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Abstract

In this paper we study twisted conjugacy classes and isogredience classes for

automorphisms of reductive linear algebraic groups. We show that reductive

linear algebraic groups over some fields of zero characteristic possess the R∞

and S∞ properties.
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1 Introduction

Let ϕ : G → G be an endomorphism of a group G. Then two elements x, y of G
are said to be twisted ϕ-conjugate, if there exists a third element z ∈ G such that
x = zyϕ(z)−1. The equivalence classes are called the twisted conjugacy classes or
the Reidemeister classes of ϕ. The Reidemeister number of ϕ denoted by R(ϕ),
is the number of those twisted conjugacy classes of ϕ. This number is either a
positive integer or ∞ and we do not distinguish different infinite cardinal numbers.
An infinite group G has the R∞-property if for every automorphism ϕ of G the
Reidemeister number of ϕ is infinite.

The interest in twisted conjugacy relations has its origins, in particular, in the
Nielsen-Reidemeister fixed point theory (see, e.g. [7, 33]), in Arthur- Selberg theory
(see, eg. [1, 49]), in algebraic geometry (see, e.g. [28]), in Galois cohomology [48]
and in the theory of linear algebraic groups (see, e.g. [51]). In representation theory
twisted conjugacy probably occurs first in Gantmacher’s paper [20] (see, e.g [50, 44])

The problem of determining which classes of discrete infinite groups have the-
R∞ property is an area of active research initiated by Fel’shtyn and Hill in 1994

∗The author is supported by Russian Science Foundation (project 14-21-00065)
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[9]. Later, it was shown by various authors that the following groups have the R∞-
property: non-elementary Gromov hyperbolic groups [8, 38]; relatively hyperbolic
groups [12]; Baumslag-Solitar groups BS(m,n) except for BS(1, 1) [13], generalized
Baumslag-Solitar groups, that is, finitely generated groups which act on a tree with
all edge and vertex stabilizers infinite cyclic [37]; the solvable generalization Γ of
BS(1, n) given by the short exact sequence 1 → Z[ 1

n
] → Γ → Zk → 1, as well as

any group quasi-isometric to Γ [52]; a wide class of saturated weakly branch groups
(including the Grigorchuk group [27] and the Gupta-Sidki group [29]) [11], Thomp-
son’s groups F [2] and T [3, 21]; generalized Thompson’s groups Fn, 0 and their finite
direct products [23]; Houghton’s groups [22, 34]; symplectic groups Sp(2n,Z), the
mapping class groups ModS of a compact oriented surface S with genus g and p
boundary components, 3g + p − 4 > 0, and the full braid groups Bn(S) on n > 3
strands of a compact surface S in the cases where S is either the compact disk D,
or the sphere S2 [14]; some classes of Artin groups of infinite type [35]; extensions
of SL(n,Z), PSL(n,Z), GL(n,Z), PGL(n,Z), Sp(2n,Z), PSp(2n,Z), n > 1, by a
countable abelian group, and normal subgroups of SL(n,Z), n > 2, not contained
in the center [40]; GL(n,K) and SL(n,K) if n > 2 and K is an infinite integral
domain with trivial group of automorphisms, or K is an integral domain, which has
a zero characteristic and for which Aut(K) is periodic [42]; irreducible lattices in a
connected semisimple Lie group G with finite center and real rank at least 2 [41];
non-amenable, finitely generated residually finite groups [17] (this class gives a lot
of new examples of groups with the R∞-property); some metabelian groups of the
form Qn ⋊ Z and Z[1/p]n ⋊ Z [15]; lamplighter groups Zn ≀ Z if and only if 2|n or
3|n [25]; free nilpotent groups Nrc of rank r = 2 and class c > 9 [26], Nrc of rank
r = 2 or r = 3 and class c ≥ 4r, or rank r ≥ 4 and class c ≥ 2r, any group N2c for
c ≥ 4, every free solvable group S2t of rank 2 and class t ≥ 2 (in particular the free
metabelian group M2 = S22 of rank 2), any free solvable group Srt of rank r ≥ 2
and class t big enough [46]; some crystallographic groups [6, 39]. Recently, in [5] it
was proven that Nrc, r > 1 has the R∞-property if and only if c ≥ 2r.

Let Ψ belongs to Out(G) = Aut(G)/ Inn(G). We consider an outer automor-
phism Ψ ∈ Out(G) as a collection of ordinary automorphisms a ∈ Aut(G). We say
that two automorphisms a, b ∈ Ψ are similar (or isogredient) if b = ϕhaϕ

−1
h for some

h ∈ G, where ϕh(g) = hgh−1 an inner automorphism induced by the element h (see
[38]). Let S(Ψ) be the set of isogredience classes of automorphisms representing Ψ.
Denote by S(Ψ) the cardinality of the set S(Ψ). A group G is called an S∞-group
if for any Ψ the set S(Ψ) is infinite, i. e. S(Ψ) = ∞ (see [18]).

In this paper we study the R∞ and S∞ properties for linear algebraic groups.
First results in this direction were obtained for some classes of Chevalley groups by
Nasybullov in [43].

In Section 3 we extend the previous result from [43] and prove
Theorem 2. Let G be a Chevalley group of the type Φ over the field F of zero
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characteristic. If the transcendence degree of F over Q is finite, then G possesses
the R∞-property.

The following main theorem is proved in Section 4.
Theorem 3. Let F be such an algebraically closed field of zero characteristic that
the transcendence degree of F over Q is finite. If the reductive linear algebraic group
G over the field F has a nontrivial quotient group G/R(G), where R(G) is the radical
of G, then G possesses the R∞-property.

These theorems can not be generalized to groups over a field of non-zero char-
acteristic. It follows from the following theorem of Steinberg [51, Theorem 10.1].
Theorem. Let G be a connected linear algebraic group and ϕ be an endomorphism
of G onto G. If ϕ has a finite set of fixed points, then G = {xϕ(x−1) | x ∈ G}.

We would like to point out that R. Steinberg [51] calls by an automorphism of a
linear algebraic group a bijective endomorphism which is a morphism and its inverse
is a morphism too. However, throughout the paper we understand an automorphism
of a linear algebraic group as an automorphism of an abstract group, i. e. a bijective
endomorphism of a group.

Any semisimple linear algebraic group over an algebraically closed field of pos-
itive characteristic possesses an automorphism ϕ with finitely many fixed points
(Frobenius morphism, see [47, §3.2]), therefore, this group coincides with the set
{xϕ(x−1) | x ∈ G} = [e]ϕ, hence R(ϕ) = 1 and such a group can not have the
R∞-property.

If T1, T2, . . . are algebraically independent over Q elements, then the fields Q,
Q(T1, . . . , Tk) (k ≥ 1) are algebraically closed fields of zero characteristic with finite
transcendence degree over Q. Then the reductive linear algebraic groups over these
fields possess the R∞-property.

In the Section 5 we prove that an infinite reductive linear algebraic group G
over the field F of zero characteristic and finite transcendence degree over Q which
possesses an automorphism ϕ with a finite Reidemeister number is a torus.

In the Section 6 we prove the following
Theorem 5. Let F be such an algebraically closed field of zero characteristic that
the transcendence degree of F over Q is finite. If the reductive linear algebraic group
G over the field F has a nontrivial quotient group G/R(G), then G possesses the
S∞-property.

Acknowledgment. The authors are grateful to Andrzej Da̧browski, Evgenij
Troitsky and Evgeny Vdovin for the numerous important discussions on linear al-
gebraic groups. The first author would like to thank the Max Planck Institute for
Mathematics(Bonn) for its kind support and hospitality while a part of this work
was completed.
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2 Preliminaries

In this paragraph we recall some preliminary statements which are used in the
paper. A lot of used results are thoroughly written in [43], the reader can use it as
a background material.

Symbols In and On×m mean the identity n × n matrix and the n × m matrix
with zero entries, respectively. If A an n × n matrix and B an m × m matrix,
then the symbol A ⊕ B denotes the direct sum of the matrices A and B, i. e. the
block-diagonal (m+ n)× (m+ n) matrix

(
A On×m

Om×n B

)
.

It is obvious that for a pair of n×n matrices A1, A2 and for a pair of m×m matrices
B1, B2 we have (A1 ⊕ B1)(A2 ⊕ B2) = A1A2 ⊕B1B2, (A1 ⊕B1)

−1 = A−1
1 ⊕B−1

1 .
Symbols G×H and G ◦H mean the direct product and the central product of

the groups G and H , respectively.
If g is an element of the groupG, then ϕg denotes an inner automorphism induced

by the element g. The following lemma can be found in [16, Corollary 2.5].

Lemma 1. Let ϕ be an automorphism of the group G and ϕg be an inner automor-
phism of the group G. Then R(ϕϕg) = R(ϕ).

The next lemma is proved in [40, Lemma 2.1]

Lemma 2. Let
1 → N → G→ A→ 1

be an exact sequence of groups. Suppose that N is a characteristic subgroup of G
and that A possesses the R∞-property, then G also possesses the R∞-property.

Here we prove similar result for the S∞-property.

Lemma 3. Let
1 → N → G→ A→ 1

be an exact sequence of groups. Suppose that N is a characteristic subgroup of G
and that A possesses the S∞-property, then G also possesses the S∞-property.

Proof. Let ϕ be an automorphism of the group G. Since N is a characteristic
subgroup of G then ϕ induces an automorphism ϕ of the group A. Since the group
A has the S∞-property then there exists an infinite set of elements g1, g2, . . . of the
group A such that ϕgi

ϕ and ϕgj
ϕ are not isogredient for i 6= j.

4



Suppose that S(ϕInn(G)) < ∞. Then there exists a pair of isogredient auto-
morphisms in the set ϕg1ϕ, ϕg2ϕ, . . . . Suppose that ϕgiϕ and ϕgjϕ are isogredient
for i 6= j. Then for some element h ∈ G we have

ϕgiϕ = ϕhϕgjϕϕ
−1
h .

From this equality we have the following equality in the group Aut(A)

ϕgi
ϕ = ϕhϕgj

ϕϕ−1

h
,

but it contradicts to the choice of the elements g1, g2, . . . �

Let ν be a map from the set of rational numbers Q to the set 2π of all subsets of
the set of prime numbers π, which acts on the irreducible fraction x = a/b by the
rule

ν(x) = {all the prime devisors of a} ∪ {all the prime devisors of b}.

The proof of the following lemma is presented in [43, Lemma 5].

Lemma 4. Let F be a field of zero characteristic and x1, . . . , xk be elements of F
which are algebraically independent over the field Q. Let xk+1 be such an element
of F , that the elements x1, . . . , xk+1 are algebraically dependent over Q. Let δ be an
automorphism of the field F which acts on this elements by the rule

δ : xi 7→ t0tixi, i = 1, . . . , k + 1,

where t0, . . . , tk+1 ∈ Q and t1, . . . , tk+1 are not equal to 1. If ν(ti) ∩ ν(tj) = ∅ for
i 6= j, then xk+1 = 0.

Using this lemma we prove the following auxiliary statement.

Lemma 5. Let F be such a field of zero characteristic, that the transcendence degree
of F over Q is finite. If the automorphism δ of the field F acts on the elements z1,
z2, . . . of the field F by the rule

δ : zi 7→ αaizi,

where α ∈ F , 1 6= ai ∈ Q ⊆ F and ν(ai) ∩ ν(aj) = ∅ for i 6= j, then there are only
a finite number of non-zero elements in the set z1, z2, . . . .

Proof. If all the elements z1, z2, . . . are equal to zero then there is nothing
to prove. Hence we can consider that there exists a non-zero element in the set
z1, z2, . . . Without loosing of generality we can consider that z1 6= 0 (Otherwise we
can reenumerate the elements z1, z2, . . . and do the first element not to be equal to
zero. If the statement holds for the reenumerated set, then it holds for the original
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set z1, z2, . . . ). Let us denote yi = ziz
−1
1 . Then the automorphism δ acts on the

element yi by the rule

δ(yi) = δ(ziz
−1
1 ) = δ(zi)δ(z

−1
1 ) = αaiziα

−1a−1
1 z−1

1 = aia
−1
1 ziz

−1
1 = aia

−1
1 yi

Since the transcendence degree of F over Q is finite, then there exists a maximal
subset of algebraically independent over Q elements in the set y2, y3, . . . , i.e. there
exists such a finite set yi1, yi2, . . . , yik of algebraically independent over Q elements,
that the set yi1 , yi2, . . . , yik , yj is algebraically dependent over Q for every j.

Without loosing of generality we can consider that the set y2, . . . , yk is a maximal
subset of algebraically independent over Q elements in the set y1, y2, . . .

If n > k is a positive integer, then the elements y2, . . . , yk, yn ∈ F satisfy the
conditions of the lemma 4. Therefore yn = 0 for all n > k and since yn = znz

−1
1

then zn = 0 for all n > k and the only non-zero elemets are z1, z2, . . . , zk. �

Let us remind some facts about Chevalley groups. We use definitions and deno-
tations from [4].

Let Φ be an indecompasable root system of rang l with the subsystem of simple
roots ∆, |∆| = l. The elementary Chevalley group Φ(F ) of the type Φ over the field
F is a subgroup in the automorphism group of the simple Lie algebra L of the type
Φ, which is generated by the elementary root elements xα(t), α ∈ Φ, t ∈ F . The
dimension of the Lie algebra L is equal to |Φ| + |∆| and therefore group Φ(F ) can
be considered as a subgroup in the group of all (|Φ| + |∆|)× (|Φ| + |∆|) invertible
matrices.

In the elementary Chevalley group, we consider the following important elements
nα(t) = xα(t)x−α(−t

−1)xα(t), hα(t) = nα(t)nα(−1), t ∈ F ∗, α ∈ Φ.
For an arbitrary Chevalley group G of the type Φ over the field F we have the

following short exact sequence of groups

1 → Z(G) → G→ Φ(F ) → 1,

where Z(G) is a center of the group G, and by the lemma 2 we are mostly interested
in the study of the R∞-property for elementary Chevalley groups.

Detailed information on the automorphism group of Chevalley groups can be
found in [43, 31]. Every Chevalley group has the following automorphisms

1. Inner automorphism ϕg, induced by the element g ∈ G

ϕg : x 7→ gxg−1.

2. Diagonal automorphism ϕh

ϕh : x 7→ hxh−1,

where the element h can be presented as a diagonal (|Φ| + |∆|)× (|Φ|+ |∆|)
matrix. If F is an algebraically closed field then any diagonal automorphism
is inner [43, Lemma 4].
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3. Field automorphism δ
δ : x = (xij) 7→ (δ(xij)),

where δ is an automorphism of the field F .

4. Graph automorphism ρ, which acts on the generators of the group G by the
rule

ρ : xα(t) 7→ xρ(α)(t),

where ρ is a symmetry of Dynkin diagram. An order of the graph automor-
phism is equal to 2 or to 3.

Any field automorphism commutes with any graph automorphism. All the di-
agonal automorphisms form a normal subgroup in the group which is generated by
diagonal, graph and field automorphisms.

Theorem of Steinberg says that for any automorphism ϕ of the elementary
Chevalley group G = Φ(F ) there exists an inner automorphism ϕg, a diagonal
automorphism ϕh, a graph automorphism ρ and a field automorphism δ, such that
ϕ = ρδϕhϕg [31].

3 Chevalley groups

In this paragraph we extend the following result from [43, Theorem 1].

Theorem 1. Let G be a Chevalley group of the type Φ over the field F of zero
characteristic and the transcendence degree of F over Q is finite. Then

1. If Φ is a root system of the type Al(l ≥ 7), Bl(l ≥ 4), E8, F4, G2, then G
possesses the R∞-property.

2. If the equation T k = a can be solved in the field F for any element a, then G
possesses the R∞-property in the case of the root systems Al(l = 2, 3, 4, 5, 6),
Bl(l = 2, 3), Cl(l ≥ 3), Dl(l ≥ 4), E6, E7, where k is a positive integer from
the table

Φ Al Bl Cl Dl E6 E7

k l + 1 2 2 2 6 2

In particular, this theorem says that if F is an algebraically closed field of zero
characteristic, such that the transcendence degree of F over Q is finite, then a
Chevalley group of any normal type over the field F possesses the R∞-property.

Here we exclude the condition of solvability of equations from the second item
of the theorem 1. We prove the following result.
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Theorem 2. Let G be a Chevalley group of the type Φ over the field F of zero
characteristic. If the transcendence degree of F over Q is finite, then G possesses
the R∞-property.

Proof. Since G/Z(G) ∼= Φ(F ) then by the lemma 2 it is sufficient to prove that
the elementary Chevalley group Φ(F ) possesses the R∞-property. Consider that
G = Φ(F ).

Let us consider an arbitrary automorphism ϕ of the group G and prove that the
number of ϕ-conjugacy classes is infinite. By the theorem of Steinberg there exists an
inner automorphism ϕg, a diagonal automorphism ϕh, a graph automorphism ρ and
a field automorphism δ, such that ϕ = ρδϕhϕg. By the lemma 1 the Reidemeister
number R(ϕ) is infinite if and only if the Reidemeister number R(ϕϕg−1) is infinite,
and we can consider that ϕ = ρδϕh.

Suppose that R(ϕ) <∞ and consider the following elements of the group G

gi = hα1
(pi1)hα2

(pi2) . . . hαl
(pil), i = 1, 2, . . . ,

where p11 < p12 < · · · < p1l < p21 < p22 < . . . are prime numbers. In the matrix
representation the element gi has diagonal form

gi = diag(ai1, ai2, . . . , ai|Φ|, 1, . . . , 1︸ ︷︷ ︸
|Φ|

),

for certain rational numbers aij, such that ν(aij) 6= ∅ and ν(aij) ∩ ν(ars) = ∅ for
i 6= r since ν(aij) ⊆ {pi1, . . . , pil} (see [43]).

Since R(ϕ) < ∞ then there exists an infinite subset of ϕ-conjugated elements
in the set g1, g2, . . . . Without loosing of generality we can consider that all the
elements g1, g2, . . . belong to the ϕ-conjugacy class [g1]ϕ of the element g1. It means
that there exists an infinite set of matrices Z2, Z3, . . . from G such that

g1 = Zigiϕ(Z
−1
i ), i = 2, 3, . . .

Acting on this equalities by degrees of the automorphism ϕ we have

g1 = Zigiϕ(Z
−1
i ),

ϕ(g1) = ϕ(Zi)ϕ(gi)ϕ
2(Z−1

i ),

ϕ2(g1) = ϕ2(Zi)ϕ
2(gi)ϕ

3(Z−1
i ), i = 2, 3, . . .

. . .

ϕ5(g1) = ϕ5(Zi)ϕ
5(gi)ϕ

6(Z−1
i ).

If we multiply all of these equalities we conclude, that

g1ϕ(g1) . . . ϕ
5(g1) = Zigiϕ(gi) . . . ϕ

5(gi)ϕ
6(Z−1

i ) (1)
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Since the matrix gi has a diagonal form and the automorphism ϕh acts as a conjuga-
tion by the diagonal matrix then ϕh(gi) = gi. Since the matrix gi has rational entries,
then δ(gi) = gi and therefore ϕ(gi) = ρ(gi). If we denote g̃i = giϕ(gi) . . . ϕ

5(gi) =
giρ(gi) . . . ρ

5(gi) then

g̃i = diag(bi1, bi2, . . . , bi|Φ|, 1, . . . , 1︸ ︷︷ ︸
l

), i = 1, 2, . . .

since ρ permutes elements on the diagonal of the matrix gi. Moreover, ν(bij) 6= ∅

and ν(bij) ∩ ν(brs) = ∅ for i 6= r, since ν(bij) ⊆ ν(ai1) ∪ · · · ∪ ν(ai|Φ|).
Since graph and field automorphisms commute and diagonal automorphisms

form a normal subgroup in the group, which is generated by graph, field and
diagonal automorphisms, then for a certain diagonal automorphism ϕ

h̃
we have

ϕ6 = (ρδϕh)
6 = ϕ

h̃
δ
6
ρ6. Since an order of the automorphism ρ is equal to 2 or to 3,

then ρ6 = id and ϕ6 = ϕ
h̃
δ
6
. Then the equality (1) can be rewritten

g̃1 = Zig̃iϕ
6(Z−1

i ) = Zig̃iϕh̃
δ
6
(Z−1

i ) = Zig̃ih̃δ
6
(Z−1

i )h̃−1, i = 2, 3, . . .

If we multiply this equality by the element h̃ on the right and denote ĝi = g̃ih̃
then we have

ĝ1 = Ziĝiδ
6
(Z−1

i ), i = 2, 3, . . . (2)

From this equality we have

δ
6
(Zi) = ĝ−1

1 Ziĝi, i = 2, 3, . . . (3)

If we denote h̃ = diag(c1, c2, . . . , c|Φ|, 1, . . . , 1︸ ︷︷ ︸
l

), then

ĝi = g̃ih̃ = diag(bi1c1, bi2c2, . . . , bi|Φ|c|Φ|, 1, . . . , 1︸ ︷︷ ︸
l

), i = 2, 3, . . .

Let Zi =

(
Qi Ri

Si Ti

)
, where Qi = (qi,mn) is a |Φ| × |Φ| matrix, Ri = (ri,mn) is a

|Φ|×|∆| matrix, Si = (si,mn) is a |∆|×|Φ| matrix, Ti = (ti,mn) is a |∆|×|∆| matrix.
Then by the equality (3) for all m = 1, . . . , |Φ|, n = 1, . . . , |Φ| we have

δ6(qi,mn) = (b1mcm)
−1bincnqi,mn = dmnbinqi,mn, i = 2, 3, . . . ,

where dmn = (b1mcm)
−1cn. Since ν(bin) 6= ∅ and ν(bin) ∩ ν(bjn) = ∅ for i 6= j, then

we can apply the lemma 5 to the set q2,mn, q3,mn, . . . Therefore by the lemma 5 there
exists a positive integer Nmn, such that qi,mn = 0 for every i > Nmn.
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If we denote by N the value

N = max
n,m=1,...,|Φ|

Nmn,

then for every i > n we have Qi = O|Φ|×|Φ|. Using the same arguments to the
matrices S2, S3, . . . we conclude that for sufficiently large indexes i all the matrices
Si are the matrices with zero entries only, and therefore the matrix Zi has the form

Zi =

(
O|Φ|×|Φ| Ri

O|∆|×|Φ| Ti

)
.

The determinant of this matrix is equal to zero and it means that Zi can not belong
to G. This contradiction proves the theorem.

�

4 Linear algebraic groups

If G is a linear algebraic group over an algebraically closed field, then it has a unique
maximal solvable normal subgroup R(G), called the radical of G. A connected linear
algebraic group G is called reductive if its radical is a torus, or, equivalently, if it
can be decomposed G = G′T ′ with G′ a semisimple group and T ′ a central torus
[51, §6.5].

The quotient group G/R(G) has a trivial radical, i.e. is a semisimple group [30,
§19.5].

Theorem 3. Let F be such an algebraically closed field of zero characteristic that
the transcendence degree of F over Q is finite. If the reductive linear algebraic group
G over the field F has a nontrivial quotient group G/R(G), then G possesses the
R∞-property.

Proof. For the group G we have the following short exact sequence of groups

1 → R(G) → G→ G/R(G) → 1,

Since G is reductive, then the radical R(G) is a central torus and therefore is a
characteristic subgroup of G. Hence by the lemma 2 it is sufficient to prove that
the semisimple group G/R(G) possesses the R∞-property and we can consider that
G is a semisimple linear algebraic group. Since G is a semisimple linear algebraic
group, then it is a product, with some amalgamation of (finite) centers, of its simple
subgroups H1, H2, . . . , Hk [30, §14.2]

G = H1 ◦ · · · ◦Hk.
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Every simple linear algebraic group Hi is a Chevalley group of (normal) type Φi over
the field F . Factoring the group G by its center we have the following short exact
sequence of groups

1 → Z(H1 ◦ · · · ◦Hk) → H1 ◦ · · · ◦Hk → Φ1(F )× · · · × Φk(F ) → 1,

where Φi(F ) is an elementary Chevalley group of the type Φi over the field F . Hence,
by the lemma 2 we can consider that G = Φ1(F )× · · · ×Φk(F ) and prove that this
group possesses the R∞-property. Permute the groups Φ1(F ), . . . ,Φk(F ) so that all
the groups with the same root system form blocks

G = Φ1(F )× . . .Φ1(F )︸ ︷︷ ︸
k1

×Φ2(F )× . . .Φ2(F )︸ ︷︷ ︸
k2

× · · · × Φr(F )× . . .Φr(F )︸ ︷︷ ︸
kr

,

where k1 + k2 + · · ·+ kr = k. Denote Gi = Φi(F )× . . .Φi(F )︸ ︷︷ ︸
ki

.

Every group Gi is a characteristic subgroup of G = G1 × · · · ×Gr. It is obvious
that if some group is a direct product of its characteristic subgroups and at least
one of this subgroups possesses the R∞-property then the group itself possesses the
R∞-property. Therefore it is sufficient to prove that the group

G = Φ(F )× · · · × Φ(F ) = Φ(F )k

possesses the R∞-property.
Every element g ∈ G = Φ(F )k can be presented as a direct sum of k matrices

g1, . . . , gk of the size (|Φ|+ |∆|)× (|Φ|+ |∆|) each of which belongs to Φ(F ).
An automorphism group of G has the form

Aut(G) = (Aut(Φ(F )))k ⋋ Sk, (4)

where Sk is a permutation group on k symbols.
To prove that the group G = Φ(F )k possesses the R∞-property consider an

arbitrary automorphism ϕ of the group G and prove that R(ϕ) = ∞. By the
equality (4) the automorphism ϕ can be written in the following form

ϕ = (ϕ1, . . . , ϕk, σ) ,

where ϕ1, . . . , ϕk ∈ Aut(Φ(F)), σ ∈ Sk, and ϕ acts on the group G by the rule

ϕ : x1 ⊕ x2 ⊕ · · · ⊕ xk 7→ ϕ1σ (x1σ)⊕ ϕ2σ (x2σ)⊕ · · · ⊕ ϕkσ (xkσ) , (5)

where iσ denotes an image of i by the permutation σ.
Every automorphism ϕi ∈ Aut(Φ(F )) can be presented as a product of the

inner automorphism ϕgi, the diagonal automorphism ϕhi
, the graph automorphism
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ρi and the field automorphism δi. Since F is an algebraically closed field, then every
diagonal automorphism ϕhi

is inner [43, Lemma 4], hence for every i we can consider
that ϕi = ϕxi

ρiδi. Then the automorphism ϕ can be presented as a product of two
automorphism

ϕ = (ϕx1σ
, ϕx2σ

, . . . , ϕxkσ
, id)(ρ1δ1, ρ2δ2, . . . , ρkδk, σ),

where (ϕx1σ
, ϕx2σ

, . . . , ϕxkσ
, id) is an inner automorphism. By the lemma 1 we can

consider that ϕi = ρiδi and

ϕ = (ρ1δ1, ρ2δ2, . . . , ρkδk, σ).

Using the induction on r prove that

ϕr : g1 ⊕ · · · ⊕ gk 7→ ψ1(x1σr )⊕ · · · ⊕ ψk(xkσr ), (6)

where ψi = ϕiσϕiσ
2 . . . ϕiσ

r .
The basis of the induction (r = 1) is obvious (the equality (5)). If we suppose

that the equality (6) holds for some r, then

ϕr+1(g1 ⊕ · · · ⊕ gk) = ϕ(ϕr(g1 ⊕ · · · ⊕ gk))

= ϕ(ψ1(x1σr )⊕ · · · ⊕ ψk(xkσr ))

= ϕ1σψ1σ(x1σr+1 )⊕ · · · ⊕ ϕkσψkσ(xkσr+1 ).

Note the equality ϕiσψiσ = ϕiσϕiσ
2 . . . ϕ

iσ
r+1 , what we wanted to prove.

Consider the set of elements g1, g2, . . . of the group Φ(F ) from the theorem 2

gi = hα1
(pi1)hα2

(pi2) . . . hαl
(pil), i = 1, 2, . . . ,

where p11 < p12 < · · · < p1l < p21 < p22 < . . . are prime integers. This elements are
presented by the diagonal matrices

gi = diag(ai1, ai2, . . . , ai|Φ|, 1, . . . , 1︸ ︷︷ ︸
l

), i = 1, 2, . . .

where aij are rational numbers, such that ν(aij) 6= ∅ and ν(aij) ∩ ν(ars) = ∅ for
i 6= r.

As we already shown in the theorem 2 for every automorphism ϕj = ρjδj we
have ϕj(gi) = ρj(gi).

Let us consider the set of elements g̃1, g̃2, . . . of the group G = Φ(F )k, where
g̃i = gi ⊕ · · · ⊕ gi. Then by the arguments above ϕ(g̃i) = ρ1σ(gi)⊕ · · · ⊕ ρkσ(gi).

Suppose that R(ϕ) < ∞. Then there is an infinite subset of ϕ-conjugated
elements in the set g̃1, g̃2, . . . . Without loosing of generality we can consider that
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all the matrices g̃1, g̃2, . . . belong to the ϕ-conjugacy class [g̃1]ϕ of the element g̃1.
Then for certain matrices Z2, Z3, . . . we have

g̃1 = Zig̃iϕ(Z
−1
i ), i = 2, 3, . . .

Denote by s an order of the permutation σ and act on this equality by the degrees
of the automorphism ϕ

g̃1 = Zig̃iϕ(Z
−1
i )

ϕ(g̃1) = ϕ(Zi)ϕ(g̃i)ϕ
2(Z−1

i )
...

...
...

ϕ6s−2(g̃1) = ϕ6s−2(Zi)ϕ
6s−2(g̃i)ϕ

6s−1(Z−1
i )

ϕ6s−1(g̃1) = ϕ6s−1(Zi)ϕ
6s−1(g̃i)ϕ

6s(Z−1
i )

If we multiply all of these equalities, we obtain the equality

g̃1ϕ(g̃1)ϕ
2(g̃1) . . . ϕ

6s−1(g̃1) = Zig̃iϕ(g̃i)ϕ
2(g̃i) . . . ϕ

6s−1(g̃i)ϕ
6s(Z−1

i ). (7)

The element g̃iϕ(g̃i)ϕ
2(g̃i) . . . ϕ

6s−1(g̃i) can be rewritten in details

g̃iϕ(g̃i)ϕ
2(g̃i) . . . ϕ

6s−1(g̃i) =

= (gi ⊕ · · · ⊕ gi)(ρ1σ(gi)⊕ · · · ⊕ ρkσ(gi)) . . . (ρ1σ6s−1 (gi)⊕ · · · ⊕ ρ
kσ

6s−1 (gi)) =

= giρ1σ(gi) . . . ρ1σ6s−1 (gi)⊕ · · · ⊕ giρkσ(gi) . . . ρkσ6s−1 (gi)) = ĝi1 ⊕ · · · ⊕ ĝik,

where ĝij = giρjσ(gi) . . . ρjσ6s−1 (gi).
Since every graph automorphism ρj permutes elements on the diagonal of the

matrix gi then for every j = 1, . . . , k, i = 1, 2, . . . we have

ĝij = diag(bij1, bij2, . . . , bij|Φ|, 1, . . . , 1︸ ︷︷ ︸
l

), (8)

where, ν(bijr) 6= ∅ and ν(bijr) ∩ ν(buvw) = ∅ for i 6= u since ν(bijr) ⊆ {pi1, . . . , pil}.
By the equality (6) we have ϕs = (ψ1, ψ2, . . . , ψk, id), where ψi = ϕiσϕiσ

2 . . . ϕiσ
r .

Since all the automorphisms ϕ1, ϕ2, . . . , ϕk are the products of graph and field au-
tomorphism (ϕi = ρiδi) and graph and field automorphisms commute then every
automorphism ψi is a product of graph and field automorphisms ψi = ξiθi for certain
ξi, θi. Therefore

ϕ6s = (ϕs)6 = (ξ1θ1, . . . ξkθk, id)
6 = (ξ

6

1θ
6

1, . . . ξ
6

kθ
6

k, id) = (θ
6

1, . . . θ
6

k, id)

Using this fact, denoting the matrix Zi = Zi1 ⊕ · · · ⊕Zik projecting the equality (7)
to the first group Φ(F ) we obtain the equality

ĝ11 = Zi1ĝi1θ
6

1(Zi1), i = 2, 3, . . .
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This equality is the same as the equality (2) from the theorem 2. Using the same
arguments as in the theorem 2 we conclude that for sufficiently large coefficient N
the matrix ZiN is degenerated and therefore the matrix ZN is degenerated but it
contradicts to the fact that ZN belongs to G. �

We use the fact that the group G is a reductive linear algebraic group in order
to say that the radical R(G) is a characteristic subgroup of G. Even the theorem
3 holds for every connected linear algebraic group such that the radical R(G) is a
characteristic. For example, if any automorphism of the group G is a morphism of
the group G (as of an affine manifold) then the radical R(G) is characteristic [51,
Theorem 7.1(c)] and the theorem 3 holds for such groups.

5 Finite Reidemeister number in linear groups

Following [46], we define the Reidemeister spectrum of G as

Spec(G) = {R(ϕ) | ϕ ∈ Aut(G)}.

In particular, G possesses the R∞-property if and only if Spec(G) = {∞}.
It is easy to see that Spec(Z) = {2} ∪ {∞}, and, for n ≥ 2, the spectrum

of Zn is full, i.e. Spec(Zn) = N ∪ {∞}. For free nilpotent groups we have the
following: Spec(N22) = 2N∪{∞} (N22 is the discrete Heisenberg group) [36, 10, 46],
Spec(N23) = {2k2 | k ∈ N} ∪ {∞} [46] and Spec(N32) = {2k− 1 | k ∈ N} ∪ {4k | k ∈
N} ∪ {∞} [46].

Recently, in [5] it was proven that the groupNrc (r > 1) admits an automorphism
with finite Reidemeister number if and only if c < 2r.

In [24], examples of polycyclic non-virtually nilpotent groups which admit auto-
morphisms with finite Reidemeister numbers have been described. In this examples
G is a semidirect product of Z2 and Z by Anosov automorphism defined by the

matrix
(

2 1
1 1

)
. The group G is solvable and of the exponential growth. The auto-

morphism ϕ with finite Reidemeister number is defined by
(

0 1
−1 0

)
on Z2 and as

−id on Z.
Metabelian (therefore, solvable) finitely generated, non-polycyclic groups have

quite interesting Reidemeister spectrum [15]: for example, if the homomorphism

θ : Z → Aut(Z[1/p]2) is such that θ(1) =
(

r 0
0 s

)
, then we have the following

cases:

a) If r = s = ±1 then Spec(Z[1/p]2 ⋊θ Z) = {2n | n ∈ N, (n, p) = 1} ∪ {∞},
where (n, p) denote the greatest common divisor of n and p.

b) If r = −s = ±1 then Spec(Z[1/p]2 ⋊θ Z) = {2pl(pk ± 1), 4pl | l, k > 0} ∪ {∞}.
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c) If rs = 1 and |r| 6= 1 then Spec(Z[1/p]2 ⋊θ Z) = {2(pl ± 1), 4 | l > 0} ∪ {∞}.

d) If either r or s does not equal to ±1, and rs 6= 1 then Spec(Z[1/p]2 ⋊θ Z) =
{∞}.

In the paper [32] Jabara proved that if residually finite group G admits an auto-
morphism of prime order p with finite Reidemeister number, then G is virtually
nilpotent group of class bounded by a function of p.

From another side, we have described in an Introduction a lot of classes of non-
solvable, finitely generated, residually finite groups which have the R∞-property. All
together was a motivation for the following conjecture

Conjecture R (A. Fel’shtyn, E. Troitsky [18, Conjecture R]) Every infi-
nite, residually finite, finitely generated group either possesses the R∞-property or
is a virtually solvable group.

Here we study this question for infinite linear groups.

Proposition 1. Let G be a reductive linear algebraic over the field F of zero char-
acteristic and finite transcendence degree over Q. If G possesses an automorphism
ϕ with finite Reidemeister number then G is a torus.

Proof Since G possesses an automorphism ϕ with finite Reidemeister number,
then by the theorem 3, it has trivial quotient group G/R(G), therefore G = R(G)
and hence G is a central torus (therefore, is solvable). �

6 Groups with property S∞

Suppose that Ψ ∈ Out(G) = Aut(G)/ Inn(G). Let S(Ψ) be the set of isogredience
classes of Ψ. Then S(Id) can be identified with the set of conjugacy classes of
G/Z(G) (see [18]).

The definition of the similarity (isogredience) from Introduction goes back to
Jacob Nielsen. He observed (see [33]) that conjugate lifting of homeomorphism of
surface have similar dynamical properties. This led Nielsen to the definition of the
isogredience of liftings in this case. Later Reidemeister and Wecken succeeded in
generalizing the theory to continuous maps of compact polyhedra (see [33]).

The set of isogredience classes of automorphisms representing a given outer auto-
morphism and the notion of index Ind(Ψ) defined via the set of isogredience classes
are strongly related to important structural properties of Ψ (see [19]).

One of the main results of [38] is that for any non-elementary hyperbolic group
and any Ψ the set S(Ψ) is infinite, i. e. S(Ψ) = ∞. Thus, this result says: any
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non-elementary hyperbolic group is an S∞-group. On the other hand, finite and
finitely generated Abelian groups are evidently non S∞-groups.

Two representatives of Ψ have the forms ϕsa, ϕqa for some s, q ∈ G and fixed
a ∈ Ψ. They are isogredient if and only if

ϕqa = ϕgϕsaϕ
−1
g = ϕgϕsϕa(g−1)a,

ϕq = ϕgsa(g−1), q = gsa(g−1)c, c ∈ Z(G)

(see [38, p. 512]). So, the following statement is proved.

Lemma 6. [18, Lemma 3.3] Let ϕ ∈ Ψ be an automorphism of the group G and ϕ
be an automorphism of the group G/Z(G) which is induced by ϕ. Then the number
S(Ψ) is equal to the number of ϕ-conjugacy classes in the group G/Z(G).

Since Z(G) is a characteristic subgroup, we obtain the following statement

Theorem 4. [18, Theorem 3.4] Suppose, |Z(G)| <∞. Then G is an R∞-group if
and only if G is an S∞-group.

A more advanced example of a non S∞-group is the Osin’s group [45]. This is a
non-residually finite exponential growth group with two conjugacy classes. Since it
is simple, it is not S∞ group (see [18]).

Theorem 5. Let F be such an algebraically closed field of zero characteristic that
the transcendence degree of F over Q is finite. If the reductive linear algebraic group
G over the field F has a nontrivial quotient group G/R(G), then G possesses the
S∞-property.

Proof. Since R(G) is a characteristic subgroup of G then by the lemma 3 it is
sufficient to prove the theorem for semisimple group G/R(G). The result follows
immediately from the theorem 3 and the theorem 4 and from the fact that semisimple
linear algebraic group has finite center. �

Proposition 2. Let G be a reductive linear algebraic group over the field F of
zero characteristic and finite transcendence degree over Q. If G possesses an outer
automorphism Ψ with finite number S(Ψ) then G is a torus.

Proof Since G possesses an outer automorphism Ψ with finite number S(Ψ),
then by the theorem 5, it has a trivial quotient G/R(G), therefore G = R(G) and
is a central torus. �

The conjecture of Fel’shtyn and Troitsky from the section 5 can be rewritten in
terms of S∞-property by the following way.
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Conjecture S Every infinite, residually finite, finitely generated group either pos-
sesses the S∞-property or is a virtually solvable group.

Really, if S(ϕInn(G)) < ∞ for some automorphism ϕ ∈ Aut(G) then by the
lemma 6 we have R(ϕ) < ∞, where ϕ is an automorphism of the group G/Z(G)
induced by ϕ. Since G is residually finite finitely generated group, then G/Z(G) is
also finitely generated and residually finite and by the conjecture R is a virtually
solvable group.

It means that there exists a solvable subgroup H ≤ G/Z(G) of finite index. Let

n be a derived length of H , i. e. H
(n)

= 1. Let H be a preimage of H under
the canonical homomorphism G → G/Z(G). Then H(n) ≤ Z(G) and H(n+1) = 1,
thereforeH is a solvable group. SinceG/H ≃ (G/Z(G))/(H/Z(G)) = (G/Z(G))/H,
then the index ofH inG is equal to the index ofH inG/Z(G), i. e. is finite, therefore
G is solvable by finite.

We have proven in all that [18, Conjecture S] can be formulated without the
restriction that the group under consideration has finite center.
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