification shows that (iv), (v) and (vi) hold.

Example 5.13. We assume in this example that the ground field k is algebraically closed of charac-
teristic 2. Let us consider the Bertin surface

Wos = {2?y =2 +2°} C A}

of type (2,5). This is a smooth affine surface endowed with the G,,-action
M- (z,y,2) = Nz, A0y, \z2),

where A € Gy, and (x,y,2) € Wy 5. Consider the polyhedral divisor

1 1
D=<¢->--10 0,=1-]1
{3} 0+ Jog]
over the affine line Al = A%{. Here we have N = M = 7Z. The elements

z=t"'", y=(+tx, 2 =x"
generate the Z-graded algebra A = A[A!, D] and satisfy the equation of Ws 5. Hence we may identify
the G,-surface X = Spec A with W5 5. The quotient map by the G,,-action is
w:(z,y,2) = t=xy+ 1.
The fiber 771(1) consists in two distinct toric curves which intersect only at the origin:
7 1(1) = {(0,4,0) |y ek} U{(z,0,2)| z € k}.
In the setting of Theorem 5.11, we may take zp = 0 so that 7 = R>¢ and

7 =R>0(1,0) + R>o(1,5).

If e=1 and s:= s; = 2, then (2%, —% - %e) = (4,—1) is a Demazure root of 7 with distinguished

ray (1,5). Condition (iv) of Theorem 5.11 is not fulfilled. The corresponding homogeneous iterative
higher derivation O verifies the formula

= (5l4+m
ad (4, my _ l—i, m+4i  4i
e (tX)_Z< ; >t X a
1=0
for any (m,l) € Z2. This implies directly that
e®(x) = z and e*?(2) = z + o'z,

and so the subalgebra k[z, z] C A is d-stable. However, we have 9 (y) = tx~' ¢ A.
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Now let us take e = 1 and s = 6. Then (2%, —+ — %£) = (64, —13) is a Demazure root of 7. The

conditions of Theorem 5.11 are satisfied and the associated LFTHD 9’ has exponential map

¥ (tx™) = f: <5l ™ m) fl13iy MG 64
i=0 ’
Therefore
0 (1) =, 7 (2) = 2 4 oVl
and
e (y) = 27 (1 + 2 (1)) = y + o212t + 0?0270z 4 o302,
The kernel of & is the subalgebra k[z] C A.

Remark 5.14. A generalization of [LielOa, Section 4.1] allows to define and compute the homogeneous
Makar-Limanov invariant of an affine T-variety of complexity one of arbitrary characteristic. Due to
lack of space, we omit this straightforward generalization.
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