
CATEGORIFICATION OF THE COLORED sl3-INVARIANT

LOUIS-HADRIEN ROBERT

Abstract. We give explicit resolutions of all finite dimensional, simple Uq(sl3)-

modules. We use these resolutions to categorify the colored sl3-invariant of

framed links via a complex of complexes of graded Z-modules.
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1. Introduction

In this paper, we define a categorification of the colored sl3-invariant; that is

the Reshetikhin-Turaev invariant for framed links associated with arbitrary finite

dimensional Uq(sl3)-modules.

A categorification of the (uncolored) sl3-invariant has been defined by Khovanov

[Kho04], the so-called sl3-homology. The construction is topological and involves

webs (trivalent, bipartite, planar graphs) and foams (natural cobordisms between

webs).
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2 LOUIS-HADRIEN ROBERT

Two categorifications of the colored Jones polynomial (the sl2-analogue of the

colored sl3-invariant) are defined by Khovanov [Kho05]. One of them is developed

by Beliakova and Wehrli [BW08]. The main idea is to give an explicit resolution

of every finite dimensional simple Uq(sl2)-module. The morphisms which appear

in the resolution have a rather simple expression and hence can be interpreted

topologically. Using this interpretation and the categorification of the (uncolored)

Jones polynomial (i. e. the Khovanov homology), one achieves the construction of

a categorification of the colored Jones polynomial.

In this paper, we mimic the strategy of Khovanov in the sl3-case: we find a “nice”

resolution for every finite-dimensional simple Uq(sl3)-module (see theorem 3.9) and

we interpret this resolution in terms of diagrams and foam-cobordisms. Finally, we

use the sl3-homology to defined a categorification of the colored sl3-invariant (see

theorem 4.45):

If D is an oriented link diagram colored with Vm,n (a collection finite dimen-

sional, simple Uq(sl3)-modules), then the isomorphism type of C•(D) depends only

on (m, n) and on the framed oriented isotopy type of D and we have:

χ(C•(D)) = eiπ
2
3 (n+−n−)s(m−n) 〈D〉 ,

Where the exponential term is a re-normalization by a complex number of module

1 and 〈D〉 is the colored sl3-invariant.

Clark [Cla09] has proven that the sl3-homology is functorial for links cobor-

disms. But it is not known to be functorial (or even projectively functorial) for

foam-cobordisms. In this paper, we bypass the lack of functoriality by an ad-hoc

construction.

Rose [Ros12] categorified the sl3-analogue of the Jones-Wenzl projectors. This

yields as well a categorification of the colored sl3-invariant. The construction we

give here is quite different: We do not use complex of infinite length because we

do not need to categorify some rational coefficients. It does not mean that our

construction is more computable since we intensively cable link diagrams, and this

operation dramatically increases the number of crossings.

Organisation of the paper. In a first part, we shortly present the two main

ingredients needed to define the colored sl3-homology:

• The colored sl3-invariant in section 2.2. For this purpose we recall basic

facts about the finite dimensional Uq(sl3)-modules in section 2.1.

• The uncolored sl3-homology in section 2.3. Our normalization differs non-

trivially from the original definition since we consider framed links.

In section 3, we construct an explicit resolution of every finite dimensional, simple

Uq(sl3)-module of type 1 by tensor products of the fundamental representation and

its dual (theorem 3.9). From the algebraic point of view, this result is very easy,

but it is the key to construct the colored sl3-homology.

In the last section, we construct the colored sl3-homology. To give an idea of the

construction, we start by explaining it with the hypothesis that the sl3-homology

is functorial with respect to foam-cobordism. Then we explain how to bypass this
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hypothesis. We use a trick due to Bar-Natan (see[BN05]) to prove some equalities

up to a sign.

In appendix A, we set up a general framework to deal with the sign indeterminacy

introduced in section 4.

Acknowledgments. The author wishes to thank Mikhail Khovanov, Scott Carter,

David Clark and Matt Hogancamp for enlightening conversations; Christian Blanchet

and François Costantino for their constant supports; and the Max-Planck-Institute

für Mathematik for its hospitality.

2. Preliminiaries

2.1. The quantum group Uq(sl3) and its finite dimensional representa-

tions.

Definition 2.1. The algebra Uq(sl3) is the unital associative C
(
q

1
6

)
algebra gen-

erated by the elements Ki, K
−1
i , Ei and Fi for i ∈ {1, 2} subjected to the following

relations (for i and j in {1, 2} with i 6= j):

KiK
−1
i = K−1

i Ki = 1, KiKj = KjKi,

KiEi = q2EiKi, KiFi = q−2FiKi,

KiEj = qEiKi, KiFi = q−1FiKi,

(q − q−1)(EiFi − FiEi) = Ki −K−1
i EiFj = FjEi

Ei
2Ej − [2]EiEjEi + EjEi

2 = 0 F 2
i Fj − [2]FiFjFi + FjFi

2 = 0

Proposition 2.2 ([KRT97, Chapter 4.2]). The following data turn Uq(sl3) into a

Hopf algebra:

∆(K±1
i ) = K±1

i ⊗K
±1
i ε(K±1

i ) = 1 S(Ki) = K−1
i

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei ε(Ei) = 0 S(Ei) = −K−1
i Ei

∆(Ei) = Fi ⊗K−1
i + 1⊗ Fi ε(Fi) = 0 S(Fi) = −KiFi

Furthermore, Uq(sl3) admits a (virtual) universal R-matrix in an appropriate com-

pletion of Uq(sl3)⊗Uq(sl3). All these facts together imply that the category Uq(sl3)-

mod of finite dimensional Uq(sl3)-modules is monoidal, autonomous and braided.

Proposition-Definition 2.3 ([KRT97, Theorem 7.1.1]). Let n1 and n2 be two

non-negative integers and ε1 and ε2 two signs (elements of {−1,+1}). Then there is

a unique (up to isomorphism) finite dimensional1 simple Uq(sl3)-module Vn1,n2,ε1,ε2

such that there exists a non-zero vector v in Vn1,n2,ε1,ε2 satisfying the following

conditions:

E1 · v = 0, E2 · v = 0, K1 · v = ε1q
n1v, and K2 · ε2q

n2v.

Such a vector v is called a highest weight vector of weight2 (n1, n2)?. The modules

V0,0,ε1,ε2 have dimension 1 and we have the following isomorphisms for all (ε1, ε2)

1The ground field is C
(
q

1
6

)
.

2(n1, n2)? is the linear form on C
(
q

1
6

)
K1 ⊕ C

(
q

1
6

)
K2, such that (n1, n2)?(K1) = n1 and

(n1, n2)?(K2) = n2.
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and all (n1, n2):

Vn1,n2,+1,+1 ⊗ V0,0,ε1,ε2 ' Vn1,n2,ε1,ε2 ' V0,0,ε1,ε2 ⊗ Vn1,n2,+1,+1.

This is why from now on, we consider only the modules (Vn1,n2,+1,+1)(n1,n2)∈N
(they are said to be of type 1 ). We write Vn1,n2 := Vn1,n2,+1,+1, V+ := V1,0 and

V− := V0,1. The dual of Vn1,n2
is isomorphic to Vn2,n1

. It is convenient to take the

following convention: if n1 or n2 is negative we set: Vn1,n2
= {0}.

We would like to introduce a few morphisms of Uq(sl3)-modules which will be

useful later. We first need to introduce some bases for V+ and V−. Both are three

dimensional, we set V+ =
〈
v+
−1, v

+
0 , v

+
1

〉
and V− =

〈
v−−1, v

−
0 , v

−
1

〉
and the structures

of Uq(sl3)-modules are given by:

K1 · v+
−1 = v+

−1, K1 · v+
0 = q−1v+

0 , K1 · v+
1 = qv+

1 ,

K2 · v+
−1 = q−1v+

−1, K2 · v+
0 = qv+

0 , K2 · v+
1 = v+

1 ,

E1 · v+
−1 = 0, E1 · v+

0 = v+
1 , E1 · v+

1 = 0,

E2 · v+
−1 = v+

0 , E2 · v+
0 = 0, E2 · v+

1 = 0,

F1 · v+
−1 = 0, F1 · v+

0 = 0, F1 · v+
1 = v+

0 ,

F2 · v+
−1 = 0, F2 · v+

0 = v+
−1, F2 · v+

1 = 0,

and

K1 · v−−1 = q−1v−−1, K1 · v−0 = qv−0 , K1 · v−1 = v−1 ,

K2 · v−−1 = v−−1, K2 · v−0 = q−1v−0 , K2 · v−1 = qv−1 ,

E1 · v−−1 = v−0 , E1 · v−0 = 0, E1 · v−1 = 0,

E2 · v−−1 = 0, E2 · v−0 = v−1 , E2 · v−1 = 0,

F1 · v−−1 = 0, F1 · v−0 = v−−1, F1 · v−1 = 0,

F2 · v−−1 = 0, F2 · v−0 = 0, F2 · v−1 = v−0 ,

Definition 2.4. We consider 6 morphisms:

b−+ : V0,0 → V− ⊗ V+, b+− : V0,0 → V+ ⊗ V−,

d−+ : V− ⊗ V+ → V0,0, d−+ : V+ ⊗ V− → V0,0,

h−++ : V+ ⊗ V+ → V− h+
−− : V− ⊗ V− → V+,

defined on the bases of V+ and V− by (the images of all missing elementary tensors

are meant to be equal to 0):

b−+(1) = −q−1v−−1 ⊗ v
+
1 + v−0 ⊗ v

+
0 − qv

−
1 ⊗ v

+
−1,

b+−(1) = −q−1v+
−1 ⊗ v

−
1 + v+

0 ⊗ v
−
0 − qv

+
+1 ⊗ v

−
−1,
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by:

d−+(v−−1 ⊗ v
+
1 ) = −q−1, d+−(v+

−1 ⊗ v
−
1 ) = −q−1,

d−+(v−0 ⊗ v
+
0 ) = 1, d+−(v+

0 ⊗ v
−
0 ) = 1,

d−+(v−1 ⊗ v
+
−1) = −q, d+−(v+

1 ⊗ v
−
−1) = −q,

and by:

h−++(v+
−1 ⊗ v

+
0 ) = q−

1
2 v−−1, h+

−−(v−−1 ⊗ v
−
0 ) = q−

1
2 v+
−1,

h−++(v+
0 ⊗ v

+
−1) = −q 1

2 v−−1, h+
−−(v−0 ⊗ v

−
−1) = −q 1

2 v+
−1,

h−++(v+
−1 ⊗ v

+
1 ) = q−

1
2 v−0 , h+

−−(v−−1 ⊗ v
−
1 ) = q−

1
2 v+

0 ,

h−++(v+
1 ⊗ v

+
−1) = −q 1

2 v−0 , h+
−−(v−1 ⊗ v

−
−1) = −q 1

2 v+
0 ,

h−++(v+
0 ⊗ v

+
1 ) = q−

1
2 v−1 , h+

−−(v−0 ⊗ v
−
1 ) = q−

1
2 v+

1 ,

h−++(v+
1 ⊗ v

+
0 ) = −q 1

2 v−1 , h+
−−(v−1 ⊗ v

−
0 ) = −q 1

2 v+
1 .

Proposition 2.5. The maps of definition 2.4 are morphisms of Uq(sl3)-modules.

The following relations hold:

(idV+
⊗ d−+) ◦ (b+− ⊗ idV+

) = (d−+ ⊗ idV+
) ◦ (idV+

⊗ b+−) = idV+
,

(idV− ⊗ d+−) ◦ (b−+ ⊗ idV−) = (d+− ⊗ idV−) ◦ (idV− ⊗ b−+) = idV−

d+− ◦ (idV+
⊗ h−++) = d−+ ◦ (h−++ ⊗ idV+

),

d−+ ◦ (idV− ⊗ h+
−−) = d+− ◦ (h+

−− ⊗ idV−).

Proof. These are easy computations. �

Remark 2.6. The proposition 2.5 tells in particular that V− is a (right and left)

dual of V+ and vice-versa, hence this fixes an isomoprhism between V ∗+ and V− and

between V ∗− and V+.

Proposition 2.7 (Littlewood-Richardson (simple) rules). The category Uq(sl3)-

mod is semi-simple and the following relations hold for m and n non-negative in-

tegers:

V+ ⊗ Vm,n ' Vm+1,n ⊕ Vm−1,n+1 ⊕ Vm,n−1

V− ⊗ Vm,n ' Vm,n+1 ⊕ Vm+1,n−1 ⊕ Vm−1,n

Vm,n ⊕ (Vm−1,0 ⊗ V0,n−1) ' Vm,0 ⊗ V0,n

Vm,0 ⊕ (V0,1 ⊗ Vm−2,0) ' V+ ⊗ Vm−1,0 ⊕ Vm−3,0

V0,n ⊕ (V1,0 ⊗ V0,n−2) ' V− ⊗ V0,n−1 ⊕ V0,n−3

Thanks to these formulas one can express Vm,n in terms of tensor product of V+

and V−. It is convenient to introduce the trinomial coefficients:
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Notation 2.8. Let a, b and c three integers, then we define:(
a+ b+ c

a b c

)
=


(a+ b+ c)!

a!b!c!
if a, b and c are non-negative,

0 else.

If a, b and n are three integers, we define:(
n

a b �

)
=

(
n

a b (n− a− b)

)
.

Thanks to proposition 2.7 and an easy recursion, we have the following corollary:

Corollary 2.9. Let m and n be two non-negative integers, then we have the fol-

lowing isomorphism:

Vm,n '
⊕

(i,j,k,l)∈N4

δ∈{0,1}

(−1)δ+i+k

(
m− δ − i− 2j

i j �

)
·

(
n− δ − k − 2l

k l �

)

V ⊗m−2i+k−3j−δ
1,0 ⊗ V ⊗n+i−2k−3l−δ

0,1 .

In this expression, the terms of the sum with minus signs are meant to be on the left-

hand side without minus signs. One can as well see this expression as an equality

in the Grothendieck ring of Uq(sl3)-mod.

2.2. The colored sl3-invariant. In this paper, all links (and tangles) are oriented

and otherwised specified endowed with a framing. All link diagrams are oriented.

When a diagram represents a framed link, the framing is understood to be the

blackboard framing. Diagrams are read from bottom to top. We consider as well

colored link diagrams. The set of colors is the set of iso-classes of finite dimensional

representations of Uq(sl3).

The combinatorial data given by the orientations and the colors are not com-

pletely independent: If a component l of a link L (resp. link diagram D) is colored

with V , and if L′ is the same link (resp. is the same link diagram) except that the

orientation of l is reversed and the color of l is V ∗ the dual representation of V , L

and L′ (resp. D and D′) are considered to be the same.

We fix once for all a duality structure of Uq(sl3)-mod compatible with the maps

d’s and b’s. We introduce now the graphical notation: an upward oriented vertical

strand colored with V an object of Uq(sl3)-mod represents the identity of this

objects. The same strand oriented downward represents the identity of the dual of

this object. The diagrams

V V V V

represent the morphisms C
(
q

1
6

)
→ V ⊗V ∗, C

(
q

1
6

)
→ V ∗⊗V , V ⊗V ∗ → C

(
q

1
6

)
and V ∗ ⊗ V → C

(
q

1
6

)
given by the duality structure. We have:

V = V ∗ and V = V ∗ .
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The diagrams

V W WV

represent the morphisms V ⊗W →W ⊗ V induced by the braided structure. The

juxtaposition of two diagrams side by side represents the tensor product of the two

associated morphisms. Stacking two (compatible) diagrams one onto the other, we

obtain another diagram which is meant to be the composition of the two morphisms.

Remark 2.10. Note that the duality and the braiding being compatible with tensor

product, we may replace a strand colored with V ⊗W by two parallel strands, one

colored with V , the other with W . For example we have:

V W1 ⊗W2

=
V W2W1

and V ⊗W =

W

V .

If D is a “well-presented” colored tangle diagram3, we denote by 〈D〉 the inter-

pretation of D as a morphism of Uq(sl3)-modules.

Theorem 2.11 ([RT90], see as well [Oht02]). The map 〈D〉 depends only on the

framed isotopy type of D. Furthermore, if L is a framed link, qs 〈L〉 is a Laurent

polynomial (where s is a certain4 real number depending on L).

In the sequence, we refer to this invariant to the colored sl3-invariant.

Proposition 2.12. The colored sl3-invariant is multilinear with respect to direct

sum of representations: Let T1, T2 and T3 be the same colored oriented tangles

except for the color of their ith connected components: it is colored with V in T1,

with W in T2 and with V ⊕W in T3. Then we have: 〈T1〉+ 〈T2〉 = 〈T3〉.

Note that remark 2.10 implies that 〈·〉 relates tensor products and cablings.

When a tangle or link diagram has no color, all components are meant to be

colored with V+ and we use the identifications of the duals of V+ and V− with V−
and V+ given by proposition 2.5. This means in particular that we have:

= b−+, = b+−, = d+− = d−+.

We represent the morphisms h−++ and h+
−− with the following two diagrams:

= h−++, = h+
−−.

Remark 2.13. Using the diagrams associated with the b’s the d’s and the h’s, we

can construct all planar bipartite graph w (the bipartition being given by sources

and sinks) embedded in R × [0, 1] with degree of degree 1 or 3 such that the in-

tersection of G with R× {0, 1} is precisely the set of vertices of degree 1. To such

3In Ohtsuki [Oht02], such diagrams are called sliced.
4This number is computable, but we do not need its expression.
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an embedded graph one can associate a morphism of Uq(sl3)-modules. Proposi-

tion 2.5 says that the associated morphisms depend only on the planar isotopy

type of graphs.

Proposition 2.14 ([Kup96] (we have−q
1
6

Kup = q
1
3

Here)). One can fix a normalization

of the universal R-matrix such that the following relations hold:

= q−
2
3 · −q 1

3 ·

= q
2
3 · −q− 1

3 ·

We want to relate the colored sl3-invariant with the classical sl3-invariant (i. e. the

invariant for the representation V+).

Notation 2.15. Let k be a non-negative integer and a, b and c three k-tuples of

integers. We define: (
a + b + c

a b c

)
=

k∏
i=1

(
ai + bi + ci
ai bi ci

)
.

Similarly if n, a and b are three k-tuples of integers, we define:(
n

a b �

)
=

(
n

a b n− a− b

)
.

If a is a k-tuple of integers, then we define |a| to be the sum of all its coordinate. If

L is a framed link with k components, and if (a,b) is a pair of k-tuples of integers,

the link La,b is obtained by cabling each component li (i ∈ {1, k}) by ai+bi strands,

the first (leftmost) ai strands orientated like li and the last (rightmost) bi strands

with the opposite orientation.

From remark 2.10, proposition 2.12 and corollary 2.9, we have:

Proposition 2.16. Let L be an oriented framed link with s components, and let

(m,n) be a pair of s-tuples of non-negative integers. We denote by (L, Vm,n) the

colored framed oriented link obtained by coloring each component lt of L with Vmt,nt
.

We have the following equality:

〈(L, Vm,n)〉 =
∑

(i,j,k,l)∈(Ns)4

δδδ∈{0,1}s

(−1)|δδδ+i+k|

(
m− δδδ − i− 2j

i j �

)
·

(
n− δδδ − k− 2l

k l �

)

· 〈Lm−2i+k−3j−δδδ,n+i−2k−3l−δδδ〉 .

In this paper we give a categorification of this formula.

2.3. Framed sl3-homology in a nutshell. In this section we recall briefly the

sl3-homology introduced by [Kho04] (see as well [MN08], [MV07], [MV08], [Cla09],

[Lew13b], [Lew13a], [Rob13a] and [Rob13b]). We adapt it to the context of framed

links.
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2.3.1. Webs and foams.

Definition 2.17. A closed web w is a planar, oriented, 3-regular multi-graph with

eventually some oriented vertex-less loop components. The orientation satisfies that

each vertex is either a source or a sink (this yields a bi-partition of w).

Figure 1. Example of a web

Remark 2.18. Thanks to remark 2.13 any closed web may be interpreted as an

endomorphism 〈w〉 of the Uq(sl3)-module V0,0 which is simply an element of C
(
q

1
6

)
.

One can check that the following local relations hold:〈 〉
=

〈 〉
+

〈 〉
,〈 〉

= [2] ·
〈 〉

,〈 〉
=

〈 〉
= [3],

where [n] is by definition equal to qn−q−n

q−q−1 .

The planarity of closed webs imposes that that every non-empty web contains

at least one vertex-less loop, one digon or one square. This shows that 〈w〉 can be

computed completely combinatorialy and that it is a Laurent polynomial symmetric

in q and q−1 with non-negative coefficients.

Definition 2.19. A pre-foam is a smooth, oriented, compact surface Σ (its con-

nected components are called facets) together with the following data :

• A partition of the connected components of the boundary into cyclically

ordered 3-sets and for each 3-set (C1, C2, C3), three orientation-preserving

diffeomorphisms φ1 : C2 → C3, φ2 : C3 → C1 and φ3 : C1 → C2 such that

φ3 ◦ φ2 ◦ φ1 = idC2
.

• A function from the set of facets to the set of non-negative integers (this

gives the number of dots on each facet).

The CW-complex associated with a pre-foam is the 2-dimensional CW-complex Σ

quotiented by the diffeomorphisms so that the three circles of one 3-set are identified

and become just one, called a singular circle. The degree of a pre-foam f is equal to

−2χ(Σ′) where χ is the Euler characteristic and Σ′ is the CW-complex associated

with f with the dots punctured out (a dot increases the degree by 2).

Remark 2.20. A CW-complex associated with a pre-foam has two local models.

If a point x is not on a singular circle, then it has a neighborhood diffeomorphic to

a 2-dimensional disk, else it has a neighborhood diffeomorphic to a Y shape times

an interval (see figure 2).
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Figure 2. Singularities of a pre-foam

Definition 2.21. A closed foam is the image of an embedding of the CW-complex

associated with a pre-foam such that the cyclic orders of the pre-foam are compat-

ible with the left-hand rule in R3 with respect to the orientations of the singular

circles5. The degree of a closed foam is the degree of the underlying pre-foam.

Definition 2.22. If w is a closed web, a w-foam f is the intersection of a foam f ′

with R2 × R+ such that there exits ε > 0, such that:

R2×]− ε, 0]) ∩ f = w×]− ε, 0].

The degree of a w-foam f is equal to χ(w) − 2χ(Σ) where Σ is the underlying

CW-complex associated with f with the dots punctured out.

Proposition-Definition 2.23 ([Kho04]). Let w be a web. We define F(w) to

be the Z-module generated by isotopy classes (fixing R2 × {0}) of w-foams and

subjected to the local relations:

= − (digon relation)

= − − (square relation)

= − − − (surgery)

k•
l•

m•

=


1 if (k, l,m) = (0, 1, 2), (1, 2, 0) or (2, 0, 1),

−1 if (k, l,m) = (0, 2, 1), (2, 1, 0) or (1, 0, 2),

0 else. (theta-foams evaluation)

k•
=

{
1 if k = 2

0 else.
(spheres evaluation)

The Z-module F(w) is free and its graded dimension is equal to 〈w〉. Furthermore,

F extends to a functor from the category of foams (we believe that the definition

of this category is clear from the context, see [Kho04] or [Rob13b] for details) to

the category of graded Z-modules.

5We mean here that if, next to a singular circle, with the forefinger of the left hand we go from face
1 to face 2 to face 3 the thumb points to indicate the orientation of the singular circle (induced

by orientations of facets). This is not quite canonical, physicists use more the right-hand rule,
however this is the convention used in [Kho04].
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Remark 2.24. If we restrict F to collection of circles and surfaces, F becomes a

2-dimensional TQFT. The Z-module associated to the circle has a natural structure

of Frobenius algebra A. It is isomorphic to Z[X]/X3.

2.3.2. sl3-homology.

Definition 2.25. Let D be an oriented link diagram and s a function from the set

X(D) of crossings of D to {0, 1}. The s-smoothing of D, denoted by Ds is the web

obtained by replacing each crossing of D following the instructions:

x in D is negative

x in D is positive

s(x
) =

0

s(x) =
1

s(x) =
1

s(x
) =

0

Such a function s is called a smoothing function for D. We define |s| = #s−1({1}).
Suppose additionally thatX(D) is endowed with a complete order. If x is a crossing,

we set kx(s) = #{y ∈ X(D) | y < x and s(y) = 1}.
If x is a crossing of D and s and s′ two smoothing functions for D such that

s(x) = 0 and s′(x) = 1 and s|X(D)\{x} = s′|X(D)\{x}, we write s
x−→ s′. We define a

(Ds, Ds′)-foam f
s

x−→s′ which is the identity foam outside a neighborhood of x and

around x is given by the following pictures (this is to be read from bottom to top):

f
s

x−→s′ when x is positive. f
s

x−→s′ when x is negative.

One can show that F(f
s

x−→s′) : F(Ds) −→ F(Ds′) is an homogeneous map of

degree 1.

We are now ready to construct the sl3-homology for framed links:

Definition 2.26. Let D be a link diagram with n+ positive crossings and n−
negative crossings. We fix a total order on X(D). We define the complex C(D) of

graded Z-module by:
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Ci =
⊕

s smoothing function for D
i=|s|− 1

3n+− 2
3n−

F(Ds)q|s|−
1
3n+− 2

3n− ,

di : Ci −→ Ci+1 and di =
∑

s smoothing function for D
i=|s|− 1

3n+− 2
3n−

∑
s

x−→s′

(−1)kx(s)F(f
s

x−→s′),

where q• is the grading shift for the non-homological grading (the so called q-

degree).

Remark 2.27. Two different orders on X(D) yield isomorphic complexes.

The homological grading of C(D) is not in Z as usual but in Q (the differential

has degree 1). However, only finitely many objects Ci(D) are not trivial. All the

notions of chain maps, homotopy equivalence etc. remain exactly the same as in

the classical case. The only thing which might need precision is the graded Euler

characteristic. If C =
⊕

r∈Q Cr is a such a complex we define:

χq(C) =
∑
r∈Q

eiπr rkq Cr.

Theorem 2.28 ([Kho04]). The homotopy type of C(D) depends only on the framed

isotopy type of D.

In the sequence the homology of C(D) is denote by H(D) or H(L) if L an

oriented framed link represented by D.

Theorem 2.29 ([Cla09]). C extends to a functor from the category of framed link

cobordisms to the category of complexes of graded Z-modules up to homotopy.

Remark 2.30. In his proof of theorem 2.29, Clark actually shows6 that one can

canonically extends this construction to framed knotted webs. However he does not

prove that this extension yields a functor on the category of framed knotted webs.

3. Tensor resolutions of simple finite dimensional Uq(sl3)-modules

In this section, we define a graph Γm,n associated with every pair of non-negative

integers. In a second part, we “interpret” this graph to define a complex. Finally,

we prove that is a resolution of the Uq(sl3)-module Vm,n.

Definition 3.1. Let m and n be two non-negative integers. We denote by ε(m,n)

the sequence of (m+n) dots, where the first m dots are colored with + and the last

n dots are colored with −. A compatible partition of ε(m,n) is a partition
⊔
iMi

of ε(m,n) such that:

• Each Mi consists of consecutive dots;

• Each Mi is non empty and has cardinality at most three;

• If Mi has three elements, all its elements have the same color (+ or −).

The canonical partition of εm,n is the partition by singletons. The oriented graph

Γm,n is defined by:

6He actually shows that the original definition of C(D) does not extend to knotted webs, because
of some grading shifts that he carefully computes, but our normalization corrects this defects.
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• The set V (Γm,n) of vertices of Γm,n consists of all compatible partitions of

ε(m,n).

• There is a directed edge from P1 to P2 if and only if P2 is obtained from

P1 by merging two sets of P1.

If (m,n) is a pair of k-tuples of integers, Γm,n is the Cartesian product of the

graphs Γmi,ni
for i = 1, . . . k.

Example 3.2. It is convenient to represent the compatible partitions by connecting

dots belonging to the same set. The following picture represents the graph Γ3,2.

WWWW+++ +++ +++ −−− −−−

WWWW+++ +++ +++ −−− −−−
WWWW+++ +++ +++ −−− −−−

WWWW+++ +++ +++ −−− −−−
WWWW+++ +++ +++ −−− −−−

WWWW+++ +++ +++ −−− −−−
WWWW+++ +++ +++ −−− −−−

WWWW+++ +++ +++ −−− −−−
WWWW+++ +++ +++ −−− −−−

WWWW+++ +++ +++ −−− −−−

Remark 3.3. As we can see on the example 3.2, the graph Γm,n is naturally

graded by the number of connected strands. Let us precise the normalization: an

admissible partition tki=1Mi of ε(m,n) has degree m+n− k. With this setting the

edges increase the degree by 1. Every admissible partition consists of sets of the

form (we use the notation of example 3.2):

+++ −−− +++ −−− +++ +++ −−− −−− +++ +++ +++ −−− −−− −−−

Here is a list of all type of edges (where ? stands for +++, −−− or “no dot”):

WWWW? +++ −−− ?

WWWW? +++ −−− ?

WWWW? −−− −−− ?

WWWW? −−− −−− ?

WWWW? +++ +++ ?

WWWW? +++ +++ ?

WWWW? −−− −−− −−− ?

WWWW? −−− −−− −−− ?

WWWW? −−− −−− −−− ?

WWWW? −−− −−− −−− ?

WWWW? +++ +++ +++ ?

WWWW? +++ +++ +++ ?

WWWW? +++ +++ +++ ?

WWWW? +++ +++ +++ ?

The edges induce a poset structure on Γm,n. We fix some notations which will

be useful in section 4.7.

Notation 3.4. Let P1 and P2 two admissible partitions of εm,n, we write P1 t P2

when the following conditions are satisfied:

(1) The canonical partition is an upper lower bound for {P1, P2}. In the dots-

strands setting, this means that P1 and P2 have no common strand.
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(2) {P1, P2} admits a lower upper bound (in our case, one can check if exists it

is unique) denoted by P1 ∨P2. In the dots-strands setting, this means that

the superposition of P1 and P2 still corresponds to an admissible partition.

Example 3.5. For m = 3 and n = 1, we consider P1 = +++ +++ +++ −−−, P2 =

+++ +++ +++ −−− and P3 = +++ +++ +++ −−−. We have:

• P1 t P2 and P1 ∨ P2 = +++ +++ +++ −−−.
• ¬(P1 t P3) (condition (2) is not fulfilled),

• ¬(P2 t P3) (condition (1) is not fulfilled),

We now give an algebraic interpretation of Γm,n:

Definition 3.6. Let m and n be two non-negative integers. With every vertex P

of Γm,n is associated a Uq(sl3)-module C̃m,n(P ), and with every edge e of Γm,n is

associated a morphism de of Uq(sl3)-module using the following dictionary:

Γm,n

(
C̃m,n, de

)
t ⊗
+++ V+

−−− V−

+++ −−− V0,0

+++ +++ V−

−−− −−− V+

+++ +++ +++ V0,0

−−− −−− −−− V0,0

+++ −−− +++ −−− d+− : V+ ⊗ V− → V0,0

+++ +++ +++ +++ h−++ : V+ ⊗ V+ → V−

−−− −−− −−− −−− h+
−− : V− ⊗ V− → V+

+++ +++ +++ +++ +++ +++ d−+ : V− ⊗ V+ → V0,0

+++ +++ +++ +++ +++ +++ d+− : V+ ⊗ V− → V0,0

−−− −−− −−− −−− −−− −−− d+− : V+ ⊗ V− → V0,0

−−− −−− −−− −−− −−− −−− d−+ : V− ⊗ V+ → V0,0
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Example 3.7. Continuing example 3.2, we get the following diagram for
(
C̃3,2, d•

)
:

V+ ⊗ V+ ⊗ V+ ⊗ V− ⊗ V−

V− ⊗ V+ ⊗ V− ⊗ V−

h −
+
+⊗id

V
+⊗

V ⊗
2−

V+ ⊗ V− ⊗ V− ⊗ V−
V+ ⊗ V+ ⊗ V−

V+ ⊗ V+ ⊗ V+ ⊗ V+

id
V
+ ⊗
h −

+
+ ⊗

id
V ⊗

2

−
id
V
⊗
2

+
⊗
d +
−
⊗

id
V
−

id V
⊗3

+

⊗h
+
−−

V− ⊗ V−
V− ⊗ V−

V− ⊗ V+ ⊗ V+

V+ ⊗ V− ⊗ V+

• •
••

V+

h
+
−−

d
−
+ ⊗

id
V
+

d
+−⊗id

V
+

For readability reasons, the middle arrows are not explicitly given, but one can

of course obtain them from the dictionary. The meaning of the red dots will be

explained later.

Proposition-Definition 3.8.
(
C̃m,n, d•

)
is a S-shaped pre-complex (all the squares

commute, see appendix A for details). Hence we can apply lemma A.15 and obtain

a complex (Cm,n, d•) via a sign assignment (all of the possibilities yield isomorphic

complexes).

Proof. The natural hypercube to consider is Bm+n−1 with the following correspon-

dence: if P is an admissible partition we define the function fP (it is a face of

dimension 0):

fP : [1,m+ n− 1] → Z/2Z

i 7→

{
1 if i and i+ 1 belong to the same set in P ,

0 else.

The cubical set S is clearly strong-inductive (the maximal faces are “maximal” ad-

missible partition). The fact that all squares commute follows from proposition 2.5.

All maps in Cm,n being surjective the non-nullity condition is clearly fulfilled. �

An adequate sign assignement is depicted in example 3.7: the red dotted arrows

are to be multiplied by −1 in order to construct the complex Cm,n.

Theorem 3.9. The cohomology of the complex Cm,n is concentrated in degree 0

where it is isomorphic to the irreducible Uq(sl3)-module Vm,n.

Remark 3.10. The formula of corollary 2.9 can be understood through the com-

binatoric of Γm,n.
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Proof. The proof is decomposed two main steps: first we compute H0(Cm,n), and

second we compute Hi(Cm,n) for i > 0. For each of these steps we separate two

cases: on the one hand, m or n equal 0; on the other hand, m and n different from

0.

1. Case n = 0 (the case m = 0 is similar). The space H0(Cm,0) is a subrep-

resentation of V ⊗n+ . Remark that the map h−++ is the q-antisymetrization: V− is

isomorphic as a Uq(sl3)-module to V+∧V+. Hence H0(Cm,0) ' Symm
q (V+) ' Vm,0.

Case m,n 6= 0. We consider d0 = d′ + d′′ where d′ = idV ⊗m−1
+

⊗ d+− ⊗ idV ⊗n−1
−

and d′ is the sum of all the id•⊗h∓±±⊗id•’s). Since d′ and d′′ have images in distinct

direct summand, we have: Ker d0 = Ker(d′|Ker d′′). This implies (thanks to the pre-

vious discussion) that H0(Cm,0) is a subrepresentation of Vm,0⊗V0,n. We know that

H0(Cm,n) is not trivial (it contains a highest vector of weight (m,n)?). Now, since

d′|Ker d′′ clearly maps Symm
q (V+)⊗Symn

q (V−) onto Symm−1
q (V+)⊗Symn−1

q (V−), we

have H0(Cm,n) ' Vm,n thanks to proposition 2.7.

2. We prove that Hi(Cm,n) = 0 by induction on m + n. If m + n is equal to 0

or 1, the statement is obvious. Let N be an integer greater than or equal to 2. We

suppose that the statement holds for all pairs (m,n) with m+n < N . We consider

a pair (m0, n0) of integers such that m0 + n0 = N .

Case m0 and n0 different from 0. We have the following short exact sequence of

complexes:

0 −→ Cm0−1,0 ⊗ C0,n0−1{+1} −→ Cm0,n0 −→ Cm0,0 ⊗ C0,n0 −→ 0,

where {•} denotes an homological grading shift. This short exact sequence and the

induction hypothesis implies that Hi(Cm0,n0
) = 0 for i > 1. We write the long

exact sequence in small homological degrees:

0 −→ H0(Cm0,n0
) −→ H0(Cm0,0 ⊗ C0,n0

)

−→ H1(Cm0−1,0 ⊗ C0,n0−1{+1}) −→ H1(Cm0,n0
) −→ 0.

The induction hypothesis gives:

0 −→ Vm0,n0
−→ Vm0,0 ⊗ V0,n0

−→ Vm0−1,0 ⊗ V0,n0−1 −→ H1(Cm0,n0
) −→ 0,

and finally H1(Cm0,n0
) = 0 (see proposition 2.7).

Case n0 = 0 (the case m0 = 0 is similar). We have the following short exact

sequence of complexes:

0 −→ Cm0−2,1{+1} −→ Cm0,0 −→ C1,0 ⊗ Cm0−1,0 −→ 0.

This short exact sequence and the induction hypothesis implies that Hi(Cm0,0) = 0

for i > 1. Let us write the long exact sequence for small homological degrees:

0 −→ H0(Cm0,0) −→ H0(C1,0 ⊗ Cm0−1,0) −→

H1(Cm0−2,1{+1}) −→ H1(Cm0,0) −→ 0.

The induction hypothesis gives:

0 −→ Vm0,0 −→ V1,0 ⊗ Vm0−1,0 −→ Vm0−2,1 −→ H1(Cm0,0) −→ 0.

This gives H1(Cm0,0) = 0 thanks to proposition 2.7. �

Remark 3.11. This result and its de-quantified proof are valid for sl3-modules.
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4. Categorification of the colored sl3-invariant

4.1. Overview in an ideal world. Our strategy to categorify the colored sl3-

invariant is to mimic the (first) categorification of the colored Jones polynomial due

to Khovanov [Kho05]. We face a major issue: the required adequate cobordisms

(foam-cobordisms) are not in the category of framed links, and there is no result of

functoriality about them. To give the flavor and the ideas of our categorification,

we suppose in this subsection that this not a problem: we give the construction

assuming that the sl3-homology is functorial with respect to framed foams (see

conjecture 4.3).

Definition 4.1. Let D be an oriented knot diagram, m and n two non-negative

integers and P an admissible partition of ε(m,n). Then DP is the oriented link

diagram obtained by cabling D with k strands, k being the number of sets of P

with 1 or 2 elements with the same sign. Each strand is naturally associated with

such a set (see definition 3.1). Its orientation is the same as the original strand in D

if its corresponding set is of the form +++ or −−− −−− and is the opposite orientation if

the corresponding set is of the form −−− or +++ +++ . We say that DP is the P -cabling

of D.

Example 4.2. If P is equal to +++ +++ +++ +++ +++ −−− −−− −−− −−−, then we have:

D DP

Conjecture 4.3. The functor F defined in 2.23 extends to knotted framed webs

and framed foam-cobordisms.

Remark 4.4. One should carefully define what knotted framed webs and framed

foam-cobordisms are.

In the rest of this subsection, we assume that the conjecture 4.3 holds. We will

give no proof here since, in the end, we want to bypass this conjecture.

Definition 4.5. Let D be an oriented knot diagram, m and n be two negative

integers and e : P1 −→ P2 an edge in Γm,n. We associate with e and D a cobor-

dism fD(e) between DP1 and DP2 : It is the identity cobordism on all strands not

concerned with the edge e and on the strands concerned by e, we use the following

table:

e fD(e)

+++ −−− +++ −−− ×D : DP1
−→ DP2

+++ +++ +++ +++ ×D : DP1 −→ DP2

−−− −−− −−− −−− ×D : DP1
−→ DP2

+++ +++ +++ +++ +++ +++ ×D : DP1 −→ DP2

+++ +++ +++ +++ +++ +++ ×D : DP1
−→ DP2

−−− −−− −−− −−− −−− −−− ×D : DP1
−→ DP2

−−− −−− −−− −−− −−− −−− ×D : DP1 −→ DP2
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Remark 4.6. Note that this is compatible with definition 4.1. These two defini-

tions can be thought as a suspension of the graph Γm,n along D.

Let us consider an oriented knot diagram D and m and n two non-negative

integers. We construct a complex C•(D,Vm,n) using definitions 4.1 and 4.5:

Ci(D,Vm,n) =
⊕

P of degree i

H(DP ) and

di : Ci −→ Ci+1,

di =
∑

P of degree i

∑
P1

e−→P2

(−1)•F(fe(D))

There is a sign indeterminacy in the definition of di: one should choose the signs

to make sure that d is indeed a differential. Before any modification, all squares

commute. We want them to anti-commute. One can easily show that such a

sign modification exists and that two adequate sign modifications yield isomorphic

complexes (see appendix A). The Euler characteristic of this complex is defined by:

χ(C•(D,Vm,n)) =
∑
j∈N

(−1)jχq(Cj) ∈ C[q, q−1]

where χq(Cj) is defined in remark 2.27.

One can of course play the same game with a link with k components and a pair

(m,n) of k-tuples of non-negative integers, by applying the same procedure with

the graph Γm,n.

Theorem 4.7 (Assuming conjecture 4.3 holds). The isomorphism type of C•(D,Vm,n)

depends only on (m,n) and on the framed oriented isotopy type of D and we have:

χ(C•(D,Vm,n)) = eiπ
2
3 (n+−n−)s(m−n) 〈(D,Vm,n)〉 ,

where (D,Vm,n) denotes the diagram D colored with the Uq(sl3)-modules Vm,n; n+

and n− are respectively the number of positive and negative crossings7 in D; and

s(m− n) is the sum over all coordinate of (m− n).

Sketch of the proof. The links being framed, the operation of cabling is well-defined.

This proves that each Ci(D,Vm,n) is a link invariant. Thanks to conjecture 4.3, the

morphisms F(fe(D)) are well-defined, hence C•(D,Vm,n) depends only on (m, n)

and on the framed oriented isotopy type of D. The formula on the Euler charac-

teristic follows directly from proposition 2.16 and on the definition of the graphs

Γ•,•. �

We want to set a definition of C•(D,Vm,n) bypassing conjecture 4.3 in such a way

that theorem 4.7 still holds. The main issue is of course to have a proper definition

of the morphisms F(fe(D)). Here is a list of the main steps:

• Give a new definition of fe(D) in terms of movies (we have to make some

arbitrary choices). See section 4.5.

• Extend F to movies. See section 4.3

• Prove that the dependence of F(fe(D)) in the choices made in the first step

is only a multiplication by a sign. See 4.4.

7Remark that (n+ − n−) is a framed link invariant.
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• Prove some commutativity property (up to a sign) of some squares to re-

place isotopies of foams in the ideal world of foam-cobordism to some iso-

topies. See section 4.4

• Prove some non-nullity property in order to apply lemma A.15 and get rid

of the sign ambiguities. See section 4.4

We finally conclude in section 4.6.

4.2. The framework of canopoleis. As Bar-Natan explains in [BN05], canoploeis

is the right notion to deal with the “locality” of the definition of knot homology. It

has been used by Morrison and Nieh [MN08], Clark [Cla09] and Lewark8 [Lew13b]

to present (and compute, see[Lew13a]) the sl3-homology. We present shortly this

notion in order to fix notations.

Definition 4.8. We consider a 2-manifold M = B0 \ (B̊1 ∪ · · · ∪ B̊n) where B0

is the standard closed disk in R2 and the other Bi’s are small closed disks in the

interior of B0. The connected components of ∂M are labelled from 0 to n (with the

convention that the 0th connected component is ∂B2
0), furthermore they all carry

a base point that we may called ∗. Let γ be a compact oriented smooth 1-sub-

manifold of M which does not meet the base points (with the standard conventions

that ∂γ ⊂ ∂M and γ \ ∂γ ⊂ M \ ∂M). Then the data given by M , γ and the

base points is called an input-diagram with n inputs is denoted (M,γ). The input-

diagrams are regarded up to planar isotopies. If (M,γ) is an input-diagram with n

inputs, then the isotopy type of γ∩Bi is canonically encoded by a sequence of signs

(start with the base point and scan ∂Bi in the conterclockwise way). We denote

ε0, . . . , εn these sequences of signs.

B1 B2

B3

B4

B1

Figure 3. Two examples of input-diagrams. The base points are
depicted by red dots. The input-diagram on the left-hand side has 4
inputs and we have: ε0 = (+,+,−,−,−,+), ε1 = (−,−,−,−,+),
ε2 = (−,+,+,+,+), ε3 = (+,−) and ε4 = (). The input-diagram
on the right-hand side is sun(+,−,−,+).

Definition 4.9. If (M,γ) and (M ′, γ′) are two input-diagrams with n inputs and

n′ inputs respectively, and if for some i, εi = ε′0. Then one might glue (M ′, γ′)

to (M,γ) by identifying ∂Bi and ∂B′0. This yields a new input-diagram with

n + n′ − 1 inputs called the ith composed of (M,γ) and (M ′, γ′) and denoted by

8Lewark sees canopoleis as a special case of an extended notion of planar algebra.
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(M,γ)◦i (M ′, γ′) (the labels of boundary components of this new input-diagram are

obtained by inserting the components corresponding to B′1, . . . B
′
n′ between ∂Bi−1

and ∂Bi+1). See figure 3

Let ε be a finite sequence of signs, we denote by sunε the input-diagram with

one input and ε0 = ε1 = ε consisting of an annulus with appropriately oriented

radial strands (see figure 4).

B2

B1

◦1

B2

B1

=

B3

B2

B1

Figure 4. Composition of input-diagrams.

Remark 4.10. The input-diagrams sun• behave like identities: for every input-

diagram (M,γ), we have:

(M,γ) ◦i sunεi = (M,γ) = sunε0 ◦1 (M,γ).

Definition 4.11. Let I be a subset of the set of finite sequences of signs. An

I-canopolis P consists of:

• For each element ε in I, a category Pε.
• For each input-diagram (M,γ) with n inputs, a functor:

PM,γ :

n∏
i=1

Pεi → Pε0 .

Furthermore, this data should satisfy:

• Psunε
is isomorphic to the identity functor of Pε for all ε in I.

• For any compatible input-diagrams (M,γ) and (M,γ′):

P(M,γ)◦i(M ′,γ′) = P(M,γ) ◦ (id∏i−1
k=1 Pεk

,P(M ′,γ′), id
∏n

k=i+1 Pεk
)

Definition 4.12. Suppose that P1 is an I1-canopolis and P2 is an I2-canopolis

and that I1 is a subset of I2. Then a morphism of canopoleis from P1 to P2 is a

collection of functors (φε : P1
ε → P2

ε )ε∈I1 such that, for every input-diagram (M,γ)

with n inputs, we have:

P2
M,γ ◦ (φε1 , · · · , φεn) = φε0 ◦ P1

M,γ

Definition 4.13. Let P be an I-canopolis and (Dj)j∈J be a collection of objects

in
⋃
ε∈I Pε. We say that (Dj)j∈J objects-generates P if for every ε in I and every

objects D in Pε, there exists an input-diagram (M,γ) and an n-uple (Dj1 , . . . , Djn)

of objects in (Dj)j∈J such that:

D = PM,γ(Dj1 × · · · ×Djn).
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If (fk)k∈K is a collection of morphisms in
⋃
ε∈I Pε. We say that (fk)k∈K morphisms-

generates P if for every ε in I, the morphisms of Pε, are generated by morphisms

of the form:

PM,γ(fk1 × · · · × fkn),

where (M,γ) is an input-diagram and (fk1 , . . . , fkn) is an n-uple of elements in

(fk)k∈K

4.3. A morphism of canopoleis. In this subsection we describe a morphism of

canopoleis. We first define the two canopoleis concerned with this morphism.

In what follows, we consider I3 the set of finite sequences of signs which sum up

to 0 modulo 3.

4.3.1. Two canopoleis.

Definition 4.14. Let B0 be the standard disk in R2 with a base point ∗ on its

boundary and ε be an element of I3 of length k. Fix x a set of k distinct points on

∂B0 \ {∗}. With each point is associated a sign given by ε (scan ∂B0 counterclock-

wise starting from ∗). We define W(ε) to be the following category:

• objects are pairs (w,m) where w is a web embedded in B0 whose boundary

is precisely x (out-going (resp. in-going) edges correspond to + (resp. −));

and m is an integer (the “q-grading-shift of (w,m)”), it is denoted by w ·qm.

• the space of morphisms from w0 · qm0 to w1 · qm1 is the graded Z module

generated by foams f in B0 × [0, 1] such that:

– f ∩ B0 × {0} = −w0 (the “−” means that the orientation of w0 is

reversed),

– f ∩B0 × {1} = w1,

– f ∩ ∂B0 × [0, 1] = x× [0, 1];

subjected to ambient isotopy and the local relations of proposition 2.23.

• The degree of a foam f is given by: χ(w0) + χ(w1) − 2χ(Σ) + m1 − m0

where Σ is the underlying CW -complex, where the dots are punctured out.

This category is clearly pre-additive and graded. We denote by KW(ε) the graded

category of bounded complexes9 of Mat(W(ε)), the additive completion of W(ε).

This yields an I3-canopolis KW, where KWε = KW(ε). The functors associated

with input-diagrams are given by gluing foams vertically.

Remark 4.15. From proposition 2.23 one can derive that10 HOMKW(ε)(w0·qm0 , w1·
qm1) is a free Z-module of dimension q|ε|+m1−m0 〈(−w0)εw1〉, where |ε| is the num-

ber of element of ε and (−w0)εw1 is the plane web obtained by gluing (−w0) and w1

along ε. This canopolis already appears in [MN08] and [Cla09], where it is denoted

by Kob(su3).

Definition 4.16. A movie is a sequence of knotted web diagrams in the standard

disk B0 such that any two consecutive diagrams are the same except in a small

ball B where their difference is in the following list (these are called elementary

9We consider complexes with homological grading in Q, see remark 2.27.
10We use HOM instead of Hom to stress that we consider morphisms of arbitrary degrees.
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movies):

Movies are considered up to the relation “far modifications commute”:

D1 D2 D′1 D2 D′1 D′2

'

D1 D2 D1 D′2 D′1 D′2

Remark 4.17. Links cobordisms can be presented via movies and movie moves

(see [CKS02] and [BW08] for the framed case).
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Definition 4.18. Let B0 be the standard disk in R2 with a base point ∗ on its

boundary and ε be an element of I3 of length k. Fix x a set of distinct k points on

∂B0 \ {∗}. With each point is associated a sign given by ε (scan ∂B0 counterclock-

wise starting from ∗). We define T D(ε) to be the following category:

• Objects are knotted web diagrams in B0 with boundary precisely equal to

x.

• A morphism from w0 to w1 is a movie starting with w0 and ending with

w1.

• The composition is the concatenation of movies. The movie of length one

is the identity.

This yields an I3-canopolis T D, where T Dε = T D(ε). The functors associated

with input-diagrams are given by gluing movies (as we allow only one local trans-

formation between two consecutive frames, one should actually proceed carefully

but the relation “far modifications commutes” ensures that it is well-defined).

Remark 4.19. The canopolis T D is clearly objects-generated by:

, , and .

It is morphisms-generated by the elementary movies movie given in definition 4.16.

4.3.2. The morphism. We now want to define a morphism G : T D −→ KW. All

the ingredients are in [Cla09], we do not repeat all the definitions, but rather give

the flavor of this morphism and explain the needed modifications.

The morphism G on objects. Thanks to remark 4.19, we only need to give the

value of G on four objects. We set:

G

  = · q− 2
3

[
−2

3

]
−−−−−−−−→ · q 1

3

[
1

3

]
,

G

  = · q− 1
3

[
−1

3

]
−−−−−−−−→ · q 2

3

[
2

3

]
,

G

( )
= [0] and G

( )
= [0],

where [•] indicates the homological degree. Definition of G on morphism. A brief

description of the image of morphisms by G is given in figure 5.
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m G(m) m G(m)

A1 (cap) (cup) B1

A2 (saddle) (zip) B2

A3 (unzip) (digon cup) B3

A4 (digon cap)

Homotopy equiva-

lence1 , composition

of R1a and R1b from

[Cla09], inverse of

A5.

B4

A5

Homotopy equiva-

lence1, composition

of R1a−1 and R1b−1

from [Cla09], inverse

of B4.

Homotopy equiva-

lence1, composition

of R1a and R1b from

[Cla09], inverse of

A6.

B5

A6

Homotopy equiva-

lence1, composition

of R1a−1 and R1b−1

from [Cla09], inverse

of B5.

Homotopy equiva-

lence, figure 7 and

8 of [Cla09], inverse

of B6.

B6

A7

Homotopy equiva-

lence, figure 7 and

8 of [Cla09], inverse

of A7.

Homotopy equiva-

lence, lemmas 3.13

to 3.22 of [Cla09]. B7

A8

Homotopy equiva-

lence2, lemma 5 of

[Cla09], inverse of

B8.

Homotopy equiva-

lence2, lemma 5 of

[Cla09], inverse of

A8.

B8

A9

Homotopy equiva-

lence2, lemmas 3

and 4 of [Cla09],

inverse of B9.

Homotopy equiv-

alence2, lemma 3

and 4 of [Cla09],

inverse of A9.

B9

Figure 5. Description of G.

1 With our normalization, R1a and R1b have to be shifted both in q and in homological grading,
however the composition of the two is degree preserving.
2 In [Cla09], there are some degree shifts, with our normalization, there is no.

Remark 4.20. The canopolis T D does not see the topology of diagrams (for exam-

ple we did not impose that movies associated with Reidemeister moves correspond

to isomorphisms). The topology will be recovered by saying that the morphism G
is invariant under certain moves. This is the purpose of the next section.

4.4. Invariance results.

Definition 4.21. Two knotted web diagrams w1 and w2 of KWε are framed equiv-

alent if there exists a morphism from w1 to w2 which is a composition of elementary

movies of type A5-A9 and B4-B9.

Remark 4.22. We do not claim that this is a “good” definition of framed equiv-

alence for webs. The “good” definition should be geometric and deal with normal

vector field and ambient isotopy equivalence. We do not claim that this “cheap”

definition is equivalent to the geometric one.
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From the definition of G we have the obvious lemma:

Lemma 4.23. Let w1 and w2 are two knotted web diagrams. If w1 and w2 are

framed equivalent then the two complexes G(w1) and G(w2) are homotopy equivalent.

Let w1 and w2 be two tangle diagrams and Σ a framed cobordism (in the classical

sense, i. e. Σ is a surface) between w1 and w2. Then Σ (or a surface isotopic to Σ)

can be presented by a movie. We have the following theorem:

Theorem 4.24 (Clark’s functoriality theorem, [Cla09]). With the same notations,

G(Σ) depends only on the isotopy type of Σ.

Remark 4.25. The isomorphism between H(G(w1)) and H(G(w2)) in lemma 4.23

is a priori not canonical, however we can interpret the Clark’s functoriality theorem

by saying that if w1 and w2 are link diagrams, then G(w1) and G(w2) are canonically

homotopy equivalent.

Lemma 4.26 ([Cla09, Lemma 3.12]). The images by G of the following two mor-

phisms are equal:

and .

The images by G of the following two morphisms are equal:

and .

Exactly the same argument provides the following lemma:

Lemma 4.27. The images by G of the following two morphisms are equal:

and .

The images by G of the following two morphisms are equal:

and .
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To prove more invariance results, we will use Bar-Natan’s trick [BN05] in or-

der to avoid long and complicated computations. This trick yields “up-to-a-sign”

invariance results, but this is enough for our purposes.

Definition 4.28 (Bar-Natan, adapted). A knotted web diagram w is BN-simple if

G(w) admits only two automorphisms (i. e. homotopy equivalences): +id and −id.

Lemma 4.29. If a knotted web diagram w is an unknotted collection of trees, then

w is BN-simple

Of course we only consider trivalent trees. Note that any tree can be oriented in

such a manner that it becomes a web.

Proof. The knotted web diagram w having no crossing, G(w) is concentrated in

degree zero. If w consists of t trees, and has v vertices. One easily shows (thanks

to remarks 2.18 and 4.15) that END(G(w)) ' Z · (q2t+v[3]t[2]v). This proves that

END0G(w) ' Z, and finally that the only possible automorphisms of G(w) are +id

and −id. �

Lemma 4.30 (Bar-Natan, adapted). If w1 and w2 are framed equivalent, then w1

is BN-simple if and only if w2 is BN-simple.

Proof. If w1 and w2 are framed equivalent, then G(w1) and G(w2) are homotopy

equivalent. Hence END(Gw1) and END(Gw2) are isomorphic, this proves the state-

ment. �

Corollary 4.31. Let w1 and w2 two BN-simple framed equivalent web diagrams.

Suppose that h1 and h2 two homotopy equivalences between G(w1) and G(w2). Then

h1 = ±h2.

Lemma 4.32 (Bar-Natan, [BN05, Lemmas 8.8 and 8.9]). Let w be a knotted web

diagram, and let wX be a knotted web diagram obtained from w by adding a cross-

ing X (positive or negative) somewhere on the boundary of w so that exactly two

(adjacent) legs of X are connected to w and two remain free. Then w is BN-simple

if and only if wX is BN-simple.

w

Figure 6. The web wX is obtained by gluing a crossing on two
ends of w.

From lemmas 4.29, 4.30, 4.32 and corollary 4.31, we deduce:

Proposition 4.33. The images of the following pairs of morphisms are equal up

to a sign two by two:

!
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!

!

!
!

!
!

4.5. Two movies.

4.5.1. The movie λ. We consider an oriented link diagram L in the standard disk

B0 and L// a cabling of L along one component l with two parallel copies l1 and l2



28 LOUIS-HADRIEN ROBERT

both oriented conversely to the orientation of l. The links L and L// are considered

as object of T D∅. Let x be a regular (not a crossing) point of l.

Definition 4.34. The movie λ(L, x, l1, l2) in HOMT D∅(L//, L) is defined by the

following sequence:

• A zip (B2) at x. We obtain a knotted web diagram w,

• A sequence of moves of type B8 and B9 obtained by pushing one of the two

singularities of w along the strands following the orientation of l.

• A digon cap (A4) in a neighborhood of x.

An example is given in figure 7

Figure 7. The morphism λ(L, x) performed on the cabled trefoil.
The picture is to be read from left to right and from top to bottom.
Note that for simplicity, between the second and the fifth frames,
there are two elementary movies instead of one between two frames.

Lemma 4.35. With the same notations and with y another regular point of l, we

have:

G(λ(L, x, l1, l2)) = ±G(λ(L, y, l1, l2)).
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Proof. It is enough to consider the case where x and y are separated by only one

crossing. In this case, this is an easy consequence of lemmas 4.26, 4.27 and propo-

sition 4.33. �

Lemma 4.36. With the same notations, if L and L′ are two oriented link diagrams

which are framed equivalent via a movie m, then the following diagram homotopy-

commutes up to a sign:

G(L) G(L′)

G(L//) G(L′//)

G(m)

G(m//)

G(λ(L, x, l1, l2)) G(λ(L′, x′, l1, l2))

Where m// is the movie m adapted to the cabling.

Proof. This is enough to consider the case where L and L′ are related by a Rei-

demeister move (A5-A7 and B4-B7). Thanks to lemma 4.35, we can suppose that

the points x and x′ are disjoint from the ball where the Reidemeister move takes

place. With this setting, the result is an easy consequence of lemmas 4.26, 4.27 and

proposition 4.33. �

Consider λ(L, x, l1, l2) in the other direction: it becomes a movie from L to L//
and let us denote it by µ(L, x, l1, l2). Composing these two movies, we obtain a

movie α(L, x, l1, l2) from L to L,

Lemma 4.37. The G(α(L, x, l1, l2)) is homotopic to 2 · idG(L).

Sketch of the proof. In a neighborhood of x, the movie α(L, x, l1, l2) reads as fol-

lows:

. . . . . .

In the middle of the movie, there is a vertical digon in G(α(L, x, l1, l2)), we now

use the digon relation (see definition 2.23). Hence, G(α(L, x, l1, l2)) can be seen

as the difference of two morphisms. Using the fact that the images by G of the

elementary moves Ai and Bi (for i equal to 8 or 9) are inverse one from the other,

we obtain that G(α(L, x, l1, l2)) is homotopic to the identity everywhere but in a

neighborhood of x where we have:

G(α(L, x, l1, l2)) = ◦ − ◦ .

Using the surgery relation, the evaluation of dotted theta-foams and dotted

sphere, we obtain:

◦ = and ◦ = − .
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Hence G(α(L, x, l1, l2)) is homotopic to 2 · idG(L). �

4.5.2. The movie η. We consider an oriented link diagram L in the standard disk

B0 and L// a cabling of L along one component l with two parallel copies l1 and

l2 one oriented likes l the other one with the opposite orientation. We consider as

well L0, this is the link diagram obtained by removing l from L. Both L0 and L//
are considered as objects of T D∅. Let x be a regular point of l.

Definition 4.38. The movie η(L, x, l1, l2) in HOMT D∅(L//, L0) is defined by the

following sequence:

• A saddle (B1) at x.

• A sequence of moves of type B6 by pushing the strand along itself.

• A cap (A1) in a neighborhood of x.

An example is given in figure 8

Figure 8. The morphism η(L, x) performed on the cabled trefoil.

The same arguments as for the movie λ gives the following two lemmas:

Lemma 4.39. With the same notations and with y another regular point of l, we

have:

G(η(L, x, l1, l2)) = ±G(η(L, y, l1, l2)).
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Lemma 4.40. With the same notations, if L and L′ are two oriented link diagrams

which are framed equivalent via a movie m, then the following diagram homotopy-

commutes up to a sign:

G(L0) G(L′0)

G(L//) G(L′//)

G(m0)

G(m//)

G(η(L, x, l1, l2)) G(η(L′, x′, l1, l2))

Where m// is the movie m adapted to L// and m0, is the movie m adapted to

L0.

Remark 4.41. Note that theorem 4.24 implies the two previous lemma since the

movie η describe a surface.

We have an analogue to lemma 4.37: we consider η(L, x, l1, l2) read in the other

direction and denote this movie ν(L, x, l1, l2). Composing these two movies, we

obtain a movie β(L, x, l1, l2) from L0 to L0,

Lemma 4.42. This endomorphism G(β(L0, x, l1, l2)) is homotopic to 3 · idG(L0).

The proof is similar. We use the surgery relation instead of the digon relation.

One could as well use theorem 4.24: in terms of surface β(L0, x, l1, l2) is the dis-

joint union of the identity of L0 with a knotted torus, hence we clearly have that

G(β(L0, x, l1, l2)) is homotopic to 3 · idG(L0).

4.6. The colored sl3-homology in the real world. We now work with the

canopolis KW/h, which define just like KW except that morphisms are considered

up to homotopy. We now consider G as a morphism between FT and KW/h and

the complexes C(D) (defined in section 2.3) are seen as objects of KW/h(∅). The

aim of this part is to redefine the complex C•(D,Vm,n) introduced in section 4.1

and to re-state the theorem 4.7.

Definition 4.43. Let D be an oriented link diagram with k components, m and

n be two k-tuples of non-negative integers and e : P1 −→ P2 an edge in Γm,n. We

associate with e and D a movie fD(e) between DP1
and DP2

: It is the identity on

all strands not concerned with the edge e and on the strands concerned by e, we

use the following table:

e fD(e)

+++ −−− +++ −−− η

+++ +++ +++ +++ λ

−−− −−− −−− −−− λ

+++ +++ +++ +++ +++ +++ η

+++ +++ +++ +++ +++ +++ η

−−− −−− −−− −−− −−− −−− η

−−− −−− −−− −−− −−− −−− η
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Proposition-Definition 4.44. Let m and n be two k-tuples of non-negative in-

tegers. We consider an oriented link diagram D colored with Vm,n. We can find

some adequate signs such that the following formula define a complex C•(D,Vm,n):

Ci(D,Vm,n) =
⊕

P of degree i

C(DP ) and

di : Ci −→ Ci+1,

di =
∑

P of degree i

∑
P1

e−→P2

de with de = (−1)•G(fe(D)).

Furthermore, two satisfactory choices of signs yield isomorphic complexes.

Proof. We want to use lemma A.15. C•(D,Vm,n) can be seen as S-shaped space

with S strongly inductive. Hence, we only need to show that:

(1) every square either commutes or anti-commutes,

(2) the product by 2 of any composition of 3 maps d• is not equal to zero.

Property (1) follows from proposition 4.33 and property (2) follows from lem-

mas 4.37 and 4.42. �

Theorem 4.45. The isomorphism type of C•(D,Vm,n) depends only on (m, n)

and on the framed oriented isotopy type of D and we have:

χ(C•(D,Vm,n)) = eiπ
2
3 (n+−n−)s(m−n) 〈(D,Vm,n)〉 ,

where:

• (D,Vm,n) denotes the diagram D colored with the Uq(sl3)-modules Vm,n;

• n+ and n− are respectively the number of positive and negative crossingsin

D;

• s(m− n) is the sum over all coordinate of (m− n).

Proof. The invariance follows directly from the fact that cabling is a well-defined

operation on framed links and from lemmas 4.36 and 4.36. The Euler characteristic

part is a consequence of proposition 2.16. �

Remark 4.46. One could define another complex by declaring all the differential

to be zero. This would be a substantial simplification. However this would lead to

an invariant completely determine by the sl3-homology of cables of links ignoring

the relation between the different cables, this does not seem very satifactory.

4.7. Cobordisms. A cobordism in R4 between two colored framed links L1 and

L2 can be presented by a movie (the link diagrams in the movie should be colored).

We can decompose this movie into elementary movies: Reidemeister moves (A5,

A6, A7, B4, B5, B6 and B7) or Morse moves (A1, A2 or B1, note that for the

saddle move (A2) the involved strands should have the same color). One may

wonder if like in the classical sl3-homology, the colored sl3-homology would extend

to cobordisms. To address this question, one should define morphisms associated

with each elementary movies and prove that the movies move hold (see [CKS02],

[Cla09] and [BW08] for the framed case). In this section we define some morphisms

(we leave all the proofs to the reader) associated with Morse moves (this is very

similar to [Kho05] and [BW08]). We do not pretend to have any statement regarding

the movie moves.
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For colored cups and caps it is pretty simple: the associated morphism is induced

by the unit and the counit of the Frobenius algebra A associated to the circle. Let

us be a little more explicit. Let D be a colored link diagram and Do with the same

colored link diagram with an additional disjoint circle colored with Vm,n. If P be

an admissible multi-partition for D, we denote by Po is the multi-partition for Do,

which is determined by P and by the canonical partition on the additional circle.

Then the morphism associated with a the colored cup from D to Do is φ =
∑
P φP ,

where φP : C(DP ) → C((Do)Po) is the image by G of a succession of m + n cups

(oriented in the appropriate way). Here is what it looks like for m = 2 and n = 1:

V2,1

7→

For the cap this is the same read in the other direction, in particular the map

induced by a cap is equal to equal to zero on every space C((Do)P ) when P does

not induce the canonical partition on the additional circle.

Claim 4.47. The maps associated to the cup and the cap colored with Vm,n is a

chain map. The q-degrees of these maps are both equal to −2(m+ n).

A saddle can either merge two link components or split one link component. We

define two different maps associated to these two different situations.

Let D be a colored link diagram and D′ obtain from D by a merging saddle move.

Let us denote by l1 and l2 the two components of D concerned by the saddle, and

l0 the component of D′ concerned with the saddle. Let P be a multi-partition for

D, it induces a partition P1 of l1 and a partition P2 for l2. The morphism σ is

defined to be zero on C(DP ) unless P1 t P2 and in these cases it maps C(DP )

into C(D′P ′), where P ′ is induced by P for all components of D′ except l0. The

partition P0 of l0 is P1 ∨ P2.

Suppose P1 t P2, and let us choose

P1 = P 1
1

e11−→ P 2
1

e21−→ · · ·
ek−2
1−→ P k−1

1

ek−1
1−→ P k1 = P1 ∨ P2, and

P2 = P 1
2

e12−→ P 2
2

e22−→ · · ·
er−2
2−→ P r−1

2

er−1
2−→ P r2 = P1 ∨ P2.

We define

σ|C(DP ) = (−1)•

(
j
Pk

1

e
k−1
1−→ Pk−1

1

◦ . . . ◦ j
P 1

1

e11−→P 2
1

)
◦

(
j
Pk

2

e
k−1
2−→ Pk−1

2

◦ . . . ◦ j
P2

e12−→P 2
2

)
◦s,

where s is the image by G of a composition of saddles, and j
Pa

e−→Pb
is the image

by G of fD(e) precomposed with an endomorphism of C(DPa
) which add dots on

the strands concerned with e:

• We add one dot on each strand if fD(e) is a movie of type η,

• We add a dot on the left strand (with respect to the orientation of the

strands) if fD(e) is a movie of type λ,
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• ••

Figure 9. On the second movie we added some dashed lines to
clarify: on the first frame they indicate the position of strands for
the canonical partition. On the third, they indicate the positions
of the strands of the second frame which disappeared between the
second and the third frame. The •’s on the second indicate that
we add a dot.

On figure 9, we schematize11 this construction for m = 3 and n = 1 when P1 and

P2 are both the canonical partition and when they are equal to the partitions P1

and P2 of example 3.5.

Note that we can choose different path between Pi and P1 ∨P2 (i = 1 or 2), but

the composition of the j’s is well-defined up to a sign.

If the saddle split a component, we do the same construction in the opposite

direction. We let the details to the reader.

Claim 4.48. One can fix the signs in the definition of the morphism associated

with a saddle colored with Vm,n to turn it into a chain map. The q-degree of this

map is 2(m+ n).

4.8. Problems. We would like to suggest a list of problems which arise quite nat-

urally from the problem we dealt with:

(1) Relate this work with the categorification of the quantum sl3 projectors

defined by Rose in [Ros12].

(2) Extends this construction to the sln-homology defined by Queffelec and

Rose in [LQR12].

(3) Define geometrically the category of framed webs and framed foams, find

a complete list of Reidemeister moves. Find a complete list of movies and

of movie moves. One can start with the 2-dimensional moves introduced

by Carter [Car] and with the framed movie moves listed by Beliakova and

Wehrli in [BW08].

(4) Once (3) is done, continue the work of Clark [Cla09] and prove that the

framed sl3-homology is functorial for foam cobordisms.

(5) Make section 4.7 more explicit and establish the functoriality of the colored

sl3-homology.

11The second movie has no rigorous meaning in the canopolis FT .
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(6) Following Turner and Mackaay[MT07], find a new formulation of the colored

sl3-homology as a space of invariant of the homology of the cable under a

certain action. In the sl2-case this is this is an action of the symmetric

group. We suspect that in the sl3-case, we need to consider an algebra.

(7) Extend algebraically this construction to tangles, like Caprau [Cap14] did

for the sl2-case.

Appendix A. Complexes and cubes

A.1. Cubical sets.

Definition A.1. If n is a non-negative integer, the nth dimensional cube Bn is the

Z/2Z-vector space generated by all maps J1, nK to {0, ∗, 1} (which are called faces).

The dimension of a face is given by the formula:

dim f = #f−1({∗}).

The faces of dimension 0, 1, 2 and 3 are called vertices, edges, squares and cubes

respectively. A cubical set is a subspace of an nth dimensional cube generated by

some faces of Bn. Let f be a face of dimension k of the nth dimensional cube.

The boundary of a face f , denoted by ∂f is the sum of all faces of Bn of dimension

k − 1 which are equal to f on exactly n − 1 elements of J1, nK. A cubical set S is

consistent if for every face f of positive dimension, f is in S if and only if ∂f is in

S.

Remark A.2. If f has dimension k, ∂f is a sum of 2k faces. If a cubical set is

consistent it is determined by its vertices. Hence, if X is a set of vertices the nth

dimensional cube, we may speak of the consistent cubical set associated with X.

The set {0, ∗, 1} is endowed with the total order 0 < ∗ < 1. This induces a

partial order on the set of faces.

Definition A.3. A cubical set S ⊂ Bn is inductive if for every face f of S and

every face f ′ of Bn, f ′ < f implies f ′ ∈ S. It is strong-inductive if furthermore all

its maximal faces have dimension equal to 0.

Remark A.4. An inductive cubical set is entirely determined by its set of maximal

faces.

Lemma A.5. If a cubical set S is strong-inductive, it is consistent.

Proof. Let f be a face of S, and let h be a 0 dimensional maximal element of S

such that f < h. Then ∂f is a sum of faces which are all smaller than or equal

than h, hence they are all in S. If ∂f is in S, all the faces in the sum of ∂f are in

S. Half of them are greater than f , hence f is in S. �

Lemma A.6. Let S be a consistent cubical set, then the map ∂ : S → S is a

differential (the homological degree is given by the dimension).

Proof. From the definition of ∂, we see that it is a map of degree -1. It is clear that

∂2 = 0S since we work over Z/2Z. �



36 LOUIS-HADRIEN ROBERT

Proposition A.7. Let S ⊂ Bn be a (non-trivial) strong-inductive cubical set, then

we have:

H0(S) = Z/2Z and Hi(S) = 0 for all i > 0.

Lemma A.8. For every positive integer n we have:

H0(Bn) = Z/2Z and Hi(Bn) = 0 for all i > 0.

Proof. This is an easy induction using the fact that Bn+1 is isomorphic as a complex

to the cone of Bn
id⊕id−→ Bn ⊕Bn. �

Proof of propositionA.7. This is an easy induction on n and on the number of

maximal element in S: If there is one maximal element, S is isomorphic to a k-th

dimensional cube. If it has i+ 1 maximal faces of dimension 0, it is a union of two

cubical sets: S′ with i maximal faces of dimension 0 and S′′ with 1 maximal face of

dimension 0. Furthermore S′∩S′′ is isomorphic to a cubical set in Bm with m < n.

We have the following short exact sequence:

0→ S′ ∩ S′′ → S′ ⊕ S′′ → S → 0.

We conclude using the associated long exact sequence and the induction hypothesis.

�

Definition A.9. If Bn is the nth dimensional cube, we denote by B∗n its Z/2Z-dual

(as a complexe) and call it the nth dimensional cocube. Similarly a cocubical set is

the Z/2Z-dual of a cubical set. If S is a consistent cubical set we denote H•(S) the

homology of S∗.

Thanks to the universal coefficient theorem and proposition A.7, we have:

Proposition A.10. Let S a (non-trivial) strong-inductive cubical set, then we

have:

H0(S) = Z/2Z and Hi(S) = 0 for all i > 0.

A.2. Cubical sets and (pre-)complexes. In this section R is a unital ring.

Definition A.11. Let S cubical set, an S-shaped space (C, d) (or simply C, when

this is not ambiguous) consists of the following data:

• for every vertex v of S, an R-module Cv,

• for every edge e of S, an R-module map de : Ce0 → Ce1 (where e0 and e1

are the vertices of S obtained by replacing the only ’∗’ of e by a ’0’ or ’1’

respectively).

If S is strong-inductive and if s is a square in S. There are two maps we can

consider: the two possible compositions of d• which makes sense. We say that C is

an S-shaped pre-complex :

• for every square s the two maps are equal up to a sign (if they are equal

we say that the square commutes, else that it anti-commutes),

• any (compatible) composition of 3 maps d• multiplied by 2 is not equal to

zero.

Example A.12. The hypercube in the definition of sl3 homology is a Bn-shaped

pre-complex, while the hypercube defining the odd Khovanov homology (see [ORS07])

is not a pre-complex.
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Remark A.13. If C is an S-shaped pre-complex, such that all its squares anti-

commute (we say that C anti-commutes), then it is naturally endowed a structure

of complex: the space of homological degree i is then given by:

Ci =
⊕
v∈S,

#f−1({1})=i

Cv.

Definition A.14. Let S be a cubical set, a sign assignment δ on S is an application

from the set of edges of S to Z/2Z (Hence it can be seen as an element of S∗). If

C is an S-shaped pre-complex and δ a sign assignment on S, the δ-deformation of

(C, d), denoted Cδ, dδ) (or simply Cδ) is the S-shaped pre-complex defined by

• for every vertex v of S, Cδv := Cv,

• for every edge e of S, dδe := (−1)δ(e)de where Z/2Z is identified with {0, 1}.

Lemma A.15. Let S be a strong-inductive cubical set and C an S-shaped pre-

complex. Then there exists a sign assignment δ such that Cδ anti-commutes. Fur-

thermore, if δ1 and δ2 are two such sign assignments, then the complexes Cδ1 and

Cδ2 are isomorphic.

Proof. Let us define a Z/2Z-linear form γ on the Z/2Z-vector space generated by

squares in S:

γ(s) =

{
1 if s commutes,

0 if s anti-commutes.

This map is meant to encode the defect of anti-commutativity of C. We claim that

this map (seen as an element the S∗) satisfies ∂∗γ = 0. The map ∂∗γ is a linear

form on the Z/2Z-vector space generated by cubes of S. We consider a cube c in

S (that is a map from J1, nK to {0, ∗, 1} such that ∗ has exactly three pre-images)

and the associated data in C (for simplicity the indices only tracks the preimages

of ∗ of the cube):

C000

C001

C010

C100

C011

C101

C110

C111

d00∗

d0∗0

d∗00

d0∗1

d∗01

d∗10

d01∗

d1∗0

d10∗
d11∗

d1∗1

d∗11

There are two ways to compare the two highlighted maps (the squares of S are

denoted s•):

d11∗ ◦ d1∗0 ◦ d∗00 = (−1)1+γ(s1∗∗)d1∗1 ◦ d10∗ ◦ d∗00

= (−1)2+γ(s∗0∗)+γ(s1∗∗)d1∗1 ◦ d∗01 ◦ d00∗

= (−1)3+γ(s∗∗1)+γ(s∗0∗)+γ(s1∗∗)d∗11 ◦ d0∗1 ◦ d00∗,
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and

d11∗ ◦ d1∗0 ◦ d∗00 = (−1)1+γ(s∗∗0)d11∗ ◦ d∗10 ◦ d0∗0

= (−1)2+γ(s∗1∗)+γ(s∗∗0)d∗11 ◦ d01∗ ◦ d0∗0

= (−1)3+γ(s0∗∗)+γ(s∗1∗)+γ(s∗∗0)d∗11 ◦ d0∗1 ◦ d00∗,

C being a pre-complex 2(d11∗ ◦ d1∗0 ◦ d∗00) is not equal to zero, we have:

γ(s∗∗1) + γ(s∗0∗) + γ(s1∗∗) + γ(s0∗∗) + γ(s∗1∗) + γ(s∗∗0) = 0 in Z/2Z.

This means precisely that ∂∗γ(c) = 0. Since this holds for all cube c, we have

∂∗γ = 0. Thanks to proposition A.10, we know that there exists δ a sign assignment

such that ∂∗δ = γ. We claim that Cδ anti-commute. Let s be a square in S we

have:

dδ1∗ ◦ dδ∗0 = (−1)δ(1∗)+δ(∗0)d1∗ ◦ d∗0
= (−1)1+γ(s)+δ(1∗)+δ(∗0)d∗1 ◦ d0∗

= (−1)1+(δ(0∗)+δ(∗0)+δ(1∗)+δ(∗1))+δ(1∗)+δ(∗0)d∗1 ◦ d0

= (−1)1+∗δ(0∗)+δ(∗1)d∗1 ◦ d0∗

= −dδ∗1 ◦ dδ0∗.

This proves the claim. We consider δ1 and δ2 two sign assignments such that Cδ1

and Cδ2 anti-commutes. This means that ∂∗δ1 = ∂∗δ2 = γ. Hence ∂∗(δ1 + δ2) = 0.

Thanks to proposition A.10, there exists a Z/2Z-linear form κ on the Z/2Z-vector

space generated by vertices of S such that ∂∗κ = δ1 + δ2. The map fκ : C → C

defined on Cv by (fκ)|Cv
:= (−1)κ(v)idCv

satisfies: fκ ◦ dδ1 = dδ2 ◦ fκ and provides

an isomorphism between the complexes Cδ1 and Cδ2 . �
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