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ON q-ANALOGS OF SOME FAMILIES OF MULTIPLE HARMONIC SUMS

AND MULTIPLE ZETA STAR VALUE IDENTITIES

KH. HESSAMI PILEHROOD, T. HESSAMI PILEHROOD, AND JIANQIANG ZHAO

Abstract. In recent years, there has been intensive research on the Q-linear relations between

multiple zeta (star) values. In this paper, we prove many families of identities involving the

q-analog of these values, from which we can always recover the corresponding classical identities

by taking q → 1. The main result of the paper is the duality relations between multiple zeta star

values and Euler sums and their q-analogs, which are generalizations of the Two-one formula

and some multiple harmonic sum identities and their q-analogs proved by the authors recently.

Such duality relations lead to a proof of the conjecture by Ihara et al. that the Hoffman ⋆-

elements ζ⋆(s1, . . . , sr) with si ∈ {2, 3} span the vector space generated by multiple zeta values

over Q.

1. Introduction

Multiple harmonic sums (MHS) are nested generalizations of harmonic sums and multiple

zeta values (MZV) are the limits of MHS when the number of terms in the sum goes to infinity.

In recent years, MHS, MZV and their generalizations have been found to be intimately related

to Feynman integrals in perturbative quantum field theory [2, 5, 19] in physics as well as to

Hopf and Lie algebras, combinatorics (double shuffle relations) [12, 13, 14], algebraic geometry

[4, 8, 9], and even modular forms [6] in mathematics.

We now recall their basic setup. In order to unify MHS, MZV and their alternating versions

we first define a sort of double cover of the set N0 = N ∪ {0} where N is the set of positive

integers.

Definition 1.1. Let D0 := N0∪N0 and D := N∪N be the sets of signed nonnegative and signed

positive numbers, respectively, where

N0 = {k̄ : k ∈ N0} and N = {k̄ : k ∈ N}.

In some sense, k̄ is k dressed by a negative sign, but k̄ is not a negative number. Define for all

k ∈ N0 the absolute value function | · | on D0 by |k| = |k̄| = k and the sign function by sgn(k) = 1

and sgn(k̄) = −1. We make D0 a semi-group by defining a commutative and associative binary

2010 Mathematics Subject Classification. 11M32, 11B65.

Key words and phrases. Multiple harmonic sums, multiple zeta values, multiple zeta star values, Euler sums.

1

http://arxiv.org/abs/1307.7985v3


2 KH. HESSAMI PILEHROOD, T. HESSAMI PILEHROOD, AND JIANQIANG ZHAO

operation ⊕ (called O-plus) as follows: for all a, b ∈ D0

a⊕ b =





|a|+ |b|, if only one of a or b is in N0;

a+ b, if a, b ∈ N0;

|a|+ |b|, if a, b ∈ N0.

(1)

For s = (s1, . . . , sm) ∈ Dm, we define the (alternating) multiple harmonic sums by

Hn(s) :=
∑

n≥k1>···>km≥1

m∏

j=1

sgn(sj)
kj

k
|sj |
j

, and H⋆
n(s) :=

∑

n≥k1≥···≥km≥1

m∏

j=1

sgn(sj)
kj

k
|sj |
j

.

Correspondingly we can define the (alternating) Euler sums by

ζ(s) :=
∑

k1>···>km≥1

m∏

j=1

sgn(sj)
kj

k
|sj |
j

, and ζ⋆(s) :=
∑

k1≥···≥km≥1

m∏

j=1

sgn(sj)
kj

k
|sj |
j

(2)

where s1 6= 1 in order for the series to converge. If s ∈ Nm then ζ(s) is called a multiple zeta

value (MZV) and ζ⋆(s) a multiple zeta star value (MZSV). We call ℓ(s) = m the length (or

depth) and |s| = |s1| + · · · + |sm| the weight of the string s. One of the central themes in the

study of Euler sums, MZV and MZSV is to find as many Q-linear relations between these values

as possible. Conjecturally, nontrivial relations can exist only among MZV and MZSV of the

same weight. Following Glanois [7], we define the Euler ♯ sums by

ζ♯(s) :=
∑

p=s1◦s2◦···◦sd

2ℓ(p)ζ(p),

where p runs through all indices of the form (s1 ◦ s2 ◦ · · · ◦ sd) with “◦” being either the symbol

“,” or the O-plus “⊕”. In [17, 22] Linebarger and the third author obtained many families of

identities involving both MHS and MZSV after getting inspiration from [11]. In particular, the

third author proved the following so-called Two-one formula conjectured by Ohno and Zudilin

in [18]:

Theorem 1.2. ([22, Theorem 1.3]) Let r ∈ N and s = ({2}a1 , 1, . . . , {2}ar , 1) where a1 ∈ N and

aj ∈ N0 for all j ≥ 2. Then we have

ζ⋆(s) = ζ♯(2a1 + 1, . . . , 2ar + 1).

One particularly well-behaved q-analog of the multiple zeta functions is defined in [20] by the

third author, generalizing the Riemann q-zeta function studied by Kaneko et al. [16]. There,

again, it is very important to understand the relations between their special values, see [3] for

some relevant results. Recently, the first two authors proved a q-analog of the Two-one formula

in [10]. Our original goal of this paper was to provide further analogs of the identities contained

in [17, 22]. However, we have achieved much more because we can now actually treat arbitrary

q-MZSV and express it in terms of q-analog Euler sums (of the non-star version). By taking

q → 1 we obtain the following result.
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Theorem 1.3. Let s = (s1, . . . , sd) ∈ Nd with s1 > 1. Set ιs = 1 if sd = 1 and ιs = −1 if sd > 1.

Suppose there exists λ = (λ1, . . . , λm) ∈ Dm (determined uniquely by s) such that there is an

expansion of the form

ζ⋆(s) = ιsζ
♯(λ1, λ2, . . . , λm).

Then we have

(i) For any positive integer a,

ζ⋆({2}a, s) = ιsζ
♯(2a⊕ λ1, λ2, . . . , λm).

(ii) For any positive integers a and l,

ζ⋆({2}a, {1}l, s) = ιsζ
♯(2a+ 1, {1}l−1, λ1, λ2, . . . , λm).

(iii) For any positive integers c ≥ 3 and l,

ζ⋆(c, {1}l , s) = ιsζ
♯(2, {1}c−3, 2, {1}l−1, λ1, λ2, . . . , λm).

(iv) For any integers b ≥ 0 and c ≥ 3,

ζ⋆({2}b, c, s) = ιsζ
♯(2b+ 2, {1}c−3, λ1 ⊕ 1, λ2, . . . , λm).

This provides very elegant simplifications when s contains many 2’s in it. The following

identity is an illuminating example: for any a ∈ N and b, c, d ∈ N0, we have

ζ⋆({2}a, 1, {2}b, 1, {2}c, 3, {2}d, 1)

=2ζ(2a+ 2b+ 2c+ 2d+ 6) + 4ζ(2a+ 1, 2b+ 2c+ 2d+ 5)

+4ζ(2a+ 2b+ 2, 2c + 2d+ 4) + 4ζ(2a+ 2b+ 2c+ 4, 2d + 2)

+8ζ(2a+ 1, 2b + 1, 2c + 2d+ 4) + 8ζ(2a+ 1, 2b + 2c+ 3, 2d + 2)

+8ζ(2a+ 2b+ 2, 2c + 2, 2d + 2) + 16ζ(2a + 1, 2b+ 1, 2c + 2, 2d+ 2).

(3)

We also verified this identity numerically for 1 ≤ a ≤ 2 and 0 ≤ b, c, d ≤ 2 with EZ-face [1] with

errors bounded by 10−50.

According to Theorem 1.3, we can treat arbitrary MZSV by building up from the three base

cases: ζ⋆({2}a), ζ⋆({2}a, 1) (a ≥ 1) and ζ⋆({2}b, c) (b ≥ 0 and c ≥ 3) treated in [11]. Here is the

general statement.

Theorem 1.4. Let a0, aj ∈ N0, cj ∈ N and cj 6= 2 for all j = 1, . . . , d. Assume a0 > 0 or

c1 ≥ 3. Set δ(c) = 1 if c = 1 and δ(c) = 0 if c ≥ 3. Moreover, put {1}n = {1}max(n,0). Then we

have

ζ⋆({2}a0 , c1, {2}
a1 , . . . , cd, {2}

ad) = ±ζ♯(B0, {1}
c1−3, B1, . . . , {1}

cd−3, Bd). (4)
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Here the leading sign ± is + if and only if ad = 0 and cd = 1, and

Bj =





Aj , if Aj is odd;

Aj , if Aj > 0 and even;

vacuous, if Aj = 0,

where

Aj =





2a0 + 2− δ(c1), if j = 0;

2ad + 1− δ(cd), if j = d;

2aj + 3− δ(cj)− δ(cj+1), if 0 < j < d.

Formula (4) can be considered as a general duality relation which expresses arbitrary multiple

zeta star value in terms of Euler ♯ sums. It generalizes the Two-one formula and many other

2-c-2-c, 2-1-2-c, 2-c-2-1 formulas with c ≥ 3, proved by the third author [17, 22]. A q-analog of

Theorem 1.4 is given in Section 5, which is Theorem 5.4.

In her Ph.D. thesis, Glanois [7] studied motivic versions of multiple Euler ♯ sums and proved

that the motivic versions of

ζ♯(2a0 + 2, 2a1 + 3, . . . , 2ad−1 + 3, 2ad + 1), with ai ≥ 0,

form a graded basis of the space of motivic multiple zeta values. As a consequence, by application

of the period map, she obtained the following important result.

Theorem 1.5 (Glanois). Each multiple zeta value is a Q-linear combination of elements of the

same weight in

{ζ♯(2a0 + 2, 2a1 + 3, . . . , 2ad−1 + 3, 2ad + 1), ai ≥ 0}.

Note that Ihara et al. [15] conjectured that the Hoffman ⋆-elements ζ⋆(s1, . . . , sd) with si ∈

{2, 3} form a basis of the space of MZVs over Q. Taking into account the Two-three formula,

which is a consequence of identity (4) with c1 = · · · = cd = 3,

ζ⋆({2}a0 , 3, {2}a1 , . . . , 3, {2}ad ) = −ζ♯(2a0 + 2, 2a1 + 3, . . . , 2ad−1 + 3, 2ad + 1),

and combining it with Theorem 1.5, we get the following statement confirming the conjecture

of Ihara et al.

Corollary 1.6. Every multiple zeta value of weight w is a Q-linear combination of the Hoffman

⋆-elements ζ⋆(s1, . . . , sd) with si ∈ {2, 3} and
∑

si = w.

In her Ph.D. thesis, Glanois also conjectures that the motivic version of Theorem 1.4 should

hold (see [7, Conjecture 4.5.1]), whose proof should follow from Theorem 1.4 and a Galois descent

argument used first by Brown in [4] to prove that all the periods of mixed motives unramified

over Z are Q[ 1
2πi ]-linear combinations of MZVs. The motivic version of Theorem 1.4 would

imply the motivic version of the Conjecture of Ihara et al. for the space of motivic multiple zeta

values.
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2. Preliminaries and notations

In this section, we first fix some notation. Throughout the paper let m and n denote nonneg-

ative integers and q a real number with 0 < q < 1. For any real number a, put

(a)0 := (a; q)0 := 1, (a)n := (a; q)n :=

n−1∏

k=0

(1 − aqk), n ≥ 1.

As a convention, throughout the paper we always use [ ] to denote q-analog objects. For example,

the q-analog of a positive integer n is given by

[n] = [n]q :=
n−1∑

k=0

qk =
1− qn

1− q
,

and the Gaussian q-binomial coefficient

[
n

m

]
:=





(q)n
(q)m(q)n−m

, if 0 ≤ m ≤ n,

0, otherwise.

For m ∈ N0 and s = (s1, . . . , sm) ∈ Dm
0 , we set s = ∅ if m = 0 and define the q-analogs of

multiple harmonic (star) sums (q-MHS)

Hn[s] :=
∑

n≥k1>···>km≥1

m∏

j=1

sgn(sj)
kjqkj

[kj ]|sj |
and H⋆

n[s] :=
∑

n≥k1≥···≥km≥1

m∏

j=1

sgn(sj)
kjqkj

[kj ]|sj |
,

with the convention that Hn[s] = 0 if n < m, and H⋆
n[∅] = Hn[∅] = 1 for all n ≥ 0. Notice that

we allow sj to be 0 or 0̄ in these q-MHS.

Now we fix a symbol θ and define for any r ∈ Z ∪ {θ} and k ∈ N the function

Q(r, k) :=





rk(k − 1)/2, if r > 0;

rk(k − 1)/2− k, if r ≤ 0;

0, if r = θ.

For s = (s1, . . . , sm) ∈ Dm
0 , t = (t1, . . . , tm) ∈ (N0)

m, and r = (r1, . . . , rm) ∈ (Z ∪ {θ})m, we

define the mollified companion of Hn[s] by

Hn[s; t; r] :=
∑

n≥k1>···>km≥1

[
n
k1

]
[n+k1

k1

]
m∏

j=1

qtjkj+Q(rj ,kj)(1 + qkj)

sgn(sj)kj [kj ]|sj |
. (5)

We call [s; t; r] an admissible triple of mollifiers if the limit lim
n→∞

Hn[s; t; r] exists.
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Definition 2.1. Let �-plus ⊞ be a binary operation on Z ∪ {θ} such that

• θ ⊞ a = a⊞ θ = a for all a ∈ Z ∪ {θ},

• a⊞ b = a+ b for all a, b ∈ Z with (a, b) 6= (1,−1), (−1, 1), and

• 1⊞ (−1) = θ and (−1)⊞ 1 = 0.

Lemma 2.2. Let r ∈ {θ} ∪ Z \ {0}, d ∈ {0,−1}. Then for any k ∈ Z

Q(r, k) +Q(1, k) = Q(r ⊞ 1, k), (6)

k2 +Q(d, k) = Q(2⊞ d, k). (7)

Moreover, the projection

π : (Z ∪ {θ},⊞) −→ (Z,+)

a 7−→ a ∀a ∈ Z,

θ 7−→ 0,

is a homomorphism of semi-groups and its restriction to Z∗ is injective.

Proof. Clear.

�

For an admissible triple of mollifiers [s; t; r], we define

{s1 ◦ · · · ◦ sm; t1 ◦ · · · ◦ tm; r1 ◦ · · · ◦ rm}

to be the set of triples of strings produced by replacing every ◦ in s by either comma “,” or

O-plus “⊕”, replacing every ◦ in t by either comma “,” or the usual plus “+”, and replacing

every ◦ in r by either comma “,” or �-plus “⊞”. Moreover, the commas should be at the same

positions for all s, t and r. Now we set

H♯
n[s; t; r] :=

∑

(p;p̃;
≈

p)∈{s1◦···◦sm;t1◦···◦tm;r1◦···◦rm}

Hn[p; p̃;
≈
p].

In the above notation, the Two-one formulas for q-MHS obtained in [10] have the form

H⋆
n[{2}

a] = −Hn[2a; a; 1] (8)

and, for aℓ+1 6= 0

H⋆
n[{2}

a1 , 1, . . . , {2}aℓ , 1] = H♯
n[2a1 + 1, . . . , 2aℓ + 1;

a1 + 1, . . . , aℓ + 1; 2, {0}ℓ−1],

H⋆
n[{2}

a1 , 1, . . . , {2}aℓ , 1, {2}aℓ+1 ] = −H♯
n[2a1 + 1, . . . , 2aℓ + 1, 2aℓ+1;

a1 + 1, . . . , aℓ + 1, aℓ+1; 2, {0}
ℓ−1,−1].

(9)
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Finally, we define the q-analog of multiple zeta values, q-MZV for short, and q-analog of

multiple zeta star values, or q-MZSV, as

ζ[s] :=
∑

k1>···>km≥1

m∏

j=1

sgn(sj)
kjqkj

[kj ]|sj |
, and ζ⋆[s] :=

∑

k1≥···≥km≥1

m∏

j=1

sgn(sj)
kjqkj

[kj ]|sj |
,

respectively. The mollified companion of ζ[s] associated with the admissible triple of mollifiers

[s; t; r] is defined by

z[s; t; r] :=z[s1, . . . , sm; t1, . . . , tm; r1, . . . , rm]

=
∑

k1>···>km≥1

m∏

j=1

sgn(sj)
kjqtjkj+Q(rj ,kj)(1 + qkj)

[kj ]|sj |
,

and its ♯-version is defined by

z
♯[s; t; r] :=

∑

(p;p̃;
≈

p)∈{s1◦···◦sm;t1◦···◦tm;r1◦···◦rm}

z[p; p̃;
≈
p].

If m = 0, we put ζ⋆[∅] = z[∅; ∅; ∅] = 1. Throughout the paper the triples of mollifiers [s; t; r] are

chosen in such a way that the above multiple series always converges. Notice that in [10] the

mollified companions of ζ[s] are defined similarly.

Although our primary goal is to prove q-MZSV identities, throughout the paper we will always

work with binomial identities for q-MHS first. To obtain the corresponding q-MZSV identities,

we need the next result.

Lemma 2.3. ([10, Lemma 4.1]) Let 0 < q < 1, c, c1, c2 ∈ R, c > 0, and let Rk be a sequence of

real numbers satisfying |Rk| < kc1qc2k for all k = 1, 2, . . .. Then

lim
n→∞

n∑

k=1

qck
2

(
1−

[n
k

]
[n+k

k

]
)
Rk = 0.

3. q-binomial identities

The following two combinatorial identities have been proved by the first two authors using

q-WZ method.

Lemma 3.1. ([10, Lemma 2.1]) For integers n ≥ 1 and l ≥ 0, we have

n∑

k=l+1

(1 + qk)

[n
k

]
[n+k

k

](−1)kqk(k−1)/2 =
[l]− [n]

[n]

[n
l

]
[n+l

l

](−1)lql(l−1)/2, (10)

n∑

k=l+1

(1 + qk)
[k]
[
n
k

]
[n+k

k

] qk(k−1) = ([n]− [l])

[
n
l

]
[n+l

l

] ql2 . (11)

The next lemma is the q-analog of [22, Lemma 2.1].
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Lemma 3.2. Let a ∈ D0, b ∈ N0, c ∈ N, r ∈ {θ} ∪ Z \ {0}, and [x;y; z] an admissible triple of

mollifiers. Then for any positive integer n,

1

[n]c
Hn[a,x; b,y; r ⊞ 1, z] =

∑

(p;p̃;
≈

p)∈{0◦1◦(c−1)◦(a⊕1); 0◦c◦ b; 1◦ θ◦(c−1)◦r}

Hn[p,x; p̃,y;
≈
p, z].

Proof. We prove the lemma by induction on c. Suppose strings x,y, z have length m. Set

An,k = (−1)k(1 + qk)qk(k−1)/2

[
n
k

]
[n+k

k

] . (12)

Then by (10),

(1 + ql)

[l]

n∑

k=l+1

An,k =

(
1

[n]
−

1

[l]

)
An,l (13)

which, together with (6) yields

Hn[0, a⊕ 1,x; 0, b,y; 1, r, z]

=
∑

n≥k>k0>k1>···>km≥1

An,kq
bk0+Q(r,k0)(1 + qk0)

(− sgn(a))k0 [k0]|a|+1

m∏

j=1

qyjkj+Q(zj ,kj)(1 + qkj)

sgn(xj)kj [kj ]|xj |

=
∑

n≥k0>k1>···>km≥1

qbk0+Q(r,k0)(1 + qk0)

(− sgn(a))k0 [k0]|a|+1

m∏

j=1

qyjkj+Q(zj ,kj)(1 + qkj)

sgn(xj)kj [kj ]|xj |

n∑

k=k0+1

An,k

=
1

[n]
Hn[a,x; b,y; r ⊞ 1, z] −Hn[a⊕ 1,x; b,y; r ⊞ 1, z].

This proves the lemma for c = 1. Now suppose c > 1. By the case c = 1, we have just proved,

1

[n]c
Hn[a,x; b,y; r ⊞ 1, z] =

1

[n]c−1

(
1

[n]
Hn[a,x; b,y; r ⊞ 1, z]

)

=
1

[n]c−1
Hn[a⊕ 1,x; b,y; r ⊞ 1, z] +

1

[n]c−1
Hn[0, a⊕ 1,x; 0, b,y; 1, r, z].

For the first summand, we now apply induction assumption using case c− 1 with a replaced by

a ⊕ 1. For the second summand, we apply Lemma 3.2 using case c − 1 with a = 0, b = 0, and

r = θ. Then we see the above is equal to
∑

(p,p̃,
≈

p)∈{0◦1◦(c−2)◦
(
(a⊕1)⊕1

)
; 0◦(c−1)◦b; 1◦θ◦(c−2)◦r}

Hn[p,x; p̃,y;
≈
p, z]

+
∑

(p,p̃,
≈

p)∈{0◦1◦(c−1); 0◦c; 1◦θ◦(c−1)}

Hn[p, a⊕ 1,x; p̃, b,y;
≈
p, r, z]

=
∑

(p,p̃,
≈

p)∈{0◦1◦(c−1)◦(a⊕1); 0◦c◦b; 1◦θ◦(c−1)◦r}

Hn[p,x; p̃,y;
≈
p, z],

since (a⊕1)⊕1 = 1⊕(a⊕1) for all a ∈ D0. We have now completed the proof of the lemma. �
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The next corollary is the degenerate case of the proceeding lemma.

Corollary 3.3. For all c ∈ N0, we have

1

[n]c
= −H♯

n[0, {1}
c; {0}c+1; 1, {θ}c].

Proof. The case c = 0 follows from (10) by setting l = 0. For c ≥ 1, using the c = 0 case, we get

1

[n]c
= −

1

[n]c
Hn[0̄; 0; 1] = −

∑

(p;p̃;
≈

p)∈Π(c)

Hn[p; p̃;
≈
p]

by taking a = 0̄, b = 0, r = θ and x = y = z = ∅ in Lemma 3.2. Hence the corollary is

proved. �

4. MHS and MZSV identities: 2-c formula

In this section, we start with some q-MHS identities involving arguments of ({2}a, c)-type

(c ≥ 3). This provides one of the base cases upon which we may build general formulas of

q-MZSV and MZSV whose arguments can be any admissible strings of positive integers.

Theorem 4.1. Let s = ({2}a, c) with a, c ∈ N0 and c ≥ 3. Then

H⋆
n[s] = −H♯

n[2a+ 2, {1}c−2; a+ 1, {0}c−2; 1, {θ}c−2]. (14)

Proof. We proceed by induction on n. Set Π(s) = {(2a + 2)◦1◦(c−2); (a+1)◦0◦(c−2); 1◦θ◦(c−2)}.

When n = 1, we have H⋆
1 ({2}

a, c) = qa+1. On the other hand,
∑

(p;p̃;
≈

p)∈Π(s)

H1[p; p̃;
≈
p] = H1[2a+ c; a+ 1; 1] = −qa+1,

and therefore the formula is true. Suppose the statement is true for n− 1. Then by definition

H⋆
n[s] =

a∑

i=0

qn(a−i)

[n]2(a−i)
H⋆

n−1[{2}
i, c] +

qn(a+1)

[n]2a+c
.

Applying inductive hypothesis, we obtain

H⋆
n[s] = −

a∑

i=0

qn(a−i)

[n]2(a−i)

∑

(p;p̃;
≈

p)∈Π({2}i,c)

Hn−1[p; p̃;
≈
p] +

qn(a+1)

[n]2a+c
. (15)

Set Π(u−1) = {0 ◦ 1◦(c−2); 0◦(c−1); θ◦(c−1)}. To save space, for any string λ = (λ1, . . . , λm), we

write the substring λ1̂ = (λ2, . . . , λm). Then the inner sum in (15) becomes
∑

(p;p̃;
≈

p)∈Π({2}i,c)

Hn−1[p; p̃;
≈
p] =

∑

(p;p̃;
≈

p)∈Π(u−1)

Hn−1[2i+ 2 + p1,p1̂; i+ 1 + p̃1, p̃1̂; 1 ⊞
≈
p 1,

≈
p1̂]

=
∑

(p;p̃;
≈

p)∈Π(u−1)

∑

n>k1>...>km≥1

qk1(i+1+p̃1)An−1,k1

[k1]2i+2+p1

m∏

j=2

qp̃jkj(1 + qkj)

[kj ]pj
,
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where An,k is defined in (12). Plugging this into (15) and summing over i by the formula

An−1,k

a∑

i=0

[n]2i

[k]2i
q(k−n)i = An,k

(
[n]2a

[k]2a
q(k−n)a −

[k]2

[n]2
qn−k

)
, (16)

we obtain

H⋆
n[s] = −

∑

(p;p̃;
≈

p)∈Π(u−1)

∑

n≥k1>···>km≥1

qk1(p̃1+a+1)An,k1

[k1]2a+2+p1

m∏

j=2

qp̃jkj (1 + qkj)

[kj ]pj

+
qn(a+1)

[n]2a+2

∑

(p;p̃;
≈

p)∈Π(u−1)

∑

n≥k1>···>km≥1

qk1p̃1An,k1

[k1]p1

m∏

j=2

qp̃jkj (1 + qkj)

[kj ]pj
+

qn(a+1)

[n]2a+c
,

which implies

H⋆
n[s] = −

∑

(p;p̃;
≈

p)∈Π(s)

Hn[p; p̃;
≈
p] +

qn(a+1)

[n]2a+2

∑

(p;p̃;
≈

p)∈Π(û−1)

Hn[p; p̃;
≈
p] +

qn(a+1)

[n]2a+c
,

where Π(û−1) = {0 ◦ 1◦(c−2); 0◦(c−1); 1 ◦ θ◦(c−2)}. Hence the theorem follows from Corollary 3.3

immediately by replacing c by c− 2 there. �

5. MHS and MZSV identities: general case

In this section, we prove some general rules which explain what to expect when we add strings

({2}a, {1}l) or ({2}b, c) to a string of positive integer arguments. This allows us to extend

expansion formulas from the three base cases (8), (9) and (14) to every string that contains an

arbitrary number of repetitions of ({2}b, c), (c, {1}l) (b ≥ 0, c ≥ 3, l ≥ 1) and ({2}a, {1}l) (a ≥ 0

except at the leading position when a ≥ 1). For example, (3, 1, 2, 7, 1, 1, 5, 2, 2, 4) can be written

as ({2}0, 3, {2}0, 1, {2}1, 7, {2}0, {1}2, {2}0, 5, {2}2 , 4).

For any string λ = (λ1, . . . , λm), we set λ◦ = λ1 ◦ · · · ◦ λm and λ1̂ = (λ2, . . . , λm).

Theorem 5.1. Let n ∈ N and s = (s1, . . . , sd) be a string of positive integers. Set ιs = 1 if

sd = 1 and ιs = −1 if sd > 1. Suppose s uniquely determines the triple of mollifiers [λ; λ̃;
≈
λ] =

[λ1, . . . , λm; λ̃1, . . . , λ̃m;
≈
λ1, . . . ,

≈
λm] satisfying

≈
λ1 ⊞ · · ·⊞

≈
λ j ∈ {1, 2} ∀j ≥ 1, (17)

such that there is an expansion of the form

H⋆
n[s] = ιsH

♯
n[λ; λ̃;

≈
λ].
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Then for any integers a, b ≥ 0 and c ≥ 3, we have

H⋆
n[{2}

a, s] = ιsH
♯
n[2a⊕ λ1,λ1̂; a+ λ̃1, λ̃1̂;

≈
λ], (18)

H⋆
n[{2}

a, 1, s] = ιsH
♯
n[2a+ 1,λ; a+ 1, λ̃; 2,

≈
λ1 ⊞−2,

≈
λ1̂], (19)

H⋆
n[{2}

b, c, s] = ιsH
♯
n[2b+ 2, {1}c−3, λ1 ⊕ 1̄,λ1̂; b+ 1, {0}c−3, λ̃; 1, {θ}c−3,

≈
λ1 ⊞−1,

≈
λ1̂]. (20)

Moreover, in all the index sets appearing on the right hand side above, the third components still

satisfy (17).

Notice that condition (17) essentially guarantees that all the triples of mollifiers considered

in the paper are admissible.

Proof. Set Π(s) = {λ◦; λ̃◦;
≈
λ
◦}. The proof of the identities is by induction on n + a or n + b.

When n = 1 the theorem is clear. Assume formulas (18) and (19) are true for all a + n ≤ N

where N ≥ 2. Suppose now we have n ≥ 2 and n+ a = N + 1. Set

Π2a = {(2a⊕ λ1) ◦ λ
◦
1̂
; (a+ λ̃1) ◦ λ̃

◦
1̂
;
≈
λ
◦},

Π2a1 = {(2a + 1) ◦ λ◦; (a+ 1) ◦ λ̃◦; 2 ◦ (
≈
λ1 ⊞−2) ◦ (

≈
λ1̂)

◦},

Π2bc = {(2b+ 2) ◦ 1◦(c−3) ◦ (λ1 ⊕ 1̄) ◦λ◦
1̂
; (b+1) ◦ 0◦(c−3) ◦ λ̃◦; 1 ◦ θ◦(c−3) ◦ (

≈
λ1 ⊞−1) ◦ (

≈
λ1̂)

◦}.

We start proving the first identity. By definition, we have

H⋆
n[{2}

a, s] =

a∑

i=1

qn(a−i)

[n]2a−2i
H⋆

n−1[{2}
i, s] +

qna

[n]2a
H⋆

n[s].

Applying induction assumption, we obtain

ιsH
⋆
n[{2}

a, s] =

a∑

i=1

qn(a−i)

[n]2a−2i

∑

(p;p̃;
≈

p)∈Π
2i

Hn−1[p; p̃;
≈
p] +

qna

[n]2a

∑

(p;p̃;
≈

p)∈Π(s)

Hn[p; p̃;
≈
p]. (21)

Expanding the inner sum
∑

(p;p̃;
≈

p)∈Π
2i

Hn−1[p; p̃;
≈
p] =

∑

(p;p̃;
≈

p)∈Π(s)

Hn−1[2i ⊕ p1,p1̂; i+ p̃1, p̃1̂;
≈
p]

=
∑

(p;p̃;
≈

p)∈Π(s)

∑

n>k1>···>kr≥1

[
n−1
k1

]
[n−1+k1

k1

] qik1

[k1]2i

r∏

j=1

qp̃jkj+Q(
≈

p j ,kj)(1 + qkj)

sgn(pj)kj [kj ]|pj |

and summing over i in (21), we obtain

ιsH
⋆
n[{2}

a, s] =
∑

(p;p̃;
≈

p)∈Π(s)

∑

n≥k1>···>kr≥1

[ n
k1

]
[n+k1

k1

]
(

qak1

[k1]2a
−

qan

[n]2a

) r∏

j=1

qp̃jkj+Q(
≈

p j ,kj)(1 + qkj)

sgn(pj)kj [kj ]|pj |

+
qna

[n]2a

∑

(p;p̃;
≈

p)∈Π(s)

Hn[p; p̃;
≈
p],



12 KH. HESSAMI PILEHROOD, T. HESSAMI PILEHROOD, AND JIANQIANG ZHAO

which implies (18) by definition and straightforward cancelation. Similarly, for the second

identity, we have by definition

H⋆
n[{2}

a, 1, s] =

a∑

i=0

qn(a−i)

[n]2a−2i
H⋆

n−1[{2}
i, 1, s] +

qn(a+1)

[n]2a+1
H⋆

n[s].

Applying induction assumption, we obtain

ιsH
⋆
n[{2}

a, 1, s] =

a∑

i=0

qn(a−i)

[n]2a−2i

∑

(p;p̃;
≈

p)∈Π
2i1

Hn−1[p; p̃;
≈
p] +

qn(a+1)

[n]2a+1

∑

(p;p̃;
≈

p)∈Π(s)

Hn[p; p̃;
≈
p]. (22)

Setting Π0 = {λ◦; λ̃◦; (
≈
λ1 ⊞−2) ◦ (

≈
λ1̂)

◦}, we have

∑

(p;p̃;
≈

p)∈Π
2i1

Hn−1[p; p̃;
≈
p] =

∑

(p;p̃;
≈

p)∈Π0

Hn−1[2i+ 1,p; i + 1, p̃; 2,
≈
p]

+
∑

(p;p̃;
≈

p)∈Π0

Hn−1[(2i + 1) ⊕ p1,p1̂; i+ 1 + p̃1, p̃1̂; 2⊞
≈
p 1,

≈
p1̂]

=
∑

(p;p̃;
≈

p)∈Π0




∑

n>k0>k1>···>km≥1

[n−1
k0

]
[n−1+k0

k0

] (1 + qk0)q(i+1)k0+k0(k0−1)

[k0]2i+1

m∏

j=1

qp̃jkj+Q(
≈

p j ,kj)(1 + qkj)

sgn(pj)kj [kj ]|pj |

+
∑

n>k1>···>km≥1

[n−1
k1

]
[
n−1+k1

k1

] (1 + qk1)q(i+1+p̃1)k1+Q(2⊞
≈

p 1,k1)

sgn(p1)k1 [k1]2i+1+|p1|

m∏

j=2

qp̃jkj+Q(
≈

p j ,kj)(1 + qkj )

sgn(pj)kj [kj ]|pj|


 .

Substituting the above expression into (22) and summing over i by (16), we obtain

ιsH
⋆
n[{2}

a, 1, s] −
qn(a+1)

[n]2a+1

∑

(p;p̃;
≈

p)∈Π(s)

Hn[p; p̃;
≈
p]

=
∑

(p;p̃;
≈

p)∈Π0




∑

n≥k0>k1>···>km≥1

[
n
k0

]
[n+k0

k0

] (1 + qk0)q(a+1)k0+k0(k0−1)

[k0]2a+1

m∏

j=1

qp̃jkj+Q(
≈

p j ,kj)(1 + qkj)

sgn(pj)kj [kj ]|pj |

−
qn(a+1)

[n]2a+2

∑

n≥k0>k1>···>km≥1

[ n
k0

]
[n+k0

k0

](1 + qk0)qk0(k0−1)[k0]
m∏

j=1

qp̃jkj+Q(
≈

p j ,kj)(1 + qkj)

sgn(pj)kj [kj ]|pj |

+
∑

n≥k1>···>km≥1

[ n
k1

]
[
n+k1
k1

] (1 + qk1)q(a+1+p̃1)k1+Q(2⊞
≈

p 1,k1)

sgn(p1)k1 [k1]2a+1+|p1|

m∏

j=2

qp̃jkj+Q(
≈

p j ,kj)(1 + qkj )

sgn(pj)kj [kj ]|pj |

−
qn(a+1)

[n]2a+2

∑

n≥k1>···>km≥1

[
n
k1

]
[n+k1

k1

] (1 + qk1)qp̃1k1+Q(2⊞
≈

p 1,k1)

sgn(p1)k1 [k1]|p1|−1

m∏

j=2

qp̃jkj+Q(
≈

p j ,kj)(1 + qkj)

sgn(pj)kj [kj ]|pj |


 .
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Noticing that the first and third sums on the right-hand side of the above add up to

∑

(p;p̃;
≈

p)∈Π2a1

Hn[p; p̃;
≈
p],

we have

ιsH
⋆
n[{2}

a, 1, s] −
qn(a+1)

[n]2a+1

∑

(p;p̃;
≈

p)∈Π(s)

Hn[p; p̃;
≈
p] =

∑

(p;p̃;
≈

p)∈Π2a1

Hn[p; p̃;
≈
p]

−
qn(a+1)

[n]2a+2

∑

(p;p̃;
≈

p)∈Π0

∑

n≥k1>···>km≥1




m∏

j=1

qp̃jkj+Q(
≈

p j ,kj)(1 + qkj)

sgn(pj)kj [kj ]|pj |

n∑

k0=k1+1

[
n
k0

]
[n+k0

k0

] (1 + qk0)qk0(k0−1)

[k0]−1

+

[ n
k1

]
[
n+k1
k1

] (1 + qk1)qp̃1k1+Q(2⊞
≈

p 1,k1)

sgn(p1)k1 [k1]|p1|−1

m∏

j=2

qp̃jkj+Q(
≈

p j ,kj)(1 + qkj)

sgn(pj)kj [kj ]|pj |


 .

Summing the multiple sum in the above over k0 by (11) and noticing that for (p; p̃;
≈
p) ∈ Π0, by

(17), the first component
≈
p 1 can take only values −1 and 0, we obtain with the help of (7) that

ιsH
⋆
n[{2}

a, 1, s] =
∑

(p;p̃;
≈

p)∈Π2a1

Hn[p; p̃;
≈
p].

This proves identity (19) by induction.

Finally, to prove (20), we proceed by induction on n+ b. Assume formula (20) is true for all

b+ n ≤ N . Now suppose b+ n = N + 1. By definition, we have

H⋆
n[{2}

b, c, s] =

b∑

i=0

qn(b−i)

[n]2b−2i
H⋆

n−1[{2}
i, c, s] +

qn(b+1)

[n]2b+c
H⋆

n[s].

By the induction assumption, we see that

ιsH
⋆
n[{2}

b, c, s] =

b∑

i=0

qn(b−i)

[n]2b−2i

∑

(p;p̃;
≈

p)∈Π
2ic

Hn−1[p; p̃;
≈
p] +

qn(b+1)

[n]2b+c

∑

(p;p̃;
≈

p)∈Π(s)

Hn[p; p̃;
≈
p]. (23)

Setting Π1 = {0 ◦ 1◦(c−3) ◦ (λ1 ⊕ 1̄) ◦ λ◦
1̂
; 0◦(c−2) ◦ λ̃◦; θ◦(c−2) ◦ (

≈
λ1 ⊞−1) ◦ (

≈
λ1̂)

◦}, we have

∑

(p;p̃;
≈

p)∈Π
2ic

Hn−1[p; p̃;
≈
p] =

∑

(p;p̃;
≈

p)∈Π1

Hn−1[2i+ 2⊕ p1,p1̂; i+ 1 + p̃1, p̃1̂; 1⊞
≈
p 1,

≈
p1̂]

=
∑

(p;p̃;
≈

p)∈Π1

∑

n>k1>···>kr≥1

[
n−1
k1

]
[n−1+k1

k1

] qk1(i+1+p̃1)+Q(1⊞
≈

p 1,k1)

(− sgn(p1))k1 [k1]2i+2+|p1|

r∏

j=2

qp̃jkj+Q(
≈

p j ,kj)(1 + qkj)

sgn(pj)kj [kj ]|pj |
.
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Plugging this into (23) and summing over i by (16), we obtain

ιsH
⋆
n[{2}

b, c, s] =
∑

(p;p̃;
≈

p)∈Π1

Hn[(2b+ 2)⊕ p1,p1̂; b+ 1 + p̃1, p̃1̂; 1⊞
≈
p 1,

≈
p1̂]

+
qn(b+1)

[n]2b+c

∑

(p;p̃;
≈

p)∈Π(s)

Hn[p; p̃;
≈
p]−

qn(b+1)

[n]2b+2

∑

(p;p̃;
≈

p)∈Π1

Hn[p1,p1̂; p̃; 1⊞
≈
p1̂],

which implies

ιsH
⋆
n[{2}

b, c, s] =
∑

(p;p̃;
≈

p)∈Π
2bc

Hn[p; p̃;
≈
p]−

qn(b+1)

[n]2b+2

∑

(p;p̃;
≈

p)∈Π2

Hn[p; p̃;
≈
p]

+
qn(b+1)

[n]2b+c

∑

(p;p̃;
≈

p)∈Π(s)

Hn[p; p̃;
≈
p],

(24)

where Π2 = {0 ◦ 1◦(c−3) ◦ (λ1 ⊕ 1) ◦ λ◦
1̂
; 0◦(c−2) ◦ λ̃◦; 1 ◦ θ◦(c−3) ◦ (

≈
λ1 ⊞ (−1)) ◦ (

≈
λ1̂)

◦}. Expanding

the second sum from (24), we have

∑

(p;p̃;
≈

p)∈Π2

Hn[p; p̃;
≈
p] =

∑

(p;p̃;
≈

p)∈Π3

∑

w=0◦1◦(c−3)◦(p1⊕1)

w̃=0◦(c−2)◦p̃1;
≈

w=1◦θ◦(c−3)◦
≈

p 1

Hn[w,p1̂; w̃, p̃1̂;
≈
w,

≈
p1̂],

where Π3 = {λ◦; λ̃◦; (
≈
λ1 ⊞ (−1)) ◦ (

≈
λ1̂)

◦}. Applying Lemma 3.2 to the inner sum with a = p1,

b = p̃1, r =
≈
p 1, c replaced by c− 2, and x = p1̂, y = p̃1̂, z =

≈
p1̂, we obtain

∑

(p;p̃;
≈

p)∈Π2

Hn[p; p̃;
≈
p] =

∑

(p;p̃;
≈

p)∈Π3

1

[n]c−2
Hn[p1,p1̂; p̃;

≈
p 1 ⊞ 1,

≈
p1̂]

=
1

[n]c−2

∑

(p;p̃;
≈

p)∈Π(s)

Hn[p; p̃;
≈
p].

(25)

To justify the last equality above, we need to show that for the components of
≈
λ satisfying (17)

we have
≈
λ1 ⊞ (−1)⊞ 1 =

≈
λ1 and for any j ≥ 2,

≈
λ1 ⊞ (−1)⊞

≈
λ2 ⊞ · · ·⊞

≈
λ j ⊞ 1 =

≈
λ1 ⊞

≈
λ2 ⊞ · · ·⊞

≈
λj .

These can be proved by using the projection π of Lemma 2.2 and the fact that π(
≈
λ1 ⊞ (−1) ⊞

· · ·⊞
≈
λj ⊞ 1) = π(

≈
λ1 ⊞ · · ·⊞

≈
λ j) ∈ {1, 2} by (17).

Now by (24) and (25), we see that (20) is true when n+ b = N + 1. We have completed the

proof of the theorem. �

Repeatedly applying the theorem, we quickly find
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Corollary 5.2. Keep the same notation as in Theorem 5.1. Then for any integers a, b ≥ 0,

l ≥ 1 and c ≥ 3, we have

H⋆
n[{2}

a, {1}l, s] = ιsH
♯
n[2a+ 1, {1}l−1,λ; a+ 1, {1}l−1, λ̃; 2, {0}l−1,

≈
λ1 ⊞−2,

≈
λ1̂] (26)

and

H⋆
n[{2}

b, c, {2}a, {1}l, s] = ιsH
♯
n[2b+ 2, {1}c−3, 2a+ 2, {1}l−1,λ;

b+ 1, {0}c−3, a+ 1, {1}l−1, λ̃; 1, {θ}c−3, 1, {0}l−1,
≈
λ1 ⊞−2,

≈
λ1̂].

Proof. Repeatedly applying (19) by attaching (2aj , 1), j = 1, . . . , l and then setting a1 = · · · =

al−1 = 0 and al = a, we can quickly verify the (26). The corollary follows by applying (20) to

(26). �

We may take limit n → ∞ in (18) of Theorem 5.1 and Corollary 5.2 to obtain identities for

q-MZSV.

Theorem 5.3. Let s = (s1, . . . , sd) ∈ Nd. Set ιs = 1 if sd = 1 and ιs = −1 if sd > 1. Suppose s

uniquely determines [λ; λ̃;
≈
λ] satisfying (17) such that ζ⋆[s] = ιsz

♯[λ; λ̃;
≈
λ]. Then for any integers

a, b ≥ 0, l ≥ 1 and c ≥ 3, we have

ζ⋆[{2}a, s] = ιsz
♯[2a⊕ λ1,λ1̂; a+ λ̃1, λ̃1̂;

≈
λ],

ζ⋆[{2}a, {1}l, s] = ιsz
♯[2a+ 1, {1}l−1,λ; a+ 1, {1}l−1, λ̃; 2, {0}l−1,

≈
λ1 ⊞−2,

≈
λ1̂],

ζ⋆[{2}b, c, s] = ιsz
♯[2b+ 2, {1}c−3, λ1 ⊕ 1̄,λ1̂; b+ 1, {0}c−3, λ̃; 1, {θ}c−3,

≈
λ1 ⊞−1,

≈
λ1̂],

ζ⋆[c, {1}l, s] = ιsz
♯[2, {1}c−3, 2, {1}l−1,λ; 1, {0}c−3, {1}l, λ̃; 1, {θ}c−3, 1, {0}l−1,

≈
λ1 ⊞−2,

≈
λ1̂].

Proof. The first three equations are straight-forward. The last one can be obtained by applying

the middle two equations successively after setting a = b = 0. �

By letting q → 1 in Theorem 5.3 we can immediately prove Theorem 1.3 which gives the

corresponding general rule for classical MZSV. Of course, to guarantee convergence we need to

restrict a ≥ 1 there.

From Theorem 5.3, we can obtain a general formula for arbitrary q-MZSV.

Theorem 5.4. Let a0, aj ∈ N0, cj ∈ N and cj 6= 2 for all j = 1, . . . , d. Set δ(c) = 1 if c = 1 and

δ(c) = 0 if c ≥ 3. Moreover, put {α}n = {α}max(n,0). Then we have

ζ⋆[{2}a0 , c1, {2}
a1 , . . . , cd, {2}

ad ] = ±z
♯[B0, {1}

c1−3, B1, . . . , {1}
cd−3, Bd;

B̃0, {0}
c1−3, B̃1, . . . , {0}

cd−3, B̃d;

≈
B0, {θ}

c1−3,
≈
B1, . . . , {θ}

cd−3,
≈
Bd].
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Here the leading sign ± is + if and only if ad = 0 and cd = 1,

Bj =

{
Aj , if Aj is odd;

Aj , if Aj is even,
where Aj =





2a0 + 2− δ(c1), if j = 0;

2ad + 1− δ(cd), if j = d;

2aj + 3− δ(cj)− δ(cj+1), if 0 < j < d,

B̃j =

{
aj + 1, if 0 ≤ j < d;

ad, if j = d,
and

≈
Bj =





1 + δ(c1), if j = 0;

(1− δ(cd))⊞ (−1), if j = d;

(1− δ(cj))⊞ (δ(cj+1)− 1), if 0 < j < d.

Moreover, if ad = 0 and cd = 1, then Bd, B̃d,
≈
Bd are vacuous.

Proof. The theorem can be proved easily by induction on d using Theorem 5.3. We leave the

details to the interested reader. �

By letting q → 1 in Theorem 5.4, we get Theorem 1.4 which gives the corresponding result for

classical MZSV. It is clear that to ensure convergence we need to assume that a0 > 0 or c1 ≥ 3.

6. Some applications

The first application gives us the general 2-c-2 (c ≥ 3) formula. Here the underline means the

({2}a, c)-type string may be repeated an arbitrary number of times where a and c may change

in each repetition.

Theorem 6.1. Suppose ℓ ∈ N0. Let s = ({2}a1 , c1, . . . , {2}
aℓ , cℓ, {2}

aℓ+1) with aj, cj ∈ N0 and

cj ≥ 3 for all j ≥ 1. Then

H⋆
n[s] = −H♯

n[2a1 + 2, {1}c1−3, 2a2 + 3, {1}c2−3, . . . , 2aℓ + 3, {1}cℓ−3, 2aℓ+1 + 1;

a1 + 1, {0}c1−3, . . . , aℓ + 1, {0}cℓ−3, aℓ+1; 1, {θ}
c1+···+cℓ−2ℓ].

(27)

Proof. If aℓ+1 = 0, then starting from Theorem 4.1 for H⋆
n[{2}

aℓ , cℓ] and repeatedly applying

(20), we get the above identity. Otherwise, starting from (8) and repeatedly applying the

attaching rule (20) we can arrive at (27) immediately. �

By applying Lemma 2.3 to Theorem 6.1 we immediately get

Corollary 6.2. With the same notation as in Theorem 6.1, we have

ζ⋆[s] = −ζ♯[2a1 + 2, {1}c1−3, 2a2 + 3, {1}c2−3, . . . , 2aℓ + 3, {1}cℓ−3, 2aℓ+1 + 1;

a1 + 1, {0}c1−3, . . . , aℓ + 1, {0}cℓ−3, aℓ+1; 1, {θ}
c1+···+cℓ−2ℓ].

In particular, if c1 = c2 = . . . = cℓ = 3, we get a q-analog of the Two-three formula:

ζ⋆[s] =
∑

p=(2a1+2)◦(2a2+3)◦···◦(2aℓ+3)◦(2aℓ+1+1)
p̃=(a1+1)◦···◦(aℓ+1)◦(aℓ+1)

∑

k1>···>km≥1

(−1)k1−1q
k1(k1−1)

2

m∏

j=1

qp̃jkj(1 + qkj)

[kj ]pj
.
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Remark 6.3. When q → 1 one can recover all the MZSV identities contained in [17].

Now starting from (9) and repeatedly and alternatively applying the attaching rules (19) and

(20) we can find the following:

Theorem 6.4. Suppose ℓ ∈ N0, n ∈ N and a0, aj , bj , cj − 3 ∈ N0 for all j ≥ 1. Consider the

following two possible types of compositions:

(2-c-2-1) :

s = ({2}b1 , c1, {2}
a1 , 1, . . . , {2}bℓ , cℓ, {2}

aℓ , 1), ℓ ∈ N,

s′ = (2b1 + 2, {1}c1−3, 2a1 + 2, . . . , 2bℓ + 2, {1}cℓ−3, 2aℓ + 2;

b1 + 1, {0}c1−3, a1 + 1, . . . , bℓ + 1, {0}cℓ−3, aℓ + 1;

1, {θ}c1−3, 1,−1, {θ}c2−3, 1, . . . ,−1, {θ}cℓ−3, 1︸ ︷︷ ︸
appear only if ℓ > 1

).

(2-1-2-c-2-1) :

s = ({2}a0 , 1, {2}b1 , c1, {2}
a1 , 1, . . . , {2}bℓ , cℓ, {2}

aℓ , 1), ℓ ∈ N0,

s′ = (2a0 + 1, 2b1 + 2, {1}c1−3, 2a1 + 2, . . . , 2bℓ + 2, {1}cℓ−3, 2aℓ + 2;

a0 + 1, b1 + 1, {0}c1−3, a1 + 1, . . . , bℓ + 1, {0}cℓ−3, aℓ + 1;

2,−1, {θ}c1−3, 1, . . . ,−1, {θ}cℓ−3, 1︸ ︷︷ ︸
appear only if ℓ > 0

).

Then in each case we have

H⋆
n[s] = H♯

n[s
′].

Corollary 6.5. With the same notation as in Theorem 6.4, we have

ζ⋆[s] = z
♯[s′].

For example, taking ℓ = 1 and c1 = 3, we get (cf. [22, (26)] and the identity after it)

ζ⋆[{2}b, 3, {2}a, 1] = z[2a+ 2b+ 4; a+ b+ 2; 2] + z[2b+ 2, 2a+ 2; b+ 1, a+ 1; 1, 1]

and

ζ⋆[{2}a0 , 1,{2}b, 3, {2}a1 , 1] = z[2(a0 + b+ a1) + 5; a0 + b+ a1 + 3; 2]

+ z[2a0 + 1, 2a1 + 2b+ 4; a0 + 1, a1 + b+ 2; 2, 0]

+ z[2a0 + 2b+ 3, 2a1 + 2; a0 + b+ 2, a1 + 1; 1, 1]

+ z[2a0 + 1, 2b + 2, 2a1 + 2; a0 + 1, b+ 1, a1 + 1; 2,−1, 1].

(28)

We can also get the following identity which is the q-analog of [22, Theorem 6.1(i)].
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Corollary 6.6. Let a, b be two nonnegative integers. Then

ζ⋆[{2}a, 3, {2}b, 1] + ζ⋆[{2}b, 3, {2}a, 1] = ζ⋆[{2}a+1]ζ⋆[{2}b+1]

+ (1− q)z[2a+ 2b+ 3; a+ b+ 2; 2].

Proof. By taking n → ∞ in (8) and using Lemma 2.3 we get

ζ⋆[{2}a+1] = z[2a+ 2; a + 1; 1] =

∞∑

k=1

q(a+1)k+Q(1,k)(1 + qk)

[k]2a+2
.

Thus

ζ⋆[{2}a, 3, {2}b, 1] + ζ⋆[{2}b, 3, {2}a, 1] − ζ⋆[{2}a+1]ζ⋆[{2}b+1]

=

∞∑

k=1

q(a+b+2)k+Q(2,k)
(
2(1 + qk)− (1 + qk)2

)

[k]2a+2b+4

=
∞∑

k=1

q(a+b+2)k+Q(2,k)(1 + qk)(1− qk)

[k]2a+2b+4

=(1− q)z[2a+ 2b+ 3; a+ b+ 2; 2]

as desired. �

If we start with (8) and repeatedly and alternatively apply the attaching rules (19) and (20)

we can get:

Theorem 6.7. Suppose ℓ ∈ N0, n, aℓ+1 ∈ N, and a0, aj , bj , cj − 3 ∈ N0 for all 1 ≤ j ≤ ℓ.

Consider the following two possible types of compositions:

(2-c-2-1-2) :

s = ({2}b1 , c1, {2}
a1 , 1, . . . , {2}bℓ , cℓ, {2}

aℓ , 1, {2}aℓ+1), ℓ ∈ N,

s′ = (2b1 + 2, {1}c1−3, 2a1 + 2, . . . , 2bℓ + 2, {1}cℓ−3, 2aℓ + 2, 2aℓ+1;

b1 + 1, {0}c1−3, a1 + 1, . . . , bℓ + 1, {0}cℓ−3, aℓ + 1, aℓ+1;

1, {θ}c1−3, 1,−1, {θ}c2−3, 1, . . . ,−1, {θ}cℓ−3, 1︸ ︷︷ ︸
appear only if ℓ > 1

,−1).

(2-1-2-c-2-1-2) :

s = ({2}a0 , 1, {2}b1 , c1, {2}
a1 , 1, . . . , {2}bℓ , cℓ, {2}

aℓ , 1, {2}aℓ+1), ℓ ∈ N0,

s′ = (2a0 + 1, 2b1 + 2, {1}c1−3, 2a1 + 2, · · · , 2bℓ + 2, {1}cℓ−3, 2aℓ + 2, 2aℓ+1;

a0 + 1, b1 + 1, {0}c1−3, a1 + 1, . . . , bℓ + 1, {0}cℓ−3, aℓ + 1, aℓ+1;

2,−1, {θ}c1−3, 1, . . . ,−1, {θ}cℓ−3, 1︸ ︷︷ ︸
appear only if ℓ > 0

,−1).
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Then in each case we have

H⋆
n[s] = −H♯

n[s
′].

By taking n → ∞ we have

Corollary 6.8. Let notation be the same as in Theorem 6.7. Then

ζ⋆[s] = −z
♯[s′].

For example, taking ℓ = 1 and c1 = 3, we get in case (2-c-2-1-2)

ζ⋆[{2}b, 3, {2}a1 , 1, {2}a2 ] =− z[2a1 + 2b+ 2a2 + 4; a1 + b+ a2 + 2; 1]

− z[2b+ 2, 2a1 + 2a2 + 2; b+ 1, a1 + a2 + 1; 1, θ]

− z[2a1 + 2b+ 4, 2a2; a1 + b+ 2, a2; 2,−1]

− z[2b+ 2, 2a1 + 2, 2a2; b+ 1, a1 + 1, a2; 1, 1,−1].

By taking q → 1 this yields the identity on the bottom of [22, p. 12].

As a non-trivial example of Theorem 5.3 we may attach a string of type (2a, 1) to the front

of the already treated type ({2}b, 1, {2}c, 3, {2}d, 1) given by (28) and get the following q-MZSV

identity: for any nonnegative integers a, b, c, d

ζ⋆[{2}a, 1,{2}b, 1, {2}c, 3, {2}d, 1] = z[2a+ 2b+ 2c+ 2d+ 6; a+ b+ c+ d+ 4; 2]

+z[2a+ 1, 2b + 2c+ 2d+ 5; a+ 1, b+ c+ d+ 3; 2, 0]

+z[2a+ 2b+ 2, 2c+ 2d+ 4; a+ b+ 2, c + d+ 2; 2, 0]

+z[2a+ 2b+ 2c+ 4, 2d+ 2; a+ b+ c+ 3, d+ 1; 1, 1]

+z[2a+ 1, 2b + 1, 2c + 2d+ 4; a+ 1, b+ 1, c+ d+ 2; 2, 0, 0]

+z[2a+ 1, 2b + 2c+ 3, 2d+ 2; a+ 1, b+ c+ 2, d+ 1; 2,−1, 1]

+z[2a+ 2b+ 2, 2c+ 2, 2d+ 2; a+ b+ 2, c + 1, d+ 1; 2,−1, 1]

+z[2a+ 1, 2b + 1, 2c + 2, 2d+ 2; a+ 1, b+ 1, c+ 1, d + 1; 2, 0,−1, 1].

(29)

By taking q → 1 in (29) we discover the classical MZSV identity (3) in the introduction,

which has not been proved before.
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