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JORDAN PROPERTY FOR CREMONA GROUPS

YURI PROKHOROV AND CONSTANTIN SHRAMOV

Abstract. Assuming Borisov–Alexeev–Borisov conjecture, we prove that there is a
constant J = J(n) such that for any rationally connected variety X of dimension n and
any finite subgroup G ⊂ Bir(X) there exists a normal abelian subgroup A ⊂ G of index
at most J . In particular, we obtain that the Cremona group Cr3 = Bir(P3) enjoys the
Jordan property.

1. Introduction

Unless explicitly stated otherwise, all varieties below are assumed to be defined over an
algebraically closed field k of characteristic 0.

The Cremona group Crn(k) is the group of birational transformations of the projective
space Pn. The group Cr2(k) and its subgroups have been a subject of research for many
years (see [8], [9], [29] and references therein). The main philosophical observation is that
this group is very large and it is “very far” from being a linear group. However, the
system of its finite subgroups seems more accessible, and in particular happens to enjoy
many features of finite subgroups in GLn(k) (which are actually not obvious even for the
subgroups of GLn(k)).

Theorem 1.1 (C. Jordan, see e. g. [6, Theorem 36.13]). There is a constant I = I(n) such
that for any finite subgroup G ⊂ GLn(C) there exists a normal abelian subgroup A ⊂ G
of index at most I.

This leads to the following definition (cf. [26, Definition 2.1]).

Definition 1.2. A group Γ is called Jordan (alternatively, we say that Γ has Jordan
property) if there is a constant J such that for any finite subgroup G ⊂ Γ there exists a
normal abelian subgroup A ⊂ G of index at most J .

Theorem 1.1 implies that all linear algebraic groups over an arbitrary field k
with char(k) = 0 are Jordan. The same question is of interest for other “large” groups,
especially those that are more accessible for study on the level of finite subgroups than on
the global level, in particular, for the groups of birational selfmaps of algebraic varieties.
A complete answer is known in dimension at most 2. Moreover, already in dimension 2
it appears to be non-trivial, i. e. there are surfaces providing a positive answer to the
question, as well as surfaces providing a negative answer.

First of all, the automorphism group of any curve is Jordan. The Cremona group of
rank 2 is Jordan too.

Theorem 1.3 (J.-P. Serre [30, Theorem 5.3], [29, Théorème 3.1]). The Cremona
group Cr2(k) is Jordan.

On the other hand, starting from dimension 2 one can construct varieties with non-
Jordan groups of birational selfmaps.
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Theorem 1.4 (Yu. Zarhin [32]). Suppose that X ∼= E×P1, where E is an abelian variety
of dimension dim(E) > 0. Then the group Bir(X) is not Jordan.

In any case, in dimension 2 it is possible to give a complete classification of surfaces
with Jordan groups of birational automorphisms.

Theorem 1.5 (V.Popov [26, Theorem 2.32]). Let S be a surface. Then the group Bir(S)
is Jordan if and only if S is not birational to E × P1, where E is an elliptic curve.

Somehow, in higher dimensions the answer remained unknown even for a more partic-
ular question.

Question 1.6 (J.-P. Serre [30, 6.1]). Is the group Crn(k) Jordan?

Question 1.6 asks about some kind of boundedness related to the geometry of rational
varieties. It is not a big surprise that it appears to be related to another “bounded-
ness conjecture”, that is a particular case of the well-known Borisov–Alexeev–Borisov
conjecture (see [3]).

Conjecture 1.7. For a given positive integer n, Fano varieties of dimension n with
terminal singularities are bounded, i. e. are contained in a finite number of algebraic
families.

Note that if Conjecture 1.7 holds in dimension n, then it also holds in all dimen-
sions k 6 n.

The main purpose of this paper is to show that modulo Conjecture 1.7 the answer to
Question 1.6 is positive even in the more general setting of rationally connected varieties
(see Definition 3.2), and moreover the corresponding constant may be chosen in some
uniform way. Namely, we prove the following.

Theorem 1.8. Assume that Conjecture 1.7 holds in dimension n. Then there is a con-
stant J = J(n) such that for any rationally connected variety X of dimension n defined
over an arbitrary (not necessarily algebraically closed) field k of characteristic 0 and for
any finite subgroup G ⊂ Bir(X) there exists a normal abelian subgroup A ⊂ G of index at
most J .

Note that Conjecture 1.7 is settled in dimension 3 (see [23]), so we have the following

Corollary 1.9. The group Cr3(k) is Jordan.

As an application of the method we use to prove Theorem 1.8, we can also derive some
information about p-subgroups of Cremona groups.

Theorem 1.10. Assume that Conjecture 1.7 holds in dimension n. Then there is a
constant L = L(n) such that for any rationally connected variety X of dimension n defined
over an arbitrary (not necessarily algebraically closed) field k of characteristic 0 and for
any prime p > L, every finite p-subgroup of Bir(X) is an abelian group generated by at
most n elements.

Remark 1.11. An easy consequence of Theorem 1.10 is that if k is an algebraically closed
fields of characteristic 0, and m > n are positive integers, then there does not exist
embedding of groups Crm(k) ⊂ Crn(k). Indeed, for any p it is easy to construct an
abelian p-group A ⊂ GLm(k) ⊂ Crm(k) that is not generated by less than m elements.
Note that the same result is already known by [7, §1.6] or [4, Theorem B].
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The plan of the proof of Theorem 1.8 (that is carried out in Section 4) is as follows.
Given a rationally connected variety X and a finite group G ⊂ Bir(X), take a smooth
regularization X̃ of G (see [31, Theorem 3]). We are going to show that X̃ has a point P
fixed by a subgroup H ⊂ G of bounded index and then apply Theorem 1.1 to H acting
in the tangent space TP (X̃). If X̃ is a G-Mori fiber space (see Section 2 for a definition),
then, modulo Conjecture 1.7, we may assume that there is a non-trivial G-Mori fiber
space structure X̃ → S, i. e. S is not a point. By induction one may suppose that
there is a subgroup H of bounded index that fixes a point in S. Using the results of
Section 3 (that are based on the auxiliary results of Section 2), we show that X̃ contains
a G-invariant rationally connected subvariety. Furthermore, the same assertion holds for
an arbitrary smooth X̃ ; this follows from the corresponding assertion for a G-Mori fiber
space obtained by running a G-Minimal Model Program on X̃ by the results of Section 3.
Using induction in dimension once again we conclude that there is actually a point in X̃
fixed by H .

The main technical result that allows us to prove Theorem 1.8 is Corollary 3.7 that
lets us lift G-invariant rationally connected subvarieties along G-contractions. Actually,
it has been essentially proved in [13, Corollary 1.7(1)]. The only new feature that we
really need is the action of a finite group. Since this forces us to rewrite the statements
and the proofs in any case, we use the chance to write down the details of the proof that
were only sketched by the authors of [13]. We also refer a reader to [22] and [15] for ideas
of similar flavour.

Acknowledgements. We would like to thank J.-P. Serre who attracted our atten-
tion to the questions discussed in this paper. We are also grateful to I. Cheltsov,
O. Fujino, S.Gorchinskiy and A.Kuznetsov for useful discussions, and to a referee
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The first author was partially supported by Simons-IUM fellowship. The second author
was partially supported by the grants MK-6612.2012.1 and RFBR-12-01-33024.

2. Preliminaries

The purpose of this section is to establish several auxiliary results that will be used
in Section 3. It seems that most of them are well known to experts, but we decided to
include them for completeness since we did not manage to find proper references.

Throughout the rest of the paper we use the standard language of the singularities of
pairs (see [21]). By strictly log canonical singularities we mean log canonical singularities
that are not Kawamata log terminal. By a general point of a (possibly reducible) variety Z
we will always mean a point in a Zariski open dense subset of Z. Whenever we speak about
the canonical class, or the singularities of pairs related to a (normal) reducible variety, we
define everything componentwise (note that connected components of a normal variety
are irreducible).

Let X be a normal variety, let B be an effective Q-divisor on X such that the Q-divisor
KX+B is Q-Cartier. A subvariety Z ⊂ X is called a center of non Kawamata log terminal
singularities (or a center of non-klt singularities) of the log pair (X,B) if Z = π(E) for
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some divisor E on some log resolution π : X̂ → X with discrepancy a(X,B;E) 6 −1. A
subvariety Z ⊂ X is called a center of non log canonical singularities of the log pair (X,B)
if Z is an image of some divisor with discrepancy strictly less than −1 on some log
resolution. A center of non-klt singularities Z of the log pair (X,B) is called minimal if
no other center of non-klt singularities of (X,B) is contained in Z.

Remark 2.1. In general it is not enough to consider one log resolution to detect all centers
of non-klt singularities of a log pair, but the union of these centers can be figured out
using one log resolution. Note that this does not mean that there is only a finite number
of centers of non-klt singularities of a given log pair! Actually, the latter happens if and
only if the log pair is log canonical.

Suppose that there is an action of some finite group G on X such that B is G-invariant.
Let Z1 be a center of non-klt singularities of the pair (X,B), let Z1, . . . , Zr be the G-orbit
of the subvariety Z1, and put Z =

⋃
Zi. We say that Z is a G-center of non-klt singu-

larities of the pair (X,B), and call Z a minimal G-center of non-klt singularities if no
other G-center of non-klt singularities of the pair (X,B) is contained in Z. Note that one
has Zi ∩ Zj = ∅ for i 6= j and each Zi is normal (see [16, 1.5–1.6]).

Suppose that X is a variety with only Kawamata log terminal singularities (in particu-
lar, this includes the assumptions that X is normal and the Weil divisor KX is Q-Cartier).
A G-contraction is a G-equivariant proper morphism f : X → Y onto a normal variety Y
such that f has connected fibers and −KX is f -ample (thus f is not only proper but
projective). The variety X is called a G-Mori fiber space if X is projective and there
exists a G-contraction f : X → Y with dim(Y ) < dim(X) and the relative G-equivariant
Picard number ρG(X/Y ) = 1. Furthermore, if Y is a point, then X is called a G-Fano
variety.

Suppose that X is projective and GQ-factorial, i. e. any G-invariant Q-divisor on X is
Q-Cartier. If X is rationally connected (see Definition 3.2), then one can run a G-Minimal
Model Program on X , as well as its relative versions, and end up with a G-Mori fibre
space. This is possible due to [2, Corollary 1.3.3] and [25, Theorem 1], since rational
connectedness implies uniruledness. Actually, [2] treats the case when G is trivial, but
adding a finite group action does not make a big difference.

We start with proving some auxiliary statements that will be used in course of the proof
of Theorem 1.8.

Suppose that V is a normal (irreducible) variety, and f : V → W is a proper morphism.
Then for any curve C ⊂ V contracted by f and any Cartier divisor D on V one has a
well-defined intersection index D ·C, and one can consider a (finite dimensional) R-vector
space N1(V/W ) generated by the classes of curves in the fibers of f modulo numerical
equivalence (see e. g. [18, §0-1]).

The following observation (see e. g. the proofs of [16, Theorem 1.10] and [17, Theo-
rem 1]) is sometimes called the perturbation trick.

Lemma 2.2. Let V be an irreducible normal quasi-projective variety, and f : V → W be
a proper morphism to a variety W . Let D be an effective Q-Cartier Q-divisor on V such
that the log pair (V,D) is strictly log canonical. Suppose that a finite group G acts on V
so that D is G-invariant. Let Z ⊂ X be a minimal G-center of non-klt singularities of
the log pair (V,D).
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Choose ε > 0 and a compact subset K ⊂ N1(V/W ). Then there exists a G-invariant
Q-Cartier Q-divisor D′ such that

• the only centers of non-klt singularities of the log pair (V,D′) are the irreducible
components of Z;

• for any κ ∈ K one has |(D −D′) · κ| < ε.

Proof. Let Z1,. . . , Zr be irreducible components of Z. Note that Zi’s are disjoint
by [16, Proposition 1.5]. Let M be a linear system of very ample divisors such that
BsM = Z1 and let M1 ∈ M be a general element. Let M1, . . . ,Ml be the G-orbit of M1,
and let M =

∑
Mi. For 0 < θ ≪ 1 the subvariety Z1 is the only center of non log canoni-

cal singularities for the log pair (V,D+θM1). Hence the only centers of non log canonical
singularities for (V,D + θM) are the subvarieties Zi. Now take δ ∈ Q>0 so that the log
pair (V,D′) is strictly log canonical, where D′ = (1− δ)D + θM . By the above the only
centers of non-klt singularities of (V,D′) are Zi’s. Since θ ≪ 1, one has δ ≪ 1, which
guarantees the existence of an appropriate ε. �

Remark 2.3. One can generalize Lemma 2.2 assuming that we start from a log pair that
includes any formal linear combination of linear systems on the variety V with rational
coefficients instead of a divisor D, and produce an effective Q-divisor D′. Another version
of the same assertion produces a movable linear system D′ instead of a divisor D′. Note
that neither Lemma 2.2 nor these generalizations require the morphism f to be equivariant
with respect to the group G.

We will need the following Bertini-type statement.

Lemma 2.4 (cf. [28, Theorem 1.13]). Let Z be a normal variety and D be an effective
Q-divisor on Z such that the log pair (Z,D) is Kawamata log terminal. Let M be a base
point free linear system and let M ∈ M be a general member. Then

• the variety M is normal;
• the log pair (M,D|M) is Kawamata log terminal.

Proof. Doing everything componentwise, we may assume that Z is connected. Since Z is
normal, it is irreducible. The pair (Z,D+M ) is purely log terminal (see Definition 4.6 and
Lemma 4.7.1 in [21]). Hence (Z,D+M) is also purely log terminal (see [21, Theorem 4.8]).
Thus by the inversion of adjunction (see e.g. [24, 5.50–5.51]) the variety M is normal and
the pair (M,D|M) is Kawamata log terminal. �

The following is a relative version of the usual Kawamata subadjunction theorem.

Lemma 2.5. Let V be an irreducible normal quasi-projective variety, and D be an effective
Q-divisor on V such that the log pair (V,D) is strictly log canonical. Let W be a normal
quasi-projective variety, and f : V → W be a proper morphism with connected fibers such
that −(KV +D) is f -ample.

Suppose that G is a finite group acting on V . Let Z ⊂ V be a minimal G-center of
non-klt singularities of the log pair (V,D), and T = f(Z) ⊂ W . Let Zt = Z ∩ f−1(t) be a
fiber of f |Z over a general point t ∈ T . Then

• Zt is normal;
• Zt is irreducible;
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• there exists an effective Q-divisor DZ on Z such that KZ +DZ is Q-Cartier, the
log pair (Zt, DZ|Zt

) is Kawamata log terminal and

KZt
+DZ|Zt

∼Q (KV +D)|Zt
.

Proof. By Lemma 2.2 we may assume that Z is the onlyG-center of non-klt singularities of
the log pair (V,D). Furthermore, since an intersection of centers of non-klt singularities is
again a center of non-klt singularities (see [16, Proposition 1.5]), we conclude that each of
the connected components of Z is irreducible, because otherwise the pairwise intersections
of irreducible components of Z would be a (non-empty) union of G-centers of non-klt
singularities of the pair (V,D). Applying [16, Theorem 1.6] to connected components
of Z, one obtains that Z is normal (note that connected components of Z are minimal
centers of non-klt singularities of (V,D)). Moreover, a general fiber Zt is connected by
the Nadel–Shokurov connectedness theorem (see e. g. [5, Theorem 3.2]). Hence Zt is
irreducible.

To proceed we may drop the action of the group G and assume that T is a point.
Indeed, let W ′ ⊂ W be a general hyperplane section, and t ∈ W ′ be a general point
(which is the same as to choose t to be a general point of W , and then to choose a general
hyperplane section W ′ ∋ t). Put V ′ = f−1(W ′). By Lemma 2.4 the variety V ′ is normal.

Let ϕ : Ṽ → V be a log resolution of (V,D), and let Ṽ ′ be the proper transform of V ′.
Since V ′ is a general member of a base point free linear system, ϕ is also a log resolution of
the log pair (V,D + V ′). Therefore, ϕ induces a log resolution of (V ′, D|V ′). This implies
that the log pair (V ′, D|V ′) is log canonical and the irreducible components of Z ′ = Z|V ′

are its minimal centers of non-klt singularities. Replacing f : (V,D) → W by

f |V ′ : (V ′, D|V ′) → W ′

and repeating this process codimW (T ) times, we get the situation where T is a point,
and Z = Zt (in particular, Z is projective, normal, and irreducible).

With these reductions done, we apply Kawamata’s subadjunction theorem (see e. g. [17,
Theorem 1] or [11, Theorem 1.2]) to conclude that there exists an effective Q-divisor DZ

on Z such that KZ +DZ is Q-Cartier, the log pair (Z,DZ) is Kawamata log terminal and

KZ +DZ ∼Q (KV +D)|Z .

�

Remark 2.6. A usual form of the Kawamata’s subadjunction theorem (as in [17] and [11])
requires the ambient variety to be projective. Therefore, if one wants to be as accurate as
possible, the end of the proof of Lemma 2.5 should be read as follows. Assuming that T
is a point, we know that Z is projective; as above, we can also suppose that Z is the
only center of non-klt singularities of (V,D). Taking a log canonical closure (V̄ , D̄) of the
log pair (V,D) as in [14, Corollary 1.2], we see that Z is still a minimal center of non-klt
singularities of the new pair (V̄ , D̄), and all other centers of non-klt singularities of (V̄ , D̄)
are disjoint from Z. Now [11, Theorem 1.2] implies the assertion of Lemma 2.5. Since
this step is more or less obvious, we decided not to include it in the proof to save space
(and readers attention) for more essential points.

Another interesting moment in the proof of Lemma 2.5 that we want to emphasize is
that we do not care about the action of the group G anywhere apart from the equivariant
perturbation trick at the very beginning (in particular, the morphism f is not required to
be G-equivariant, cf. Remark 2.3). On the other hand, it seems that one cannot replace
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this G-perturbation by a non-equivariant perturbation performed at some later step, since
otherwise we would not know that the fiber Zt is connected, and thus it would remain
undecided if we have occasionally got rid of some components of Z or not. This is crucial
for us, since we are going to obtain a G-invariant subvariety Z with controllable fibers.

3. Rationally connected subvarieties

In this section we develop techniques to “pull-back” invariant rationally connected
subvarieties under contractions appearing in the Minimal Model Program. Basically we
follow the ideas of [13].

Recall the following standard definitions.

Definition 3.1 (see e. g. [27, Lemma-Definition 2.6]). A (normal irreducible) variety X
is called a variety of Fano type if there exists an effective Q-divisor ∆ on X such that the
pair (X,∆) is Kawamata log terminal and −(KX +∆) is nef and big.

Definition 3.2 (see e. g. [20, §IV.3]). An irreducible variety X is called rationally con-
nected if for two general points x1, x2 ∈ X there exists a rational map t : C 99K X, where C
is a rational curve, such that the image t(C) contains x1 and x2.

In particular, a point is a rationally connected variety. Furthermore, rational connect-
edness is birationally invariant, and an image of a rationally connected variety under any
rational map is again rationally connected.

The following is an easy consequence of Lemma 2.5.

Lemma 3.3. Let f : V → W be a G-contraction from a quasi-projective variety V
with Kawamata log terminal singularities. Choose an effective G-invariant Q-Cartier
Q-divisor DW on W , and put D = f ∗DW .

Let Z ⊂ V be a minimal G-center of non-klt singularities of the log pair (V,D),
and T = f(Z) ⊂ W . Let Zt = Z ∩ f−1(t) be a fiber of f |Z over a general point t ∈ T .
Then Zt is a variety of Fano type. In particular, Zt is rationally connected.

Proof. By Lemma 2.5 a general fiber Zt is a normal irreducible variety (so that we may
assume dim(Zt) > 0), and there exists an effective Q-divisor DZ on Z such that KZ +DZ

is Q-Cartier, the log pair (Zt, DZ |Zt
) is Kawamata log terminal and

KZt
+DZ |Zt

∼Q (KV +D)|Zt
.

Since Zt is an irreducible variety such that the restriction of D to Zt is trivial, and
the restriction of −KV to Zt is ample, we see that Zt is a variety of Fano type. The last
assertion of the lemma follows from [33, Theorem 1] or [13, Corollary 1.13]. �

Now we are ready to prove the main technical result of this section.

Lemma 3.4 (cf. [13, Corollary 1.7(1)]). Let f : V → W be a G-contraction from a
quasi-projective variety with Kawamata log terminal singularities onto a quasi-projective
variety W . Let T ( W be a G-invariant irreducible subvariety. Then there exists a G-
invariant (irreducible) subvariety Z ( V such that f |Z : Z → T is dominant and a general
fiber of f |Z is rationally connected.

Proof. Take k ≫ 0, and choose H1, . . . , Hk to be general divisors from some (very ample)
linear system H with BsH = T . Adding the images of the divisors Hi under the action
of G to the set {H1, . . . , Hk} we may assume that this set is G-invariant. Put DW =

∑
Hi,
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and D = f ∗DW . Let c be the log canonical threshold of the log pair (V,D) over a general
point of T (this makes sense since the log canonical threshold in a neighborhood of a
point P ∈ V is an upper semi-continuous function of P , and T is irreducible). Note that
we can assume that for any center L of non-klt singularities of (V, cD) one has f(L) ⊂ T
by the construction of D.

Let S be a union of all centers of non-klt singularities of the log pair (V, cD) that
do not dominate T . Then T is not contained in the set f(S). Indeed, the union Z
of centers of non-klt singularities of (V, cD) is a union of a finite number of centers of
non-klt singularities of (V, cD) by Remark 2.1. By definition of c we conclude that the
log pair (V, cD) has a center of non-klt singularities Z1 that dominates T .

Let Z1, . . . , Zr be the G-orbit of the subvariety Z1, and put Z =
⋃

Zi. Put
W o = W \ f(S) and V o = f−1(W o), and note that Z ∩ V o is a minimal G-center of
non-klt singularities of the log pair (V o, cD|V o). Lemma 3.3 implies that the fiber Zt of
the morphism f |Z over a general point t ∈ T ∩W o is rationally connected. �

Remark 3.5. In the case when f is an isomorphism over a general point of T the proof of
Lemma 3.4 produces the strict transform of T on V as a resulting subvariety Z.

Rationally connected varieties enjoy the following important property (see [12, Corol-
lary 1.3] for the proof over C; the case of an arbitrary field of characteristic 0 follows by
the usual Lefschetz principle).

Theorem 3.6. Let f : X → Y be a dominant morphism of proper varieties over k.
Assume that both Y and a general fiber of f are rationally connected. Then X is also
rationally connected.

Together with the previous considerations this enables us to lift G-invariant rationally
connected varieties via G-contractions. Namely, the following immediate consequences of
Lemma 3.4 and Theorem 3.6 will be used in the proof of Theorem 1.8.

Corollary 3.7. Let f : V → W be a G-contraction from a quasi-projective variety with
Kawamata log terminal singularities onto a quasi-projective variety W . Let T ( W be
a G-invariant rationally connected subvariety. Then there exists a G-invariant rationally
connected subvariety Z ( V that dominates T .

Proof. Apply Lemma 3.4 to obtain a subvariety Z ( V that maps to a rationally connected
variety T with a rationally connected general fiber. Theorem 3.6 applied to (a desingu-
larization of a compactification of) Z completes the proof. �

The following is just a small modification of Corollary 3.7, but we find it useful to state
it to have a result allowing us to lift rationally connected subvarieties via (equivariant)
flips.

Corollary 3.8. Let f : V → W be a G-contraction from a quasi-projective variety with
Kawamata log terminal singularities onto a quasi-projective variety W . Consider a dia-
gram of G-equivariant morphisms

V

f   
❆❆

❆❆
❆❆

❆❆
V ′

f ′

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

W
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Suppose that there exists a G-invariant rationally connected subvariety Z ′ ⊂ V ′ such
that f ′(Z ′) 6= W . Then there exists a G-invariant rationally connected subvariety Z ( V .

Proof. Apply Corollary 3.7 to the rationally connected variety T = f ′(Z ′) ( W . �

Corollaries 3.7 and 3.8 imply the following assertion.

Lemma 3.9. Let V be a projective variety with an action of a finite group G. Suppose
that V has Kawamata log terminal GQ-factorial singularities. Let f : V 99K W be a
birational map that is a result of a G-Minimal Model Program ran on V . Let F ⊂ G
be a subgroup. Suppose that there exists an F -invariant rationally connected subvari-
ety T ( W . Then there exists an F -invariant rationally connected subvariety Z ( V .

Proof. Induction in the number of steps of the G-Minimal Model Program using Corol-
laries 3.7 and 3.8 (note that any G-contraction is also an F -contraction). �

In particular, Lemma 3.9 implies the following assertion (it will not be used directly in
the proof of our main theorems, but still we suggest that it deserves being mentioned).

Proposition 3.10. Let W be a quasi-projective variety with terminal singularities acted
on by a finite group G so that W is GQ-factorial. Let f : V → W be a G-equivariant
resolution of singularities of W . Suppose that there exists a G-invariant rationally con-
nected subvariety T ( W . Then there exists a G-invariant rationally connected subvari-
ety Z ( V .

Proof. Run a relative G-Minimal Model Program on V over W (this is possible due to
an equivariant version of [2, Corollary 1.4.2]) to obtain a variety Vn that is a relatively
minimal model over W together with a series of birational modifications

V = V0

f1
99K . . .

fn
99K Vn

fn+1

−→ W.

Then fn+1 is small by the Negativity Lemma (see e. g. [19, 2.19]). Thus GQ-factoriality
of W implies that fn+1 is actually an isomorphism. Now the assertion follows from
Lemma 3.9. �

4. Jordan property

In this section we will prove Theorem 1.8. Before we proceed let us introduce the
following notion.

Definition 4.1. Let C be some set of varieties. We say that C has almost fixed points
if there is a constant J = J(C) such that for any variety X ∈ C and for any finite
subgroup G ⊂ Aut(X) there exists a subgroup F ⊂ G of index at most J acting on X
with a fixed point.

Theorem 1.8 will be implied by the following auxiliary result.

Theorem 4.2. Let R(n) be the set of all rationally connected varieties of dimension n.
Assume that Conjecture 1.7 holds. Then R(n) has almost fixed points.

Remark 4.3. In the proof of Theorem 1.8 we will only use the particular case of Theo-
rem 4.2 for smooth rationally connected varieties. However, it is more convenient to prove
it without any assumptions on singularities. In any case, it does not make a big difference
(see Corollary 4.5 below).
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Sometimes it would be convenient to restrict ourselves to non-singular varieties when
proving assertions like Theorem 4.2. It is possible by the following (nearly trivial) obser-
vation.

Lemma 4.4. Let C be some set of varieties, and let C′ ⊂ C. Suppose that for any X ∈ C
and for any finite group G ⊂ Aut(X) there is a variety X ′ ∈ C′ with G ⊂ Aut(X ′) and a
G-equivariant surjective morphism X ′ → X. Then C has almost fixed points if and only
if C′ does.

Proof. An image of a fixed point under an equivariant morphism is again a fixed point. �

Corollary 4.5. The set R(n) of rationally connected varieties of dimension n has almost
fixed points if and only if the set R′(n) of non-singular rationally connected varieties does.

To prove Theorem 4.2 we will need its particular case concerning Fano varieties.

Lemma 4.6. Let F(n) be the set of all Fano varieties of dimension n with terminal
singularities, and assume that Conjecture 1.7 holds in dimension n. Then F(n) has
almost fixed points.

Proof. Using Noetherian induction, one can show that there exists a positive integer m
such that for any X ∈ F(n) the divisor −mKX is very ample and gives an embedding

X →֒ Pdim |−mKX |.

So we may assume that any X ∈ F(n) admits an embedding X →֒ PN for some N = N(n)
(that does not depend on X) as a subvariety of degree at most d = d(n). Moreover, the
action of G ⊂ Aut(X) is induced by an action of some linear group Γ ⊂ GLN+1(C). By
Theorem 1.1 there exists an abelian subgroup Γ0 ⊂ Γ of index at most I = I(N + 1).
Let G0 ⊂ G be the image of Γ0 under the natural projection from Γ to G. Take linear
independent Γ0-semi-invariant sections

s1, . . . , sN+1 ∈ H0(X,−mKX).

They define G0-invariant hyperplanes H1, . . . , HN+1 ⊂ PN . Let k be the minimal positive
integer such that

X ∩H1 ∩ . . . ∩Hk = {P1, . . . , Pr}

is a finite (G0-invariant) set. Then r 6 d. Since the stabilizer G1 ⊂ G0 of P1 is a subgroup
of index at most r 6 d, the assertion of the lemma follows. �

Lemma 4.6 allows us to derive a slightly wider particular case of Theorem 4.2 involving
G-Mori fiber spaces from the assertion of Theorem 4.2 for lower dimensions.

Lemma 4.7. Suppose that the sets R(k) of rationally connected varieties of dimension k
have almost fixed points for k 6 n − 1, and assume that Conjecture 1.7 holds in dimen-
sion n. Then there is a constant J = J(n) such that for any finite group G and for any
rationally connected G-Mori fiber space φ : M → S with dim(M) = n there is a finite
subgroup of index at most J in G acting on M with a fixed point.

Proof. Let φ : M → S be a rationally connected G-Mori fiber space of dimension n. We
are going to show that there is a constant J that does not depend on M and G such that
there exists a subgroup H ⊂ G of index at most J acting on M with a fixed point. By
Lemma 4.6 we may suppose that 1 6 dim(S) 6 n− 1.
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Consider an exact sequence of groups

1 → Gφ −→ G
θ

−→ GS → 1,

where the action of Gφ is fiberwise with respect to φ and GS is the image of G in Aut(S).
Note that S is rationally connected since so is M . By assumption there is a constant J1

that does not depend on S and G such that there exists a subgroup FS ⊂ GS of index at
most J1 acting on S with a fixed point. Let P ∈ S be one of the points fixed by FS.

Define a subgroup F ⊂ G to be the preimage of the subgroup FS ⊂ GS under the
homomorphism θ. Then φ : M → S is an F -contraction. By Corollary 3.7 applied
to the group F and the contraction φ there exists an F -invariant rationally connected
subvariety Z ⊂ M such that φ(Z) = P . In particular, dim(Z) < n. By assumption there
is a constant J2 that does not depend on Z and F such that there is a subgroup H ⊂ F
of index at most J2 acting on Z (and thus on X) with a fixed point. The assertion follows
since [G : F ] = [GS : FS] 6 J1. �

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. Let X be a non-singular (or terminal) rationally connected variety
of dimension n, and G ⊂ Aut(X) be a finite subgroup. By Corollary 4.5 it is enough to
show that there is a constant J that does not depend on X and G such that there exists
a subgroup H ⊂ G of index at most J acting on X with a fixed point.

Run a G-Minimal Model Program on X , resulting in a G-Mori fiber space X ′ and a
rational map f : X 99K X ′ that factors into a sequence of G-contractions and G-flips. By
Lemma 4.7 there is a constant J1 that does not depend on X ′ (and thus on X) and G such
that there exists a subgroup F ⊂ G of index at most J1 acting on X ′ with a fixed point.
Using Lemma 3.9 applied to the group F , we obtain an F -invariant rationally connected
subvariety Z ( X .

The rest of the argument is similar to that in the proof of Lemma 4.7. Using induction
in n, we see that there is a constant J2 that does not depend on Z and F such that there
is a subgroup H ⊂ F of index at most J2 having a fixed point on Z (and thus on X), and
the assertion of the theorem follows. �

Remark 4.8. To prove Theorem 4.2 one could actually use a weaker version of Lemma 4.7.
For this purpose it is sufficient to know that theG-Mori fiber space contains an F -invariant
rationally connected subvariety Z ′ ( X ′ for some subgroup F ⊂ G of bounded index,
without assuming that Z ′ is a point.

Now we are going to derive Theorem 1.8 from Theorem 4.2. We will need the following
easy observation.

Lemma 4.9. Let G be a group and H ⊂ G be a subgroup of finite index [G : H ] = j.
Suppose that H has some property P that is preserved under intersections and under
conjugation in G. Then there exists a normal subgroup H ′ ⊂ G of finite index [G : H ′] 6 jj

such that H ′ also enjoys the property P.

Proof. Let H1 = H, . . . , Hr ⊂ G be the subgroups that are conjugate to H . Then r 6 j,
and H ′ =

⋂
Hi is normal and has the property P. It remains to notice that [G : H ′] 6 jr.

�

Proof of Theorem 1.8. We may assume that the field k is algebraically closed. Let X be a
rationally connected variety of dimension n, and G ⊂ Bir(X) be a finite group. Let X̃ be a
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regularization of G, i. e. X̃ is a projective variety with an action of G and a G-equivariant
birational map ξ : X̃ 99K X (see [31, Theorem 3]). Taking a G-equivariant resolution
of singularities (see [1]), one can assume that X̃ is smooth. Note that X̃ is rationally
connected since so is X . By Theorem 4.2 there is a constant J1 that does not depend
on X̃ and G (and thus on X) such that there exists a subgroup F ⊂ G of index at most J1

and a point P ∈ X fixed by A. The action of F on the Zariski tangent space TP (X̃) ∼= kn

is faithful (see e. g. [10, Lemma 2.7(b)]). By Theorem 1.1 applied to GLn(k) there is a
constant J2 (again independent of anything except for n) such that F has an abelian
subgroup A of index at most J2. The assertion follows by Lemma 4.9. �

Finally, we prove Theorem 1.10.

Proof of Theorem 1.10. We may assume that the field k is algebraically closed. Let X
be a rationally connected variety of dimension n, and let G ⊂ Bir(X) be a finite p-group.
Arguing as in the proof of Theorem 1.8, we obtain an abelian subgroup F ⊂ G of in-
dex [G : F ] bounded by some constant L (that does not depend on X and G) with an
embedding F ⊂ GLn(k). The latter implies that the abelian p-group F is generated by
at most n elements. On the other hand, if p > L, then the index of any subgroup of G is
at least p, so that the subgroup F coincides with G. �
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