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FREE POISSON FIELDS AND THEIR AUTOMORPHISMS

Leonid Makar-Limanov1 and Ualbai Umirbaev2

Abstract. Let k be an arbitrary field of characteristic 0. We prove that the group
of automorphisms of a free Poisson field P (x, y) in two variables x, y over k is isomor-
phic to the Cremona group Cr2(k). We also prove that the universal enveloping algebra
P (x1, . . . , xn)

e of a free Poisson field P (x1, . . . , xn) is a free ideal ring and give a char-
acterization of the Poisson dependence of two elements of P (x1, . . . , xn) via universal
derivatives.
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1. Introduction

It is well known [3, 7, 8, 9] that the automorphisms of polynomial algebras and free
associative algebras in two variables are tame. It is also known [23, 31] that polynomial
algebras and free associative algebras in three variables in the case of characteristic zero
have wild automorphisms. It was recently proved [11] that the automorphisms of free
Poisson algebras in two variables are tame in characteristic zero. Note that the Nagata
automorphism [16, 23] gives an example of a wild automorphism of a free Poisson algebra
in three variables.

The famous Max Noether Theorem on the Cremona groups (see [15, 20]) says that the
Cremona group Cr2(k) of birational automorphisms of the projective plane P

2
k over an

algebraically closed field k is generated by the standard quadratic transformation and
the projective transformations. The Cremona group Cr2(k) is isomorphic to the group of
automorphisms of the field of rational functions k(x, y) over k. There are some general-
izations of Noether’s theorem to the case in which the ground field k is not algebraically
closed (see, for example [14]). Defining relations of the Cremona group Cr2(k) are de-
scribed in [4] (see also [5]).

Let P 〈x1, . . . , xn〉 be a free Poisson algebra over a field k freely generated by x1, . . . , xn
[21]. Denote by P (x1, . . . , xn) the field of fractions of the commutative and associative
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algebra P 〈x1, . . . , xn〉. The Poisson bracket {·, ·} on P 〈x1, . . . , xn〉 can be uniquely ex-
tended to a Poisson bracket on P (x1, . . . , xn). The field P (x1, . . . , xn) with this Poisson
bracket is called the free Poisson field in the variables x1, . . . , xn over k [10].

The main goal of this paper is to prove that the group of automorphisms of the free
Poisson field P (x, y) over a filed k of characteristic 0 is isomorphic to the Cremona group
Cr2(k). Notice that there are several different proofs [11, 13, 10, 30] of the tameness
of automorphisms of the free Poisson algebra P 〈x, y〉 in characteristic zero. In [30] the
technic of universal derivations or Fox derivatives is used. We adopt this method to the
case of free fields.

For any Poisson algebra P denote by P e its universal enveloping algebra. The main
property of the universal enveloping algebra P e is that the notion of a Poisson P -module
(see, for example [17]) is equivalent to the notion of a left module over the associative
algebra P e (see, for example [6]). The universal enveloping algebras of Poisson algebras
were first studied in [17]. A linear basis of the universal enveloping algebra is constructed
in [18] for Poisson polynomial algebras. The structure of the universal enveloping algebras
of free Poisson algebras were studied in [30].

It is well known that the universal enveloping algebras of free Lie algebras are free
associative algebras. P.Cohn [2] proved that every left ideal of a free associative algebra
is a free left module, i.e., a free associative algebra is a free ideal ring (also fir or FI-
ring [2]). In fact, it follows from this theorem [29] that subalgebras of free Lie algebras
are free [24, 32] and automorphisms of finitely generated free Lie algebras are tame [1].
Unfortunately the universal enveloping algebras of free Poisson algebras are not free ideal
rings [30]. In this paper we prove that the universal enveloping algebras of free Poisson
fields are free ideal rings.

Recall that any two elements of a free Poisson field are Poisson dependent if and only
if they are algebraically dependent [10]. In [30] a characterization of Poisson dependence
of two elements of free Poisson algebras via universal derivations is given. We extend this
result to free Poisson fields.

This paper is organized as follows. In Section 2 we recall the definition of the universal
enveloping algebras of Poisson algebras and construction of free Poisson algebras and free
Poisson fields. In Section 3 we describe the structure of the universal enveloping algebras
of free Poisson fields and prove that they are free ideal rings. Section 4 is devoted to the
study of Poisson dependence of two elements. Developed technics are used to describe
automorphisms of free Poisson fields in two variables.

2. Definitions and notations

Recall that a vector space P over k endowed with two bilinear operations x ·y (a multi-
plication) and {x, y} (a Poisson bracket) is called a Poisson algebra if P is a commutative
associative algebra under x·y, P is a Lie algebra under {x, y}, and P satisfies the following
identity (the Leibniz identity):

{x, y · z} = {x, y} · z + y · {x, z}.
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Let P be a Poisson algebra over k. A vector space V over k is called a Poisson module
over P (or Poisson P -module) if there are two bilinear maps

P × V −→ V, ((x, v) 7→ x · v), P × V −→ V, ((x, v) 7→ {x, v}),

such that the relations

(x · y) · v = x · (y · v),

{{x, y}, v} = {x, {y, v}} − {y, {x, v}},

{x · y, v} = y · {x, v}+ x · {y, v},

{x, y} · v = {x, y · v} − y · {x, v}

hold for all x, y ∈ P and v ∈ V . A Poisson module V is called unitary if 1 · v = v for all
v ∈ V .

The universal enveloping algebra P e of P is an associative algebra for which the category
of Poisson modules over P and the category of (left) modules over P e are equivalent. It
can be given by generators and defining relations. Let mP = {ma|a ∈ P} and hP =
{ha|a ∈ P} be two copies of the vector space P endowed with two linear isomorphisms
m : P −→ mP (a 7→ ma) and h : P −→ hP (a 7→ ha). Then P e is an associative algebra
over k, with an identity 1, generated by two linear spaces mP and hP and defined by the
relations

mxy = mxmy,

h{x,y} = hxhy − hyhx,

hxy = myhx +mxhy,

m{x,y} = hxmy −myhx

for all x, y ∈ P [30]. Additionally we put m1 = 1 since we consider only unitary Poisson
modules.

If V is an arbitrary Poisson P -module, then V becomes a left P e-module under the
actions

mxv = x · v, hxv = {x, v},

for all x ∈ P and v ∈ V . Conversely, if V is a left P e-module then the same formulae
turn V to a Poisson P -module.

The first example of a Poisson P -module is V = P under the actions x · v and {x, v}
which provides us with a representation ρ of P e by homomorphisms of V . It is clear that
ρ(mx)(v) is xv and hence we have an imbedding

m : P −→ P e (x 7→ mx).

Therefore we can identify mx with x. After this identification the defining relations of Pe

are

h{x,y} = hxhy − hyhx,(1)

hxy = yhx + xhy,(2)

{x, y} = hxy − yhx,(3)
3



for all x, y ∈ P . It follows from (3) that

hxy − yhx = xhy − hyx.(4)

for all x, y ∈ P . From (2) we obtain that h1 = 0 and if x ∈ P is invertible then

hx−1 = −x−2hx.(5)

A word of caution, ρ is not necessarily an exact representation. A question for which
P ρ is exact seems to be an interesting problem.

Let g be a Lie algebra with a linear basis e1, e2, . . . , ek, . . .. The Poisson symmetric
algebra PS(g) of g is the usual polynomial algebra k[e1, e2, . . . , ek, . . .] endowed with the
Poisson bracket defined by

{ei, ej} = [ei, ej]

for all i, j, where [x, y] is the multiplication in the Lie algebra g.
Denote by P 〈x1, x2, . . . , xn〉 the free Poisson algebra over k in the variables x1, x2, . . . , xn.

From now on let g = Lie〈x1, x2, . . . , xn〉 be the free Lie algebra with free (Lie) generators
x1, x2, . . . , xn. It is well-known (see, for example [21]) that the Poisson symmetric algebra
PS(g) is the free Poisson algebra P 〈x1, x2, . . . , xn〉 in the variables x1, x2, . . . , xn.

Let us choose a multihomogeneous linear basis

x1, x2, . . . , xn, [x1, x2], . . . , [x1, xn], . . . , [xn−1, xn], [[x1, x2], x3], . . .

of a free Lie algebra g and denote the elements of this basis by

e1, e2, . . . , em, . . . .(6)

The algebra P 〈x1, x2, . . . , xn〉 coincides with the polynomial algebra on the elements
(6). Consequently, the set of all words of the form

u = eα = ei11 e
i2
2 . . . e

im
m ,(7)

where 0 ≤ ik, 1 ≤ k ≤ m, and m ≥ 0, forms a linear basis of P .
By deg we denote the Poisson degree function on P 〈x1, x2, . . . , xn〉 as the polynomial

algebra on the elements (6), i.e. deg(ei) is the Lie degree of this element. Note that

deg {f, g} = deg f + deg g

if f and g are homogeneous and {f, g} 6= 0. By degxi
we denote the degree function on P

with respect to xi. i.e. degxi
(ej) is the number of appearances of xi in the Lie monomial

ej . If f is homogeneous with respect to each degxi
, where 1 ≤ i ≤ n, then f is called

multihomogeneous. The basis (7) is multihomogeneous since so is (6).
Denote by P (x1, x2, . . . , xn) the field of fractions of the polynomial algebra k[e1, . . . , en, . . .]

in the variables (6). The Poisson bracket {·, ·} on k[e1, . . . , en, . . .] = P 〈x1, x2, . . . , xn〉 can
be uniquely extended to a Poisson bracket on P (x1, x2, . . . , xn) and

{
a

b
,
c

d
} =

{a, c}bd− {a, d}bc− {b, c}ad+ {b, d}ac

b2d2

for all a, b, c, d ∈ P 〈x1, x2, . . . , xn〉 with bd 6= 0.
The field P (x1, x2, . . . , xn) with this Poisson bracket is called the free Poisson field over

k in the variables x1, x2, . . . , xn [10].
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3. Enveloping algebras of free Poisson fields

Proposition 1. Let Q = P (x1, x2, . . . , xn) be the free Poisson field over k in the variables
x1, x2, . . . , xn and let Qe be its universal enveloping algebra. Then the following statements
are true:

(i) The subalgebra A (with identity) of Qe generated by hx1
, hx2

, . . . , hxn
is a free asso-

ciative algebra freely generated by hx1
, hx2

, . . . , hxn
;

(ii) The left vector space Qe over Q is isomorphic to the left vector space Q⊗k A over
Q.

Proof. LetM = P (x1, x2, . . . , xn, y) be the free Poisson field in the variables x1, x2, . . . , xn, y.
Then M is a Poisson Q-module under the actions x · v and {x, v} and correspondingly a
Qe module. Denote by N the submodule of M generated by y.

Consider the elements

hxi1
hxi2

. . . hxik
(y) = {xi1 , {xi2 , . . . , {xik , y} . . .}}(8)

of N . They are a subset of the multihomogeneous liner basis of Lie〈x1, x2, . . . , xn, y〉 and
are linearly independent. Consequently, the elements of the form

hxi1
hxi2

. . . hxik
(9)

are linearly independent in Qe and A is a free associative algebra freely generated by
hx1

, hx2
, . . . , hxn

.
The relations (3) allow to express every element of Qe as a linear combination

∑
i qiwi,

where qi ∈ Q and wi are different elements of the form (9). Then
∑

i qiwi(y) 6= 0.
Indeed, M is a polynomial ring and qi are polynomials in variables which are algebraically
independent with the variables (8) since all these variables are different elements of the
liner basis of Lie〈x1, x2, . . . , xn, y〉. This means that (ii) is true. �

Corollary 1. Every nonzero element u of the universal enveloping algebra Qe can be
uniquely written in the form

u =

k∑

i=1

qiwi,(10)

where 0 6= qi ∈ Q for all i and w1, w2, . . . , wk are different elements of the form (9).

Let u be an element of Qe written in the form (10). Put hdeg u = maxki=1hdegwi where
hdeg is the homogeneous degree on the free algebra A and hdeg 0 = −∞. We say that u
is homogeneous with respect to hdeg if hdegw1 = hdegw2 = . . . = hdegwk.

Put hxi
< hxj

if i < j. Let u, v be two elements of the form (9). Then put u < v if
hdeg u < hdeg v or hdeg u = hdeg v and u precedes v in the lexicographical order.

Let u be an element of the form (10). We may assume that w1 < w2 < . . . < wk.
Then wk is called the leading monomial of u and qk is called the leading coefficient of
u. We write wk = ldm(u) and qk = ldc(u). The leading term of u is defined to be
ldt(u) = ldc(u)ldm(u).
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Lemma 1. If u and v are arbitrary nonzero elements of Qe then

ldc(uv) = ldc(u)ldc(v) and ldm(uv) = ldm(u)ldm(v).

Proof. Note that if u and v are two elements of the form (10) then to put the product
uv into the form (10) again we need to use only the relations of type (3) which imply that
hxi

and y ∈ P commute modulo terms of smaller degrees in the variables hx1
, hx2

, . . . , hxn
.

Consequently, we can put uv into the form (10) with the leading monomial ldm(u)ldm(v)
and the leading coefficient ldc(u)ldc(v). �

It follows directly from Lemma 1 that

hdeg uv = hdeg u+ hdeg v

for every u and v from Qe, i.e., hdeg is a degree function on Qe.
Denote by Ui the subset of all elements u of Qe with hdeg u ≤ i. Then

Q = U0 ⊂ U1 ⊂ U2 ⊂ . . . ⊂ Uk ⊂ . . . ,

is a filtration of Qe, i.e., UiUj ⊆ Ui+j for all i, j ≥ 0 and ∪i≥0Ui = Qe. Put

grQe = grU0 ⊕ grU1 ⊕ grU2 ⊕ . . .⊕ grUk ⊕ . . . ,

where grU0 = Q and grUi = Ui/Ui−1 for all i ≥ 1. Denote by ϕi : Ui → grUi the natural
projection for every i ≥ 1 and define

ϕ = {ϕi}i≥0 : Q
e → grQe(11)

by ϕ(u) = ϕi(u) if u ∈ Ui \ Ui−1 for every i ≥ 1 and ϕ(u) = u if u ∈ Q.
The multiplication on Qe induces a multiplication on grQe and the graded vector space

grQe becomes an algebra.
Recall that A is the free associative subalgebra of Qe generated by hx1

, hx2
, . . . , hxn

(Proposition 1). Let B = Q ⊗k A be the tensor product of associative algebras over k.
Then B is a free associative algebra over Q freely generated by hx1

, hx2
, . . . , hxn

.

Proposition 2. The graded algebra grQe is isomorphic to B = Q⊗k A.

Proof. By (3), Q is in the center of the algebra grQe and grQe is generated by
ϕ(hx1

), ϕ(hx2
), . . . , ϕ(hxn

) as an algebra over Q. Note that B = Q ⊗k A is a free as-
sociative algebra over Q. Hence there is a Q-algebra homomorphism ψ : B → grQe such
that ψ(hxi

) = ϕ(hxi
) for all i.

Let Ts be the space of hdeg homogeneous elements of Qe of degree s ≥ 0 and Bs be
the space of homogeneous elements of degree s of B. There is an obvious isomorphism
between the Q-linear spaces Ts and Bs established by Corollary 1. Note that Us =
Us−1 + Ts, Us/Us−1 ≃ Ts ≃ Bs, and ψ|Bs

: Bs → grUs is an isomorphism of Q-modules.
Consequently, Ker (ψ) = 0 and ψ is an isomorphism of algebras. �

Therefore grQe is a free associative algebra over Q and grQe is a free ideal ring [2], i.e.,
every left (right) ideal of grQe is a free left (right) grQe-module of unique rank. From now
on we will identify grQe with B = Q⊗kA by means of the isomorphism from Proposition
2. Obviously, in this identification the elements ϕ(hx1

), . . . , ϕ(hxn
) ∈ grQe correspond to

hx1
, . . . , hxn

∈ B. Denote by Deg a Q-degree function on B such that Deg(hxi
) = 1 for

all i. Notice that for any u ∈ Qe we have hdeg(u) = Deg(ϕ(u)).
6



Theorem 1. Let Q = P (x1, x2, . . . , xn) be the free Poisson field over k in the variables
x1, x2, . . . , xn and Qe be its universal enveloping algebra. Then Qe satisfies the weak
algorithm for hdeg and is a free ideal ring.

Proof. We consider only the left dependence in Qe since the right dependence can
be treated similarly. It is sufficient to prove that Qe satisfies the weak algorithm for
hdeg [2], i.e., for any finite set of left Qe-dependent elements s1, s2, . . . , sk of Qe with
hdeg(s1) ≤ hdeg(s2) ≤ . . . ≤ hdeg(sk) there exist i, 1 ≤ i ≤ k and v1, . . . , vi−1 ∈ Qe such
that hdeg(si − v1s1 − . . . − vi−1si−1) < hdeg(si) and hdeg(vj) + hdeg(sj) ≤ hdeg(si) for
all j, 1 ≤ j ≤ i− 1.

Suppose that

k∑

r=1

ursr = 0.

Put m = max{hdeg(ui) + hdeg(si)|1 ≤ i ≤ k}. Let j1, . . . , jr be the set of indexes i with
hdeg(ui) + hdeg(si) = m. Then the last equality induces

ϕ(ui1)ϕ(si1) + ϕ(ui2)ϕ(si2) + . . .+ ϕ(uir)ϕ(sir) = 0

in the free associative algebra B over Q. This is a nontrivial left dependence of the
homogeneous elements ϕ(si1), ϕ(si2), . . . , ϕ(sir) in B. Since the free associative algebra B
over the field Q satisfies the weak algorithm for Deg [2] it follows that there exist t and
vi1 , . . . , vit−1

∈ Qe such that

ϕ(sit) = ϕ(vi1)ϕ(si1) + . . .+ ϕ(vit−1
)ϕ(sit−1

)

and Deg(ϕ(vij)) + Deg(ϕ(sij )) = Deg(ϕ(sit)) for all j, 1 ≤ j ≤ t− 1. Then

hdeg(sit − vi1si1 − . . .− vit−1
sit−1

) < hdeg(sit)

and hdeg(vij) + hdeg(sij ) ≤ hdeg(sit) for all j, 1 ≤ j ≤ t− 1. �
The proof of this theorem is constructive. Hence the standard algorithms (see, for

example [25, 28, 29]) give the next result.

Corollary 2. (i) The left ideal membership problem for Qe is algorithmically decidable;
(ii) The left dependence of a finite system of elements of Qe is algorithmically recogniz-

able.

4. Poisson dependence of two elements

Let P be an arbitrary Poisson algebra over k. Any finite set of elements p1, p2, . . . , pk
of P is called Poisson dependent if there exists a nonzero element f of the free Poisson
algebra P 〈x1, x2, . . . , xk〉 such that f(p1, p2, . . . , pk) = 0. Otherwise p1, p2, . . . , pk are called
Poisson free or Poisson independent. If p1, p2, . . . , pk are Poisson free then the Poisson
subalgebra of P generated by these elements is a free Poisson algebra in these variables.
Similarly we can define Lie dependence and associative dependence [25, 26, 28, 29].

Denote by ΩQ the left ideal of Qe generated by hx1
, hx2

, . . . , hxn
. By Proposition 1,

ΩQ = Qehx1
⊕Qehx2

⊕ . . .⊕Qehxn
,

7



i.e., ΩQ is a free left Qe-module. Note that

Qe = Q⊕ ΩQ.

Consider

h : Q→ ΩQ

such that h(q) = hq for all q ∈ Q. It follows from (1) and (2) that h is a derivation of the
Poisson algebra Q with coefficients in the Poisson Q-module ΩQ. It is proved in [30] that
h is the universal derivation of the Poisson algebra Q and ΩQ is the universal differential
module of Q. It means (see, for example [28, 29]) that for any Poisson Q-module V and
for any derivation d : Q→ V there exists a unique homomorphism τ : ΩQ → V of Poisson
Q-modules such that d = τh.

The proof of the next lemma is standard [28, 29, 30].

Lemma 2. Let f1, f2, . . . , fk be arbitrary elements of the free Poisson field Q. If f1, f2, . . . , fk
are Poisson dependent then hf1 , hf2, . . . , hfk are left dependent over Qe.

Proof.We repeat the proof given in [30] for a free Poisson algebra. Let f = f(z1, z2, . . . , zk)
be a nonzero element of T = P 〈z1, z2, . . . , zk〉 such that f(f1, f2, . . . , fk) = 0 with the min-
imal degree possible. Then hf can be written in ΩT as

hf = u1hz1 + u2hz2 + . . .+ ukhzk .

and

0 = hf(f1,f2,...,fk) = u′1hf1 + u′2hf2 + . . .+ u′khfk ,

where u′i = ui(f1, f2, . . . , fk) for all i.
Since f ∈ T \ k and hence f is not in the Poisson center of T it is clear that

hf is not identically zero. Therefore we may assume that u1 = u1(z1, z2, . . . , zk) 6=
0. If u′1 6= 0 then the last equation gives a nontrivial dependence of hf1 , hf2 , . . . , hfk .
Suppose that u′1 = 0. Note that u1 = t + w, where t ∈ T and w ∈ ΩT , since
U(T ) = T ⊕ ΩT . Obviously, t(f1, f2, . . . , fk) ∈ Q and it follows from (1)–(2) that
w(f1, f2, . . . , fk) ∈ ΩQ. Then, t(f1, f2, . . . , fk) = 0 and w(f1, f2, . . . , fk) = 0 since 0 =
u′1 = t(f1, f2, . . . , fk) + w(f1, f2, . . . , fk) ∈ Q ⊕ ΩQ. For any monomial M ∈ T we
have hM =

∑
i tiwi where ti ∈ T, wi belong to a free associative algebra generated

by hz1, hz2 , . . . , hzk and deg ti + hdeg ti = deg M . Therefore deg t ≤ deg f − 1 and t = 0
since the degree of f was minimal possible. Hence w 6= 0 and w′ = w(f1, f2, . . . , fk) pro-
vides a ”smaller” dependence between hf1, hf2 , . . . , hfk and after a finite number of steps
we get a nontrivial dependence between hf1, hf2 , . . . , hfk over Qe. �

For every i ≥ 1 denote by ∂ei the usual partial derivation of the field of rational functions
Q in the variables (6). The next easy lemma is useful.

Lemma 3. (i) For every q ∈ Q we have

hq =
∑

i≥1

∂ei(q)hei ;

(ii) For every l = l(x1, x2, . . . , xn) ∈ g = Lie〈x1, x2, . . . , xn〉 we have

hl = l(hx1
, hx2

, . . . , hxn
) ∈ L = Lie〈hx1

, hx2
, . . . , hxn

〉.
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Proof. As mentioned above, by (1) and (2), the mapping h is a derivation with respect
to both operations on Q. �

Corollary 3. For every q ∈ Q we have hq ∈ QL and hdeg(hq) ≤ 1 if and only if
q ∈ k(x1, x2, . . . , xn).

We need the next lemma.

Lemma 4. [25, 27, 28] Let H be a free Lie algebra over a field k and U(H) be its universal
enveloping algebra. Then arbitrary elements f1, . . . , fk of H are Lie dependent if and only
if they are left dependent over U(H).

Recall that A is a free associative algebra freely generated by hx1
, hx2

, . . . , hxn
. Hence L

is the Lie subalgebra of the Lie algebra A(−). Notice that B = Q⊗kA is a free associative
algebra over Q and Q⊗kL is a free Lie algebra over Q freely generated by hx1

, hx2
, . . . , hxn

.
Furthermore B is the universal enveloping algebra of the Lie algebra Q⊗k L over Q.

Theorem 2. Let Q = P (x1, x2, . . . , xn) be the Poisson free field in the variables x1, x2, . . . , xn
over a field k of characteristic zero and f and g be arbitrary elements of Q. Then the
following conditions are equivalent:

(i) f and g are Poisson dependent;
(ii) hf and hg are left dependent over Qe;
(iii) f and g are polynomially dependent, i.e., they are algebraically dependent in the

commutative algebra Q over k;
(iv) there exists a ∈ Q such that f, g ∈ k(a);
(v) {f, g} = 0 in Q.

Proof. The implication (iii) → (iv) follows from the generalized Lüroth Theorem [19].
The implications (iv) → (v) and (v) → (i) are obvious. By Lemma 2, (i) implies (ii). To
finish the proof it is sufficient to show that (ii) implies (iii).

Notice that hf = 0 if and only if f ∈ k by Lemma 3. Suppose that hf and hg are both
nonzero and

uhf + vhg = 0, (u, v) 6= (0, 0), u, v ∈ Qe.

It follows that

hdeg(u) + hdeg(hf) = hdeg(v) + hdeg(hg)

by Lemma 1 and the mapping ϕ defined in (11) gives

ϕ(u)ϕ(hf) + ϕ(v)ϕ(hg) = 0, (ϕ(u), ϕ(v)) 6= (0, 0)

in B = Q⊗k A. So, ϕ(hf) and ϕ(hg) are left dependent over B.
By Lemma 3, hf , hg ∈ QL. Consequently, ϕ(hf), ϕ(hg) ∈ Q ⊗k L. Thus ϕ(hf ) and

ϕ(hg) are elements of the free Lie algebra Q ⊗k L over Q which are left dependent over
B. By Lemma 4, ϕ(hf) and ϕ(hg) are Lie dependent over Q. It is well-known (see, for
example [24, 32]) that in this case ϕ(hf) and ϕ(hg) are linearly dependent over Q, i.e.,
ϕ(hf) = λϕ(hg). Consequently, hdeg(hf) = hdeg(hg) > hdeg(hf − λhg).

Suppose that hf−λhg 6= 0. Then hf−λhg and hg are left B-dependent again since so are
hf and hg. Notice that hf − λhg ∈ QL. Consequently, repeating the same considerations
as above we get hdeg(hf − λhg) = hdeg(hg), which is a contradiction.
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Therefore hf = λhg. Then,
∑

i≥1

(∂ei(f)− λ∂ei(g))hei = 0

and hence

∂ei(f)− λ∂ei(g) = 0

for all i ≥ 1. It is well-known (see, for example [22]) that in this case f and g are
algebraically dependent. �

Notice that the equivalence of conditions (i) and (iii) is proved in [10] and the equiva-
lence of conditions (iii) and (v) for free Poisson algebras is proved in [12]. All statements
of this theorem for free Poisson algebras are established in [30].

Theorem 3. Every automorphism of the free Poisson field P (x, y) in two variables x, y
over a field k of characteristic 0 is an automorphism of the field of rational functions
k(x, y), i.e.,

AutP (x, y) ∼= Aut k(x, y) = Cr2(k).

Proof. Let ψ be an automorphism of Q = P (x, y). Put ψ(x) = f and ψ(y) = g. We
will show that f, g ∈ k(x, y). By Corollary 3, it is sufficient to prove that hdeg(hf ) =
hdeg(hg) = 1.

Suppose that hdeg(hf) + hdeg(hg) ≥ 3. Note that ΩQ = Qehf +Qehg = Qehx +Qehy.
Consequently, Qehf +Q

ehg contains two elements hx and hy of h-degree 1. It follows that
ϕ(hf) and ϕ(hg) are left dependent in the free associative algebra Q⊗k Asso〈hx, hy〉.

As in the proof of Theorem 2, hdeg(hf) = hdeg(hg) and there exist 0 6= λ ∈ Q such
that hdeg(hf −λhg) < hdeg(hf). Put T = hf −λhg. Then ΩQ = QeT +Qehg, hdeg(hf)+
hdeg(T ) ≥ 3, and T ∈ Q⊗k Lie〈hx, hy〉. Hence hdeg(T ) = hdeg(hg), which is impossible.
Therefore hdeg(hf ) = hdeg(hg) = 1 and f, g ∈ k(x, y). Similarly ψ−1(x), ψ−1(y) ∈ k(x, y)
and the restriction of ψ on k(x, y) is an automorphism.

The Theorem is proved since every automorphism of k(x, y) can be uniquely extended
to an automorphism of P (x, y). �
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[19] Samuel, P., Some remarks on Lüroth’s theorem. Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math. 27,

(1953), 223–224.
[20] Shafarevich, I.R., Averbukh, B.G., Vainberg, Yu.R., Zhizhchenko, A.B., Manin, Ju.I., Moishezon,

B.G., Tjurina, G.N., Tjurin, A.N., Algebraic surfaces. (Russian) Trudy Mat. Inst. Steklov. 75 (1965),
1-215.

[21] Shestakov, I.P., Quantization of Poisson superalgebras and speciality of Jordan Poisson superalge-
bras. Algebra and Logic, 32(1993), no. 5, 309–317.

[22] Shestakov, I.P., Umirbaev, U.U., Poisson brackets and two generated subalgebras of rings of poly-
nomials. Journal of the American Mathematical Society, 17 (2004), 181–196.

[23] Shestakov, I.P., Umirbaev, U.U., Tame and wild automorphisms of rings of polynomials in three
variables. Journal of the American Mathematical Society, 17 (2004), 197–227.

[24] Shirshov, A.I., Subalgebras of free Lie algebras. Mat. Sbornik, 33(75) (1953), 441–452.
[25] Umirbaev, U.U., On the approximation of free Lie algebras with respect to entry. Monoids, rings

and algebras. Tartu: Tartuskij Universitet, Tartu Uelik. Toim., Mat.-Meh.-Alaseid Toeid, 878 (1990),
147–152.

[26] Umirbaev, U.U., Algorithmic problems in associative algebras. Algebra and Logic, 32 (1993), 244–
255.

[27] Umirbaev, U.U., Partial derivations and endomorphisms of some relatively free Lie algebras. Sib.
Math. J. 34 (1993), No. 6, 1161–1170.

[28] Umirbaev, U.U., On Schreier varieties of algebras. Algebra Logic 33 (1994), No. 3, 180–193.
[29] Umirbaev, U.U., Universal derivations and subalgebras of free algebras. In Proc. 3rd Internat. Conf.

Algebra, Krasnoyarsk, Russia, Walter de Gruyter, Berlin, 1996, 255–271.
[30] Umirbaev, U.U., Universal enveloping algebras and universal derivations of Poisson algebras. Journal

of Algebra 354 (2012), 77–94.
[31] U. U. Umirbaev, The Anick automorphism of free associative algebras, J. Reine Angew. Math. 605

(2007), 165–178.
[32] Witt, E., Die Unterringe der freien Lieschen Ringe. Math. Z. 64 (1956), 195–216.

11


	1. Introduction
	2. Definitions and notations
	3. Enveloping algebras of free Poisson fields
	4. Poisson dependence of two elements
	References

