
THE WEAK B-PRINCIPLE: MUMFORD CONJECTURE

RUSTAM SADYKOV

Abstract. In this note we introduce and study a new class of maps
called oriented colored broken submersions. This is the simplest class
of maps that satisfies a version of the b-principle and in dimension 2
approximates the class of oriented submersions well in the sense that
every oriented colored broken submersion of dimension 2 to a closed
simply connected manifold is bordant to a submersion.

We show that the Madsen-Weiss theorem (the standard Mumford
Conjecture) fits a general setting of the b-principle. Namely, a version of
the b-principle for oriented colored broken submersions together with the
Harer stability theorem and Miller-Morita theorem implies the Madsen-
Weiss theorem.

1. Introduction

A smooth map of manifolds f : M → N is said to be an immersion if
its differential is a fiberwise monomorphism TM → TN of tangent bun-
dles. According to a remarkable theorem by Smale and Hirsch the space
of immersions M → N of given manifolds with dimM < dimN is weakly
homotopy equivalent to a simpler topological space of formal immersions,
i.e., fiberwise monomorphisms TM → TN . The Smale-Hirsch theorem was
one of the primary motivations for the general Gromov h-principle: given a
differential relation, the space of its solutions is weakly homotopy equivalent
to the space of its formal solutions [9].

In [14] (for a short review, see [15]) I proposed a stable homotopy version
of the h-principle, the b-principle, motivated by a series of earlier results
including [1, 2, 5, 7, 11, 13, 16, 17, 19, 20]. Namely, with every open stable
differential relation R, there are associated a moduli spaceMR of solutions,
a moduli space hMR of stable formal solutions, and a map α : MR → hMR.
It turns out thatMR is an H-space with a coherent operation, while hMR is
an infinite loop space [14], whose stable homotopy type is relatively simple.
The b-principle is the following conjecture.

The b-principle. The canonical map MR → hMR is a group completion.

When holds true, the b-principle allows us to perform explicit computa-
tions of invariants of solutions. On the other hand, the b-principle is true
for most of the differential relations (see [14] and references above); notable
exceptions are the differential relations of oriented submersions of positive
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dimensions d. In this important exceptional case the b-principle inclusion
coincides with the Madsen-Tillmann map

α : t BDiff M → Ω∞MTSO(d),

where tBDiff M is the disjoint union of the classifying spaces of orienta-
tion preserving diffeomorphism groups of oriented closed (possibly not path
connected) manifolds M of dimension d, while Ω∞MTSO(d) is the infinite
loop space of the Madsen-Tillmann spectrum [7]. The standard Mumford
conjecture asserts that for d = 2 and for a closed oriented surface Fg of genus
g, the map α|BDiff Fg induces an isomorphism of rational cohomology rings
in stable range of dimensions ∗ � g. The Mumford conjecture was proved
in the positive by Madsen and Weiss in [11], and later several other proofs
of the Madsen-Weiss theorem were given in [7, 4, 8, 10].

Theorem 1.1 (Madsen-Weiss). The rational cohomology ring of BDiff Fg
is a polynomial ring in terms of Miller-Morita-Mumford classes κi:

H∗(BDiff Fg;Q) ' Q[κ1, κ2, ...], for ∗ � g,

or, equivalently, the map α|BDiff Fg is a rational homology equivalence in a
stable range of dimensions.

Remark 1.2. In fact, Madsen and Weiss proved a stronger statement, which,
in particular, implies that the map α|BDiff Fg is an integral homology equiv-
alence in a stable range.

In the current note we study a new class of flexible maps—the class of
colored broken submersions—that provides a good approximation to the
class of submersions, retains the sheaf property, and satisfies a version of the
b-principle. More generally, we define colored broken solutions to an open
stable differential relation; these enjoy many interesting properties including
the following ones.

• For an open stable differential relation R that does not satisfy the
b-principle, a stable formal solution of R can be integrated into a
broken solution (Theorem 8.3). Thus, stable formal solutions dif-
fer from solutions only in broken components of the corresponding
broken solutions.
• The pullback of a colored broken solution with respect to a generic

smooth map is a colored broken solution. Thus, colored broken
solutions form a class and therefore possess a moduli space (§8).
• The class of colored broken solutions satisfies the sheaf property, and

therefore it is suitable for study by means of homotopy theory.
• Colored broken solutions of an open stable differential relation R

satisfy a weak b-principle (Theorem 8.3) even if solutions of R do
not.

To begin with we introduce the broken submersions/solutions in section
§2. In sections §3-5 we recall the notions of a concordance and bordism. Next
we show that the class of broken submersions approximates well the class
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of submersions (§6-§7); in §7 we essentially prove Theorem 1.3 (a complete
proof is given in §10).

Theorem 1.3. Let f : M → N be an oriented broken submersion of dimen-
sion 2 to a simply connected manifold N . Suppose that the image of broken
components of f in N is disjoint from ∂N ; in particular, over ∂N the map f
is a fiber bundle with fiber Fg. Suppose that g � dimN . Then f is bordant
to a fiber bundle by bordism which is a broken submersion itself.

Theorem 1.3 relies heavily on the Harer stability theorem, and its proof
is very much in spirit of a singularity theoretic argument by Eliashberg,
Galatius and Mishachev in [4].

Next we review the weak b-principle (§8), and introduce the colored bro-
ken submersions (§9). The moduli spaceMb of colored broken submersions
is an H-space with coherent operation. Its classifying space BMb is known;
it has essentially been determined in [7] (for a proof in present terms, see
[14]). Finally, in section 10 we show that in view of the Harer stability
theorem and the Miller-Morita theorem, the Madsen-Weiss theorem follows
from the weak b-principle for colored broken submersions.

Colored broken submersions are similar to (but have better properties
than) marked fold maps. In particular, the moduli space of colored broken
submersions of dimension d is an appropriate homotopy colimit of classifying
spaces BDiff M of diffeomorphism groups of manifolds of dimension d with
certain boundary components, compare with the original paper [11]. Colored
broken submersions should be compared with enriched fold maps from [4] of
Galatius-Eliashberg-Michachev who used them to give a topological proof
of the Madsen-Weiss theorem. Note, however, that in contrast to enriched
fold maps, colored broken submersions behave well with respect to taking
pullbacks and possess a moduli space (§8). We adopt much of the singularity
theory technique from [4], but we do not use the major authors’ tool: the
Wrinkling theorem. The determination of the classifying space BMb is
essentially from [7] (however, the rest of their proof of the Madsen-Weiss
theorem is not necessary in the current setting).

Acknowledgement. I am grateful to Soren Galatius for his generous help;
the key idea to use I-spaces (e.g., see [18]) to link the b-principle to the
Mumford conjecture is his. I would also like to thank Ivan Mart́ın Protoss
for presenting the material of the note in a series of talks in Topology Seminar
in CINVESTAV. This paper was partially written while I was staying at the
Max Planck Institute for Mathematics.

2. Broken solutions

Given a smooth map f : M → N , a point x ∈ M is said to be regular if
in a neighborhood U of x the map f |U is a submersion. A point x ∈ M is
a fold point if there are coordinate charts about x and f(x) such that

(1) f(x1, ..., xm) = (x1, ..., xn−1,±x2
n ± x2

n+1 ± · · · ± x2
m),
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where n is the dimension of N , and x1, ..., xm are coordinates in the coordi-
nate chart about x. If every point in M is regular or fold, then f is said to be
a fold map. It immediately follows from the local coordinate representation
(1) of f that the set of fold points of f is a submanifold of M of codimension
d+ 1 where d = dimM − dimN .

Figure 1. A breaking component.

Suppose that a path component σ of fold points of f is closed in M and
the restriction f |σ is an embedding. Suppose that there is a submersion τM
of a neighborhood of σ in M onto a neighborhood of 0 in Rd+1 such that the
inverse image of 0 is precisely σ. Then the map τM trivializes the normal
bundle of σ, though we do not fix a diffeomorphism of a neighborhood of σ
onto σ×Rd+1. Similarly, suppose that there is a map τN of a neighborhood
of f(σ) to R trivializing the normal bundle of f(σ) in such a way that
τN ◦ f = gσ ◦ τM on the common domain, where gσ is a Morse function on
Rd+1 with one critical point. Then we say that σ is a broken component;
the maps τM and τN are parts of the structure of a broken component. The
minimum of the indices of the critical points of gσ and −gσ is called the
index of σ.

Remark 2.1. The normal bundle in M of a component σ of fold points of a
general fold map f is not trivial, and f |σ is not necessarily an embedding.
Therefore not every component of fold points of a fold map admits a struc-
ture of a broken component. In fact, even if f |σ is an embedding and the
normal bundles of σ in M and f(σ) in N are trivial, the component σ may
still not admit a structure of a breaking component since f near σ may be
twisted.

Remark 2.2. Broken components of index 0 are not compatible with certain
nice structures including the structure of broken Lefschetz fibrations in the
case of maps of 4-manifolds into surfaces. For this reason in the general
setting in [15] we prohibited broken components of index 0 and proved the
weak b-principle in the form of Theorem 8.3 with a less restrictive assump-
tion of indices 6= 0. For the argument in the present paper, however, it is
convenient to allow broken components of index 0 (so that the spaceMb in
§9 is connected).
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Given an open stable differential relationR imposed on maps of dimension
d, suppose a map f away of the broken fold components is a solution. Then
we say that f is a broken solution of R.

3. Bordisms

We need the notion of an oriented bordism of maps of manifolds with
boundaries. An oriented bordism of a manifold with boundary is an oriented
bordism with support in the interior of the manifold. An oriented bordism
of maps is defined appropriately.

Definition 3.1. Let M be an oriented compact manifold with corners such
that ∂M is the union of −M0,M1 and ∂M0 × [0, 1] where ∂M0 × {i} and
∂Mi are identified for i = 0, 1, see Figure 2. In particular, the manifolds
∂M0 and ∂M1 are canonically diffeomorphic. The corners of M are along
∂M0 × {i}. Let N be an oriented compact manifold with corners and with

Figure 2. An oriented bordism.

a similar decomposition of the boundary. Let f : M → N be a map that
preserves the decompositions. In particular, appropriate restrictions of f
define two maps

fi : (Mi, ∂Mi)→ (Ni, ∂Ni), where i = 0, 1.

We say that f is an oriented bordism from f0 to f1 if f = fi × id and
f = f0× id[0,1] over collar neighborhoods of Mi and ∂M0× [0, 1] respectively.
If f0, f1 belong to some class of maps, then we require that f belongs to the
same class. For example, a bordism of fiber bundles is a fiber bundle.

The product map F0 × id[0,1] : M0 × [0, 1] → N0 × [0, 1] is said to be a
trivial bordism. Let m0 ⊂ M0 be a compact submanifold of codimension
zero, and f : m→ N0×[0, 1] a bordism of f0 = F0|m0. Then, there is a well-
defined bordism F : M → N0×[0, 1] where M is obtained from M0×[0, 1] by
removing m0×[0, 1] and attaching m along the new fiberwise boundary. The
map F coincides with f over m and with F0 × id[0,1] over the complement
to m. We say that F is a bordism of F0 with support in m0 and with core
f .
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4. Concordances

A bordism M → N of maps is said to be a concordance if the manifold
N is a product N0 × [0, 1], and the decomposition of the boundary is the
obvious one with N1 = N0 × {1}. Thus, for example, two proper maps
fi : Mi → N with i = 0, 1 of manifolds with empty boundaries are said to
be concordant if there is a proper map f : M → N × [0, 1] together with
diffeomorphisms

f−1(N × [0, ε)) ≈M0 × [0, ε), f−1(N × (1− ε, 1]) ≈M1 × (1− ε, 1]

onto collar ε-neighborhoods of M0 and M1 for some ε > 0 such that in view
of these identifications

f |f−1(N × [0, ε)) = f0 × id[0,ε), f |f−1(N × (1− ε, 1]) = f1 × id(1−ε,1],

see Figure 3. A concordance of maps of a given type is required to be a map
of the same type, e.g., a concordance of submersions is a submersion.

Figure 3. Concordance Figure 4. The map (g, α)

One concordance, called breaking, is of particular interest. It is con-
structed by means of a compact manifold W of dimension d, and a proper
Morse function f on the interior of W with values in (0,∞). Suppose that
f−1[1,∞) is diffeomorphic to ∂W × [1,∞) and, furthermore, the restriction
of f to the latter is the projection onto [1,∞). Then

(g, α) : IntW × Sn f×id−−−→ (0,∞)× Sn ⊂−→ Rn+1 ' Rn × R

is a broken submersion [15], see Fugure 4. The inclusion (0,∞)×Sn ⊂ Rn+1

in the composition takes a scalar r and a vector v ∈ Rn+1 of length 1 to rv.
By [15, Proposition 4.2], the map g is also a fold map.

Let iA denote the inclusion of a subset A into R, and let (gA, αA) denote
the pullback of the map (g, α) : IntW × Sn → Rn × R with respect to

(iA × idRn−1)× idR : (A× Rn−1)× R −→ Rn × R.

Then (g[0,1], α[0,1]) is a concordance, see Figure 5. Its inverse is a concor-
dance from (g1, α1) to (g0, α0). It is called the standard model for breaking
concordances as this concordance breaks fibers of a submersion.
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Figure 5. Breaking concordance

Finally, for any map (f, α) : W → N ×R and any of its regular points p,
there is a neighborhood U ≈ Rd+n−1×R of p in W such that (f, α) has the
form (g1, α1) over U . We say that a concordance of (f, α) is breaking if it
coincides with the standard model for breaking concordances over U , and it
is trivial elsewhere (i.e., it has support in U).

5. Basic concordances

We will show that Theorem 1.3 follows from the Harer stability theorem.
The argument is in spirit of that by Eliashberg-Galatius-Mishachev in [4]. In
this section we consider two basic concordances that will play an important
role in the proof.

Example 5.1. Let π : E → N be a fiber bundle with fiber a surface Fg
of genus g. Let D1, D2 be two disjoint submanifolds of E such that π|Di

is a trivial disc bundle over N . In particular, Di = N × D2. We aim to
construct a broken fold concordance of π to a fiber bundle with fiber Fg+1,
see Figure 6.

Constant maps of D2tD2 and D1×S1 to a point are concordant by means
of a Morse function u : W → [0, 1] with a unique critical point (of index 1),
see Fig. 7. Let Π be the concordance of π with support in D1tD2 and with
core id × u : N ×W → N × [0, 1]. Then Π is a stabilizing concordance; it
attaches to each fiber Fg a handle, see Figure 6.

A stabilizing concordance also exists in a slightly more general setting
where π : E → N is a broken fibration, and D1, D2 two disjoint submanifolds
of E such that each π|Di is a trivial disc bundle over N .

In general, however, a given fiber bundle π : E → N may not contain
trivial disc subbundles. For this reason we also introduce a concordance
of Example 5.2 which stabilizes fibers locally, only over a subset U ⊂ N ;
such a concordance always exists. First we will explain the construction
in the model case where N ⊂ Rn is a disc and π is a disjoint union of
two disc bundles, and then we consider the general case. The fibers of this
concordance are presented on Figure 8.
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Figure 6. A stabilizing concordance.

u

Figure 7. Cobordism W .

Example 5.2. For the construction we will need a compact manifold W ,
and a proper Morse function h on the interior of W such that the fibers of
h over negative and positive values are D2 tD2 and D1 × S1 respectively,
compare h with the function u on Figure 7.

Let f0 be the disjoint union of two trivial disc bundles Di = D2×N → N ,
i = 1, 2, over the standard open disc N ⊂ Rn of radius 1. Let U ⊂ N be the
concentric closed subdisc of radius 0.5, see the part of Figure 8 over N×{0}.

Figure 8. Fibers over N × [0, 1].

Let S be the lower hemisphere of the sphere in N × [0, 1] ⊂ Rn × R of
radius 0.5 centered at {0}×{1}; it meets the boundary N×{1} transversally
along ∂S = ∂U × {1} and the projection of the interior of S to N × {1} is
a diffeomorphism onto the interior of U × {1}, see Figure 8. We define f to
be the broken submersion to N × [0, 1] ⊂ Rn+1 given by the restriction of

W × Sn h×idSn−−−−−→ R× Sn −→ Rn+1,

where the second map in the composition takes a real number λ and a vector
v of length 1 to λv + en+1. Thus, over a neighborhood S × R of S in N
the concordance f is given by idS × h and over each path component of the
complement to S it is a trivial fiber bundle.

We will use this concordance in a more general setting.
Let f0 be a broken submersions E → N and U ⊂ N a small disc with

smooth boundary. We aim to construct a concordance which attaches to



THE WEAK B-PRINCIPLE: MUMFORD CONJECTURE 9

each fiber over the interior points of U a handle. We identify U with a closed
ball in Rn of radius 0.5, and a neighborhood V of U in N with an open ball
of radius 1. If U is sufficiently small, then E|f−1

0 V contains two disjoint
submanifolds D1 and D2 such that each f |Di is a trivial disc bundle over V .
We have constructed the concordance of f0|D1 tD2. Since it is trivial near
the fiberwise boundary, we can extend the constructed concordance trivially
to a concordance of f0|f−1

0 (V ). Since the obtained concordance is trivial

near f−1
0 (∂V ), we may extend it trivially to a desired concordance of f0.

An important consequence of the concordance in Example 5.2 is the fol-
lowing proposition.

Proposition 5.3. Let f0 : M → N be a broken submersion over a compact
manifold. If over (possibly empty) ∂N the original map f0 is a fiber bun-
dle with fiber Fg of genus g � dimN , then f0 is concordant to a broken
submersion f1 with connected fibers such that each regular fiber is of genus
� dimN .

6. Folds of index 0

6.1. Erasing concordance. Let F be an oriented closed surface, and N
an arbitrary manifold. Then the broken submersion given by the projection
N × F → N is concordant to an empty map. The concordance is given by
a broken submersion of N ×W where W is an oriented compact 3-manifold
with ∂W = F . For example, if W is the standard 3-disc of radius 1/

√
2,

then the erasing concordance idN × h where h(x) = −|x|2 + 0.5 joins the
trivial sphere bundle over N with the empty map.

6.2. Chopping concordance. Let π : E → N be a submersion of dimen-
sion 2 with fiber Fg and D → N a trivial open disc subbundle of π. A
chopping concordance chops off a sphere from each fiber. More precisely,
a chopping concordance modifies the fiber bundle only inside D so we will
assume that E = D. There are a bordism W from D2 to D2 t S2, and a
Morse function f : W → [0, 1] with a unique critical point of index 2. The
desired concordance is idN × f .

The following proposition at least in part appears in [11] and [4].

Proposition 6.1. Every proper broken submersion f0 of even dimension d
to a compact simply connected manifold N is concordant to a broken sub-
mersion f1 with no fold points of index 0.

Proof. Suppose that N is closed. Let σ be a component of folds of f0 of index
0, and let U denote one of the two path components of the complement to
f0(σ) in N for which the coorientation of f0(σ) is outward directing. The
concordance that we construct is trivial outside a neighborhood of f−1

0 (Ū).
Consequently, we may assume that N is a neighborhood of Ū . In fact, only
the component containting σ is modified, and therefore, by the definition
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of broken submersions, we may assume that M = σ × Rd+1, and f0 is the
product of idσ and g = x2

1 + · · · + x2
d+1 followed by an identification of

σ ×R with a neighborhood of σ in N . Let S be a submanifold in N × [0, 1]
such that ∂S = ∂Ū × {0} and the projection of the interior of S to N is a
diffeomorphism onto U . Over a neighborhood S×R of S the map f is given
by idS × g, while over each of the two components of the complement to S
in N × [0, 1], the map f is a trivial fiber bundle.

Suppose now that N has a non-empty boundary. Let σ be a component
of folds of index 0. If f0(σ) bounds S and the coorientation of ∂S is outward
directing, then σ can be eliminated by the concordance of the first part of
the proof. Suppose ∂S is inward directing. Let N ′ denote the enlargement
of N with a collar ∂N × [0, 1] attached to N by means of an identification
of ∂N ⊂ N with ∂N × {1}. Let’s extend f0 over the collar so that it is a
concordance that first chops off a sphere from each fiber and then eliminates
the choped off component by the erasing concordance. In particular the
extended map f0 has a new component σ′ of breaking folds of index 0.
Furthermore, the image of σ′tσ bounds S′ ⊂ N ′ such that the coorientation
of ∂S′ is outward directing. Hence, σ and σ′ can be eliminated by the
concordance of the first part of the proof. Thus, we can assume that f0 has
no folds of index 0. �

7. Geometric consequences of the Harer stability theorem

Let Γg,k denote the relative mapping class group of a surface Fg,k of genus
g with k boundary components. There are several proofs of the Mumford
conjecture, most of them use the Harer stability theorem: the homomor-
phism Γg,k → Γg,k−1 induced by capping off a boundary component of Fg,k
and the homomorphism Γg,k → Γg+1,k−2 induced by attaching a cylinder
along two boundary components are homology isomorphisms in dimensions
� g. In view of the Atiyah-Hirzebruch spectral sequence, the Harer stability
theorem is equivalent to the assertion that the homomorphisms under con-
sideration induce bordism isomorphisms of classifying spaces in dimensions
� g.

Example 7.1. By the Harer stability theorem, given a fiber bundle f0 : E0 →
N0 over a compact manifold of dimension � g with fiber Fg,k and a section
s over ∂N0 together with a trivialization τ of the normal bundle of s(∂N0) in
E0|∂N0, there are an oriented bordism of f0 to f1 : E1 → N1 and extensions
of s from ∂N0 = ∂N1 over N1 and τ from s(∂N1) over s(N1). Indeed, the
initial data defines a map of pairs

(N0, ∂N0)→ (BDiff Fg,k,BDiff Fg,k+1),

and the assertion is equivalent to the existence of a bordism to a map with
image in BDiff Fg,k+1.

Example 7.2. Let f0 be a fiber bundle over N0 with fiber Fg of genus g �
dimN0. Suppose that there exists a stabilization f1 of f0, see Example 5.1.
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Then f0 is zero bordant if and only if f1 is. Indeed, the assertion follows
from the fact that the two inclusions

BDiff Fg ←− BDiff Fg,1 −→ BDiff Fg+1

are bordism equivalences in stable range.

Eliashberg, Galatius and Mishachev gave [4] an important geometric in-
terpretation of the Harer stability theorem. In this section we deduce two
consequences of the Harer stability theorem (Proposition 7.3 and 7.6) for
broken submersions using a singularity theory technique from [4].

Proposition 7.3. Let f0 be a broken submersion M0 → N0 to a closed
simply connected manifold N0. Then f0 is bordant to a fiber bundle.

Proof. In view of Propositions 5.3 and 6.1, we may assume that the fiber
of f0 over each regular point is a connected surface of genus � dimN0 and
that f0 has no folds of index 0. Let σ denote a path component of breaking
folds Σf0 of f0. Since f0(σ) is cooriented and N0 is simply connected, the
Mayer-Vietoris sequence implies that the complement to f0(σ) consists of

h

Figure 9. The image g(S̃).

two components. Let S denote the closed submanifold in N0 bounded by
f0(σ) such that the coorientation of the fold values ∂S is inward directed,
see Figure 9. Recall that a neighborhood of σ is identified with σ ×R3 and
near σ the map f0 is given by idσ ×m where m = −x2

1 − x2
2 + x2

3. Let σ̃ be
the submanifold σ×{0}× {0}×R in the neighborhood of σ. Note that the

coordinates x1 and x2 trivialize the normal bundle of σ̃. Let S̃ = S∪∂S S be
the double of S. A neighborhood σ̃′ of ∂S in S̃ is canonically diffeomorphic
to σ̃′. Given a map h of S̃, the restrictions of h to the two copies of S are
denoted by h+ and h−.

In view of Lemma 7.4 below, we may assume that the canonical diffeo-
morphism σ̃′ → σ̃ extends to an inclusion h : S̃ ⊂ M0 such that h+ and
h− are right inverses of f0, and the trivialization of the normal bundle of σ̃
extends to that over h(S̃).

The promised concordance will have support in a small neighborhood
h(S̃) × R2 of h(S̃); hence, we may assume that the complement is empty.
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Let S′ be a copy of S in N0 × [0, 1] such that S′ meets the boundary of
N0× [0, 1] transversally along ∂S ×{0} and the projection of the interior of
S′ to N0 is a diffeomorphism onto the interior of S. Over a neighborhood
S′×(−1, 1) of S′ in N0× [0, 1], the desired concordance is idS′×u, where u is
the Morse function of Example 5.1 (see Figure 7), while over the complement
to S′ in N0 the concordance is trivial. �

Lemma 7.4. After possibly modifying f0 by an oriented bordism, we may
assume that there is an embedding h : S̃ →M0 with trivialized normal bundle
extending the canonical diffeomorphism σ̃′ → σ̃ and the trivialization of its
normal bundle respectively such that h− and h+ are right inverses to f0.

Proof. We may assume that f0|Σf0 is a general position immersion. Let Sj
denote the submanifold in S of points of f0(Σf0) of multiplicity j and S0

is the complement to ∪Si in S. Then S = ∪Sj . Suppose that h−, h+ and
trivializations have been constructed over a neighborhood of Sj for all j > k.
Let D be an open tubular neighborhood of Σf0 in M0. Then over B0 = Sk

a component 
of S 0

a component 
of S 1

a component 
of S 2

Figure 10. De composition of S.

the map b0 given by f0|M0 \ D is a fiber bundle with fiber Fg,2k for some
g. By Example 7.1, there is a bordism b : E → B of b0 to b1 : E1 → B1

such that h−, h+ and trivializations extend over B1. The bordism b can
be essentially uniquely thickened to a bordism b : E → B = B × Dk of
the restriction of f0 over a disc neighborhood of B0 so that b is a broken
submersion with breaking fold values tB × Dk−1

i where Dk−1
i ranges over

all k coordinate hyperdiscs in Dk. Let N be the union of N0 × I and B in
which the top submanifold (B0×Dk)×{1} is identified with B0×Dk ⊂ B.
Let M be a similar union of M0 × I and E. Then after smoothing corners
we obtain a bordism f = f0 × idI ∪ b of f0 to f1 such that h−, h+ and
trivializations extend over a neighborhood of Sk(f1). Thus, by induction,
we get a desired extension. �

Remark 7.5. The above construction works in the case of N0 = S1 as well.
Indeed, choose S to be the interval in N0 over which the fibers of f0 are of
maximal Euler characteristic. Then the above bordism eliminates the two
folds in f−1

0 (∂S). Continuing by induction we end up with a submersion.
Note that here the bordism of f0 is actually a concordance.
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Figure 11. Trading singularities.

Figure 12. The component σ can be “traded” for a new
component of breaking folds parallel to ∂N0.

Proposition 7.6. Let f0 be a broken submersion M0 → N0 to a compact
simply connected manifold N0. Suppose that over ∂N0 the map f0 is a fiber
bundle with fiber Fg of genus g � dimN0. Then f0|∂N0 is zero bordant in
the class of fiber bundles.

Proof. In view of Propositions 5.3 and 6.1, we may assume that the fiber of
f0 over each regular point is a connected surface of genus� dimN0 and that
f0 has no folds of index 0. Let σ be a component of folds, and S a closed
domain bounded by f0(σ). Assume that the coorientation of ∂S is outward
directing; otherwise σ can be eliminated as above. We may assume that a
neighborhood of ∂N0 is identified with ∂N0× [0, 2) and over U = ∂N0× [0, 1]
the broken submersion f0 is the trivial concordance of f0|∂N0. Modify f0

over U so that it is a concordance that first stabilizes the fibers and then
destabilizes them back, see Example 5.1. Then f0 has two new components
of breaking folds. One of these two components can be eliminated with σ
by the concordance as above. Thus the component σ can be “traded” for
a new component of breaking folds parallel to ∂N0. Consequently, we may
assume that f0 only has breaking folds parallel to ∂N0.

In other words, the map f0 over a collar neighborhood of ∂N0 is a concor-
dance that stabilizes the fibers, and over the complement to the collar neigh-
borhood of ∂N0 it is a fiber bundle. It remains to apply Example 7.2. �
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8. The weak b-principle

A collection C of smooth maps f : M → N with fixed dimM−dimN = d
is said to be a class of maps of dimension d if the induced map h∗g in the
pullback diagram

M ′ −−−−→ M

h∗g

y g

y
N ′

h−−−−→ N.
is in C for every map g ∈ C and every map h transverse to g.

Example 8.1. If g : M → N is a submersion, then for every smooth map
g : N ′ → N , the induced map h∗g is a submersion as well. If g is an
immersion, then the induced map h∗g is an immersion as well provided that
h is transverse to g, i.e., provided that for each x ∈ N , x′ ∈ N ′ and y ∈ M
such that h(x′) = x = g(y), we have

Im(dx′h) ⊕ Im(dyg) ' TxN.

Thus, both submersions and immersions of dimension d form classes of maps.
More generally, solutions to any open stable differential relation R form a
class of maps [14]. The transversality condition is clearly important here:
if a smooth map h is not transverse to a smooth map g, then the pullback
space M ′ may not admit a manifold structure.

An appropriate quotient space of all proper maps in a collection C is called
the moduli space for C. Namely, recall that the opening of a subset X of
a manifold V is an arbitrarily small but non-specified open neighborhood
Op(X) of X in V . Consider the affine subspace

{x1 + · · ·+ xm+1 = 1} ⊂ Rm+1.

It contains the standard simplex ∆m bounded by all additional conditions
0 ≤ xi ≤ 1. Let ∆n

e denote the opening of ∆m in the considered affine
subspace. Then every morphism δ in the simplicial category extends linearly
to a map δ̃ : ∆m

e → ∆n
e . Let Xm denote the subset of C of proper maps to

∆m
e transverse to all extended face maps. Then X• is a simplicial set with

structure maps X(δ) given by the pullbacks f 7→ δ̃∗f .
The (simplicial model of the) moduli space M for C is the semi-simplicial

geometric realization of X•. We say that C satisfies the sheaf property if
f : M → N belongs to C whenever each f |f−1Ui is in C for a covering {Ui}
of N . If f satisfies the sheaf property, then the sets Ω∗M and [N,M] are
isomorphic to the sets of bordism classes and concordance classes of proper
maps in C to N respectively.

We say that a class C is monoidal if the map of the empty set to a point
is a map in C and the class C is closed with respect to taking disjoint unions
of maps, i.e., if f1 : M1 → N and f2 : M2 → N are maps in C, then

f1 t f2 : M1 tM2 −→ N
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Figure 13. A map (f, α) in the collection hC1.

is also a map in C. For a monoidal class C the space M is an H-space with
a coherent operation (i.e., the first term of a Γ-space). We will recall the
construction of its classifying space M1 and an approximation of M1 by a
space hM1 of a relatively simpler homotopy type, for details see [14], [15].

Let C1 be the derived collection (not a class) of proper maps (f, α) : V →
N×R with f ∈ C such that every regular fiber of (f, α) is null-cobordant; and
let C1 ⊂ hC1 be a subcollection of pairs with α ◦ f−1(x) 6= R for all x ∈ N .
The spacesM1 and hM1 are the geometric realizations of simplicial sets of
maps (f, α) to ∆m

e × R such that f is transverse to all extended face maps
and (f, α) is in C1 and hC1 respectively.

Definition 8.2. The weak b-principle for C is said to hold true if the inclu-
sion M1 → hM1 is a homotopy equivalence.

Theorem 8.3 (Sadykov, [15]). Let C be a monoidal class of maps satisfying
the sheaf property. Suppose that every breaking concordance of every map
in hC1 is itself in hC1. Then the weak b-principle for C holds true.

Under the assumptions of Theorem 8.3, if M is path connected, then it
is homotopy equivalent to its group completion ΩM1. Furthermore, in view
of Theorem 8.3, we can identify M with ΩhM1.

9. Colored broken submersions

A map f : M → N may not be a broken submersion even if its restriction
to every subset f−1(Ui) for an open covering {Ui} of N is a broken submer-
sion. In other words, broken submersions do not satisfy the sheaf property.
We will use colored broken submersions that satisfy the sheaf property.

Let I denote the category of finite sets n = {1, ..., n} for n ≥ 0 and
injective maps. It is a symmetric monoidal category with operation given
by taking the disjoint union m t n of objects in I. An m-coloring on
a broken submersion f is a map Cf from the set of path components of
breaking folds of f to the set m such that the restriction of f to breaking
components of any fixed color is an embedding; here we allow m to be any
element in I or the set ∞ of positive integers. The moduli space of m-
colored broken submersions is denoted by Mm. Recall that an I-space is a
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functor I → Top. We are interested in the I-space m 7→ Mm; its hocolim
is denoted by Mb, see [18].

Theorem 9.1. The set of oriented bordism classes of broken submersions
of dimension 2 over closed oriented manifolds of dimension n is naturally
isomorphic to Ωn(Mb).

Proof. Given a broken submersion f over an oriented closed manifold, a
choice of a coloring on its folds determines a class τ(f) in Ω∗(Mb). We
may choose a coloring so that different breaking components are colored by
different colors. Then, since every isomorphism m → m is a morphism in
I, the class τ(f) does not depend on the choice of the coloring. If f is
bordant to a broken submersion g, then we may assume that the images of
the classifying maps of f and g are in Mm for a sufficiently big palette m
and therefore τ(f) = τ(g). Conversely, every map τ : N →Mb representing
a bordism class in Ω∗(Mb) is linearly homotopic to a map with image inMm

for some sufficiently big palette m, and therefore every map τ determines a
colored broken submersion. �

The same argument shows that the canonical map of the telescopeM∞ =
colimMm to Mb and the canonical map Mb →M∞ are homotopy equiv-
alences. In particular, homotopy classes [N,Mb] are in bijective correspon-
dence with concordance classes of ∞-colored broken maps to N . Similarly,
the homotopy colimit of the I-space m 7→ M1

m is denoted by M1
b and

colimM1
m 'M1

b .
A general argument on I-spaces shows thatMb is an infinite loop space,

see [18]. Alternatively, the Galatius-Madsen-Tillmann-Weiss argument in
[14] shows thatMb is an infinite loop space, and its classifying space isM1

b .
The H-space operation on Mb is defined by

Mm ×Mn −→Mmtn,

∆f ×∆g 7→ ∆ftg,

where ∆h is the simplex in the moduli space corresponding to a map h. We
choose the unit point to be the vertex in M∅ ⊂ Mb corresponding to the
map ∅ → ∆0

e.
Since Mb is path connected, we have Mb ' ΩM1

b . Furthermore, by
Theorem 8.3 the weak b-principle for colored broken submersions holds true.
Consequently, Mb ' ΩhM1

b .

10. Proof of the Mumford conjecture

Proof of Theorem 1.1. Let hM' Ω∞MTSO(2) be the moduli space for ori-
ented stable formal submersions of dimension 2. We need to show that the
map BDiff Fg → hM induces an isomorphism of homology groups in dimen-
sions� g. Recall that hM1 is the geometric realization of the simplicial set
whose simplicies are given by pairs of proper maps (f, α) to ∆n

e × R such
that f is a submersion of dimension 2, see [14]. The simplicies of a bigger
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simplicial complex hM1
b correspond to proper maps (f, α) to ∆n

e × R such
that f is a broken submersion of dimension 2 whose components of folds are
labeled. Hence, there is an inclusion hM1 → hM1

b , which defines a map of
the loop space hM ' ΩhM1 to the loop space ΩhM1

b ' Mb. Hence, we
get a sequence of maps

η : BDiff Fg −→ hM−→Mb.

Since Mb is an H-space, its fundamental group is abelian and therefore
equals [S1,Mb]. On the other hand, every broken submersion over S1 is
concordant to a fiber bundle with fiber Fg, see Remark 7.5. Hence, the
fundamental group of Mb is the image of the perfect group π1(BDiff Fg)
provided that g ≥ 3. Consequently, the space Mb is simply connected. In
particular, every bordism class of Mb is represented by a map of a simply
connected manifold N . By Proposition 7.3, every broken submersion over
a closed simply connected manifold N is bordant to a fiber bundle with
fiber Fg. Thus, η induces an epimorphism in integral homology groups in
dimensions n� g.

Let us show that η∗ is injective in dimensions n� g, i.e., given a broken
submersion f0 over N0 which restricts over ∂N0 to a fiber bundle with fiber
Fg of genus g � dimN0, there is a fiber bundle f1 over N1 that restricts over
∂N1 = ∂N0 to f0|∂N0. Again, we may assume that N is simply connected.
Thus, the statement follows from Proposition 7.6. This implies that η∗ is an
isomorphism in integral homology groups in dimensions� g. Consequently,
the b-principle map BDiff Fg → hM induces an injective homomorphism in
homology groups in a stable range. On the other hand, by the Miller-Morita
theorem, the induced homomorphism in rational homology groups is also
surjective in a stable range [12]. This implies the Mumford conjecture. �

Proof of Theorem 1.3. We may turn the map η : BDiff Fg →Mb defined in
the proof of Theorem 1.1 into a cofibration. Then the pair (Mb,BDiff Fg)
classifies bordism classes

(f, ∂f) : (M,∂M) −→ (N, ∂N)

such that f is a smooth broken submersion over N that restricts over the
boundary ∂N to a fiber bundle ∂f with fiber Fg, dimN � g. It remains to
observe that Ω∗(Mb,BDiff Fg) = 0 for ∗ � g since η∗ is an isomorphism in
a stable range. �

References

[1] Y. Ando, Cobordisms of maps with singularities of a given class, Alg. Geom. Topol., 8 (2008),

1989–2029.

[2] M. Audin, Cobordismes d’immersions lagrangiennes et legendriennes, thèse d’état, Orsay,
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