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Abstract

For a prime number p, it is shown that di�erentials dn in the motivic cohomology
spectral sequence with p-local coe�cients vanish unless p−1 divides n−1. We obtain an
explicit formula for the �rst non-trivial di�erential dp, expressing it in terms of motivic
Steenrod p-power operations and Bockstein maps. For this end, we compute the algebra
of operations of weight p− 1 with p-local coe�cients. Finally, we construct examples of
varieties, having non-trivial di�erentials dp in their motivic spectral sequences.

1. Introduction

The motivic cohomology spectral sequence (MCSS) is an algebro-geometric analogue of the
Atiyah�Hirzebruch spectral sequence in topology. Its second term consists of motivic cohomology
groups and the sequence converges to algebraic K-theory.

The spectral sequence was initially constructed for �elds by Bloch and Lichtenbaum. Un-
fortunately, their arguments contained a gap and the construction can now be found only in
unpublished preprint [BL95]. Later, di�erent constructions were built by Grayson [Gr95] and
Friedlander�Suslin [FS02]. These two constructions not only globalized the MCSS to the whole
category of smooth varieties, but also showed that it is supplied with multiplicative structure.
The equivalence of two approaches was established in [Su03].

Voevodsky [Vo02a, Vo02b] observed that the slice-�ltration of the motivic Eilenberg-Mac
Lane spectrum leads (modulo some conjectures) to another model of MCSS. This approach was
developed by Levine and he has also shown the equivalence of all three constructions [Le08].
These steps made it possible to extend the MCSS to the category of Voevodsky's spaces. More
historical issues can be found in Weibel's �K-Book� [We, VI.4.4] on his web-page.

The behavior of di�erentials in the MCSS is quite similar to the topological case. Being
taken with rational coe�cients the sequence collapses at its E2-term (see [GSo99]). On the other
hand, its structure with integer coe�cients becomes too tangled, because of the interrelation of
di�erent p-prime e�ects involved. The purpose of the current paper is to investigate the case
of Z(p)-coe�cients that allows to �distill� the p-prime e�ects. In this case one gets non-trivial
di�erentials of rather high degree and that makes their computation an interesting quest.

Di�erentials in the Atiyah�Hirzebruch spectral sequence were computed by Buchstaber long
time ago [Bu69]. In the current paper we establish the parallel result for the MCSS. Philosoph-
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ically, our approach is quite similar to Buchstaber's one, but the technique is certainly rather
di�erent.

The strategy of the proof is the following. Firstly, we show, using Adams operations, that the
�rst non-trivial di�erential may appear only in Ep-term (Proposition 3.1). Then, computing the
motivic Steenrod algebra in the corresponding degree, it is possible to show that the di�erential
in question is a scalar multiple of some concrete cohomological operation. Finally, to check that
the scalar in question is not zero, we construct examples of varieties such that the di�erentials
dp in their motivic spectral sequences are non-trivial (Proposition 6.2, Example 6.3).

The signi�cant part of our results becomes trivial in the case p = 2. So, this case is systemat-
ically avoided in the paper. However, we give an evidence (see Example 6.1) of non-triviality of
the di�erential d2 in the MCSS with Z(2)-coe�cients.

Let us, �nally, mention that the scalar appearing in our result is actually a unit in the �eld
Z/p and, therefore, plays a negligible role in the spectral sequence structure. So that, our theorem
gives a full control over all di�erentials up to d2p−2. To compute the di�erential d2p−1 and other
possibly non-zero di�erentials dk(p−1)+1 we need a good description of secondary (and higher)
cohomological operations. As far as this description is currently not available, this makes studying
higher cohomological operations in motivic cohomology an interesting topic.

The computation of the p-local Steenrod algebra is based on Voevodsky's result on the struc-
ture of the motivic Steenrod algebra with �nite coe�cients. Originally, the statement was proven
only for �elds of characteristic zero, but recent work [HKØ13] extends Voevodsky's construction
to �elds of characteristic mutually prime to p.

1.1 Notation remarks.

We �x a prime number p and denote by Z(p) the localization of the ring of integers at the prime
ideal (p). We also denote by Z/p∞ the p-cyclotomic group, i.e. lim

→
Z/pmZ. Unless it is speci�ed,

we always assume that p > 2.

We always assume the �eld k to be perfect and (Char k, p) = 1. Here and below by Char k we
denote the characteristic exponent of k. We denote by Sm/k the category of smooth separated
schemes of �nite type (smooth varieties) over a �eld k. We also denote by Spc the category
of pointed Nisnevich sheaves over Sm/k (pointed Voevodsky spaces) and by Sp the homotopy
category of A1-spectra. The reader is referred to [Vo98, Sect. 2] for the constructions of the
categories as well as for the description of a closed model category structure on Spc. We denote
by H∗,∗(−) the motivic cohomology [MVW06, 3.4] (cf. also Sect. 4) and by K∗(−) Quillen's
K-groups [Qu73, �7]. We often call the �rst index of motivic cohomology groups degree and the
second index weight.

• pt := Spec k;

• X+ := X t pt;

• An (resp. Pn) denotes a�ne (resp. projective) space of dimension n in Sm/k;

• T := A1/(A1 − {0}) is the Tate object.
• We denote T -suspension functor by T ∧ −. The natural morphism X → T ∧X induces an

isomorphism in motivic cohomology. For consistency we call the inverse map H̃∗,∗(−)
∼=→

H̃∗,∗(T ∧ −) the T -suspension isomorphism and denote in by ΣT .

• σT := ΣT (1) ∈ H̃2,1(T ) is often called the Tate element.

• H∗,∗ := H̃∗,∗(Spec k,Z/p) (see 4.2)
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We often denote by [X,Y, Z] the Bockstein homomorphism H∗,∗(−, Z)→ H∗+1,∗(−, X) cor-
responding to the short exact sequence 0→ X → Y → Z → 0 of abelian groups.

Finally, we summarize here some vanishing results, which we will use below.

Statement 1.1 For X ∈ Sm/k, one has Hp,q(X) = 0 if:

(i) p > 2q;

(ii) p > q + dimX;

(iii) q < 0;

(iv) q = 0 and p 6= 0;

Proof. See [MVW06]: Theorem 19.3 for (i), Theorem 3.5 for (ii), Corollary 4.2 for (iii,iv).

2. Main Result and Outline of the Proof

As was shown in [FS02], for any X ∈ Sm/k there exists the Motivic Cohomology Spectral
Sequence:

Ei,j2 = H i−j,−j(X)⇒ K−i−j(X), (2.1)

starting from the motivic cohomology groups H∗,∗(X) and converging to the algebraic K-groups
of the variety X. The di�erentials in this spectral sequence are: dn : Ei,jn → Ei+n,j−n+1

n (n ≥ 2).

Theorem 2.1 Let p be an odd prime and k be a perfect �eld of characteristic l such that either
l = 0, or (l, p) = 1. For a variety X ∈ Sm/k the motivic cohomology spectral sequence

Ei,j2 = H i−j,−j(X,Z(p))⇒ K−i−j(X,Z(p))

has zero di�erentials dn for p− 1 - n− 1. The di�erential dp coincides with the bistable operation
BαP 1r, where r denotes the coe�cient reduction corresponding to the residue map Z(p) → Z/p,
the operation P 1 is the �rst Z/p motivic Steenrod power, α denotes multiplication of coe�cients by
an element of Z/p×, and B = [Z(p),Z(p),Z/p] is the Bockstein map. Moreover, for any l satisfying
the theorem conditions, one can �nd a �eld F of characteristic l and a variety X ∈ Sm/F such
that the di�erential dp in the corresponding MCSS is non-trivial.

In the next section we prove, following the strategy of Buchstaber, the �rst statement of the
theorem. (Let us also mention that a similar technique was also used by Merkurjev [Me10] to
analyze the structure of the Brown�Gersten�Quillen spectral sequence.) Then, in Section 4 the
di�erential dp is interpreted as a bistable motivic cohomology operation of bidegree (2p−1, p−1)
i.e., as an element of the corresponding motivic Steenrod algebra, which is computed in Section 5.
Finally, in Section 6 we construct examples of varieties for which di�erentials dp in MCSS are
non-trivial that completes the proof of the Theorem.

3. Di�erentials and Adams operations

The purpose of the current section is to prove the following proposition.

Proposition 3.1 dn = 0 for p− 1 - n− 1.
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Proof. As was shown in [GSo99], for every integer k such that 1
k ∈ Z(p) the Adams operation ψk on

K∗(X,Z(p)) can be represented as an operation acting on the whole motivic cohomology spectral
sequence. Moreover, the action of this operation on the E2-term is given by the equality: ψk(α) =
k−qα for α ∈ H∗,q(X). Therefore, all topological arguments proposed by Buchstaber [Bu69] work
in this case as well. Since Adams operations commute with di�erentials, for every integer n > 1,
we get:

dnψk = ψkdn : H∗,∗(X)→ H∗+2n−1,∗+n−1(X).

Hence, one has: (kn−1 − 1)dn = 0. Let us now de�ne the number M(i) as the greatest common
divisor of the following sequence:

M(i) := g.c.d.
k>1
{kN (ki − 1)}, (3.1)

where N � i. One can easily verify that the numbers M(i) are well-de�ned. The integers M(i)
are sometime called Kervaire�Milnor�Adams numbers, probably, after the paper [KM60]. Their
values are presented in the lemma below. Obviously, M(n− 1)dn = 0. Since for p− 1 - n− 1, we
have: p -M(n− 1), the di�erentials of these degrees vanish.

Lemma 3.2 For a prime p and a positive integer n denote by νp(n) the greatest dividing p-
exponent1 of n. The sequence of Kervaire�Milnor�Adams numbers is determined as follows. For
i ≥ 1 and a prime number p, one has: M(2i− 1) = 2 and

νp(M(2i)) =

{
1 + νp(4i) for (p− 1) | 2i
0 else.

Proof. See [Ad65].

Corollary 3.3 The motivic spectral sequence with Q-coe�cients degenerates at E2-term.

Proof. Any di�erential vanishes after multiplication by an invertible number.

Corollary 3.4 For p > 2, one has: pdp = 0 in the MCSS with Z(p)-coe�cients..

Proof. Since, by Lemma 3.2, one has: νpM(p− 1) = 1, the corollary follows.

Remark 3.5 It is interesting to mention that the sequence M(2i)

24, 240, 504, 480, 65520, · · ·

can be identi�ed with denominators of terms of sequences 1
2ζ(1− 2i) or B2i

4i .

4. Di�erentials as cohomology operations

Let us give a brief explanation of the construction of motivic Eilenberg�Mac Lane spaces, fol-
lowing, almost literally, the exposition of [Vo03].

For a variety X ∈ Sm/k consider the presheaf Ztr(X) of abelian groups on the category
Sm/k, which takes a variety U to the free abelian group, generated by all cycles on X×U , which
are �nite and equidimensional over U . For an abelian group A we set Atr := A⊗ Ztr and de�ne
presheaves of abelian groups:

Kpre
n,A : U 7→ Atr(A

n)(U)/Atr(A
n − {0})(U). (4.1)

1For example, for any positive integer n, one has: n = 2ν2(n)3ν3(n)5ν5(n) . . .
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On the Nisnevitch site (Sm/k)Nis one can shea�fy Kpre
n,A. Applying to the resulting sheaves the

functor which forgets the abelian group structure, one obtains the family of pointed sheaves of
sets Kn(A) that play the role of Eilenberg�Mac Lane spaces in the category Spc.

Alternatively, one can start from the presheaf Kpre
n,Z and obtain a complex Z(n) of sheaves of

abelian groups on (Sm/k)Nis (see the construction in [VSF00, Ch. 5]). For any i, j ∈ Z, a smooth
scheme X, and an abelian group A one de�nes motivic cohomology groups as hypercohomology
groups H i,j(X,A) := Hi(XNis, A(j)), where A(j) = A ⊗ Z(j). Let K(i, j, A) be a simplicial
abelian group sheaf corresponding to the complex A(j)[i]. Applying again the forgetful functor
one gets the simplicial sheaf of sets that determines an object (also denoted by K(i, j, A)) of
the motivic homotopy category of spaces HoA1 . The sheaves K(i, j, A) are A1-local [De09, sect.
2.2�2.4] and for any smooth scheme X, one has: H i,j(X,A) = HomHoA1 (X+,K(i, j, A)). For any
pointed simplicial sheaf F• on (Sm/k)Nis one can take the following de�nition of reduced motivic
cohomology:

H̃ i,j(F•, A) = HomHoA1 (F•,K(i, j, A)). (4.2)

It is shown in loc. cit. that there exists a weak equivalence between Kn(A) and K(2n, n,A), so
the two constructions of Eilenberg�Mac Lane spaces agree. This extends the de�nition of motivic
cohomology groups to the whole category of spaces.

We shall also need a notion of a cohomological operation.

De�nition 4.1 A collection {ϕ}p,q of natural transformations of functors on Spc

ϕp,q : H̃p,q(−, A)→ H̃p+i,q+j(−, B),

where A and B are abelian groups and the index (p, q) runs through Z×Z is called an (unstable)
cohomological A-B-operation of degree i and weight j.

Let us recall that in the category Spc there are two circles and hence two di�erent suspension
functors. Among all the cohomological operations there are special ones that commute with both
suspension isomorphisms. These operations are called bistable, and Voevodsky showed, using
a simple trick [Vo03, Prop 2.6], that there exists a bijection between bistable operations and
operations that a priori commute only with the T -suspension. (Recall that here T is the Tate
object.) We will call operations of the latter type stable.

Notation. We denote the set of all stable cohomological A-B-operations of degree i and weight
j by OPi,j(A,B). We always implicitly assume that all considered operations have nonnegative
degree and weight. Since, by [Vo03, Cor. 2.10], stable operations are additive, this set has a natural
structure of an abelian group, induced by addition in cohomology.

If A (resp. B) has a ring structure, the set OP∗,∗(A,B) also has a natural structure of a
bigraded left (resp. right) H∗,∗-module.

It is reasonable to expect that natural transformations of motivic cohomology functors can
be classi�ed by cohomology groups of motivic Eilenberg-Mac Lane spaces.

For every Eilenberg�Mac Lane space Kn(A) one can choose a universal element

ιn ∈ H̃2n,n(Kn(A)),

corresponding to the identity morphism of the space K(2n, n,A). Applying the T -suspension
isomorphism map ΣT : H̃∗,∗(−) → H̃∗+2,∗+1(T ∧ −) to the element ιn, one obtains the element
ΣT ιn ∈ H̃2n+2,n+1(T∧Kn(A)), corresponding to some homotopy class αn ∈ [T∧Kn(A),Kn+1(A)].
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This class coincides with the homotopy class of the n-th structure morphism of the Eilenberg�
Mac Lane spectrum H(A).

Finally, using the collection of classes {α•}, one can construct an inverse system of the groups
H̃ i+2n,j+n(Kn(A), B) as shown in the diagram below.

...
H̃ i+2n+2,j+n+1(Kn+1(A), B)

α∗
n //

��

H̃ i+2n+2,j+n+1(T ∧Kn(A), B)

H̃ i+2n,j+n(Kn(A), B)
...

ΣT

'
33

(4.3)

A natural modi�cation of [Vo03, Prop. 2.7.] shows that

OPi,j(A,B) = lim
←
n

H̃ i+2n,j+n(Kn(A), B). (4.4)

We will see that the module OP∗,∗(Z/p,Z/p) is naturally isomorphic to the motivic Steenrod
algebra by Voevodsky (see the discussion on page 8).

Proposition 4.2 Consider the motivic cohomology spectral sequence (E∗,∗∗ , d∗). Let us �x an
integer n > 1 and assume that for every 1 < i < n and any variety X ∈ Sm/k the di�erentials
di : H

∗,∗(X) → H∗+2i−1,∗+i−1(X) are trivial. Then, the di�erential dn can be identi�ed with a
stable cohomological operation of bidegree (2n− 1, n− 1) up to multiplication by ±1.

Proof. Since all the previous di�erentials vanish, the di�erential dn actually acts on the E2-term of
the spectral sequence. To prove the stability, one has to check the commutativity of the following
diagram:

H i,j(X)

ΣT
��

dn //

±1

H i+2n−1,j+n−1(X)

ΣT
��

H̃ i+2,j+1(T ∧X+)
dn // H̃ i+2n+1,j+n(T ∧X+).

(4.5)

Though the space T ∧X+ does not belong to Sm/k, its cohomology is a direct summand of the
cohomology of the scheme P1 × X due to the existence of the retraction Spec(k) → P1 ← T .
Actually, the space T ∧X+ happens to beA1-homotopically equivalent to (P1,∞)∧X that allows
us to apply di�erentials to its cohomology groups.

The motivic cohomology groups of T ∧ X+ are the (2, 1)-shifted cohomology groups of X
and the isomorphism ΣT is delivered by multiplication with the image of the Tate element σT .
The MCSS is functorial and has a canonical multiplicative structure that is compatible with
multiplication in motivic cohomology (see [FS02, § 14]). Hence, its di�erentials satisfy the Leibnitz
rule and one has: dn(σT ∧ x) = dn(σT )∧ x± σT ∧ dn(x). Now, to prove the commutativity of 4.5
up to the sign, it su�ces to verify that dn(σT ) = 0. This element should lie in the cohomology
group of the variety P1 of bidegree (2n + 1, n) that vanishes, since 2n + 1 > 2n (see 1.1.i). So,
the commutativity result follows for dimension reasons.

In order to complete the proposition proof we only need to extend the di�erential to the
whole category of spaces. It can be done, using Levine's [Le08] identi�cation between MCSS
and the spectral sequence built by the slice-�ltration. Due to the functoriality of the spectral
sequence construction, the di�erential dn becomes a motivic cohomological operation of bidegree
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(2n−1, n−1). It is not hard to show that the arguments above are also applicable to the category
Spc and prove the stability of the operation.

5. Some calculations in Steenrod modules

In this section we are going to perform some computations with cohomology of motivic Eilenberg�
Mac Lane spaces and spectra, and we need some preliminary results and notation. We denote by
Kn : Ab→ Spc (resp. K : Ab→ Sp) the functor sending an abelian group A to the Eilenberg�Mac
Lane space Kn(A) (resp. Eilenberg�Mac Lane spectrum H(A)).

Proposition 5.1 For every n > 0 the functor Kn preserves

(i) limits;

(ii) �ltered colimits.

Proof. The functor Kn can be considered as the following chain of functors:

Ab→ (Presheaves of Ab)→ (Presheaves of Sets)→ (Nisnevich Sheaves).

Since the groups Ztr(X)(U) are free abelian groups, one can easily check that the �rst functor
preserves limits and �ltered colimits.

Limits and colimits of presheaves are computed objectwise. The forgetful functor Ab→ Sets
preserves limits, because it has a left adjoint functor sending every set X to the free abelian group
Z[X] and also preserves �ltered colimits (see, for example, [Ar62, Sect 1.1]).

Finally, it is well known that the shea��cation functor preserves arbitrary limits and colimits.

For a �eld k we call an abelian group k-admissible if it has a Z[1
l ]-module structure for

l = Char k.

Proposition 5.2 Let k be a perfect �eld. Then, the functor K sends every short exact sequence
of k-admissible groups to a distinguished triangle in the category Sp.

Proof. The following result was established by Østvær and R�ondigs [RØ08, Thm. 1] for �elds
of characteristic zero and by Hoyois, Kelly, and Østrvær [HKØ13, Thm. 5.8] for perfect �elds of
positive characteristic. Let k be a perfect �eld and R a ring such that Char k is invertible in R.
Then, Voevodsky's big category of motives DM(Sm/k,R) is equivalent to the homotopy category
H(R)-mod of modules over the Eilenberg�Mac Lane spectrum H(R). The equivalence preserves
the monoidal and triangulated structures.

Now, it is not hard to check that the short exact sequence of k-admissible abelian groups leads
to a distinguished triangle of motives in DM(Sm/k,R). Since the category of H(R)-modules is a
triangulated subcategory of Sp, this proves the proposition.

Remark 5.3 For the short exact sequence 0→ A→ B → C → 0 of abelian groups the morphism
K(C) → K(A)[1] in the corresponding distinguished triangle of T -spectra induces Bockstein map
β = [A,B,C] in motivic cohomology. In particular, this implies functoriality of Bockstein maps
with respect to morphisms of short exact sequences.

All the relations below, involving Bockstein maps are obvious consequences of this remark.
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Statement 5.4 Let k be a perfect �eld of characteristic exponent mutually prime to p. Then, the
groups H∗,∗(H(Z/p),Z/p) and OP∗,∗(Z/p,Z/p) are naturally isomorphic.

Proof. It is exactly the statement of [HKØ13, Thm. 3.2] and [Vo10, Cor. 2.71] that the lim1

groups in the short exact sequences:

0→ lim
←
n

1H̃ i+2n−1,j+n(Kn(Z/p),Z/p)→ H i,j(H(Z/p),Z/p)→ lim
←
n

H̃ i+2n,j+n(Kn(Z/p),Z/p)→ 0

(5.1)
vanish (conf. also [HKØ13, Cor. 3.3]). We can identify the right-hand term with the group
OPi,j(Z/p,Z/p) using construction (4.4).

Our current aim is to compute the module of stable operations from cohomology with Z/p∞-
coe�cients. We start with Voevodsky's computation of the motivic Steenrod algebra.

The module OP∗,∗(Z/p,Z/p) has a natural bigraded algebra structure given by composites
of operations. Consider its bigraded subalgebra, generated by Steenrod power operations P i (of
bidegrees (2i(p − 1), i(p − 1))) for i > 0, Bockstein homomorphism β = [Z/p,Z/p2,Z/p] (of
bidegree (1, 0)) and operations of the form x 7→ ax for a ∈ H∗,∗. This subalgebra is called motivic
Steenrod algebra A∗,∗(k,Z/p) in [Vo03, Sect. 11, Lemma 9.5].

Let us also consider sequences I = (ε0, s1, ε1, s2, . . . , sk, εk) of non-negative integers and such
that one has: εi ∈ {0, 1} and si ≥ psi+1+εi for every index i. These sequences are called admissible.
To every admissible sequence I one can correspond the operation P I = βε0P s1βε1 . . . P skβεk .
(Here we assume β0 = P 0 = id.) These operations are called admissible monomials. There is a
natural graded module map from the free graded left H∗,∗-module generated by all admissible
monomials to A∗,∗(k,Z/p).

It is proven in loc.cit Lemma 11.1 that the latter homomorphism of H∗,∗-modules is an epi-
morphism and in loc.cit Corollary 11.5 that the admissible monomials are linearly independent
with respect to the left H∗,∗-module structure.

Moreover, Voevodsky showed [Vo10, Thm. 3.49] that over a �eld k of characteristic 0 there is
a natural isomorphism of graded left H∗,∗-modules between OP∗,∗(Z/p,Z/p) and A∗,∗(k,Z/p).

In the sequel we are mostly dealing with the operations of weight p− 1 and degree > p, so we
will often omit the second (weight) index in the notation for operation and cohomology groups
and implicitly assume that the �rst (degree) index is greater than p.

Up to the end of this section we will omit, for brevity, mentioning Z/p-coe�cients and write
OP∗(−) for OP∗,p−1(−,Z/p). We will also write H∗(A,B) for H∗,p−1(H(A), B).

The arguments above immediately imply that OP∗(Z/p) (we assume that ∗ > p) is a free
Z/p-module with the set of generators {P 1, βP 1, P 1β, βP 1β}.

Remark 5.5 Voevodsky's Theorems [Vo10, Thm. 3.49, Prop. 3.55] mentioned in the previous
discussion were originally proven only for base �elds of characteristic 0. However, recently Hoyois,
Kelly, and Østrvær [HKØ13] could eliminate this annoying restriction and extend the result to
the case of a perfect �eld k such that (Char k, p) = 1.

Remark 5.6 Using Voevodsky's computation of the motivic Steenrod algebra, it is possible to
extend the results of this section to operations of weights ≤ p2 − p, provided that p > 3. We leave
all the details to the reader.

Now we will explicitly compute weight p − 1 cohomology groups of the T -spectra H(Z/pm)
with integral and �nite coe�cients.
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Proposition 5.7 For m > 0 there are natural isomorphisms H∗(Z/pm) ∼= OP∗(Z/pm) and
H∗(Z/pm,Z) ∼= OP∗(Z/pm,Z) The groups H∗(Z/pm) and H∗(Z/pm,Z) are the free graded Z/p-
modules with the following generators in the corresponding degrees:

2p− 2 2p− 1 2p

H∗(Z/pm) P 1rm P 1βm, β1P
1rm β1P

1βm

H∗(Z/pm,Z) ∅ βZP
1rm βZP

1βm

Here rm is induced by the coe�cient reduction Z/pm → Z/p, βm = [Z/p,Z/pm+1,Z/pm], and
βZ = [Z,Z,Z/p].

Proof. We start with the case of Z/p-coe�cients. Setting m = 1, we get just Voevodsky's result
cited above. Since in this case the higher inverse limits vanish, cohomology of spectra coincide
with groups of operations. We now assume that p > 3. The case p = 3, which is similar, but
requires a bit more calculations, is left to the reader. Consider the short exact sequence:

0→ Z/p→ Z/pm+1 r→ Z/pm → 0

and assume the groups H∗(Z/pm) satisfy the theorem conclusions. By Theorem 5.2, one has a
distinguished triangle of spectra:

H(Z/p)→ H(Z/pm+1)→ H(Z/pm). (5.2)

Consider the following fragment of the corresponding cohomology long exact sequence:

0 // H2p−2(Z/pm)
r∗ // H2p−2(Z/pm+1) // H2p−2(Z/p)

β∗
m

��
H2p−1(Z/pm)

r∗ // H2p−1(Z/pm+1) // H2p−1(Z/p)

��
H2p(Z/pm) // H2p(Z/pm+1) // H2p(Z/p) // 0

Since the map β∗m delivers an isomorphism between the group H2p−2(Z/p) and the di-
rect summand of H2p−1(Z/pm) generated by the operation P 1βm, one gets the isomorphism
H2p−2(Z/pm) ∼= H2p−2(Z/pm+1), which sends the generator P 1rm to r∗(P 1rm) = P 1rmr =
P 1rm+1.

In the same way, one can see that the direct summand ofH2p−1(Z/pm) generated by the opera-
tion β1P

1rm maps onto the direct summand of H2p−1(Z/pm+1) with the generator r∗(β1P
1rm) =

β1P
1rmr = β1P

1rm+1. The map β̄m+1 = [Z/pm+1,Z/pm+2,Z/p] sends the group generated by
β1P

1rm+1 to the group H2p(Z/p) in such a way that the composite β̄∗m+1r
∗ = β̄∗m makes an

isomorphism between the direct summand of H2p−1(Z/pm) generated by the operation β1P
1rm

and the group H2p(Z/p). Hence, the group H2p−1(Z/pm+1) splits into two direct Z/p-summands.

The rest of the exact sequence can be treated in a similar way. One can also immediately
check that H i(Z/pm+1) = 0 for i > 2p and p < i < 2p− 2.

It is also easy to show that the natural epimorphism H∗(Z/pm+1) � OP∗(Z/pm+1) is a
monomorphism. For example, the image of P 1rm+1 is a non-zero element in the group OP2p−2(Z/pm+1),
since we know that the operation (P 1rm+1)β̄m+1 = P 1(rm+1β̄m+1) = P 1β1 is non-trivial in
OP2p−1(Z/p).

9
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As a result we conclude that H∗(Z/pm+1) ∼= OP∗(Z/pm+1) and

lim
←
n

1H̃∗+2n−1,∗+n(Kn(Z/pm+1),Z/p) = 0.

The case of �nite coe�cients now follows by induction.

In order to proceed with the case of integral operations, we need the following simple lemma.

Lemma 5.8 Let

A
ϕ //B

χ //B
ψ //C

be an exact sequence of groups such that the composite ψϕ : A → C is an isomorphism. Then,
B ∼= A⊕Q, for such a group Q that the restricted map χ : Q→ Q is an automorphism.

Proof. The map (ψϕ)−1ψ (resp. ϕ(ψϕ)−1) splits the exact sequence on the left (resp. right).
Therefore, the group A is a direct summand of B. Denoting B/ϕA byQ, one can easily see that the

four-term exact sequence splits into isomorphisms A
ϕ //B/Q , Q

χ //Q , and B/Q
ψ //C .

End of the proof of Proposition 5.7. Assuming now, that the theorem holds for the groups
H∗(Z/pm) we derive the integral case. Consider the fragment of the coe�cient long exact se-
quence:

H2p−2(Z/pm)
βZ // H2p−1(Z/pm,Z)

p // H2p−1(Z/pm,Z)
r // C,

where C = Ker βZ is the direct summand of H2p−1(Z/pm) generated by the element β1P
1rm

and βZ = [Z,Z,Z/p]. As one can easily verify, the map β1 = rβZ provides an isomorphism
between H2p−2(Z/pm) and C. Therefore, the conditions of the above lemma are satis�ed. Let
us also mention that all the groups H∗(Z/pm,Z) are p-groups. Together with the lemma above,

this gives us an isomorphism: H2p−2(Z/pm)
βZ∼= H2p−1(Z/pm,Z). The case of degree 2p can be

veri�ed in the same way. Similarly, we can also check that H∗(Z/pm,Z) = 0 for p < ∗ < 2p − 1
and ∗ > 2p.

Thus, we reproved one classical Cartan's result [Ca54] in the motivic context.

The group inclusions im : Z/pm ↪→ Z/pm+1 induce morphisms of spectra: H(Z/pm) →
H(Z/pm+1). Passing to cohomology, one obtains the inverse system of groups (with arbitrary
coe�cients):

H∗(Z/p)
i∗1← H∗(Z/p2)

i∗2← · · ·

Corollary 5.9

lim
←
m

H l(Z/pm,Z/p) =

{
Z/p for l = 2p− 1, 2p

0 otherwise.

and lim
←
m

H l(Z/pm,Z) = Z/p for l = 2p and 0 otherwise.

Proof. We consider the case of the Z/p-coe�cients. The integral case is similar and left to the
reader. Applying the map i∗m : H∗(Z/pm+1)→ H∗(Z/pm) to the generators, one has:

i∗m(P 1rm+1) = 0, i∗m(P 1βm+1) = P 1βm, i
∗
m(β1P

1rm+1) = 0, and i∗m(β1P
1βm+1) = β1P

1βm.

Therefore, Im (i∗m) ⊆ H∗(Z/pm)βm. Hence, only the elements of the form

{Xβ1 ← Xβ2 ← . . .}

10
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�survive� in the projective limit. The corollary follows immediately.

To complete the computation of p-cyclotomic operations we need a lemma.

Lemma 5.10 Let X1

ϕ1

⊆ X2

ϕ2

⊆ · · · be a sequence of abelian groups. Then, for an abelian group
W , one has:

lim
←
i

OP∗,∗(Xi,W ) ∼= OP∗,∗(lim
→
i

Xi,W ).

Proof. The system {Xi, ϕi} induces the projective system of groups:

OP∗,∗(X1,W )
ϕ]1← OP∗,∗(X2,W )

ϕ]2← · · ·

Let α ∈ lim
←

OP∗,∗(Xi,W ). In other words, one has a system of operations {αi ∈ OP∗,∗(Xi,W )}

such that αi = ϕ]i(αi+1).

Let us also consider an element y ∈ H∗,∗(−, lim
→
Xi). Since the homology functor on the

category of complexes of abelian groups commutes with direct limits, it implies

H∗,∗(−, lim
→
Xi) ∼= lim

→
H∗,∗(−, Xi).

Hence, the element y determines a set of elements {yj ∈ H∗,∗(−, Xj)}j�0 such that ϕj∗(yj) =
yj+1. We construct α̌ ∈ OP∗,∗(lim

→
Xi,W ), setting α̌(y) := αN (yN ) for N � 0. Since

αN+1(yN+1) = αN+1(ϕN∗ (yN )) = (ϕ]NαN+1)(yN ) = αN (yN ),

the operation α̌ is well-de�ned.

In order to construct the map in the opposite direction, let us start with an operation γ ∈
OP∗,∗(lim

→
Xj ,W ) and construct for every index j the operation γ̂j ∈ OP∗,∗(Xj ,W ) given by the

through map

H∗,∗(−, Xj)→ H∗,∗(−, lim
→
Xj)

γ→ H∗,∗(−,W ),

where the �rst arrow is canonical and the second is given by the operation γ. These opera-
tions �t together to make an element of the projective system and, therefore, the operation
γ̂ ∈ lim

←
j

OP∗,∗(Xj ,W ). One can easily verify that given constructions are mutually inverse.

Corollary 5.11 The natural map H∗(Z/p∞, G) → OP∗(Z/p∞, G) is an isomorphism for G =
Z/p or Z.

Proof. We have already seen above that H∗(Z/pm, G) ∼= OP∗(Z/pm, G). These groups and their
maps were explicitly computed in Proposition 5.7 and Corollary 5.9. The computation also implies
that lim

←
m

1H∗,p−1(Z/pm, G) = 0. The desired result now follows from the short exact sequence:

0→ lim
←
m

1H∗−1,p−1(Z/pm, G)→ H∗,p−1(Z/p∞, G)→ lim
←
m

H∗,p−1(Z/pm, G)→ 0.

11
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Corollary 5.12 If G = Z/p, the Z/p-module OP∗(Z/p∞, G) has two generators P 1β∞, β1P
1β∞,

lying in degrees 2p − 1, 2p, correspondingly. If G = Z, it is generated by the element βZP
1β∞.

Here β∞ = [Z/p,Z/p∞,Z/p∞].

Proof. Corollaries 5.9 and 5.11 give us an explicit description of the generators of the module
OP∗(Z/p∞, G). Since it follows from Proposition 5.1.ii that there is a natural identi�cation β∞ =
limβm, this completes the proof.

Let us now return back from p-cyclotomic coe�cients to p-local. Further, we will also need
some auxiliary results about rational operations, which are presented in the appendix.

Proposition 5.13 The Bockstein homomorphism B = [Z(p),Q,Z/p
∞] induces an isomorphism

of Z/p-modules: OP∗(Z(p)) ∼= OP∗+1(Z/p∞). So that, the group OPl(Z(p)) is Z/p in degrees
l = 2p − 2, 2p − 1 and trivial otherwise. One can take operations P 1r, β1P

1r ∈ OP∗(Z(p)) as
generators in the corresponding degrees. Here r : Z(p) → Z/p is the coe�cient reduction map.

Proof. Let us recall that by (4.4) one has: OPi,j(A,B) = lim
←
n

H̃ i+2n,j+n(Kn(A), B). Consider the

following commutative square:

H∗+1,p−1(Z/p∞)
∼= // OP∗+1(Z/p∞)

H∗,p−1(Z(p)) // //

B

OO

lim
←
m

H̃∗+2m,∗+m(Km(Z(p))),

OO

where the vertical arrows are induced by the Bockstein homomorphism B and both horizontal
arrows are epimorphisms from (5.1). The top horizontal arrow is an isomorphism by Lemma 5.11.

Taking the short exact sequence of abelian groups 0→ Z(p) → Q→ Z/p∞ → 0 and applying
Proposition 5.2, one gets a distinguished triangle

H(Z(p))→ H(Q)→ H(Z/p∞) (5.3)

of spectra. Using the triangle and lemma A.1, one shows that the map B in the diagram is also
an isomorphism. Hence, all maps in the diagram are isomorphisms. This proves the isomorphism

OP∗(Z(p))
B∼= OP∗+1(Z/p∞).

Finally, the equality rB = β∞ = [Z/p,Z/p∞,Z/p∞] together with the description of the
groups OP∗(Z/p∞,Z/p) given above, supplies us with the desired set of generators. This proves
the proposition.

Our current purpose is to compute the group OP∗(Z(p),Z(p)).

Proposition 5.14

H l(Z(p),Z(p)) =

{
Z/p for l = 2p− 1

0 for l ≥ 2p.

Proof. We show, �rst, that H l(Z(p),Z(p)) is a p-group for l ≥ 2p− 1. Using distinguished trian-
gle (5.3) and the universal coe�cient formula, one can write the exact sequence:

H l(Q,Z(p)) //H l(Z(p),Z(p)) //H l+1(Z/p∞,Z)⊗ Z(p).

12
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By Corollary 5.12 we already know that H l+1(Z/p∞,Z) is either Z/p for l = 2p− 1, or 0. So, it
su�ces to show that H l(Q,Z(p)) is a p-group. By A.2, one has: 0 = H l(Q,Q) = H l(Q,Z(p)) ⊗

Z(p)

Q

and this group is the p-localization of H l(Q,Z(p)). So, the statement follows.

Now, consider the fragment of the coe�cient long exact sequence:

H2p−2(Z(p))
B //H2p−1(Z(p),Z(p))

p //H2p−1(Z(p),Z(p))
r //H2p−1(Z(p)),

where B = [Z(p),Z(p),Z/p]. As we already know from the computation above (Proposition 5.13),
both the groups with �nite coe�cients are isomorphic to Z/p and the isomorphism between
them can be performed by the map β1 : H2p−2(Z(p)) → H2p−1(Z(p)). One can easily verify the
relation β1 = Br. From Lemma 5.8 and the fact that H2p−1(Z(p),Z(p)) is a p-group, we have:

H2p−2(Z(p))
B∼= H2p−1(Z(p),Z(p)). The same arguments can be used to show that H l(Z(p),Z(p)) =

0 for l ≥ 2p. One just should mention, in addition, that the map r : H2p−1(Z(p),Z(p)) →
H2p−1(Z(p)) in the sequence above is an isomorphism.

Corollary 5.15 The Bockstein homomorphism B induces the isomorphism:

OP2p−2(Z(p))
B∼= OP2p−1(Z(p),Z(p)).

Proof. In the comutative diagram

H2p−2(Z(p)) //

��

H2p−1(Z(p),Z(p))

����
OP2p−2(Z(p))

B // OP2p−1(Z(p),Z(p))

the top arrow is an isomorphism by Proposition 5.14. The right vertical arrow is an epimorphism
by (5.1). So, the map B is an epimorphism. Since OP2p−2(Z(p)) ∼= Z/p and, as it follows from
the next section results, the group OP2p−1(Z(p),Z(p)) is non-trivial, the statement follows.

Summarizing the results of 5.13, 5.14, and 5.15, we obtain the following

Theorem 5.16 There are no non-trivial stable cohomological operations of weight p − 1 and
degree greater than 2p− 1. Every non-trivial bistable operation

H∗,∗(−,Z(p))→ H∗+2p−1,∗+p−1(−,Z(p))

of degree 2p− 1 in motivic cohomology coincides, after multiplication by a unit of Z/p, with the
operation BP 1r, where P 1 denotes the �rst Z/p motivic Steenrod power, B = [Z(p),Z(p),Z/p],
and r is the corresponding coe�cient reduction operation.

6. dp 6= 0

The purpose of the current section is to construct for every prime p a smooth variety having
the property that the p-th di�erential dp is non-zero. Although in the previous discussion we
systematically avoided the case of p = 2, in this section we decided to give slightly more general
statements for completeness. So, let p just be a prime number. All coe�cient rings are by default
Z(p). Abusing the notation, we omit mentioning coe�cients unless it is absolutely necessary.

Below we give two examples, demonstrating non-triviality of the di�erential d2 for p = 2 and
dp for odd primes.
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Example 6.1 Consider the motivic cohomology spectral sequence for the variety SpecQ. One
can check that the Milnor symbol {−1,−1,−1,−1} ∈ KM

4 (Q) is non-trivial of order 2. The group
KM

4 (Q) = Z/2 is canonically isomorphic to E0,−4
2 . On the other hand, the spectral sequence

converges in the degree i+ j = −4 to K4(Q) and the map KM
4 (Q)→ K4(Q) should pass through

the stable homotopy group of the sphere spectrum π4
S. The latter group is trivial, therefore, one gets

from the short exact sequence E−2,−3
2

d2→ E0,−4
2 → E0,−4

∞ that the di�erential d2 : H1,3(SpecQ)→
E0,−4

2 = KM
4 (Q) is non-zero. This is, certainly, true with Z(2) coe�cients as well.

More detailed explanation can be found in [We, VI.4.3, Ex. IV.1.12, Ex. III.7.2].

Proposition 6.2 Let us assume that for an odd prime number p and a variety G ∈ Sm/k the
following conditions are satis�ed:

(i) K0(G,Z(p)) = Z(p) · 1, where the class 1 lies in codimension 0;

(ii) CHp+1(G,Z(p)) 6= 0.

Then, the di�erential dp : E1,−2
p → Ep+1,−p−1

p in the motivic spectral sequence

Ei,j2 = H i−j,−j(G,Z(p))⇒ K−i−j(G,Z(p))

is non-trivial.

Proof. Since motivic cohomology groups coincide with higher Chow groups, the term

Ep+1,−p−1
2 = CHp+1(G, 0) = CHp+1(G) 6= 0

by (ii). By Proposition 3.1, one has: E2 = Ep. On the other hand, Ep+1,−p−1
∞ = 0, since, by

(i) the whole group K0(G) is concentrated in the term E0,0
∞ = Z(p). Again, by Proposition 3.1

and the triviality of groups Ei,j2 = H i−j,−j(X) for j > 0 or i + j > 0 (see 1.1.(i,iii)), one also

has: Ep+1,−p−1
p+1 = 0. (For the case p = 3 we also need to use triviality of the group H−1,0(X)

(see 1.1.iv.) Hence, there should be a non-trivial di�erential, that �kills� the term Ep+1,−p−1
p and

the only possibility is that 0 6= dp : E1,−2
p → Ep+1,−p−1

p .

Example 6.3 Consider a non-split central simple algebra D of degree p over k. Set G = SL1,D

to be the norm variety, the subvariety of D, given by the equation Nrd x = 1, where Nrd denotes
the reduced norm (see [GSz06, Sect. 2.6]). This gives us an example of a variety with dp 6= 0.

Now we are almost ready to complete the proof of Theorem 2.1.

Let us �x an odd prime number p and a base-�eld characteristic l such that either l = 0, or
(l, p) = 1. We also introduce a �eld F of characteristic l, setting

F =

{
Q for l = 0

Fl(t) for l > 0.

Here Fl(t) is the �eld of rational functions over the prime �nite �eld Fl. The global class �eld
theory tells us that in all the cases the Brauer group Br(F ) has many non-trivial p-torsion
elements, so one can construct non-split central simple algebras over F and for any characteristic
l we obtain examples of �elds and varieties over them with non-trivial di�erentials dp.

Due to Levine's result mentioned before [Le08], the MCSS coincides with the slice spectral
sequence restricted to the category of smooth varieties. In particular, this means that the dif-
ferentials in MCSS can be considered as stable cohomological operations on the category Spc
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of Voevodsky's spaces. Let us now consider the case k = Fl for a prime number l. A non-split
central simple algebra over Fl(t) can be seen as a motivic space over k. As we have shown in the
previous paragraph, the corresponding slice spectral sequence has non-trivial di�erential dp. This
implies that the coe�cient α in the Theorem's 2.1 relation dp = BαP 1r is non-zero over k. This
argument shows that α 6= 0 for every prime �eld, because we already know the conclusion is true
for the case of characteristic 0. Using the functoriality of MCSS and cohomological operations,
one can show that the same statement holds for an arbitrary �eld. This completes the proof of
Theorem 2.1.

It is left to show that the variety G from Example 6.3 satis�es the assumptions of Proposi-
tion 6.2. The �rst one is checked in [Su91, Thm. 6.1]. The rest of the paper is devoted to prove
the second one.

Below we denote by X = SB(D) the Severi�Brauer variety, corresponding to the algebra D

(see [GSz06, Ch. 5]). This is a twisted form of the projective space Pp−1. So, one has: dimX =
p− 1. Let us also mention that since G is a twisted form of SLp, one has dimG = p2 − 1.

Proposition 6.4 For the variety G = SL1,D introduced above, one has: CHp+1(G) 6= 0.

Proof. Setting, as above, X = SB(D), for the projection map G ×X → G consider a �ltration
of the base by codimension of points and write down the corresponding spectral sequence (see
Rost[Ro96, Sect. 8]):

Est1 (n) =
∐

g∈G(s)

Ht(XF (g),Kn−s) ⇒ Hs+t(G×X,Kn), (6.1)

where XF (g) = X × SpecF (g) is a �ber over the generic point g of codimension s. This spectral
sequence is a natural generalization of the Brown�Gersten�Quillen (BGQ) spectral sequence
(cohomology groups here are K-cohomology).

For convenience, we have included a diagram below of the case n = p+ 1, which is the most
important case for us. For brevity we have used the following notation:∐

g∈G(s)

Ht(XF (g),Ku) =: Rst,u.

The non-zero part of the E1-term is concentrated in the strip given by the inequalities: 0 ≤
t ≤ p − 1 and s + t ≤ n. Let us denote the spectral sequence E∗,∗∗ (p + 1) by E∗,∗∗ . So that,
Es,t1 = Rst,p+1−s.

R0
p−1,p+1 R1

p−1,p

dp

&&

R2
p−1,p−1 0 0

...
...

. . . 0 0

R0
1,p+1 R1

1,p · · · Rp−1
1,2 Rp1,1 0

R0
0,p+1 R1

0,p · · · Rp0,1 Rp+1
0,0

Let the following statements hold:
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(i) Ep+1,0
2 = CHp+1(G);

(ii) The boundary map Hp(G×X,Kp+1)
ϕ→ E1,p−1

p is not an epimorphism.

Then the proposition follows easily. Actually, just consider a fragment of the boundary short
exact sequence:

Hp(G×X,Kp+1)
ϕ→ E1,p−1

p

dp→ Ep+1,0
p .

By (ii) ϕ is not an epimorphism, and so one has: Ep+1,0
p 6= 0. But by (i) and for dimension reasons

there exists an epimorphism CHp+1(G) = Ep+1,0
2 � Ep+1,0

p that proves the desired result.

The rest of the paper is devoted to the proof of the auxiliary statements: (i) is established in
Lemma 6.5 right below, (ii) is proven in Proposition 6.10.

Lemma 6.5 In the spectral sequence considered in Proposition 6.4 above, one has: Ep+1,0
2 =

CHp+1(G).

Proof. One has: Ep+1,0
2 = Rp+1

0,0 /R
p
0,1. Decoding the notation, we get:

Ep+1,0
2 = Coker

 ∐
g∈G(p)

F (g)∗ →
∐

g∈G(p+1)

Z

 = CHp+1(G) (6.2)

that completes the proof. The same is, certainly, true with Z(p) coe�cients.

In order to check statement (ii), we should perform some computation with the term E1,p−1
p .

The following lemma simpli�es our life showing that we actually work with the term E1,p−1
2

Lemma 6.6 In the spectral sequence in Proposition 6.4, one has: E1,p−1
2 = E1,p−1

p .

Proof. By the next lemma, one has: Ep+1−t,t
2 = 0 for 1 ≤ t ≤ p − 1. So, for dimension reasons,

the only non-trivial di�erential with domain E1,p−1
∗ is dp.

Lemma 6.7 The di�erential maps dt1 : Rp−tt,t+1 → Rp−t+1
t,t are epimorphisms, provided that 1 ≤

t ≤ p− 1. In other words, in these cases Ep+1−t,t
2 = 0.

Proof. We have to prove that the maps∐
g∈G(p−t)

Ht(XF (g),Kt+1)→
∐

g∈G(p+1−t)

Ht(XF (g),Kt)

are epimorphisms. The inner groupsHt(XF (g),Kt+m) can be computed using the Brown�Gersten�
Quillen spectral sequence. Writing down Gersten resolutions for di�erent values of t one gets
natural maps of the resolutions, induced by embeddings of points of di�erent codimensions. This
implies natural maps of BGQ spectral sequences and, �nally, natural maps of K-cohomology
groups

· · · → Ht(XF (g),Kt+m)→ Ht+1(XF (g),Kt+1+m)→ · · ·
By Statement 6.8, these maps are isomorphisms for m = 0, 1 and 1 ≤ t ≤ p− 1. By functoriality
of the construction this implies that

Ep+1−t,t
2 = Rp+1−t

t,t /Rp−tt,t+1 ' R
p+1−t
p−1,p−1/R

p−t
p−1,p = Ep+1−t,p−1

2 (2p− t).

The rest follows from Lemma 6.9 below.
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In the proof of the previous proposition we used a result of Merkurjev and Suslin, which we
reproduce here.

Statement 6.8 ( [MS82, Cor. 8.7.2]) Let k̄ be the algebraic closure of k. For a Severi�Brauer
variety X of dimension p− 1, set X̄ = X × Spec k̄. Then

H i(X,Ki) = CH i(X) = pZ(p) ⊂ Z(p) = CH i(X̄) (6.3)

and

H i(X,Ki+1) = Nrd D∗ ⊂ k̄∗ = H i(X̄,Ki+1), (6.4)

provided that 1 ≤ i ≤ p− 1. (Here Nrd denotes the group of the reduced norms.)

Lemma 6.9 For n > p, one has: En−p+1,p−1
2 (n) = 0.

Proof. Consider now G×X as a group-variety overX. By Suslin's computations [Su91, Thm. 4.2],
H∗(G×X,K∗) becomes a module over H∗(X,K∗) generated by Chern classes cj for j ≥ 1, where
cj ∈ Hj(G×X,Kj+1). In particular, this implies that CH i(G×X) = 0 for i > p− 1. Therefore,

the spectral sequence converges to zero in the n-th diagonal. In particular, En−p+1,p−1
∞ (n) = 0.

For dimension reasons there are no di�erentials a�ecting the term En−p+1,p−1
2 (n). So one has:

En−p+1,p−1
2 (n) = En−p+1,p−1

∞ (n) = 0.

Proposition 6.10 The map ϕ : Hp(G×X,Kp+1)→ E1,p−1
p has non-trivial cokernel.

Proof. Let us mention, �rst, that by the previous lemma, one has: E1,p−1
p = E1,p−1

2 . Consider the
base-change commutative diagram corresponding to the morphism Spec k̄ → Spec k, where k̄ is
the algebraic closure of k. Later we denote E1,p−1

2 by V and the corresponding group E1,p−1
2 over

k̄ by V̄ .

Hp(G×X,Kp+1)
ϕ−−−−→ V

χ

y ψ

y
Hp(Ḡ× X̄,Kp+1)

ϕ̄−−−−→ V̄

(6.5)

The desired statement can be derived easily from the following three claims:

(i) Im χ is divisible by p;

(ii) ψ : V → V̄ is an epimorphism;

(iii) V̄ = Z(p).

Assume that ϕ is an epimorphism. Since ψ is also an epimorphism, we can chose an element
x ∈ Hp(G × X,Kp+1) such that ψϕ(x) = 1. Then, by (i), 1 = ϕ̄χ(x) is p-divisible. This gives
a contradiction. We prove (i) in Lemma 6.11 and (ii) in Proposition 6.13 below. Finally, (iii)
appears in the proof of 6.13 as an indirect result.

Lemma 6.11 For the base-change morphism χ : Hp(G×X,Kp+1)→ Hp(Ḡ×X̄,Kp+1) the image
of χ is divisible by p.

Proof. This follows from the above mentioned (see the proof of Lemma 6.9) decomposition

Hp(G×X,Kp+1) =
∐
i>0

ciCH
p−i(X) (6.6)

and the fact that the map CH i(X)→ CH i(X̄) is a multiplication by p due to Statement 6.8.
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Before we can prove the last proposition, we need to construct one map. For this end, let us
reproduce here one important de�nition (see [Pa91, 3.1] for details).

De�nition 6.12 For a quasi-compact locally Noetherian scheme Y, let A be a sheaf of algebras
on Y locally isomorphic in the �etale topology to the sheaf of split algebrasMn(OY ). In other words,
A is an Azumaya algebra on Y.

Consider the category of sheaves of left A-modules and denote by P(Y ;A) its full subcategory,
whose objects are locally free coherent OY -modules. We set K∗(Y ;A) := K∗(P(Y ;A)), where the
functor on the right-hand side is obtained by application of Quillen's Q-construction [Qu73].

We will also write, for brevity, H∗(G,K∗;A) for H∗(G,K∗(−;A)).

Currently, we are going to construct a natural epimorphism ρ̃ : V → H1(G,K2;D), where
D := D⊗(p−1) and V = E1,p−1

2 (see Proposition 6.10).

First, consider the BGQ spectral sequence converging to the K-groups of the Severi�Brauer
variety X. Since (p − 1)! is invertible in the coe�cient ring, this spectral sequence has no non-
trivial di�erentials a�ecting the two highest diagonals. Moreover, if the base �eld is algebraically
closed, all the di�erentials in the spectral sequence vanish (see [MS82, 8.6.2]). Again, by the
invertibility of (p− 1)! the topological �ltration on the K-groups coincides with γ-�ltration. The
latter �ltration is generated by the image of the corresponding γ-operation.

E∞-term of the BGQ consists of consequent factor-�ltration groups of K(X). Taking into
account the triviality of di�erentials, mentioned in the previous paragraph, there exist boundary
maps:

Hp−1(X,Kp−1+m)→ Km(X)(p−1), (6.7)

where m = 0, 1, 2 and we have the smallest non-trivial �ltration group on the right-hand side.
These maps are isomorphisms for m = 0, 1. Provided that the base �eld is algebraically closed,
they are isomorphisms also for m = 2.

By Quillen's computation of K-groups of Severi�Brauer varieties [Qu73], one has isomor-

phisms:Km(X)(p−1) ' Km(D). So that, we obtain the maps:Hp−1(Xg,Kp−1+m)
ρm→ Km(F (g);D)

for m = 0, 1, 2, which are isomorphisms for m = 0, 1 and isomorphism for m = 2 provided that
the base �eld is algebraically closed. As a result, one gets the map of complexes ρ∗:

R0
p−1,p+1

ρ2

��

// R1
p−1,p

ρ1

��

// R2
p−1,p−1

ρ0

��
K2(F (G);D) //

∐
g∈G(1) K1(F (g);D) //

∐
g∈G(2) K0(F (g);D),

(6.8)

inducing the epimorphism map ρ̃ on the middle-term homology groups. The latter map becomes
an isomorphism after passing to the algebraic closure. The middle-term homology groups in the
upper and bottom lines can be identi�ed with V and H1(G,K2;D), correspondingly, that gives
us the desired epimorphism ρ̃.

Proposition 6.13 Let V and V̄ be as before. Then, the map ψ : V → V̄ is an epimorphism.

Proof. Let us consider the base-change diagram corresponding to the morphism Spec k̄ → Spec k:

V
ψ //

ρ̃
��

V̄

H1(G,K2;D)
ω // H1(Ḡ,K2; D̄).

(6.9)
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Observe now, that Ḡ = SLn(k̄) and H1(Ḡ,K2; D̄) = H1(SLn,K2) = Z(p) with a natural choice
of a generator, given by the �rst Chern class (see [Su91, Thm. 2.7]). This gives us the following
commutative diagram:

V
ψ //

ρ̃
��

V̄

H1(G,K2;D)
ω // H1(SLn,K2)

K1(G;D)
f //

c1

OO

K1(SLn)

c̄1

OO

(6.10)

Consider the universal element α ∈ K1(G;D) determined as in [Su91, Sect. 4]. It is constructed in
such a way that its image f(α) in K1(SLn) is the universal matrix element. Then, due to [Su91,
Thm. 2.7], c̄1f(α) = 1. Hence, the map ω is an epimorphism and so is ψ.

Appendix A. Something about the groups of rational operations

In this short appendix we give two statements concerning cohomology groups of the spectrum
H(Q), which we need in the paper.

Statement A.1 All motivic cohomology groups of the spectrum H(Q) with Z/p-coe�cients van-
ish.

Proposition A.2 For integers n, ε > 0, one has: H2n+ε,n(H(Q),Q) = 0.

Proof. We want to compute the group H2n+ε,n(H(Q),Q) = [H(Q),H(Q)[2n + ε](n)]. Since
the spectrum H(Q) is a direct summand of the spectrum BGLQ, it su�ces to show that
[BGLQ,BGLQ[2n+ ε](n)] = 0. Using the Bott periodicity and [Ri10, Cor. 5.3.1], we have:

[BGLQ,BGLQ[2n+ ε](n)] = [BGLQ,BGLQ[ε]] = lim
←

(K−ε(k))Ω.

(Here we use the notation of [Ri10].) Since the group K−ε(k) is the algebraic K-group of the base
�eld k and, obviously, vanishes for ε > 0, then so does lim

←
(K−ε(k))Ω.
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