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Polynomial values in small subgroups
of finite fields

Igor E. Shparlinski

Abstract. For a large prime p, and a polynomial f over a finite field Fp

of p elements, we obtain a lower bound on the size of the multiplicative sub-
group of F∗

p containingH≥1 consecutive values f(x), x = u+ 1, . . . , u+H,
uniformly over f ∈ Fp[X] and an u ∈ Fp.

1. Introduction

1.1. Background

For a prime p, we use Fp to denote the finite field of p elements, which we always
assume to be represented by the set {0, . . . , p− 1}.

For a rational function r(X) = f(X)/g(X) ∈ Fp(X) with two relatively primes
polynomials f, g ∈ Fp[X ] and a set S ⊆ Fp, we use r(S) to denote the value set

r(S) = {r(x) : x ∈ S, g(x) �= 0} ⊆ Fp.

Given two sets S, T ⊆ Fp, we consider the size of the intersection of r(S) and T ,
that is,

Nr(S, T ) = # (r(S) ∩ T ) .

A large variety of upper bounds on Nr(S, T ) and its multivariate generalisations,
for various sets and S and T (such as intervals, subgroups, zero-sets of algebraic
varieties and their Cartesian products) and functions r, are given in [2], [3], [4],
[6], [7], [8], [9], [10], [12], [16], [20], together with a broad scope of applications.

Here, we are mostly interested in studying Nr(I,G) for an interval I of several
consecutive integers and a multiplicative subgroup G of F∗

p.
We note that in the case when G is a group of quadratic residues, this question

is essentially the classical question about the distribution of quadratic residues and
non-residues in consecutive values of rational functions and polynomials. However
here concentrate on the case of subgroups G of relatively small order.
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We also use Tr(H) to denote the smallest possible T such that there is an
interval I = {u + 1, . . . , u + H} of H consecutive integers and a multiplicative
subgroup G of F∗

p of order T for which

(1.1) r(I) ⊆ G

and thus Nr(I,G) = #r(I).
It is shown in [15] that if r(X) = f(X)/g(X) ∈ Fp(X) with two relatively

primes polynomials f, g ∈ Fp[X ] then for any interval I = {u+1, . . . , u+H} of H
consecutive integers and a subgroup G of F∗

p of order T , the quantity Nr(I,G) is
“small”.

To formulate the result precisely we recall that the notations U = O(V ), U � V
and V � U are all equivalent to the inequality |U | ≤ c V with some constant c > 0.
Throughout the paper, the implied constants in these symbols may occasionally
depend, where obvious, on degrees (such as d) and the number of variables of
various polynomials, as well as on the integer parameter ν ≥ 1, but are absolute
otherwise. We also use o(1) to denote a quantity that tends to zero when one of
the indicated parameters (usually H or p) tends to infinity while d, ν and other
similar parameters are fixed.

Then, by the bound of [15] in the special case where r = f ∈ Fp[X ] is a
polynomial of degree d ≥ 2, we have

(1.2) Nf (I,G) � (1 +H(d+1)/4 p−1/4d)H1/2d T 1/2.

Note that we have #r(I) � I. In particular, if (1.1) holds then the bound (1.2)
implies that

H � (1 +H(d+1)/4 p−1/4d)H1/2d T 1/2,

from which we derive

(1.3) Tf (H) � min{H2−1/d, H−(d−1)(d−2)/2d p1/2d}.

For a linear fractional function

r(X) = a
X + s

X + t

with s �≡ t (mod p), the bound of Lemma 35 in [3] implies that there is an absolute
constant c > 0 such that if for some positive integer ν we have

(1.4) H ≤ pcν
−4

,

then for the set

r(I) =
{
a
x+ s

x+ t
: x ∈ I

}
⊆ Fp

we have
#{a1 . . . aν : a1, . . . , aν ∈ r(I)} ≥ Hν+o(1).

Thus, if r(I) ∈ G then #G ≥ Hν+o(1). Therefore,

(1.5) Tr(H) ≥ Hν+o(1) as H → ∞.
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Using a result of D’Andrea, Krick and Sombra, Theorem 2 in [14], instead
of Lemma 23 in [3], one can improve Lemmas 35 and 38 in [3] and relax (1.4) as

H ≤ pcν
−3

.

For larger values of H , by bound (29) in [3], we have

Nr(I,G) ≤
(
1 +H3/4 p−1/4

)
T 1/2 po(1),

as p → ∞. Thus
Tr(H) ≥ min

{
H2, H1/2 p1/2

}
po(1).

1.2. Our results

Here we use the methods of [3], based on an application effective Hilbert’s Null-
stellensatz, see [14], [18], to obtain a variant of the bound of (1.5) for polynomials
and thus to improve (1.3) for small values of H .

Furthermore, combining some ideas from [15] with a bound on the number on
integer points on quadrics (which replaces the bound of Bombieri and Pila [1] in
the argument of [15]), we improve (1.2) for quadratic polynomials. In fact, this
argument stems from that of Cilleruelo and Garaev [11].

Acknowledgements. The author is very grateful to Domingo Gómez–Pérez for
discussions and very helpful comments, and to Harald Helfgott for pointing out
to [19]. Thanks also go to the referee for a very careful reading of the manuscript
and several useful comments.

This work was finished during a very enjoyable research stay of the author at
the Max Planck Institute for Mathematics, Bonn.

2. Preparations

2.1. Effective Hilbert’s Nullstellensatz

We recall that the logarithmic height of a nonzero polynomial P ∈ Z[Z1, . . . , Zn]
is defined as the logarithm of the largest (by absolute value) coefficient of P .

Our argument uses the following quantitative version version of Hilbert’s Null-
stellensatz due to D’Andrea, Krick and Sombra [14], which in turn improves previ-
ous results of Krick, Pardo and Sombra (Theorem 1 in [18]). In fact we only need
a very special form of Corollary 4.38 in [14].

Lemma 1. Let P1, . . . , PN ∈ Z[Z1, . . . , Zn] be N ≥ 1 polynomials in n variables
without a common zero in Cn of degree at most D ≥ 3 and of logarithmic height
at most H. Then there is a positive integer b with

log b ≤ (n+ 1)DnH + C(D,N, n),

where C(D,N, n) is some constant, depending only on D, N and n, and polyno-
mials R1, . . . , RN ∈ Z[Z1, . . . , Zn] such that

P1R1 + · · ·+ PNRN = b.
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We note that Corollary 4.38 in [14] gives explicit estimates on all other param-
eters as well (that is, on the heights and degrees of the polynomials R1, . . . , RN ),
see also [14].

2.2. Some facts on algebraic integers

We also need a bound of Chang, Proposition 2.5 in [5], on the divisor function
in algebraic number fields. As usual, for algebraic number field K we use ZK

to denote the ring of integers. As usual, we define the logarithmic height of an
algebraic number α �= 0 as the logarithmic height of its minimal polynomial.

Lemma 2. Let K be a finite extension of Q of degree k = [K : Q]. For any
nonzero algebraic integer γ ∈ ZK of logarithmic height at most H ≥ 2, the number
of pairs (γ1, γ2) of algebraic integers γ1, γ2 ∈ ZK of logarithmic height at most H
with γ = γ1γ2 is at most exp (O(H/ logH)), where the implied constant depends
on k.

Finally, as in [3], we use the following result, this is exactly the statement that
is established in the proof of Lemma 2.14 in [5] (see Equation (2.15) in [5]).

Lemma 3. Let P1, . . . , PN , Q ∈ Z[Z1, . . . , Zn] be N + 1 ≥ 2 polynomials in n
variables of degree at most D and of logarithmic height at most H ≥ 1. If the
zero-set

P1(Z1, . . . , Zn) = · · · = PN (Z1, . . . , Zn) = 0 and Q(Z1, . . . , Zn) �= 0

is not empty, then it has a point (β1, . . . , βn) in an extension K of Q of degree
[K : Q] ≤ C1(D,n) such that their minimal polynomials are of logarithmic height
at most C2(D,N, n)H, where C1(D,n) depends only on D and n, and C2(D,N, n)
depends only on D, N and n.

2.3. Integral points on quadrics

The following bound on the number of integral points on quadrics is given in
Lemma 3 of [17]. We say that a quadratic polynomial G(X,Y ) ∈ Z[X,Y ] is
affinely equivalent to a parabola, if there is a linear transformation of the variables
which reduces G to the polynomial X2 − Y , that is, if

G(a11X + a12Y + b1, a21X + a22Y + b2) = X2 − Y

for some coefficients aij , bj ∈ C, i, j = 1, 2.

Lemma 4. Let

G(X,Y ) = AX2 +BXY + CY 2 +DX + EY + F ∈ Z[X,Y ]

be an irreducible quadratic polynomial with coefficients of size at most H. Assume
that G(X,Y ) is not affinely equivalent to a parabola and has a nonzero determinant

Δ = B2 − 4AC �= 0.

Then, as H → ∞, the equation G(x, y) = 0 has at most Ho(1) integral solutions
(x, y) ∈ [0, H ]× [0, H ].
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2.4. Small values of linear functions

We need a result about small values of residues modulo p of several linear functions.
Such a result has been derived in [13], Lemma 3.2, from the Dirichlet pigeonhole
principle. Here we use a slightly more precise and explicit form of this result which
is derived in [15], Lemma 6, from the Minkowski theorem.

For an integer a we use 〈a〉p to denote the smallest by absolute value residue
of a modulo p, that is

〈a〉p = min
k∈Z

|a− kp|.

Lemma 5. For any real numbers V1, . . . , Vm with

p > V1, . . . , Vm ≥ 1 and V1 . . . Vm > pm−1

and integers b1, . . . , bm, there exists an integer v with gcd(v, p) = 1 such that

〈biv〉p ≤ Vi, i = 1, . . . ,m.

3. Main results

3.1. Arbitrary polynomials

For a set A in an arbitrary semi-group, we use A(ν) to denote the ν-fold product
set, that is,

A(ν) = {a1 . . . aν : a1, . . . , aν ∈ A}.
First we note that in order to get a lower bound on Tf(I,G) it is enough to

give a lower bound on the cardinality of f(I)(ν) for any integer ν ≥ 1.

Theorem 6. For every positive integers d and ν there is a constant c(d, ν) > 0,
depending only on d and ν, such that for any polynomial f ∈ Fp[X ] of degree d
and interval I of

H ≤ c(d, ν) p1/(d+1)νd+1
0

consecutive integers, where ν0 = max{3, ν}, we have

#f(I)(ν) ≥ Hν+o(1) as H → ∞.

Proof. Clearly, we can assume that

f(X) = Xd +

d−1∑
k=0

ad−k X
k

is monic.
It is also clear that we can assume that I = {1, . . . , H}.
We consider the collection P ⊆ Z[Z1, . . . , Zd] of polynomials

Px,y(Z1, . . . , Zd) =

ν∏
i=1

(
xd
i +

d−1∑
k=0

Zd−k x
k
i

)
−

ν∏
i=1

(
ydi +

d−1∑
k=0

Zd−k y
k
i

)
,
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where x = (x1, . . . , xν) and y = (y1, . . . , yν) are integral vectors with entries
in [1, H ], and such that

Px,y(a1, . . . , ad) ≡ 0 (mod p).

Note that

Px,y(a1, . . . , ad) ≡
ν∏

i=1

f(xi)−
ν∏

i=1

f(yi) (mod p).

Clearly if Px,y is identical to zero then, by the uniqueness of polynomial fac-
torisation in the ring Z[Z1, . . . , Zd], the components of y are permutations of those
of x. So, if P does not contain any nonzero polynomial, we obviously obtain

#f(I)(ν) ≥ 1

ν!
(#f(I))ν � Hν .

Hence, we now assume that P contains non-zero polynomials.
Note that every P ∈ P is of degree at most ν and of logarithmic height at most

ν logH +O(1).
We take a family P0 containing the largest possible number

N ≤ (ν + 1)d

of linearly independent polynomials P1, . . . , PN ∈ P , and consider the variety

V : {(Z1, . . . , Zd) ∈ Cd : P1(Z1, . . . , Zd) = · · · = PN (Z1, . . . , Zd) = 0}.

Assume that V = ∅. Then by Lemma 1 we see that there are polynomials
R1, . . . , RN ∈ Z[Z1, . . . , Zd] and a positive integer b with

(3.1) log b ≤ (d+ 1) νd+1
0 logH +O(1)

and such that

(3.2) P1R1 + · · ·+ PNRN = b

Substituting
(Z1, . . . , Zd) = (a1, . . . , ak)

in (3.2), we see that the left hand side of (3.2) is divisible by p. Since b ≥ 1 we
obtain p ≤ b. Taking an appropriately small value of c(d, ν) in the condition of the
theorem, we see from (3.1) that this is impossible.

Therefore the variety V is nonempty. Applying Lemma 3 (with the polynomial
Q = 1) we see that it has a point (β1, . . . , βd) with components of logarithmic
height O(logH) in an extension K of Q of degree [K : Q] = O(1).

Consider the maps Φ : Iν → Fp given by

Φ : x = (x1, . . . , xν) �→
ν∏

j=1

f(xj)
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and Ψ : Iν → K given by

Ψ : x = (x1, . . . , xν) �→
ν∏

j=1

(
xd
i +

d−1∑
k=0

βd−k x
k
i

)
.

Clearly, if Φ(x) = Φ(y) then

Px,y(a1, . . . , ak) ≡ 0 (mod p),

thus Px,y(Z1, . . . , Zd) ∈ P . Recalling the definitions of the family P0 and of
(β1, . . . , βd), we see that Px,y(β1, . . . , βd) = 0. Hence Ψ(x) = Ψ(y). We now
conclude that for every x the multiplicity of the value Φ(x) in the image set ImΦ of
the map Φ is at most the multiplicity of the value Φ(x) in the image set ImΨ of the
map Ψ. Thus,

#f(I)(ν) = #ImΦ ≥ #ImΨ = #C(ν),

where

C =
{
xd +

d−1∑
k=0

βd−k x
d : 1 ≤ x ≤ H

}
⊆ K.

Using Lemma 2 inductively, we see that for any γ ∈ C there are at most Ho(1)

representations γ = γ1 . . . γν with γ1 . . . γν ∈ C. Thus, we now conclude that
#C(ν) ≥ Hν+o(1), as H → ∞, and derive the result. ��

3.2. Quadratic polynomials

For quadratic square-free polynomials f , using Lemma 4 instead of the bound of
Bombieri and Pila [1] in the argument of [15] we immediately obtain the following
result.

Theorem 7. Let f(X) ∈ Fp[X ] be a square-free quadratic polynomial. For any
interval I of H consecutive integers and a subgroup G of F∗

p of order T , we have

Nf (I,G) ≤
(
1 +H3/4 p−1/8

)
T 1/2 po(1), as H → ∞.

Proof. We follow closely the argument of [15]. We can assume that

(3.3) H ≤ c p1/2

for some constant c > 0 as otherwise the desired bound is weaker than the trivial
estimate

Nf (I,G) ≤ min{H,T } ≤ H1/2 T 1/2.

Making the transformation X �→ X + u we reduce the problem to the case
where I = {1, . . . , H}.

Let 1 ≤ x1 < . . . < xk ≤ H be all k = Nf (I,G) values of x ∈ I with f(x) ∈ G.
Let f(X) = a0X

2 + a1X + a2, a0 �= 0.
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Let us consider the quadratic polynomial

Qλ(X,Y ) = f(X)− λf(Y )

= a0X
2 − λa0Y

2 + a1X − λa1Y + a2(1− λ).
(3.4)

One easily verifies that Qλ(X,Y ) is irreducible for λ �= 1.
We see that there are only at most 2k pairs (xi, xj), 1 ≤ i, j ≤ k, for which

f(xi)/f(xj) = 1. Indeed, if xj is fixed, then f(xi) is also fixed, and thus xi can
take at most 2 values.

We now assume that k ≥ 4 as otherwise there is nothing to prove. Therefore,
there is λ ∈ G \ {1} such that

(3.5) f(x) ≡ λf(y) (mod p)

for at least

(3.6)
k2 − 2k

T
≥ k2

2T

pairs (x, y) with x, y ∈ {1, . . . , H}.
We now apply Lemma 5 with m = 4,

b1 = a0 b2 = −λa0, b3 = a1, b4 = −λa1

and
V1 = V2 = 2p3/4H−1/2, V3 = V4 = 2p3/4H1/2.

Thus
V1V2V3V4 = 16p3 > p3.

We also assume that the constant c in (3.3) is small enough so the condition

Vi ≤ 2 p3/4H1/2 < p, i = 1, . . . , 4,

is satisfied. Note that

(3.7) V1H
2 = V2H

2 = V3H = V4H = 2 p3/4H3/2.

Let v be the corresponding integer.
We now consider the quadratic polynomial F (X,Y ) ∈ Z[X,Y ] with coefficients

in the interval [−p/2, p/2], obtained by reducing the coefficients of the polynomial
vQλ(X,Y ) modulo p. Clearly (3.5) implies

(3.8) F (x, y) ≡ 0 (mod p).

Furthermore, since x, y ∈ {1, . . . , H}, we see from (3.7) and the trivial estimate
|F (0, 0)| ≤ p/2 that

|F (x, y)| ≤ 8 p3/4H3/2 + p/2.

In turn, together with (3.8) this implies that

(3.9) F (x, y)− zp = 0

for some integer z � 1 +H3/2p−1/4.
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Clearly, for any integer z the reducibility of F (X,Y ) − pz over C implies the
reducibility of F (X,Y ) and then in turn of Qλ(X,Y ) over Fp, which is impossible
as λ �= 1.

It is also easy to see that completing the polynomials f(X) and λf(Y ) full
squares, we see that Qλ(X,Y ) is affinely equivalent to a polynomial of the shape
X2 − λY 2 + μ. So it is not affinely equivalent to a parabola over Fp and thus
the same holds for F (X,Y ) over C. The non-vanishing of the determinant is
straightforward as well. Hence, the condition of Lemma 4 are satisfied for F (X,Y )
and we see that, as p → ∞, for every z the equation (3.9) has po(1) solutions.
Thus the congruence (3.5) has at most

(
1 +H3/2p−1/4

)
po(1) solutions. Together

with (3.6), this yields the inequality

k2

2T
≤

(
1 +H3/2p−1/4

)
po(1),

which concludes the proof. ��

4. Comments

We remark that Mendes da Costa [19] has recently given an improvement of the
bound of Bombieri and Pila [1] in the case of a class of elliptic curves. It is quite
possible that the results and ideas of [19] can be used to improve (1.2) for some
cubic polynomials. Regardless of this application, extending the bound of [19] to
more general cubic curves and also obtaining a more explicit bounds are both very
interesting questions.
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