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DYNAMICAL COMPACTNESS AND SENSITIVITY

WEN HUANG, DANYLO KHILKO, SERGĬI KOLYADA AND GUOHUA ZHANG

This paper is dedicated to Professor L’ubomı́r Snoha on the occasion of his 60th birthday.

Abstract. To link the Auslander point dynamics property with topological
transitivity, in this paper we introduce dynamically compact systems as a
new concept of a chaotic dynamical system (X, T ) given by a compact metric
space X and a continuous surjective self-map T : X → X. Observe that each
weakly mixing system is transitive compact, and we show that any transitive
compact M-system is weakly mixing. Then we discuss the relationships among
it and other several stronger forms of sensitivity. We prove that any transitive
compact system is Li-Yorke sensitive and furthermore multi-sensitive if it is
not proximal, and that any multi-sensitive system has positive topological
sequence entropy. Moreover, we show that multi-sensitivity is equivalent to
both thick sensitivity and thickly syndetic sensitivity for M-systems. We also
give a quantitative analysis for multi-sensitivity of a dynamical system.

1. Introduction

By a (topological) dynamical system we mean a compact metric space with a
continuous self-surjection. We say it trivial if in addition the space is a singleton.
Throughout this paper, we are only interested in a nontrivial dynamical system,

where the state space is a compact metric space without isolated points, and let
(X,T ) be such a dynamical system with metric d.

Let Z+ be the set of all nonnegative integers and N the set of all positive integers.
Recall that the system (X,T ) is (topologically) transitive if NT (U1, U2) = {n ∈ Z+ :
U1 ∩ T−nU2 6= ∅} is nonempty for any opene1 subsets U1, U2 ⊂ X , equivalently,
NT (U1, U2) is infinite for any opene subsets U1, U2 ⊂ X .

H. Furstenberg started a systematic study of transitive dynamical systems in
his paper on disjointness in topological dynamics and ergodic theory [11], and the
theory was further developed in [13] and [12]. The main motivation for this paper
comes from [39], [2], [24], [5], [14], [22], [38], [37] and recent papers [29], [34] and
[31], which discusses a dynamical property called transitive compactness examined
firstly for weakly mixing systems in [5]: transitive compactness is quite related to
but different from the property of transitivity, it will be equivalent to weak mixing
under some weak conditions, and it presents some kind of sensitivity of the system.

Before going on, let us recall some notions and facts from topological dynamics.
Denote by P = P(Z+) the set of all subsets of Z+. A subset F of P is a (Fursten-
berg) family, if it is hereditary upward, that is, F1 ⊂ F2 and F1 ∈ F imply F2 ∈ F .
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1Because we so often have to refer to open, nonempty subsets, we will call such subsets opene.
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For a family F , the dual family of F , denoted by kF , is defined as

{F ∈ P : F ∩ F ′ 6= ∅ for any F ′ ∈ F}.

Denote by B the family of all infinite subsets of Z+. Let F ∈ P . Recall that
a subset F is thick if it contains arbitrarily long runs of positive integers. Each
element of the dual family of the thick family is said to be syndetic, equivalently,
F is syndetic if and only if there is N ∈ N such that {i, i+ 1, . . . , i +N} ∩ F 6= ∅

for every i ∈ Z+. We say that F is thickly syndetic if for every N ∈ N the positions
where length N runs begin form a syndetic set.

For any F ∈ P we will define TFx = {T ix : i ∈ F}. Let us also define NT (x,G) =
{n ∈ Z+ : T nx ∈ G} for every point x ∈ X and each subset G of X . Let F be a
family and x ∈ X , the ω-limit set of point x with respect to the family F (see [2]),
or shortly the ωF -limit set of point x, denoted by ωF (x), is defined as

⋂

F∈F

TFx = {z ∈ X : NT (x,G) ∈ kF for every neighborhood G of z}.

Recall that the ω-limit set of x, denoted by ωT (x), is defined as

∞
⋂

n=1

{T kx : k ≥ n} = {z ∈ X : NT (x,G) ∈ B for every neighborhood G of z}.

In particular, ωF(x) is a subset of ωT (x).

We say that the system (X,T ) is compact with respect to the family F , or shortly
dynamically compact, if the ωF -limit set ωF(x) is nonempty for all x ∈ X . In this
paper we consider one of such dynamical compactness — transitive compactness,
and its relations with well-known chaotic properties of dynamical systems.

Recall that a pair of points x, y ∈ X is proximal if lim infn→∞ d(T nx, T ny) = 0.
In this case each of points from the pair is said to be proximal to another. Denote
by ProxT (X) the set of all proximal pairs of points. For each x ∈ X , denote by
ProxT (x), called the proximal cell of x, the set of all points which are proximal to
x. It is a deep theorem of Auslander that every proximal cell contains a minimal
point (i.e. point from a minimal set) [6].

The following property of dynamical systems, which was first examined in [5] for
topologically weakly mixing systems, links the Auslander point dynamics property
with topological transitivity. Let NT be the set of all subsets of Z+ containing some
NT (U, V ), where U, V are opene subsets of X . A dynamical system (X,T ) is called
transitive compact, if for any point x ∈ X the ωNT

-limit set ωNT
(x) is nonempty,

in other words, for any point x ∈ X there exists a point z ∈ X such that

NT (x,G) ∩NT (U, V ) 6= ∅

for any neighborhood G of z and any opene subsets U, V of X .
Obviously that a transitive compact system is topologically transitive. What is

the difference between a compact, topologically transitive system and a dynamically
compact, topologically transitive system? Roughly speaking the first system is of
the form (X,T,Z+) and the second one — (X,T,F). In the second system we
dynamically changed the time for possible behaviour of the orbits (by using NT ).
The area of dynamical systems where one investigates dynamical properties that
can be described in topological terms is called topological dynamics. Investigating
the topological properties of maps that can be described in dynamical terms is in
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a sense the opposite idea. This area is called dynamical topology (see [25]). Some
results of this paper can be considered as a contribution to dynamical topology.

We will show that the ωNT
-limit sets are positively invariant closed subsets of

the system (Lemma 3.3) and in fact invariant closed subsets if the system is weakly
mixing (Proposition 3.5). Even though any transitive compact M-system is weakly
mixing (Corollary 3.10) and observe that each weakly mixing system is transitive
compact, there exist non totally transitive (and hence non weakly mixing), transi-
tive compact systems in both proximal and non-proximal cases (Theorem 3.14).

As shown by Theorem 4.5 and Theorem 4.7, a transitive compact system presents
some kinds of sensitivity. The notion of sensitivity (sensitive dependence on initial
conditions) was first used by Ruelle [36], which captures the idea that in a chaotic
system a small change in the initial condition can cause a big change in the trajec-
tory. Since then, many authors studied different properties related to sensitivity (cf.
[16], [3], [15], [2], [4], [5], [1], [21], [30]). For the recent development of sensitivity
in topological dynamics see for example the survey [31] by Li and Ye.

According to the works by Guckenheimer [17], Auslander and Yorke [7] a dynam-
ical system (X,T ) is sensitive if there exists δ > 0 such that for every x ∈ X and
every neighborhood Ux of x, there exist y ∈ Ux and n ∈ N with d(T nx, T ny) > δ.
Such a δ is also called a sensitive constant of the system (X,T ). Recently in [33]
Moothathu initiated a way to measure the sensitivity of a system, by checking how
large is the set of nonnegative integers for which the sensitivity still occurs. Follow-
ing [33] and [32], we recall the definitions of some stronger versions of sensitivity.

Let δ > 0. For any opene set U ⊂ X we define

ST (U, δ) = {n ∈ Z+ : there are x1, x2 ∈ U such that d(T nx1, T
nx2) > δ}.

A dynamical system (X,T ) is thickly sensitive (thickly syndetically sensitive, re-
spectively) if there exists δ > 0 such that ST (U, δ) is thick (thickly syndetic, re-
spectively) for any opene U ⊂ X ; and is multi-sensitive if there exists δ > 0 such

that
⋂k

i=1 ST (Ui, δ) 6= ∅ for any finite collection of opene U1, . . . , Uk ⊂ X . Remark
that: a non-minimal M-system is thickly syndetically sensitive [32, Theorem 8], and
any thickly syndetically sensitive system is multi-sensitive because the intersection
of finitely many thickly syndetically sets is also thickly syndetic; furthermore, the
first, third and fourth authors of the present paper proved that any multi-sensitive
system is thickly sensitive and these two sensitivities are equivalent for transitive
systems [19, Proposition 3.2].

In this paper, we shall show that: multi-sensitivity is equivalent to both thick
sensitivity and thickly syndetic sensitivity for M-systems (Theorem 4.2), any multi-
sensitive system has positive topological sequence entropy (Proposition 6.1) and
any transitive compact system is Li-Yorke sensitive (Theorem 4.5) and furthermore
multi-sensitive if it is not proximal (Theorem 4.7). Recall that we have assumed
that we are only interested in nontrivial dynamical systems.

Observe that in [26] Rybak and the third author of the paper initiated another
way to measure the sensitivity of a system, that is, gave quantitative measures of
the sensitivity of a dynamical system by introducing the Lyapunov numbers:

Lr = sup{δ : for every x ∈ X and every open neighborhood Ux of x there

exist y ∈ Ux and a nonnegative integer n with

d(T nx, T ny) > δ};
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Lr = sup{δ : for every x ∈ X and every open neighborhood Ux of x there

exists y ∈ Ux with lim sup
n→∞

d(T nx, T ny) > δ};

Ld = sup{δ : in any opene U ⊂ X there exist x, y ∈ U and a nonnegative

integer n with d(T nx, T ny) > δ};

Ld = sup{δ : in any opene U ⊂ X there exist x, y ∈ U with

lim sup
n→∞

d(T nx, T ny) > δ}.

Here we set sup∅ = 0 by convention. Various definitions of sensitivity, formally
give us different Lyapunov numbers. Nevertheless, as was shown in [26], for minimal
topologically weakly mixing systems all these Lyapunov numbers are the same.

The motivation of [26] comes from the following proposition according to [5]:

Proposition 1.1. The following conditions are equivalent :

1. (X,T ) is sensitive.

2. There exists δ > 0 such that for every x ∈ X and every neighborhood Ux of

x, there exists y ∈ Ux with lim supn→∞ d(T nx, T ny) > δ.
3. There exists δ > 0 such that in any opene U in X there are x, y ∈ U and a

nonnegative integer n with d(T nx, T ny) > δ.
4. There exists δ > 0 such that in any opene U ⊂ X there are x, y ∈ U with

lim supn→∞ d(T nx, T ny) > δ.

Note that an analogue of Proposition 1.1 can be obtained for multi-sensitive
systems (Proposition 5.2). Thus following the line in [26], we can give quantitative
measures for the multi-sensitivity of a dynamical system. Precisely, we introduce
the following several quantities (we still call them Lyapunov numbers):

Lm,r = sup{δ : for any finite collection x1, . . . , xk of points in X and

any system of open neighborhoods Ui ∋ xi (i = 1, . . . , k);

there exist points yi ∈ Ui and a nonnegative integer n

with min
1≤i≤k

d(T nxi, T
nyi) > δ};

Lm,r = sup{δ : for any finite collection x1, . . . , xk of points in X and

any system of open neighborhoods Ui ∋ xi (i = 1, . . . , k);

there exist points yi ∈ Ui with

lim sup
n→∞

min
1≤i≤k

d(T nxi, T
nyi) > δ};

Lm,d = sup{δ : for any finite collection U1, . . . , Uk of opene subsets of X ,

there exist xi, yi ∈ Ui and a nonnegative integer n with

min
1≤i≤k

d(T nxi, T
nyi) > δ};

Lm,d = sup{δ : for any finite collection U1, . . . , Uk of opene subsets of X ,

there exist xi, yi ∈ Ui with lim sup
n→∞

min
1≤i≤k

d(T nxi, T
nyi) > δ}.

It is not striking that these new Lyapunov numbers Lm,r,Lm,r,Lm,d and Lm,d are

all related to each other. In particular, we prove that: Lm,r = Lm,r for a system

with a dense set of distal points (Proposition 5.4); Lm,d = Lm,d for a transitive
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system (Lemma 5.5) and Lm,d = Lm,d = diam(X) and Lm,r = Lm,r > 0 for a
nontrivial weakly mixing system (Proposition 5.6).

The paper is organized as follows. In section 2 we recall from topological dy-
namics some basic concepts and properties used in later discussions. In section 3
we study transitive compact systems. Observe that any weakly mixing system is
transitive compact, we will show that any transitive compact M-system is weakly
mixing (Corollary 3.10), and provide non totally transitive (and hence non weakly
mixing), transitive compact systems in both proximal and non-proximal cases (The-
orem 3.14). In section 4 we explore the implications among transitive compactness
and other various stronger forms of sensitivity, in particular, we show that multi-
sensitivity is equivalent to both thick sensitivity and thickly syndetic sensitivity
for M-systems (Theorem 4.2), and that any transitive compact system is Li-Yorke
sensitive (Theorem 4.5) and furthermore multi-sensitive if it is not proximal (The-
orem 4.7). In section 5 we carry out quantitative analysis for multi-sensitivity by
studying the relationships between the above introduced four new Lyapunov num-
bers. In section 6 we explore further study for multi-sensitivity, and prove that any
multi-sensitive system has positive topological sequence entropy (Proposition 6.1).
In the last section we consider some related properties and open questions.

Acknowledgements. The first, third and fourth authors acknowledge the hos-
pitality of the Max-Planck-Institute für Mathematik (MPIM) in Bonn, where a
substantial part of this paper was written during the Activity “Dynamics and Num-
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thank Xiangdong Ye for sharing his joint work [31, 41], and thank the referee for
comments that have resulted in substantial improvements to this paper.

The first author was supported by NNSF of China (11225105, 11431012), the
fourth author was supported by NNSF of China (11271078).

2. Preliminaries

In this section we recall standard concepts and results used in later discussions.

2.1. Transitivity, mixing and minimality. A point x ∈ X is called fixed if
Tx = x, periodic if T nx = x for some n ∈ N, and transitive if its orbit orbT (x) =
{T nx : n = 0, 1, 2, ...} is dense in X . Denote by Tran(X,T ) the set of all transitive
points of (X,T ). Since T is surjective, the system (X,T ) is transitive if and only if
Tran(X,T ) is a dense Gδ subset of X .

The system (X,T ) is called minimal if Tran(X,T ) = X . In general, a subset
A of X is T -invariant if TA = A, and positively T -invariant if TA ⊂ A. If A
is a closed, nonempty, T -invariant subset then (A, T |A) is called the associated
subsystem. A minimal subset of X is a nonempty, closed, T -invariant subset such
that the associated subsystem is minimal. Clearly, (X,T ) is minimal if and only
if it admits no a proper, closed, nonempty, positively T -invariant subset. A point
x ∈ X is called minimal if it lies in some minimal subset. In this case, in order
to emphasize the underlying system (X,T ) we also say that x ∈ X is a minimal

point of (X,T ). Zorn’s Lemma implies that every closed, nonempty, positively T -
invariant set contains a minimal set. Note that by the classic result of Gottschalk
a point x ∈ X is minimal if and only if NT (x, U) = {n ∈ Z+ : T nx ∈ U} is syndetic
for any neighborhood U of x, and by [40, Corollary 3.2] for any k ∈ N a point is
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a minimal point of (X,T ) if and only if it is a minimal point of (X,T k), here T k

denotes the composition map of k copies of the map T .
An M-system is a transitive system with a dense set of minimal points [15]. Let

(X,T ) and (Y, S) be topological dynamical systems and k ∈ N. The product system
(X × Y, T × S) is defined naturally, and denote by (Xk, T (k)) the product system
of k copies of the system (X,T ) for each k ∈ N.

Recall that the system (X,T ) is totally transitive if (X,T k) is transitive for each
k ∈ N; is (topologically) weakly mixing if the product system (X × X,T × T ) is
transitive; and is topologically mixing if NT (U, V ) is cofinite for any opene sets U, V
in X , where we say that S ⊂ Z+ is cofinite if S ⊃ {m,m+ 1,m+ 2, . . . } for some
m ∈ N. Note that the system (X,T ) is weakly mixing if and only if NT (U, V ) is a
thick set for any opene sets U, V in X by [11] and [35], in particular, any weakly
mixing system is totally transitive.

We say that (X,T ) is topologically ergodic (thickly syndetically transitive, re-
spectively) if the set NT (U, V ) is syndetic (thickly syndetic, respectively) for any
opene U, V ⊂ X . Note that any minimal system is topologically ergodic, and a
dynamical system (X,T ) is thickly syndetically transitive if and only if (X,T ) is
not only weakly mixing but also topologically ergodic [23, Theorem 4.7].

We will say that a point x ∈ X is distal if it is not proximal to any another point
from the closure of the orbit {T nx : n ∈ Z+}. Recall that a dynamical system
(X,T ) is called proximal if ProxT (X) = X2, and is distal if any point of X is
distal. The system (X,T ) is proximal if and only if (X,T ) has the unique fixed
point, which is the only minimal point of (X,T ) (e.g. see [5]).

2.2. Equicontinuity and sensitivity. A pair of points x, y ∈ X is called a Li-

Yorke pair if lim infn→∞ d(T nx, T ny) = 0 while lim supn→∞ d(T nx, T ny) > 0, and
a dynamical system (X,T ) is called spatio-temporally chaotic if for any point x ∈ X
and its neighborhood Ux there is a point y ∈ Ux such that the pair x, y is Li-Yorke
[8]. The system (X,T ) is cofinitely sensitive if there exists δ > 0 such that ST (U, δ)
is cofinite for any opene U ⊂ X (see [33]), and is Li-Yorke sensitive if there exists
δ > 0 such that for any point x ∈ X and its neighborhood Ux there is a point
y ∈ Ux with lim infn→∞ d(T nx, T ny) = 0 while lim supn→∞ d(T nx, T ny) > δ (see
[5]). It is clear that Li-Yorke sensitivity is much stronger than both sensitivity and
spatio-temporal chaos.

The Lyapunov stability or, in other words, equicontinuity is the opposite to the
notion of sensitivity. A dynamical system (X,T ) is equicontinuous if {T n : n ≥ 0}
is equicontinuous at any point of X , equivalently, for every ǫ > 0 there exists a
δ > 0 such that d(x, x′) < δ implies d(T nx, T nx′) < ǫ for any n ∈ N. Remark that
each dynamical system admits a maximal equicontinuous factor.

Following [19], recall that x ∈ X is syndetically equicontinuous if for any ǫ >
0 there exist open U ⊂ X containing x and a syndetic set N ⊂ N such that
d(T nx, T nx′) ≤ ǫ whenever x′ ∈ U and n ∈ N . Denote by Eqsyn(X,T ) the set of
all syndetically equicontinuous points of (X,T ).

2.3. Other concepts. Recall that S ⊂ N is an IP set if there exists {pk : k ∈
N} ⊂ N with {pi1 + · · · + pik : k ∈ N and i1 < · · · < ik} ⊂ S. Denote by Fip the
family of all IP sets. Notice that for an IP set S, S = S1 ∪ S2 implies that either
S1 or S2 is an IP set by Hindman’s theorem (see for example [12, Theorem 8.12]).
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Recall that S ⊂ N is an IP∗ set if S ∩ T 6= ∅ for each IP set T ⊂ N. It
is easy to see that the intersection of an IP set and an IP∗ set is an infinite set.
Note that by [12, Theorem 9.11]: x ∈ X is distal if and only if NT (x, U) is an
IP∗ set for any neighborhood U of x; and for distal points xi ∈ Xi of the system
(Xi, Ti), i = 1, . . . , k, the point (x1, . . . , xk) ∈ X1 × · · · ×Xk is also a distal point
of the system (X1 × · · · ×Xk, T1 × · · · × Tk).

Let (X,T ) and (Y, S) be topological dynamical systems. Recall that by a factor

map π : (X,T ) → (Y, S) we mean that π : X → Y is a continuous surjection with
π ◦ T = S ◦ π. In this case, we call π : (X,T ) → (Y, S) an extension; and (X,T )
an extension of (Y, S), (Y, S) a factor of (X,T ). If, additionally, π : X → Y is
almost one-to-one, that is, there exists a dense subset Y0 ⊂ Y such that π−1(y) is a
singleton for each y ∈ Y0, then we also call (X,T ) an almost one-to-one extension of

(Y, S). It is easy to show that the transitive compactness property of a dynamical
system (X,T ) is preserved by a factor map.

Let A be a nonempty finite set. We call A the alphabet and elements of A are
symbols. The full (one-side) A-shift is defined as

Σ = {x = {xi}
∞
i=0 : xi ∈ A for all i ∈ Z+}.

We equip A with the discrete topology and Σ with the product topology. Usually
we write an element of Σ as x = {xi}∞i=0 = x0x1x2x3 . . . The shift map σ : Σ → Σ
is a continuous map given by

x = {xi}
∞
i=0 7→ σx = {xi+1}

∞
i=0.

That is, σ(x) is the sequence obtained by dropping the first symbol of x. A full
binary shift is the full 2-shift.

A block over Σ is a finite sequence of symbols and its length is the number of its
symbols. An n-block stands for a block of length n. The set of all blocks over Σ is
denoted by Σ∗. The concatenation of two blocks u = a1 . . . ak and v = b1 . . . bl is
the block uv = a1 . . . akb1 . . . bl. We write un for the concatenation of n ≥ 1 copies
of a block u and u∞ for the sequence uuu · · · ∈ Σ. By x[i,j] we denote the block
xixi+1 . . . xj , where 0 ≤ i ≤ j and x = {xk}∞k=0 ∈ Σ. X ⊂ Σ is called a subshift if
it is a nonempty, closed, σ-invariant subset of Σ. A cylinder of an n-block w ∈ Σ∗

in a subshift X is the set C[w] = {x ∈ X : x[0,n−1] = w}. The collection of all
cylinders is a basis of the topology of X .

Now let us recall the definition of topological sequence entropy for a dynamical
system (X,T ) by using the classical Bowen-Dinaburg definition of topological en-
tropy. Consider an increasing sequence N = n1 < n2 < . . . of N and define n0 = 0
by convention. For any k ∈ N the function dk(x, y) = max0≤j≤k−1 d(T

njx, T njy)
defines a metric on X equivalent to d. Now fix an integer k ≥ 1 and ǫ > 0. A
subset E ⊂ X is called (k, T, ǫ)-separated (with respect to N ), if for any two dis-
tinct points x, y ∈ E, dk(x, y) > ǫ. Denote by sep(k, T, ǫ) the maximal cardinality
of a (k, T, ǫ)-separated set in X and hN (T, ǫ) = lim supk→∞

1
k
log sep(k, T, ǫ). It is

obvious that hN (T, ǫ1) ≥ hN (T, ǫ2) when ǫ1 < ǫ2. The topological sequence entropy

of (X,T ) along the sequence N is defined by

hN (T ) = lim
ǫ→0

lim sup
k→∞

1

k
log sep(k, T, ǫ).

We also call it the topological entropy of (X,T ) in the case of N = {1, 2, . . .}.
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3. Transitive compactness

In this section we study basic properties of transitive compact systems. We will
show that the ωNT

-limit sets are positively invariant closed subsets and in fact
invariant closed subsets if the system is weakly mixing. Even though any transitive
compact M-system is weakly mixing and observe that each weakly mixing system
is transitive compact, there exist non totally transitive (and hence non weakly
mixing), transitive compact systems in both proximal and non-proximal cases.

Recall that a dynamical system (X,T ) is transitive compact, if for any point
x ∈ X there exists a point y ∈ X such that NT (x,Gy) ∩ NT (U, V ) 6= ∅ for any
neighborhood Gy of y and any opene subsets U, V of X . Note that if (X,T ) is
topologically transitive then NT (U1, U2) is infinite for any opene subsets U1, U2 ⊂
X . Similarly, we can prove that in the above definition of transitive compactness
the set NT (x,Gy) ∩NT (U, V ) is always infinite.

Lemma 3.1. Let (X,T ) be a transitive compact system and x ∈ X. Then the set

NT (x,Gy) ∩ NT (U, V ) is infinite for any y ∈ ωNT
(x), neighbourhood Gy of y and

opene sets U, V in X.

Proof. Assume the contrary that there exist opene sets U, V in X and a point
z ∈ ωNT

(x) with a neighborhood Gz of z such that NT (x,Gz)∩NT (U, V ) is finite,
say NT (x,Gz) ∩NT (U, V ) = {n1, . . . , nk}. As the non-singleton space X contains
no isolated points, we can take an opene subset U1 ⊂ U small enough such that

V1 := V \
⋃k

i=1 T
niU1 is an opene subset of X . By the construction we have

NT (U1, V1) ⊂ NT (U, V ) and then NT (x,Gz) ∩NT (U1, V1) = ∅, a contradiction to
the selection of the point z ∈ ωNT

(x). This finishes the proof. �

Lemma 3.2. The following conditions are equivalent:

(1) (X,T ) is transitive compact.

(2) (X,T ) is topologically transitive and for any point x ∈ X there exists a point

z ∈ X, such that NT (x,G) ∩ NT (W,T−kW ) 6= ∅ for any neighborhood G
of z, opene W in X and k ∈ Z+.

Proof. (1) ⇒ (2) is obvious. Just take U = W , V = T−kW.
(2) ⇒ (1) Fix a point x ∈ X . Let z be a point of X such that NT (x,G) ∩

NT (W,T−kW ) 6= ∅ for any neighborhood G of z, opene W in X and k ∈ Z+.
We are going to show z ∈ ωNT

(x). Let U and V be opene sets in X . Since
(X,T ) is transitive, there exists m ∈ Z+ such that TmV ∩ U 6= ∅. Now let
W = V ∩T−mU 6= ∅. Then NT (x,G)∩NT (W,T−mW ) 6= ∅, therefore there exists
s ∈ Z+ such that T sx ∈ G and T sW ∩ T−mW 6= ∅. Hence ∅ 6= T s+mW ∩W =
T s+m(V ∩ T−mU) ∩ V ∩ T−mU ⊂ T sU ∩ V and we are done. �

Notice that for topological transitive systems the ω-limit set of any point is either
the whole space or a nowhere dense set in the space. In the following we will obtain
a similar result for the ωNT

-limit sets in a transitive compact system (X,T ), which
comes from the following general fact about the structure of the ωNT

-limit sets.

Lemma 3.3. ωNT
(x) is a positively T -invariant closed subset of X for any x ∈ X.

Proof. Let y ∈ ωNT
(x) and GTy be a neighborhood of Ty. For each NT (U, V ) ∈

NT , as T−1(GTy) is a neighborhood of y and NT (U, T
−1V ) ∈ NT , we may take

n ∈ NT (x, T
−1GTy) ∩ NT (U, T

−1V ) by the assumption of y ∈ ωNT
(x), and then
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n+1 ∈ NT (x,GTy)∩NT (U, V ). By the arbitrariness of NT (U, V ) and GTy we have

Ty ∈ ωNT
(x). Now let z ∈ ωNT

(x). In any open neighborhood Gz of the point z
we can find a point y ∈ ωNT

(x), and then NT (x,Gz)∩NT (U, V ) 6= ∅ as Gz is also
a neighborhood of y. This shows z ∈ ωNT

(x). Summing up, ωNT
(x) is a positively

T -invariant closed subset of X . �

Applying Lemma 3.3 we have directly:

Corollary 3.4. Let (X,T ) be a transitive compact system and x ∈ X. Then:

(1) either ωNT
(x) = X or ωNT

(x) is nowhere dense in X.

(2) if x is a minimal point, say M to be the minimal subset containing x, then
ωNT

(x) = ωT (x) = M .

Proof. (1) The conclusion follows from the facts that each transitive compact sys-
tem is transitive, and that any positively T -invariant closed subset in a transitive
system is either the whole space or a nowhere dense subset (see [27]).

(2) The conclusion follows from Lemma 3.3 and the fact of ∅ 6= ωNT
(x) ⊂

ωT (x) ⊂ M and the minimality of the subset M . �

It is not hard to show that the ω-limit set of a system (X,T ) is not only positively
T -invariant but also T -invariant. From Lemma 3.3 it seems reasonable to expect
that each ωNT

-limit set is more than positively T -invariant, that is, is also T -
invariant. The answer to the question stands open for the general case, while we
can prove:

Proposition 3.5. Let (X,T ) be a weakly mixing system and x ∈ X. Then the

subset ωNT
(x) is T -invariant.

Proof. It suffices to consider the case of ωNT
(x) 6= ∅ (in fact, there exists only this

case for a weakly mixing system as explained later). Let y ∈ ωNT
(x). By Lemma

3.3, we only need to find some z ∈ ωNT
(x) with Tz = y.

For each k ∈ N we take a finite open cover Uk of X with diam(Uk) <
1
k
and a

neighborhood Wk of y with diam(Wk) < 1
k
. As (X,T ) is weakly mixing, by [11]

there exist opene subsets U1, V1 of X such that

NT (U1, V1) ⊂
⋂

U,V ∈U1

NT (U, V ).

As y ∈ ωNT
(x), let n1 ∈ NT (x,W1) ∩NT (T

−1U1, V1). We may assume n1 ∈ N by
Lemma 3.1. Now assume that positive integers n1 < · · · < nm and opene subsets
U1, V1, . . . , Um, Vm of X have been constructed, where m ∈ N, applying [11] again
to weakly mixing (X,T ) we can choose opene subsets Um+1, Vm+1 of X such that

(3.1) NT (Um+1, Vm+1) ⊂
⋂

U,V ∈Um+1

NT (U, V ) ∩
m
⋂

i=1

NT (Ui, Vi).

And then applying Lemma 3.1 to the assumption of y ∈ ωNT
(x), we can choose

nm+1 ∈ NT (x,Wm+1) ∩NT (T
−1Um+1, Vm+1) with nm < nm+1.

By choosing a subsequence if necessary we may assume that the sequence T ni−1x
tends to z ∈ X . From the above construction it is easy to check Tz = y. Now we
will finish the proof by showing z ∈ ωNT

(x). Let Gz be a neighborhood of z and
U ′, V ′ be opene subsets of X . By the above construction, T ni−1x belongs to Gz

if i is large enough, and we may take opene subsets U ′
t , V

′
t ∈ Ut for some t ∈ N
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such that U ′
t ⊂ U ′ and V ′

t ⊂ V ′. We may assume that t is large enough and hence
nt − 1 ∈ NT (x,Gz). Additionally, nt ∈ NT (T

−1Ut, Vt) and then by (3.1) one has

nt − 1 ∈ NT (Ut, Vt) ⊂ NT (U
′
t , V

′
t ) ⊂ NT (U

′, V ′).

In particular, NT (x,Gz) ∩ NT (U
′, V ′) 6= ∅. This shows z ∈ ωNT

(x) by the arbi-
trariness of Gz and U ′, V ′, which finishes the proof. �

It was first observed in [5] that each weakly mixing system (X,T ) is transi-
tive compact by applying [11] to (X,T ) (and hence there exists a transitive com-
pact, non-minimal, M-system, as there are many weakly mixing, non-minimal, M-
systems). The following result extends it a little bit.

Lemma 3.6. Let (X,T ) be a weakly mixing system, x ∈ X and W be a closed

subset of X such that NT (x,W ) is syndetic. Then ωNT
(x) ∩W 6= ∅.

Proof. Assume the contrary that ωNT
(x) ∩ W = ∅. Then for every y ∈ W there

exists a neighborhood Gy of the point y and opene subsets Uy, Vy of X such that

NT (x,Gy) ∩NT (Uy, Vy) = ∅.

By the compactness of W , we may choose y1, . . . , yk such that {Gy1
, . . . Gyk

} covers

W . As the system (X,T ) is weak mixing,
⋂k

i=1 NT (Uyi
, Vyi

) is a thick set by [11],
and then, by the assumption that NT (x,W ) is syndetic, there exists

n ∈
k
⋂

i=1

NT (Uyi
, Vyi

) ∩NT (x,W ).

In particular, T nx ∈ W and then T nx ∈ Gyj
for some 1 ≤ j ≤ k. This shows

n ∈ NT (x,Gyj
)∩NT (Uyj

, Vyj
), a contradiction to the selection of Gyj

, Uyj
, Vyj

. �

In the following we shall prove that the difference between a transitive compact
system and a weakly mixing system is not too much. For example, analogously as
it was done for weakly mixing systems in [5, Theorem 3.8] one can prove:

Proposition 3.7. Let (X,T ) be a transitive compact system. Then for every x ∈ X
the proximal cell ProxT (x) is a dense Gδ subset of X.

The following result provides sufficient and necessary conditions for a system
being weakly mixing. Recall that each weakly mixing system is transitive compact.

Proposition 3.8. The following conditions are equivalent:

(1) (X,T ) is weakly mixing.

(2) x ∈ ωNT
(x) for each x ∈ X ′, where X ′ is a dense subset of X.

(3) ωNT
(x0) = X for some point x0 ∈ X.

(4) ωNT
(x) = X for each x ∈ X ′′, where X ′′ is a dense Gδ subset of X.

Proof. (2) ⇒ (1) Let U, V be opene subsets of X and we may take a point x ∈
U ∩X ′ by the density of X ′. As x ∈ ωNT

(x), NT (x, U) ∩NT (U, V ) 6= ∅ and then
NT (U,U) ∩ NT (U, V ) 6= ∅. By the arbitrariness of U, V we have that (X,T ) is
weakly mixing by applying [35, Lemma].

(3) ⇒ (1) Let U1, U2, V1, V2 be opene subsets in X and take y1 ∈ U1, y2 ∈ V1.
Observing ωNT

(x0) = X , in particular, y1 ∈ ωNT
(x0), there exists k ∈ Z+

such that T kx0 ∈ U1, and, in addition, by y2 ∈ ωNT
(x0) we may choose

n ∈ NT (x0, V1) ∩ NT (T
−kU2, V2) with n > k by Lemma 3.1. In particular,
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n − k ∈ NT (U1, V1) ∩ NT (U2, V2). Then the system (X,T ) is weakly mixing by
the arbitrariness of U1, U2, V1, V2.

(4) ⇒ (3) and (4) ⇒ (2) are direct, it remains to prove (1) ⇒ (4). Now let (X,T )
be a weakly mixing system, and then Tran(X2, T (2)) is a dense Gδ subset of X2. It
suffices to show ωNT

(x) = X for each point (x, y) ∈ Tran(X2, T (2)). Let G, U , V be
opene sets in X . Obviously, y ∈ Tran(X,T ), and hence there is m ∈ Z+ such that
Tmy ∈ U . Since (x, y) is transitive, there exists n ∈ NT (x,G)∩NT (y, T

−mV ) 6= ∅.
Then T nx ∈ G and T nU ∩ V 6= ∅, because T n+my ∈ V and Tmy ∈ U . Hence for
any opene sets G, U , V , NT (x,G) ∩NT (U, V ) 6= ∅. That is, ωNT

(x) = X . �

Applying Corollary 3.4 (2) to Proposition 3.8, we have following direct corollaries:

Corollary 3.9. A dynamical system (X,T ) is minimal and weakly mixing if and

only if ωNT
(x) = X for each x ∈ X.

Corollary 3.10. Let (X,T ) be an M -system. Assume ωNT
(x) 6= ∅ for any min-

imal point x ∈ X. Then (X,T ) is weakly mixing. In particular, each transitive

compact M -system is weakly mixing.

Remark that Downarowicz and Ye constructed a ToP system with positive en-
tropy which is not totally transitive (and hence not weakly mixing) [10, Theorem
2], recall that a system (X,T ) is a ToP system if every point is either transitive or
periodic. Thus by Corollary 3.10 the constructed system is not transitive compact.

Note that if the system (X,T ) is topologically mixing then it is easy to show
from the definitions that ωNT

(x) coincides with ωT (x) for any point x ∈ X . In
the following let us show that it may happen ωNT

(x) ( ωT (x) for a weakly mixing
system (X,T ) and some point x ∈ X . Remark that in Proposition 3.5 we have
proved the invariance of the ωNT

-limit sets.

Theorem 3.11. There is a weakly mixing system (X,T ) and a point x ∈ X such

that ωNT
(x) ( ωT (x).

Proof. Let Σ = {0, 1}Z+ and σ : Σ → Σ be the full (one-side) shift. Recall
that the base for the open sets in Σ is given by the collection of all cylinder sets
C[c0c1c2 . . . cm] = {x ∈ Σ : xi = ci for i ≤ m}.

Let P be a subset of N and we define ΛP = {x ∈ Σ : xi = xj = 1, i 6= j ⇒ |i−j| ∈
P}. The set ΛP is a closed σ-invariant subset of Σ, i.e., ΛP is a subshift (in the
case of ΛP 6= ∅). So we can consider the dynamical system (X,T ) := (ΛP , σ|ΛP

).
In [28] (see also [24]) the authors proved that if P is thick, then (X,T ) is weak
mixing, and if N \ P is infinite, then (X,T ) is not topologically mixing.

Let P := {10n + s : n ∈ N, 1 ≤ s ≤ n}. Obviously P is thick. (X,T ) is a weakly
mixing system, but not topologically mixing. So, there is a chance for it to have a
point with the desired property. We are going to define points x, y ∈ X such that
there is a neighbourhood Uy of y and opene U , V with NT (x, Uy)∩NT (U, V ) = ∅.

Let y = 101010∞. We have y ∈ X since the only positions of one’s in this
sequence are 0 and 11 and 11 ∈ P . Denote Uy = C[10101].

We define x as a limit of a sequence of the starting blocks (Wn)
∞
n=1. We do it by

induction. On every step in order to define the next block we add to the previous
one some amount of one’s and zero’s. Let W0 = W = 10101 and suppose that
we have already defined Wn. Let bn be the position of the last digit in Wn (the
length of Wn is bn +1). To obtain Wn+1 we define the digits on the positions s for
bn < s ≤ 10bn+12 + bn +12. We set 1 on the following positions: 10bn+12 + bn +12
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and 10bn+12 + bn + 1. For the other s from this interval let xs = 0. We see that
Wn+1 = Wn0

anW for an = 10bn+12 and then x = W0a1W0a2W . . . In order to
prove that x ∈ X we need to check if for every n ≥ 0, Wn+1 satisfies the condition
of the space X . Under the assumption that Wn satisfies this condition we need to
check only the elements which we have added. Among these elements we had only
two one’s. The difference between the numbers of their positions is 11. We have
that 10bn+12 + s ∈ P , where s ∈ [1, bn + 12]. Then, for any 0 ≤ i ≤ bn with xi = 1
we have 10bn+12 + bn + 12 − i ∈ P and 10bn+12 + bn + 1 − i ∈ P . Hence x which
we have constructed as a limit of the blocks Wn belongs to X . Finally, it is easy to
see that an = 10bn+12 > 2bn ≥ 2an−1 so an tends to infinity. Moreover, y ∈ ωT (x)
follows from NT (x, Uy) = {10bn+12 + bn + 1|n ∈ N}, because the numbers which
belong to this set are exactly the positions where every block W starts.

Now we need to define U and V . Let U = Uy = C[10101] and V = C[010101].
These two open sets have a nonempty intersection with X , and so NT (U, V ) is a
thick set. We have that s+12 ∈ NT (U, V ) (implying s ∈ N) if and only if there exists
a point z ∈ X which begins by 10101A(s)010101 where the length of A(s) is equal to
s. Thus we have s+13, s+24, s+2 ∈ P . Then 10m+1 ≤ s+2, s+13, s+24 ≤ 10m+m
for some m ∈ N. So 10m + 11 ≤ s + 12 ≤ 10m + m − 12. So in other words for
every k ∈ NT (U, V ) there is m ∈ N such that 10m + 11 ≤ k ≤ 10m +m− 12. But
now it is easy to see that k 6= 10bn+12 + (bn + 12)− 11(= 10bn+12 + bn + 1), so k
can not be an element of NT (x, Uy). �

Though a transitive compact system is weakly mixing if we add some weak
sufficient conditions over the system, there exist many transitive compact, but not
weakly mixing systems. Before proceeding, first we need the following property of
the proximal systems. Recall that a system is proximal if and only if it contains
the unique fixed point, which is the only minimal point of the system [5].

Lemma 3.12. Let (X,T ) be a proximal dynamical system, p ∈ X its fixed point

with a neighborhood Up and x ∈ X. Then the set NT (x, Up) is thickly syndetic.

Proof. First we are going to prove that NT (x, Up) is a syndetic set. As p is the
unique minimal point of the system, for any point z ∈ X there is m(z) ∈ Z+ with
Tm(z)z ∈ Up, and then the family of open sets {T−iUp : i ∈ Z+} forms an open
cover of X . By the compactness of the space X , there exists an integer N ∈ N

such that {Up, T
−1Up, . . . , T

−NUp} forms a cover of X . Then, for every m ∈ Z+,
Tm+ix ∈ Up for some 0 ≤ i ≤ N , which shows that NT (x, Up) is a syndetic set with
gaps bounded by the integer N .

Now for each n ∈ N we define Up,n =
⋂n

i=0 T
−iUp, which is a neighborhood of

p as Up is a neighborhood of the fixed point p. Observe {m,m+ 1, . . . ,m+ n} ⊂
NT (x, Up) for each m ∈ NT (x, Up,n), where NT (x, Up,n) is a syndetic set by the
above argument. Then NT (x, Up) is thickly syndetic by the arbitrariness of n. �

We also need the following

Lemma 3.13. Let (X,T ) be a minimal weakly mixing system, x ∈ X with a

neighborhood Ux and n,m ∈ N. Then the set {k ∈ Z+ : T kn+mx ∈ Ux} is syndetic.

Proof. Observe that each weakly mixing system is totally transitive, in particular,
(X,T n) is transitive. Note that each minimal point of (X,T ) is also a minimal
point of (X,T n) by [40, Corollary 3.2], in particular, any point x ∈ X is a minimal
point of (X,T n). Then we obtain that (X,T n) is a minimal system.
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Now assume the contrary that the set {k ∈ Z+ : T kn+mx ∈ Ux} is not syn-
detic, and then there exists an increasing sequence k1 < k2 < . . . such that
{T kin+mx, T (ki+1)n+mx, . . . , T (ki+i)n+mx} ⊂ U c

x for each i ∈ N. By choosing a sub-
sequence if necessary we may assume that the sequence T kin+mx tends to x0 ∈ X
as i tends to infinity. And then orbTn(x0) = {x0, T

nx0, T
2nx0, . . . } ⊂ U c

x ( X by
the construction, a contradiction to the minimality of the system (X,T n). That is,
{k ∈ Z+ : T kn+mx ∈ Ux} is a syndetic set. �

Now we can show the existence of non totally transitive, transitive compact
systems. Recall that each weakly mixing system is totally transitive.

Theorem 3.14. There are non totally transitive, transitive compact systems.

Proof. We will show the existence of such systems in proximal case, and then by
modifying the construction to show the existence in non-proximal case.

1. Proximal case. Let (Y, F ) be a nontrivial proximal, topologically mixing
system (for the existence of such a system see some example [18]). Let q ∈ Y be
its (unique) fixed point and take a copy of it: the system (Yc, Fc) with its (unique)
fixed point qc ∈ Yc. Suppose that Y and Yc are disjoint and consider the wedge
sum X := Y ∨ Yc, i.e., the quotient space of the disjoint union of Y and Yc by
identifying q and qc, and then both topological spaces (Y, q) and (Yc, qc) with base
points look like subspaces of the wedge sum with the subspace topology. Let us
define a self-map T over X as follows:

T : x 7→

{

Fcyc if x = y ∈ Y

Fy if x = yc ∈ Yc

for any point x ∈ X . By the construction it is not hard to show that the map
T : X → X is a continuous surjection; and the system (X,T ) is not totally transitive
(observing T 2Y ⊂ Y and T 2Yc ⊂ Yc) and proximal with the unique minimal (in fact
fixed) point p := q ∼ qc, moreover, it is a transitive system, in fact, for any opene
subsets U, V of X we may find k ∈ Z+ with NT (U, V ) ⊃ {k, k + 2, . . . } (observing
that the systems (Y, F ) and its copy (Yc, Fc) are both topologically mixing).

Now let us show that the system (X,T ) is transitive compact by proving p ∈
ωNT

(x) for each point x ∈ X . Let Gp be a neighborhood of the fixed point p ∈ X
and U, V be opene subsets of X . As NT (x,Gp) is thickly syndetic by Lemma 3.12
andNT (U, V ) ⊃ {k, k+2, . . . } for some k ∈ Z+, we haveNT (x,Gp)∩NT (U, V ) 6= ∅.

In fact we can obtain more by proving ωNT
(x) = {p} for each x ∈ X (note that

since (X,T ) is topologically transitive, there exists a dense Gδ subset X0 of X with
ωT (x) = X for each x ∈ X0, in particular, ωNT

(x) ( ωT (x) for each x ∈ X0). It
is easy to check it for the case of x = p. Now assume that x ∈ Y \ Yc. Let z ∈ Y
be a point different from p. Take a neighborhood Gz ⊂ Y \ Yc. It is easy to check
that NT (x,Gz) consists of only even numbers. Now in Y we take an opene subset
U of X and in Yc we take an opene subset V of X . It is also easy to check that
NT (U, V ) consists of only odd numbers, in particular, NT (x,Gz) ∩NT (U, V ) = ∅,
and then z /∈ ωNT

(x). We can prove similarly that ωNT
(x)∩Yc \ Y = ∅. Summing

up, we obtain ωNT
(x) = {p}. The case of x ∈ Yc \ Y can be done similarly.

2. Non-proximal case. Now we are going to construct a non totally transitive,
non-proximal, transitive compact system by modifying the above construction.

Let (X,T ) be the non totally transitive, proximal, transitive compact system
constructed as above. We take a nontrivial minimal topologically mixing system
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(Z,R) (in particular, it is not proximal). Then the product system (X ×Z, T ×R)
is a non totally transitive, non-proximal system.

Now let us show that the system (X×Z, T ×R) is transitive compact by proving
ωNT×R

(x, z) = {p}×Z for each point x ∈ X and z ∈ Z. Let Gp be a neighborhood
of the point p ∈ X , Gz be a neighborhood of the point z ∈ Z and U, V be opene
subsets of X × Z. It is easy to obtain from the construction that NT×R(U, V ) ⊃
{k, k + 2, . . . } for some k ∈ Z+. As NT (x,Gp) is thickly syndetic by Lemma 3.12,
and NR(z,Gz) ∩ {k, k + 2, . . . } is a syndetic set by applying Lemma 3.13 to the
minimal topologically mixing (and hence weakly mixing) system (Z,R), we have

NT×R((x, z), Gp×Gz)∩NT×R(U, V ) = NT (x,Gp)∩NR(z,Gz)∩NT×R(U, V ) 6= ∅.

This shows (p, z) ∈ ωNT×R
(x, z), and then ωNT×R

(x, z) ⊃ {p} × Z by apply-
ing Lemma 3.3 (recall that the system (Z,R) is minimal). Moreover, observing
ωNT

(x) = {p} one has ωNT×R
(x, z) ⊂ {p} × Z, and hence finally ωNT×R

(x, z) =
{p} × Z. �

4. Implications among transitive compactness

and various stronger forms of sensitivity

In this section we study the relationships among transitive compactness and
other various stronger forms of sensitivity. Observe that multi-sensitivity and thick
sensitivity are equivalent for transitive systems [19, Proposition 3.2], we will show
that multi-sensitivity is equivalent to both thick sensitivity and thickly syndetic
sensitivity for M-systems, any minimal spatio-temporally chaotic system is thickly
sensitive, and that any transitive compact system is Li-Yorke sensitive and further-
more multi-sensitive if it is not proximal.

Any cofinitely sensitive system is clearly thickly syndetically sensitive, any
thickly syndetically sensitive system is multi-sensitive because the intersection of
finitely many thickly syndetically sets is also thickly syndetic, and any multi-
sensitive system is thickly sensitive [33] and [19, Proposition 3.2].

The following Figure 1 presents a comparison between stronger forms of sensi-
tivity for general topological dynamical systems.

Thickly

syndetical sensitivity
Cofinite sensitivity Multi-sensitivity

Sensitivity Thick sensitivity

Figure 1. General case.

In the following we will discuss the relationship between these various sensitivity
when we require some strong transitivity over the systems.

Proposition 4.1. If (X,T ) is a thickly sensitive M-system, then (X,T ) is thickly

syndetically sensitive.

Proof. Recall that if (X,T ) is an M-system, then (Xk, T (k)), the product system
of k copies of (X,T ), contains a dense set of minimal points for any k ∈ N. In
fact we can say more. Let x ∈ Tran(X,T ) and U1, . . . , Uk be opene subsets in X .
There are n1, . . . , nk ∈ N such that T n1x ∈ U1, . . . , T

nkx ∈ Uk. Since (X,T ) is
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an M-system, there is a minimal point x0 ∈ X sufficiently close to x such that
T n1x0 ∈ U1, . . . , T

nkx0 ∈ Uk. Thus U1 × · · · × Uk contains the minimal point
(T n1x0, . . . , T

nkx0) of (X
k, T (k)).

Let (X,T ), which is thickly sensitive, have a sensitivity constant δ > 0. Let U
be an opene subset in X and k ∈ N. Since ST (U, δ) is a thick set,

k
⋂

i=0

ST (T
−iU, δ) ⊃ {n ≥ k : {n− k, . . . , n− 1, n} ⊂ ST (U, δ)}.

Therefore there are a positive integer n0 ∈
⋂k

i=0 ST (T
−iU, δ), n0 ≥ k, and

xi, yi ∈ T−iU with d(T n0xi, T
n0yi) > δ, i = 0, 1, . . . , k. Moreover, we can choose

opene subsets Ui, Vi ⊂ T−iU such that d(T n0x′
i, T

n0y′i) > δ for all x′
i ∈ Ui

and y′i ∈ Vi, i = 0, 1, . . . , k. Again, since (X,T ) is an M-system, the system

(X2k+2, T (2k+2)) contains a dense set of minimal points, and there is a minimal
point (z0, z

′
0, z1, z

′
1, . . . , zk, z

′
k) ∈ U0 × V0 × U1 × V1 × · · · × Uk × Vk. Obviously,

S =

k
⋂

i=0

(NT (zi, Ui) ∩NT (z
′
i, Vi))

is a syndetic set. From the construction we get that ST (U, δ) ⊃ {m+ n0 − i : m ∈
S, i = 0, 1, . . . , k}, which is a thickly syndetic set. �

In particular, we have:

Theorem 4.2. Thickly syndetical sensitivity, multi-sensitivity and thick sensitivity

are all equivalent properties for an M-system.

The following Figure 2 presents a comparison between stronger forms of sensitiv-
ity for M -systems. Remark that any non-minimal M-system is thickly syndetically
sensitive [32, Theorem 8].

Cofinite sensitivity

Thickly

syndetical sensitivity
Multi-sensitivity Thick sensitivity

Sensitivity

Figure 2. M-systems.

The dichotomy theorem for minimal thickly sensitive systems, [19, Theorem
3.1], states that a minimal system is not thickly sensitive if and only if it is an
almost one-to-one extension of its maximal equicontinuous factor. Because any
transitive non-sensitive system is uniformly rigid [15, Lemma 1.2] and hence has
zero topological entropy [16, Proposition 6.3], then: any Toeplitz flow with positive
topological entropy is a minimal sensitive invertible system which is not thickly
sensitive (see [9] for a detailed construction of such a system).

When discussing minimal systems, we have the following result:
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Proposition 4.3. Let (X,T ) be a minimal system. If (X,T ) is spatio-temporally

chaotic then it is thickly sensitive.

Proof. Let πeq : (X,T ) → (Xeq, Teq) be the associated factor map from (X,T ) to
its maximal equicontinuous factor. Applying the dichotomy theorem [19, Theorem
3.1] to the minimal system (X,T ) we obtain that (X,T ) is not thickly sensitive if
and only if πeq : X → Xeq is almost one-to-one. Assume the contrary that (X,T )
is not thickly sensitive. Then we can take x ∈ X such that π−1(πx) is a singleton,
from which it is easy to see that (x, z) can not be a Li-Yorke pair for any z ∈ X\{x}.
Therefore (X,T ) is not spatio-temporally chaotic, a contradiction. �

Remark that in [41] Ye and Yu introduced and discussed block sensitivity and
strong sensitivity for several families. Applying the dichotomy theorems obtained
by them in [41] to the same proof of Proposition 4.3 one has that any minimal
spatio-temporally chaotic system is strongly IP-sensitive.

Note that the converse of Proposition 4.3 does not hold. Precisely, there
are invertible minimal cofinitely sensitive systems which are distal (and hence
not spatio-temporally chaotic): many standard examples provided in [12] are
such systems. For example, we consider a dynamical system (X,T ) given by
X = R2/Z2 and T : (x, y) 7→ (x + α, x + y) for α /∈ Q. It is well known that
(X,T ) is an invertible minimal distal system (see [12, Chapter 1]). Now for any
opene U ⊂ X take x0, y0 ∈ R/Z and δ > 0 with (x0 − δ, x0 + δ)× {y0} ⊂ U . Since

T n(x, y) =

(

x+ nα, nx+
n(n− 1)

2
α+ y

)

for any point (x, y) ∈ X and any n ∈ N,

the diameter of T nU is at least the length of the circle R/Z when n ∈ N is large
enough. That is, the system (X,T ) is cofinitely sensitive.

Also note that, as shown by the system constructed in [19, Example 3.7], the
assumption of minimality in Proposition 4.3 can not be relaxed. In [19, Example
3.7] a transitive non-minimal sensitive system is constructed such that 1) it is not
thickly sensitive; and 2) it contains a fixed point as its unique minimal set, and
hence the system is Li-Yorke sensitive by [5, Corollary 3.7].

It is shown that each minimal weakly mixing system is thickly syndetically sen-
sitive [32, Theorem 7], which can extended a little bit as follows. Observe that the
proofs of [32, Lemma 3 and Theorem 8] show that any topologically ergodic sys-
tem containing two different minimal subsets is thickly syndetically sensitive, and
remark that we have assumed that all dynamical systems interested are nontrivial.

Proposition 4.4. If a system (X,T ) is thickly syndetically transitive, then (X,T )
is thickly syndetically sensitive.

Proof. We take opene V1, V2 ⊂ X with δ = dist(V1, V2) > 0. Now let U ⊂ X be
an opene subset. By the assumption, both NT (U, V1) and NT (U, V2) are thickly
syndetic, and hence ST (U, δ) ⊃ NT (U, V1) ∩NT (U, V2) is also thickly syndetic. �

The following results show sensitivity in a transitive compact system.

Theorem 4.5. Any transitive compact system (X,T ) is Li-Yorke sensitive.

Proof. As for every x ∈ X the proximal cell ProxT (x) ⊂ X is a dense subset by
Proposition 3.7, then by [5, Theorem 3.6] it suffices to show that (X,T ) is sensitive.

As we have assumed that we are only interested in nontrivial dynamical systems.

Let
diam(X)

4
> ǫ > 0 and define δ =

diam(X)

2
− 2ǫ > 0. We will show that δ is a
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sensitive constant of (X,T ). Let x ∈ X with a neighborhood Ux. Let y ∈ ωNT
(x)

and take a point x1 ∈ X with d(x1, y) ≥
diam(X)

2
. Now consider opene subsets

By ∋ y and Bx1
∋ x1 such that their diameters is strictly smaller than ǫ. As y ∈

ωNT
(x), we may find an integerm ∈ Z+ and a point z ∈ Ux such that Tmx ∈ By and

Tm(z) ∈ Bx1
, and then d(Tmz, Tmx) ≥ d(y, x1)− d(Tmx, y)− d(Tmz, x1) > δ. �

In particular, any transitive compact system is sensitive and hence Lr > 0 and
Lr > 0. In fact, this point can be strengthened as follows, which was essentially
proved in [26], although there it was done for weakly mixing systems.

Proposition 4.6. Let (X,T ) be a transitive compact system. Then Lr = Lr > 0.

Moreover, the proof of Theorem 4.5 shows that it takes place Ld ≥
diam(X)

2
for any transitive compact system (X,T ), while this estimate is exact as shown by
the proximal, non weakly mixing, transitive compact system (X,T ) constructed in

Theorem 3.14: it is not hard to show Ld =
diam(X)

2
for the system (X,T ).

Recall that any transitive compact system is transitive, and thick sensitivity is
equivalent to multi-sensitivity for transitive systems [19, Proposition 3.2].

Theorem 4.7. Any non-proximal, transitive compact system is thickly sensitive.

Proof. Let (X,T ) be a non-proximal, transitive compact system (and hence it is
transitive), and let x ∈ Tran(X,T ). As (X,T ) is transitive compact, ωNT

(x) is a
nonempty, positively T -invariant, closed subset of X by Lemma 3.3, and then we
may take a minimal point y ∈ ωNT

(x). Since (X,T ) is non-proximal, there exists a
point z ∈ X such that lim infn→∞ d(T ny, T nz) > δ for some d(y, z) > δ > 0: if y is
a fixed point, then applying [5] to non-proximal (X,T ) we obtain another minimal
point z different from y; if y is not a fixed point then we define z = Ty.

Now let U be any opene subset of X . As x ∈ Tran(X,T ), there exist an opene
subset U0 containing x and an integer n−1 ∈ Z+ with T n−1U0 ⊂ U . Now let U0

y ,

U0
z be neighborhoods of y, z respectively such that the distance between U0

y and

U0
z is strictly larger than δ. As (X,T ) is transitive compact, by Lemma 3.1 we

may take n0 > n−1 such that T n0x ∈ U0
y and T n0(U0) ∩ U0

z 6= ∅, and then let

U1 be an opene set of X with U1 ⊂ U1 ⊂ U0 ∩ T−n0(U0
z ). Now assume that by

induction we have defined Uk, k ≥ 1. Let Uk
y , U

k
z be neighborhoods of points y, z

respectively such that the distance between T i(Uk
y ) and T i(Uk

z ) is strictly larger
than δ for all 0 ≤ i ≤ k. Applying again Lemma 3.1 to transitive compact (X,T )
we may take nk > nk−1 such that T nkx ∈ Uk

y and T nk(Uk) ∩ Uk
z 6= ∅, and then

let Uk+1 be an opene set of X with Uk+1 ⊂ Uk+1 ⊂ Uk ∩ T−nk(Uk
z ). Obviously,

⋂∞
k=1 Uk =

⋂∞
k=1 Uk is nonempty and from it we take a point x0. From the above

construction, it is easy to obtain ST (U, δ) ⊃ {n− n−1 : d(T nx, T nx0) > δ} and

{n ∈ Z+ : d(T nx, T nx0) > δ} ⊃
⋃

k∈N

{nk, nk + 1, . . . , nk + k},

in particular, ST (U, δ) is a thick set. Thus, (X,T ) is thickly sensitive. �

The following Figure 3 presents a comparison between stronger forms of sensi-
tivity for transitive systems. Remark that it is direct to see from the definition that
each weakly mixing system is multi-sensitive.
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Topologically mixing

Weak mixing
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Sensitivity

Figure 3. Topologically transitive systems.

Remark that each transitive compact system is Li-Yorke sensitive, and that there
are non-minimal M-systems which are not transitive compact (for example the ToP
system constructed by Downarowicz and Ye in [10, Theorem 2]).

5. Quantitative analysis for multi-sensitivity

In this section, to measure the multi-sensitivity of a dynamical system, we are
interested in relationships between the introduced Lm,r,Lm,r,Lm,d and Lm,d.

It is easy to see that (X,T ) is multi-sensitive if and only if Lm,d > 0, and

(5.1) Lm,d ≥ Lm,r ≥ Lm,r and Lm,d ≥ Lm,d ≥ Lm,r.

Moreover, we have the following

Lemma 5.1. Lm,d ≤ 2Lm,r.

Proof. We only need to consider the case Lm,d > 0 following [26, Proposition 2.1].
Let ǫ > 0 be small enough with Lm,d > 2ǫ. Now consider a collection of points

xi (i = 1, . . . , k) with neighborhoods Ui ∋ xi. Set V0,1 = U1, . . . , V0,k = Uk. Take

n0 ∈
k
⋂

i=1

ST (V0,i,Lm,d −
ǫ

2
).

Remark that for any δ > 0 if d(y1, y2) > 2δ then for all x ∈ X either d(y1, x) > δ
or d(y2, x) > δ. And then there exist y0,1 ∈ V0,1, . . . , y0,k ∈ V0,k such that

(5.2) min
1≤i≤k

d(T n0xi, T
n0y0,i) >

Lm,d − ǫ

2
.

Moreover, we can choose open neighborhoods V1,1 of y0,1 (with V1,1 ⊂ V0,1), . . . ,

V1,k of y0,k (with V1,k ⊂ V0,k) such that

(5.3) max
0≤n≤n0

max
1≤i≤k

diam(T nV1,i) ≤
ǫ

2
.



19

Again take

n1 ∈
k
⋂

i=1

ST (V1,i,Lm,d −
ǫ

2
)

and hence n1 > n0 by (5.3). We continue the process and define recursively (for
each m ≥ 2) open neighborhoods Vm,1 of some ym−1,1 (with Vm,1 ⊂ Vm−1,1), . . . ,

Vm,k of some ym−1,k (with Vm,k ⊂ Vm−1,k) and nm > nm−1 such that

(5.4) min
1≤i≤k

d(T nm−1xi, T
nm−1ym−1,i) >

Lm,d − ǫ

2

and

(5.5) max
0≤n≤nm−1

max
1≤i≤k

diam(T nVm,i) ≤
ǫ

2
, nm ∈

k
⋂

i=1

ST (Vm,i,Lm,d −
ǫ

2
).

Since by the construction, for each i = 1, . . . , k,
⋂

m≥1 Vm,i 6= ∅, we take a point yi
from the intersection (and so yi ∈ Ui). Directly from (5.4) and (5.5) we have

lim sup
n→∞

min
1≤i≤k

d(T nxi, T
nyi) ≥

Lm,d

2
− ǫ.

Thus the conclusion follows from the arbitrariness of ǫ > 0. �

As a consequence, we have:

Proposition 5.2. The following conditions are equivalent:

1. (X,T ) is multi-sensitive.

2. There exists δ > 0 such that for any finite collection x1, . . . , xk of points in

X and any system of open neighborhoods Ui ∋ xi (i = 1, . . . , k); there exist

points yi ∈ Ui and a nonnegative integer n with min1≤i≤k d(T
nxi, T

nyi) >
δ.

3. There exists δ > 0 such that for any finite collection x1, . . . , xk of points in

X and any system of open neighborhoods Ui ∋ xi (i = 1, . . . , k); there exist

points yi ∈ Ui with lim supn→∞ min1≤i≤k d(T
nxi, T

nyi) > δ.
4. There exists δ > 0 such that for any finite collection U1, . . . , Uk of opene

subsets of X, there exist xi, yi ∈ Ui with

lim supn→∞ min1≤i≤k d(T
nxi, T

nyi) > δ.

Before proceeding, we need:

Lemma 5.3. Given a dynamical system (X,T ), let δ > 0, k ∈ N and xi ∈ X with

a neighborhood Ui for each i = 1, . . . , k. If Lm,r > δ, then

N =

{

n ∈ N : min
1≤i≤k

d(T nxi, T
nyi) > δ for some y1 ∈ U1, . . . , yk ∈ Uk

}

∈ Fip.

Proof. By the assumption, N 6= ∅ as δ < Lm,r. Now assume that

A = {pi1 + · · ·+ pij : 1 ≤ i1 < · · · < ij ≤ l} ⊂ N

for some {p1, . . . , pl} ⊂ N with l ∈ N. We shall find pl+1 ∈ N such that pl+1+A0 ⊂
N with A0 = {0} ∪ A, and then obtain the conclusion by induction.
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Take xs,i ∈ X with T p1+···+pl−sxs,i = xi for each s ∈ A0 and any i =
1, . . . , k. Since δ < Lm,r, obviously we can choose ql > p1 + · · · + pl and

ys,i ∈ T−(p1+···+pl−s)Ui for each s ∈ A0 and any i = 1, . . . , k such that

(5.6) min
s∈A0

min
1≤i≤k

d(T qlxs,i, T
qlys,i) > δ.

Set pl+1 = ql − (p1 + · · ·+ pl) ∈ N and x′
s,i = T p1+···+pl−sys,i ∈ Ui for each s ∈ A0

and any i = 1, . . . , k. Then (5.6) means equivalently

min
s∈A0

min
1≤i≤k

d(T pl+1+sxi, T
pl+1+sx′

s,i) > δ,

that is, pl+1 +A0 ⊂ N , which finishes the proof. �

Then we have:

Proposition 5.4. Let (X,T ) be a system with a dense set of distal points. Then

Lm,r = Lm,r.

Proof. By (5.1) and Lemma 5.1 we have 2Lm,r ≥ Lm,r ≥ Lm,r. Thus we only need

prove Lm,r ≤ Lm,r in the case of Lm,r > 0.
Let δ > 0 be small enough with Lm,r > δ, and we take an open cover {V1, . . . , Vp}

of X with max1≤i≤p diam(Vi) < δ. Now let k ∈ N and xi ∈ X with a neighborhood
Ui for each i = 1, . . . , k, and for each s = (s1, . . . , sk) ∈ {1, . . . , p}k we set

Ns = {n ∈ N : T nx1 ∈ Vs1 , . . . , T
nxk ∈ Vsk}.

Observe from Lemma 5.3 that

N =

{

n ∈ N : min
1≤i≤k

d(T nxi, T
nyi) > Lm,r − δ for some y1 ∈ U1, . . . , yk ∈ Uk

}

is an IP set, and then N ∩ Nt is also an IP set for some t ∈ {1, . . . , p}k, because
N =

⋃

s∈{1,...,p}k(N ∩ Ns). Choose {q0, q1, q2, . . . } ⊂ N with {qi1 + · · · + qij : j ∈

N and 0 ≤ i1 < · · · < ij} ⊂ N ∩Nt, and hence q0 + T ⊂ N ∩Nt for some T ∈ Fip.
Since q0 ∈ N , there exists yi ∈ Ui for each i = 1, . . . , k such that

(5.7) min
1≤i≤k

d(T q0xi, T
q0yi) > Lm,r − δ.

Note that since the set of distal points is dense in X , we may assume that all points
y1, . . . , yk are distal. Then all of T q0y1, . . . , T

q0yk (and hence (T q0y1, . . . , T
q0yk) in

the product system (X× · · ·×X,T × · · ·×T )) are also distal points. In particular,

M =

{

n ∈ N : max
1≤i≤k

d(T q0yi, T
q0+nyi) < δ

}

is an IP∗ set [12, Theorem 9.11]. Thus M∩T 6= ∅, which is in fact an infinite set.
Observing (5.7), it is easy to check from the construction that d(T q0+rxi, T

q0+ryi) >
Lm,r − 3δ for each r ∈ M∩T and any i = 1, . . . , k (as r ∈ M and q0, q0 + r ∈ Nt).
Then the conclusion follows from the arbitrariness of δ > 0. �

We can not require Lm,r > 0 under the assumption of Proposition 5.4 even for a
minimal system with positive topological entropy, for example, the above mentioned
(in the previous section) Toeplitz flow with positive topological entropy.

When assume that the considered system is a transitive system, we have:

Lemma 5.5. Let (X,T ) be a transitive system. Then Lm,d = Lm,d.
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Proof. It suffices to show that Lm,d ≤ Lm,d in the case of Lm,d > 0. Let k ∈ N

and take opene U1, . . . , Uk ⊂ X . Let δ > 0 be small enough with Lm,d > δ.
By the definition there exist n ∈ N and x′

i, y
′
i ∈ Ui for each i = 1, . . . , k with

min1≤i≤k d(T
nx′

i, T
ny′i) > δ. Then, for each i = 1, . . . , k we can find open x′

i ∈
Vi ⊂ Ui and y′i ∈ Wi ⊂ Ui such that both diam(T nVi) and diam(T nWi) are small
enough, thus min1≤i≤k dist(T

nVi, T
nWi) > δ.

Since (X,T ) is transitive, take z ∈ Tran(X,T ) and then choose si, ti ∈ N with
T siz ∈ Vi and T tiz ∈ Wi for each i = 1, . . . , k. Observe that since m belongs to
N such that Tmz is sufficiently close to z, we have T si+mz ∈ Vi and T ti+mz ∈ Wi

for each i = 1, . . . , k, and hence min1≤i≤k d(T
n+si+mz, T n+ti+mz) > δ. Since

z ∈ Tran(X,T ), clearly there are infinitely manym1 < m2 < . . . in N such that each
Tmjz is close enough to z, and hence we obtain Lm,d ≥ δ by taking xi = T siz ∈ Ui

and yi = T tiz ∈ Ui for each i = 1, . . . , k, finishing the proof. �

By the same proof of [26, Theorem 4.1] one has:

Proposition 5.6. Let (X,T ) be a nontrivial weakly mixing system. Then Lm,d =

Lm,d = diam(X) and Lm,r = Lm,r > 0.

6. Further discusions

In this section we explore more properties for multi-sensitive systems, and prove
that any multi-sensitive system has positive topological sequence entropy.

As a direct corollary of [20, Theorem 4.3] and the dichotomy theorems [19,
Theorem 3.1 and Proposition 3.2], one has that any minimal multi-sensitive system
has positive topological sequence entropy. In fact, the conclusion remains true if
we remove the assumption of minimality.

Proposition 6.1. Let (X,T ) be a multi-sensitive system. Then (X,T ) has positive
topological sequence entropy.

Proof. We are going to define an increasing sequence N = {n1 < n2 < . . . } ⊂ N

and a sequence of (k + 1, T, ǫ)-separated subsets of X (with respect to N ) with
cardinality 2k, k = 1, 2, ... Then obviously we will have that hN (T ) ≥ log 2.

Let (X,T ) be a multi-sensitive system with a sensitivity constant 2δ > 0. Take
opene U(1), U(2) ⊂ X with dist(U(1), U(2)) > δ, and define V(1) = T−n1U(1), V(2) =

T−n1U(2) for an integer n1 ∈ N. Obviously any two points x1 ∈ V(1), x2 ∈ V(2)

are (2, T, δ)-separated. Since (X,T ) is multi-sensitive with the sensitivity con-
stant 2δ, the Lyapunov number Lm,r is not smaller than δ by Lemma 5.1
and hence there exist four points x(1,1), x(1,2) ∈ V(1) and x(2,1), x(2,2) ∈ V(2)

and an integer n2 > n1 with mini∈{1,2} d(T
n2x(i,1), T

n2x(i,2)) > δ. There-
fore they are (3, T, δ)-separated, as mini,j∈{1,2} d(T

n1x(1,i), T
n1x(2,j)) > δ and

mini∈{1,2} d(T
n2x(i,1), T

n2x(i,2)) > δ. Take a small enough neighborhood U(i,j)

of point T n2x(i,j) such that mini∈{1,2} dist(U(i,1), U(i,2)) > δ and we define V(i,j) =

T−n2U(i,j) ∩ V(i) for i, j ∈ {1, 2}.
Now assume that by induction we have defined the sequence of positive integers

n1 < · · · < nk and 2k points xs in open subsets Vs, s ∈ {1, 2}k such that

min
s,s′∈{1,2}k,s6=s′

max
1≤q≤k

dist(T nqVs, T
nqVs′) > δ,

and therefore the set of points {xs ∈ Vs, s ∈ {1, 2}k} is (k + 1, T, δ)-separated.
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Since (X,T ) is multi-sensitive, there exist nk+1 > nk and points x(s1,...,sk,1) ∈
V(s1,...,sk), x(s1,...,sk,2) ∈ V(s1,...,sk) with d(T nk+1x(s1,...,sk,1), T

nk+1x(s1,...,sk,2)) > δ

for any s1, . . . , sk ∈ {1, 2}k. So, the set of all these 2k+1 points is (k + 2, T, δ)-
separated (with respect to N ), because by the induction hypothesis any two dif-
ferent points x(s1,...,si,...,sk,l) 6= x(s1,...,s′i,...,sk,l)

are also (k+1, T, δ)-separated (with

respect to N ) for any l ∈ {1, 2}. This finishes the proof. �

To link multi-sensitivity of a system with local equicontinuity of points in the
system, in [19] the first, third and fourth authors of the present paper introduced the
concept of syndetically equicontinuous points of a system. Recall that Eqsyn(X,T )
denotes the set of all syndetically equicontinuous points of (X,T ). Since a thick set
has a nonempty intersection with a syndetic set, one has readily that if (X,T ) is
thickly sensitive then Eqsyn(X,T ) = ∅. By the dichotomy theorem [19, Theorem
3.5], one has that: a transitive system is either multi-sensitive or contains syndet-
ically equicontinuous points, and a minimal system is either multi-sensitive or its
each point is syndetically equicontinuous.

Proposition 6.2. Consider the following conditions for a dynamical system (X,T ):

(1) (X,T ) is equicontinous.

(2) For every ǫ > 0 there exist a δ > 0 and a syndetic subset A ⊂ N such that,

for any x, y ∈ X, d(x, y) < δ implies d(T nx, T ny) < ǫ for all n ∈ A.

(3) Eq
syn

(X,T ) = X.

(4) For every ǫ > 0 there exists a δ > 0 such that, for every U ⊂ X with

diam(U) < δ there exists a syndetic subset A ⊂ N such that, x, y ∈ U
implies d(T nx, T ny) < ǫ for all n ∈ A.

(5) For every ǫ > 0 there exist a δ > 0 and an m ∈ N such that, for any

x, y ∈ X, d(x, y) < δ implies min0≤i≤m d(T n+ix, T n+iy) < ǫ for all n ∈ N.

Then (1) ⇐⇒ (2) =⇒ (3) ⇐⇒ (4) =⇒ (5).

Proof. It suffices to prove (2) =⇒ (1), (3) =⇒ (4) and (3) =⇒ (5).
(2) =⇒ (1): Let ǫ > 0. By the condition (2) there exist ǫ > δ > 0 and syndetic
A ⊂ N such that d(x, y) < δ implies d(T nx, T ny) < ǫ for any x, y ∈ X and n ∈ A.
Since syndetic sets have “bounded gaps”, there exists m ∈ N such that {n + i :
n ∈ A, i = 0, 1, . . . ,m} ⊃ {m + 1,m + 2, . . . }. Therefore there exists δ′ > 0 such
that, for any x, y ∈ X and i = 0, 1, . . . ,m, d(x, y) < δ′ implies d(T ix, T iy) < δ < ǫ
(hence, by the selection of δ, d(T n+ix, T n+iy) < ǫ for all n ∈ A). So, d(x, y) < δ′

implies d(T jx, T jy) < ǫ for any x, y ∈ X and j ∈ N, i.e., (X,T ) is equicontinuous.
(3) =⇒ (4): Let ǫ > 0. Since Eqsyn(X,T ) = X , for any x ∈ X there exist open
Ux ⊂ X containing x and a syndetic set Ax ⊂ N such that d(T nx, T nx′) < ǫ for all
x′ ∈ Ux whenever n ∈ Ax (and hence d(T nx′, T nx′′) < 2ǫ whenever x′, x′′ ∈ Ux).
Observe thatX is a compact metric space, we can take a set of points {x1, . . . , xs} ⊂
X such that {Uxj

: j = 1, . . . , s} forms an open cover of X . Then there exists δ > 0
such that, every subset U ⊂ X with diam(U) < δ is contained in some Uxj

, and
then d(T nx, T ny) < 2ǫ whenever x, y ∈ U and n ∈ Axj

.
(3) =⇒ (5): The proof is similar to that of (3) =⇒ (4). Let ǫ > 0. For any
x ∈ X , the open set Ux ⊂ X containing x, the syndetic set Ax ⊂ N and the
set {x1, . . . , xs} ⊂ X are constructed as in the proof of (3) =⇒ (4). We take
mx ∈ N such that {n, n+ 1, . . . , n +mx} ∩ Ax 6= ∅ for each n ∈ N, and therefore
min0≤i≤mx

d(T n+ix′, T n+ix′′) < 2ǫ for any x′, x′′ ∈ Ux and n ∈ N. Set m =
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max{mxj
: j = 1, . . . , s}. By the construction there exists δ > 0 such that any

points x, y ∈ X with d(x, y) < δ are contained in some Uxj
, and so for each n ∈ N,

min0≤i≤m d(T n+ix, T n+iy) ≤ min0≤i≤mxj
d(T n+ix, T n+iy) < 2ǫ. �

Remark that by [19, Example 3.6] there is a sensitive transitive non-minimal
system (X,T ) with Eqsyn(X,T ) = X . In fact, it is not hard to see the difference
between the conditions (2), (4) and (5). Precisely, given the parameters ǫ and δ:

(1) in the condition (2) the syndetic subsetA ⊂ N is independent of all x, y ∈ X
with d(x, y) < δ;

(2) in the condition (4) the syndetic subset A ⊂ N depends on every subset
U ⊂ X with diam(U) < δ;

(3) the condition (5) is equivalent to say, for all x, y ∈ X with d(x, y) < δ, there
exists a syndetic subset Ax,y ⊂ N (with a uniform bound m ∈ N for the
gaps) such that d(T nx, T ny) < ǫ for all n ∈ Ax,y, here the syndetic subset
Ax,y depends on x and y with d(x, y) < δ.

At the end of this section, following the proof of [19, Lemma 4.1] we give a
sufficient condition for its each point being syndetically equicontinuous.

Lemma 6.3. Let π : (X,T ) → (Y, S) be a factor map, where (Y, S) is a mini-

mal equicontinuous system. Assume that y0 belongs to Y , such that π−1(y0) is a

singleton. Then Eq
syn

(X,T ) = X.

Proof. We choose a compatible metric ρ over Y , and recall that d is the metric
over X . Let x ∈ X and δ > 0. Say {x0} = π−1(y0). We take open U0 ⊂ X
containing x0 such that diam(U0) < δ, and then take δ1 > 0 such that π−1(V0) ⊂ U0

where V0 = {y ∈ Y : ρ(y0, y) < 2δ1}. As (Y, S) is equicontinuous, there exists
δ1 ≥ ǫ1 > 0 such that ρ(Sny1, S

ny2) < δ1 whenever ρ(y1, y2) < ǫ1 and n ∈ N. Set
V1 = {y ∈ Y : ρ(y0, y) < δ1} ⊂ V0. By the minimality of (Y, S), there exists m ∈ N

such that Sm(πx) ∈ V1, and then put S = NS(S
m(πx), V1) which is a syndetic set.

Now take open U1 ⊂ X containing x such that diam(πU1) < ǫ1. Let n ∈ S and
x′ ∈ U1. Then Sn+m(πx) ∈ V1, and ρ(πx, πx′) < ǫ1 and so ρ(Sn+mπx, Sn+mπx′) <
δ1. Thus π(T n+mx′) = Sn+m(πx′) ∈ V0, and then T n+mx′ ∈ U0 by the construc-
tion of V0. In particular, d(T n+mx, T n+mx′) < δ. That is, x ∈ Eqsyn(X,T ),
because m+ S ⊂ N is a syndetic set. This finishes the proof. �

7. Related properties and open questions

A family F is proper if it is a proper subset of P , i.e., neither empty nor all of
P . If a proper family F satisfies F · F ⊂ F , then it is called a filter, where F · F
is defined as {F1 ∩ F2 : F1, F2 ∈ F}. Recall that in [11] H. Furstenberg has showed
that a dynamical system (X,T ) is weakly mixing if and only if NT is a filter. The
inverse problem — when a filter F can be realized via NT for a dynamical system
(X,T ), is very hard (see, for instance [38]).

For δ > 0, denote by ST (δ) the set of all subsets of Z+ containing ST (U, δ)
for some opene subset U of X ; and denote by ST the set of all subsets of Z+

which come from ST (δ) for some δ > 0. It seems that this problem is even much
harder for a filter realization via ST (δ) for a sensitive dynamical system (X,T ) and
some δ > 0. So, let (X,T ) be a weakly mixing system and δ < diam(X). Then
ST (U, δ) ⊃ NT (U, V1)∩NT (U, V2) ⊃ NT (U

′, V ′) for some opene subsets U ′, V ′ of X
by [11], when opene subsets U, V1, V2 satisfy dist(V1, V2) > δ, and so ST (δ) ⊂ NT .
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We say that a dynamical system (X,T ) is filter-sensitive if there is δ > 0 such
that ST (δ) is a filter. So, obviously that a topologically mixing system is filter-
sensitive, and one can show that any filter-sensitive system is thick sensitive. We
do not know if they are equivalent for the transitive case, in particular, we do
not know if any weakly mixing system is filter-sensitive. We see here at least two
problems with realization. Take two elements ST (U, δ) and ST (V, δ) of ST (δ) of
a sensitive dynamical system (X,T ). When the intersection ST (U, δ) ∩ ST (V, δ) is
again in ST (δ)? The second question is if there is a realization of a filter-sensitive
system? Similar question is also with following situation. Let F be the family of all
thickly syndetic subsets, which can be easily checked to be a filter. What about the
realization this family via ST (δ) for a thickly syndetically sensitive system (X,T )?

Vı́ctor Jiménez López and L’ubomı́r Snoha introduced and studied the notion of
the (Misiurewicz ) stroboscopical property in [24]. One can study the stroboscopical
property via Furstenberg families. Let F be a (Furstenberg) family. We will say a
system (X,T ) satisfies F-stroboscopical property if for any A ∈ F and z ∈ X there
is a point x ∈ X with z ∈ ωT (A, x), where ωT (A, x) is the set of all limit points of
the set TA(x) = {T ix : i ∈ A}. Moreover, we will say that the system has strongly
F-stroboscopical property if any A ∈ F and z ∈ X the set of such x is dense.

Recall that a system (X,T ) is F-transitive if NT (U, V ) ∈ F for any opene sets
U, V ⊂ X . If a system (X,T ) is F -transitive, then not so hard to show (say similarly
as it was done in Lemma 3.1) that for any F ∈ kF and opene sets U, V in X the
set F ∩NT (U, V ) is infinite.

Proposition 7.1. The following conditions are equivalent:

(1) (X,T ) has strongly F-stroboscopical property.

(2) (X,T ) is kF-transitive.

Proof. (1)⇒ (2) Assume that the system is not kF -transitive. Then there is a pair
of opene sets U, V for which NT (U, V ) /∈ kF . Take F ∈ F with NT (U, V )∩F = ∅.
Hence T nU ∩ V = ∅ for all n ∈ F . Since it, for any z ∈ V there is no point x ∈ U
with z ∈ ωT (F, x). A contradiction to the assumption.

(2)⇒ (1) Fix z ∈ X,F ∈ F and an opene G ⊂ X . We are going to find x ∈ G
with z ∈ ωT (F, x). Let Bn be the opene ball of radius 1

n
centred at z and G1 = G.

Then NT (G1, B1) ∈ kF and there is n1 ∈ F such that T n1G1 ∩ B1 6= ∅. Take
opene G2 ⊂ G2 ⊂ G1 ∩ T−n1B1 and proceed by induction.

Suppose we have defined Gk. Since NT (Gk, Bk) ∩ F = ∅ is infinite, we can
choose in F an integer nk > nk−1 with T nkGk ∩ Bk 6= ∅. Finally, let Gk+1 be an
opene set in X such set Gk+1 ⊂ Gk+1 ⊂ Gk ∩ T−nkBk.

We have found a sequence {nk}
∞
k=1 ∈ F such that T nk−1Gk ⊂ Bk−1 for k ≥ 2.

So, we have ∅ 6=
⋂∞

k=1 Gk =
⋂∞

k=1 Gk, because Gk are nested closed sets. Therefore
there is x ∈

⋂∞
k=1 Gk and T nkx ∈ Bk for any k. Thus z ∈ ωT (F, x). �

We end this section with the following questions:

Question 1. If (X,T ) is a weakly mixing system, then does it follow that for any
point x ∈ X there exists a point y ∈ X such that ωT (y) = ωNT

(x)?

Question 2. Are all non-minimal M-systems Li-Yorke sensitive?
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