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Single-valued multiple zeta values in

genus 1 superstring amplitudes

Federico Zerbini

Abstract. We study the functions Dl introduced by Green, Russo, Vanhove in [18] in the

context of type II superstring scattering amplitudes of 4 gravitons on a torus. In particular we

describe a method to algorithmically compute the coefficients in their expansion at the cusp

in terms of conical sums. We perform explicit computations for 3-graviton functions, which

naturally suggest to conjecture that only single-valued multiple zeta values appear.
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1 Introduction

The low-momentum expansion of scattering amplitudes in string theories has been considered

and extensively studied since the end of the sixties, the pioneer being Veneziano and Virasoro,

who studied open and closed bosonic string amplitudes ([26], [27]), respectively. However,

progress in this area has been fairly slow: indeed, only in the last years a fruitful interaction

between physicists and mathematicians is speeding up the research and producing amazing

advances.

The coefficients of the tree-level amplitude in superstring theory are in general fairly well

understood, both for open and closed strings1, with an arbitrary number of particles (see [23],

[24], [4]). In particular, the coefficients are multiple zeta values for open strings and single-

valued multiple zeta values for closed strings.

For the genus 1 case the situation is much more complicated. Recently some progress has

been made in the study of open string amplitudes in [2], where very interesting results with an

arbitrary number of particles are obtained. The upshot is that the amplitude can be written in

terms of elliptic multiple zeta values, functions depending on τ ∈ H whose coefficients in their

1A precise description of open and closed string theory is beyond the scope of the present work; we refer the

reader to the literature.
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Fourier expansion involve multiple zeta values (see [15],[3]). In the closed string case, already

the first physically meaningful amplitude, involving 4 particles, is far from being understood,

despite the great effort spent in the last 15 years in this direction (see [19],[18],[20],[14],[17]).

Very little is known for higher genus (see [11], [13] for genus 2 and [16] for genus 3).

The present paper is concerned with closed strings in genus 1. Let us see how one gets the

amplitude in this case. We want to study, more precisely, the low-momentum expansion of the

genus 1 scattering amplitude of four gravitons in type II superstring theory. This means in

particular that our strings are closed. Each graviton is labelled by its momentum pi, where

p2i = 0 and
∑

pi = 0, and by a kinematic quantity ζi that we do not define, since we do not

need it for what follows. One can define the so called Mandelstam variables s := −(p1 + p2)
2,

t := −(p1 + p4)
2 and u := −(p1 + p3)

2. The conditions on the momenta are then equivalent to

the fact that s+ t+ u = 0.

The amplitude in genus 1 has the form

Aζ1,ζ2,ζ3,ζ4(s, t, u) = I(s, t, u)Rζ1,ζ2,ζ3,ζ4 ,

where Rζ1,ζ2,ζ3,ζ4 is a kinematic factor (see [18]), and I(s, t, u) is a power series in the Man-

delstam variables. I is defined to be the integral over the moduli space of elliptic curves (with

respect to the appropriate hyperbolic measure) of the following function, which is itself defined

as an integral:

∫∫

exp(
α′

4
(s(G(z−w, τ)+G(v, τ))+t(G(w−v, τ)+G(z, τ))+u(G(z−v, τ)+G(w, τ))))

dzdwdv

τ32
,

(1)

where:

• τ = τ1 + iτ2 ∈ H,

• we perform the integral over 3 copies of the torus (C/Λτ )
3, for Λτ = Zτ + Z,

• z, w, v represent 3 of our 4 gravitons moving on the torus (without loss of generality we

can assume that the fourth is fixed and we choose it to be in the origin),

• α′ is a physical constant (the inverse of the string tension),

• G (the propagator function) is the Green function on the torus defined as

G(z, τ) := − log

∣

∣

∣

∣

θ1(z, τ)

η(τ)

∣

∣

∣

∣

2

+
2πz22
τ2

,

where z = z1 + iz2.

Recall that the Jacobi theta function θ1(z, τ) and the Dedekind eta-function η(τ) are defined

by

θ1(z, τ) =
∑

ν∈Z+1/2

(−1)ν−1/2qν
2/2ζν = −q1/8ζ−1/2

∏

n≥1

(1− qn)(1 − qn−1ζ−1)(1− qnζ),

η(τ) = q1/24
∏

n>0

(1 − qn),

with q = e2πiτ and ζ = e2πiz.
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An easy computation shows that the function G is elliptic and modular invariant with

respect to the action of SL2(Z).

To perform the integration one can expand the exponential as a power series in α′s, α′t, α′u,

and then one gets linear combinations of functions Dl(τ) defined for l = (l1, . . . , l6) ∈ Z6
≥0 as

Dl(τ) :=
1

43

∫∫

(C/Λτ )3
G(z−w, τ)l1G(v, τ)l2G(w−v, τ)l3G(z, τ)l4G(z−v, τ)l5G(w, τ)l6

dzdwdv

τ32
.

The properties of G imply that this integral is well defined, and that Dl is a modular function.

Our aim is to understand better these functions. We call l1 + · · ·+ l6 the weight of Dl.

It is worth mentioning that one can easily deduce a series representation of Dl (see [18]):

Dl(τ) =
( τ2
4π

)l1+···+l6 ∑
6
∏

j=1

li
∏

i=1

| ω
(j)
i |−2, (2)

where the sum runs over the lattice points ω
(j)
i := m

(j)
i τ + n

(j)
i such that

ω
(1)
1 + · · ·+ ω

(1)
l1

+ ω
(4)
1 + · · ·+ ω

(4)
l4

+ ω
(5)
1 + · · ·+ ω

(5)
l5

= 0,

ω
(3)
1 + · · ·+ ω

(3)
l3

+ ω
(6)
1 + · · ·+ ω

(6)
l6

= ω
(1)
1 + · · ·+ ω

(1)
l1

,

ω
(3)
1 + · · ·+ ω

(3)
l3

+ ω
(5)
1 + · · ·+ ω

(5)
l5

= ω
(2)
1 + · · ·+ ω

(2)
l2

.

However, in the present work we will rather use the definition of Dl as an integral. Following

the method of Green, Russo and Vanhove in [18], we write

G(z, τ) = 2πτ2 B2(z2/τ2) + P (z, τ), (3)

where

P (z, τ) :=
∑

k 6=0
n∈Z

1

|k|
e2πik(nτ1+z1)e−2π|k||nτ2−z2|

and B2 is the second generalized Bernoulli polynomial, defined as B2(x) = B2(x) = x2−x+1/6

for x ∈ [0, 1] and then defined imposing B2(x+ 1) = B2(x) for every x ∈ R.

Then we have proved the following:

Theorem 1.1. For every l = (l1, l2, l3, l4, l5, l6) we have

Dl(τ) =
∑

µ,ν≥0

d
(µ,ν)
l (πτ2) q

µ qν ,

where for every µ, ν ≥ 0

d
(µ,ν)
l (x) =

2(l1+···+l6)−1
∑

j=0

a
(µ,ν)
j xl1+···+l6−j

is a Laurent polynomial with coefficients a
(µ,ν)
j lying in the algebra of conical sums C, which

will be defined in the next section, and q = e2πiτ .
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Thanks to the sum representation (2) it is easy to see that the functions Dl which are

irreducible, i.e. which cannot be written as products of other two Dl, are the ones associated

with the diagrams appearing in the following figure, where any point represents a graviton:

l1
(a)

l3

l1 l2

(b)

l1 l2

l3l4

(c)

l1 l2

l5l4

l3
(d)

l1 l2

l3

l5

l6

l4 (e)

The 5 irreducible diagrams.

No lines between pairs of points amount to say that there are 0 propagators; to give an

example, in the case of diagram (a) the associated function is Dl1 := D(l1,0,0,0,0,0), and we will

speak of 2-point case because only 2 points are connected by a propagator.

After the introduction, in the next section, of single-valued multiple zeta values and conical

sums, we will consider the 2-point case, the 3-point case (diagram (b)) and the 4-point case

(diagrams (c), (d) and (e)) separately, and we will say something about the proof of theorem 1.1

for all of them.2

The main consequence of this theorem is that, combining it with the results in section 2,

we get a powerful tool to do explicit computations. In particular we focus on the 3-point case,

where we go beyond what could be computed so far and we produce the first instances of

multiple zeta values that cannot be reduced to products of simple zeta values. Moreover, we

note that only single-valued multiple zeta values appear. To give an example, following the

notation of theorem 1.1, we got the following Laurent polynomial in weight 7:

d
(0,0)
1,1,5(y) =

1

47

( 62

10945935
y7 +

1

243
ζsv(3)y

4 +
119

648
ζsv(5)y

2 +
11

108
ζsv(3)

2y +
21

32
ζsv(7)

+
23

6

ζsv(3)ζsv(5)

y
+

7115ζsv(9)− 900ζsv(3)
3

576y2
+

1245ζsv(3)ζsv(7)− 150ζsv(5)
2

64y3

+
288ζsv(3, 5, 3)− 3600ζsv(5)ζsv(3)

2 − 9573ζsv(11)

256y4

+
2475ζsv(5)ζsv(7) + 1125ζsv(9)ζsv(3)

128y5
−

1575

64

ζsv(13)

y6

)

.

2The theorem, as stated, need to be proven only in the case (e), allowing the li’s to be equal to zero, and all

the other cases would follow. It is however important, as we will explain, to give a more detailed proof in the

simpler cases.
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2 Conical sums

First let us fix the notation:

Definition 2.1. We call multiple zeta values (MZVs) the real numbers given by the absolutely

convergent series

ζ(k1, . . . , kr) =
∑

0<v1<···<vr

1

vk1
1 · · · vkr

r

=
∑

x∈Nr

1

xk1
1 (x1 + x2)k2 · · · (x1 + · · ·+ xr)kr

,

where r, k1, . . . , kr ∈ N and kr ≥ 2. We call r the length and k := k1 + · · · + kr the weight of

the MZV. We call A the algebra spanned over Q by the MZVs.

In particular they are special values of multiple polylogarithms, which are defined for k =

(k1, . . . , kr) as

Lik(z1, . . . , zn) =
∑

0<v1<···<vr

zv11 · · · zvrr

vk1
1 · · · vkr

r

.

If one considers polylogarithms in one variable (setting z1 = · · · = zn−1 = 1 and keeping only

zn), then one can construct their single-valued version, introduced in [5]. The values at 1 of

these single valued functions are called single-valued multiple zeta values. Single-valued MZVs

constitute a small subset of A, which has been introduced and studied very recently by Brown

in [8]. We refer to that paper any time we will talk about them, in particular to section 7,

where a basis is computed up to weight 13.

Definition 2.2. Let v1, . . . , vm ∈ Qn, and let R+ denote the non-negative real numbers. Then

we say that C := R+v1 + · · ·+ R+vm is a rational cone, and we denote C0 its interior.

Definition 2.3. Let C be a rational cone in Rn and let l1, . . . , lr be (possibly not distinct)

linear forms with integer coefficients that are positive on the interior of C.

If li(x) =
∑n

j=1 ai,jxj , consider the matrix A := (ai,j). Then for χ a finite order character

of Zn we define the following series:

ζ(C,A, χ) :=
∑

x∈C0∩Zn

χ(x)

l1(x) · · · lr(x)
(4)

When this series converges we call these numbers conical sums and we define C to be the vector

space generated over Q by them. Note that ζ(C,A, χ) does not depend on the order of the rows

and columns of A.

One can immediately see that C is an algebra. Setting C equal to the the first quadrant in R2,

l1(x) = x1, l2(x) = l3(x) = x1 + x2, and χ identically equal to 1, we get ζ(C,A, χ) = ζ(1, 2). In

the same way one gets all the MZVs, and taking non-trivial characters one gets all the other

special values of polylogarithms at roots of unity.

The main reference for a systematic study of conical sums is Terasoma’s paper [25] (see also

[21] for a different but less general approach to their study).

Terasoma proves that any conical sum can be reduced to a linear combination of sums of

the canonical form

ζ(A,χ) :=
∑

x∈Nn

χ(x)

l1(x) · · · lr(x)
, (5)
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where the coefficients ai,j ∈ Z≥0, and that sums of this form have the following integral repre-

sentation:

ζ(A,χ) =

∫

[0,1]r

χ(u)xl1−1
1 · · ·xlr−1

r dx1 · · · dxr
∏n

j=1(1− χ(ej)x
a1,j

1 · · ·x
ar,j
r )

, (6)

where ej is the canonical j-th element of the basis of Zn and u :=
∑n

j=1 ej = (1, . . . , 1)T .

This means, first of all, that all conical sums are periods. Moreover, the main result of [25]

is that they are linear combination of multiple polylogarithms evaluated at some roots of unity.

In particular one may be interested in understanding when a conical sum belongs to A, and

this is the case in our context, because the coefficients of the amplitudes are widely expected to

be MZVs. This turns out to be a complicated problem. Once we put them in the form (5), it

is clear that we should consider only sums of the kind ζ(A) := ζ(A,χ0), where χ0 is the trivial

character sending everything to 1.

In general, if there are coefficients in the non-negative matrix A which are bigger than 1,

one cannot hope to get MZVs, because this introduces a congruence condition on the sum. For

example, it is an easy exercise to show that

∑

x,y≥1

1

x (x+ 2y)2
=

π2 log(2)

8
−

5ζ(3)

16
.

A natural subset that we may want to define (and that is the good set to consider in the string

amplitude computations for 3 gravitons, as we will see later) is then the following:

Definition 2.4. We call (0, 1)-matrix any matrix whose entries are only zeros and ones. Then

we define B as the vector space generated over Q by the ζ(A) such that A is a (0, 1)-matrix

and the sum converges.

It is trivial to see that B is an algebra and that A ⊆ B.

It is actually bigger (assuming standard transcendence conjectures), because for instance

one finds, using the method explained below, that

∑

x,y,z,w≥1

1

(x+ y)(x+ y + z)(y + z + w)(x + y + w)2
=

15

32
ζ(5)−

9

4
ζ(2)ζ(3) +

9

4
log(2)ζ(2)2.

Using the integral representation of conical sums of the form (5) (so in particular of the numbers

in B) one can try to use the Maple program HyperInt recently created by E. Panzer and

explained in [22], which is based on ideas developed by F. Brown in [9] and [6]. In some cases,

HyperInt answers rewriting ζ(A) as a linear combination of multiple polylogarithms at roots

of unity, and that is how we obtained the counterexample showing that B is strictly bigger

than A. Unfortunately, HyperInt up to now is not able to give an answer in general, even for

numbers belonging to B, for reasons that will not be discussed here.

Nevertheless, one can characterize3 a (not optimal) subset of numbers in B that will always

belong to the ring A of MZVs (and can be computed algorithmically by HyperInt):

Lemma 1. Let S be the set {(0, 1)-matrices such that, up to permutations of the rows, the

ones are consecutive in every column}. If A ∈ S and ζ(A) converges, then ζ(A) ∈ A.

3I am grateful to C. Dupont for remarking this to me, as well as for suggesting the idea of using HyperInt to

compute conical sums.
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Proof. We can write the matrix with consecutive ones in every column, because interchang-

ing rows does not change the sum. Recall the integral representation (6). In our case it reduces

to

ζ(A) =

∫

[0,1]r

xl1−1
1 · · ·xlr−1

r dx1 · · · dxr
∏n

j=1(1− x
a1,j

1 · · ·x
ar,j
r )

,

where any factor in the denominator will actually be of the form 1−
∏b

k=a xk for 1 ≤ a ≤ b ≤ r.

The result follows from theorem 8.2 of [9], where it is proven that integrals of this kind always

belong to A.

�

As announced above, this condition is not optimal. Of course there are sums which we do

not expect in general to be multiple zeta values, for example involving coefficients bigger than 1,

that reduce to MZVs by accident (using double subdivision relations introduced in [21]):

∑

x,y≥1

1

(x+ y)2(2x+ y)
=

ζ(3)

4
.

However, there is a set of (0, 1)-matrices strictly bigger than S which gives only MZVs, an

example being
∑

x,y,z≥1

1

xyz(x+ y + z)
,

which can be easily proven by partial fraction decomposition to belong to A (it is equal to

6ζ(1, 1, 2)) even though its associated matrix is not in S.

An optimal characterisation of the conical sums belonging to A will be the subject of a

forthcoming joint work with C. Dupont.

3 The 2-point case

When only two gravitons are involved, with l propagators between them (diagram (a)), the

functions to compute are given by:

Dl(τ) :=
1

4

∫

G(z, τ)l
dz

τ2
.

The behaviour of this integral as τ2 tends to infinity was already studied in [18]. Using the

same ideas we generalize that result giving the following expansion of the functions Dl’s, which

is of course a special case of theorem 1.1:

Theorem 3.1. For every l ≥ 2

Dl(τ) =
∑

µ,ν≥0

d
(µ,ν)
l (πτ2)q

µqν , (7)

where for every µ, ν ≥ 0

d
(µ,ν)
l (x) =

2l−1
∑

j=0

a
(µ,ν)
j xl−j

is a Laurent polynomial with coefficients a
(µ,ν)
j ∈ C and q = e2πiτ .

7



Proof. Using (3) and setting x := z2/τ2, we want to compute

Dl(τ) =
1

2l

∑

l=r+m

l!

r!m!

(πτ2)
r

2m

∫∫

B2(x)
rP (z, τ)mdz1dx.

Since

P (z, τ)m =
∑

n∈Z
m

k∈Z
m
0

1

|k|
e2πi

∑
i
ki(niτ1+z1)e−2πτ2

∑
i
|ki||ni−x|, (8)

where Z0 := Z \ {0} and |k| := |k1| · · · |km|, we have

∫

R/Z

P (z, τ)mdz1 =
∑

n∈Z
m

k∈Z
m
0

δ0(k)

|k|
e2πi(k·n)τ1e−2πτ2(

∑
|ki||ni−x|),

where, for any v ∈ Zm and for any a ∈ Z, δa(v) = 1 if the sum of the coordinates is a, and is

zero otherwise. Moreover, x · y denotes the standard inner product of Rm.

In the interval [0, 1],

B2(x)
r =

∑

a+b+c=r

r!

a! b! c!

(−1)b

6c
x2a+b.

Therefore we have

Dl(τ) =

1

4l

∑

a+b+c+m=l

l!(2πτ2)
l−m

a! b! c!m!

(−1)b

6c

∑

n∈Z
m

k∈Z
m
0

δ0(k)

|k|
e2πi(k·n)τ1

∫ 1

0

x2a+be−2πτ2(
∑

|ki||ni−x|)dx. (9)

To compute the last integral, let us fix n1, . . . , nm. Since x ∈ [0, 1] we have

|ni − x| =

{

ni − x if ni > 0

x− ni if ni ≤ 0,

so
∑

|ki||ni − x| =
∑

|ki||ni|+ x
∑

sgn(−ni)|ki|.

By repeated integration by parts one easily finds that for any c ∈ R>0, β ∈ R\{0} andM ∈ N

∫ c

0

xMe−βxdx =
M !

βM+1
−

M
∑

j=0

(M)j
βj+1

cM−je−βc, (10)

where (M)j = M(M − 1) · · · (M − j + 1) is the descending Pochhammer symbol. In our case

β = 2πτ2
∑

sgn(−ni)|ki|, c = 1 and M = 2a + b. Note that
∑

sgn(−ni)|ki| can be equal to

zero. If it is not zero, since |ni|+sgn(−ni) = |ni− 1|, by (10) we get, as a result of the integral,

(2a+ b)! e−2πτ2
∑

|ki||ni|

(2πτ2
∑

sgn(−ni)|ki|)2a+b+1
−

2a+b
∑

j=0

(2a+ b)! e−2πτ2
∑

|ki||ni−1|

(2a+ b− j)!(2πτ2
∑

sgn(−ni)|ki|)j+1
,

while if
∑

sgn(−ni)|ki| = 0 then we just get

e−2πτ2
∑

|ki||ni|

2a+ b+ 1
.

8



In both cases, once we fix n1, . . . , nm and k1, . . . , km, putting everything together we are left

with an expression of the kind

c(p,q)(πτ2)e
2πipτ1e−2πqτ2 ,

where p =
∑

kini ∈ Z, q is a non-negative integer equal to either
∑

|ki||ni − 1| or
∑

|ki||ni|,

and c(p,q)(πτ2) is a Laurent polynomial with rational (explicitly determined) coefficients whose

maximum power is l and minimum power is 1− l.

Note that e2πipτ1e−2πqτ2 = qµqν , with µ = (q+ p)/2 and ν = (q− p)/2. Therefore we would

like to show that q ≥ |p| and that p ≡2 q in order to have that µ and ν are non-negative integers.

If q =
∑

|ki||ni| the claim is trivial, so we have to take care only of the case q =
∑

|ki||ni − 1|.

Note that kini ≡2 |ki||ni| ≡2 |ki|(1 + |ni − 1|) and that
∑

|ki| ≡2

∑

ki = 0, so

p =
∑

kini ≡2

∑

|ki|+
∑

|ki||ni − 1| ≡2 q.

Moreover |p| = |
∑

kini|+ |
∑

ki| ≤ |
∑

ki(ni − 1)| ≤
∑

|ki||ni − 1| = q.

To conclude our proof we have to analyse more carefully the rational coefficients of c̃(µ,ν)(πτ2),

which are obtained by the c(p,q)(πτ2)’s.

Any fixed q =
∑

|ki||ni − ε| (ε = 0, 1) can be obtained with just finitely many m-tuples

(n1, . . . , nm), because |ni− ε| ≤ q for any i: otherwise, since for every i |ki| ≥ 1, we would have
∑

|ki||ni − ε| ≥
∑

|ni − ε| ≥ q. This means that for any (µ, ν), which is uniquely determined

by a couple (p, q), one has to consider a finite rational linear combination of sums of the kind

T (m,n, α) :=
∑

k

δ0(k)

|k|(
∑

sgn(−ni)|ki|)α
,

where k ∈ Zm
0 are such that

∑

sgn(−ni)|ki| 6= 0 and α is a positive integer. Note that the

function T only depends on ni/|ni|.

Since we can split the sum defining T as a sum over cones such that the forms in the

denominator are either bigger or smaller than zero, it follows that our coefficients are linear

combinations of conical sums.

�

Specializing carefully this computation to the (p, q) = (0, 0) case, one gets the result already

found in [18]:

Corollary 1.

dl(x) := d
(0,0)
l (x) =

( x

12

)l

2F1(1,−l, 3/2; 3/2)

+
2

4l

∑

a+b+c+m=l
m≥2

l!(2a+ b)!

a!b!c!m!

(−1)b

6c
S(m, 2a+ b+ 1)(2x)c−a−1,

where

2F1(1,−l, 3/2; 3/2) =

l
∑

j=0

l!(−1)j

(l − j)!(3/2)n

(3

2

)n

is the classical Gauss hypergeometric function and S(m,α) := T (m, (1, . . . , 1), α).

Proof. Note that since q =
∑

|ki||ni − ε| with ε = 0 or 1 the only possible m-tuples

(n1, . . . , nm) which can give q = 0 are (0, . . . , 0) and (1, . . . 1), and with them also p = 0,

9



because
∑

ki = 0. Using this and looking carefully4 at the proof of the previous theorem one is

then lead to the formula above, except perhaps for the hypergeometric coefficient of the leading

term, which is a bit fancier than what one obtains with the integration process described in the

proof, and can be deduced by making use of the identity

1

x(x+ 1) · · · (x+ n)
=

n
∑

j=0

(−1)j

j!(n− j)!

1

x+ j
,

easily obtained by partial fraction decomposition.

�

The function S(m,α) was proven by D. Zagier in [28] to be equal to an explicit linear combi-

nation of MZVs, allowing to algorithmically compute in terms of MZVs the non-exponentially

small part of Dl.

Noting a few mistakes in the data given in [18], the coefficients of these Laurent polyno-

mials always happen to be polynomials in simple odd zeta-values, as it is also the case in the

computation of the coefficients of the genus zero 4-point amplitude (see [1]).

This is not surprising: one can think of the limit when τ2 is big as a degeneracy of the torus

with 2 marked points to a sphere with 4 marked points, and Zagier recently managed, finding a

way to write the coefficients of dl in terms of the coefficients of the 4-point amplitude in genus

zero, to prove the following [Zagier, unpublished]:

Theorem 3.2. For all integers l the Laurent polynomial dl(πτ2) has coefficients belonging to

the polynomial ring generated over Q by the simple odd zeta values ζ(2n+ 1).

Unfortunately, knowing dl is not enough to perform the integration over the moduli space

of complex tori, so one would like to understand better the behaviour of the functions Dl. This

can be achieved by looking at the more general theorem 3.1, because it allows us to predict

other coefficients of the expansion (7).

To make an example, let us recall that the non-holomorphic Eisenstein series are defined,

for s ∈ C with ℜ(s) > 1 and τ ∈ H, by

Es(τ) =
∑

(m,n)∈Z2\{(0,0)}

τs2
|mτ + n|2s

. (11)

We actually want to consider the modified function E′
s(τ) := (4π)−sEs(τ). It is a real analytic

function, modular invariant with respect to the action of SL2(Z). If we suppose that s = n ∈ N,

n ≥ 2, its explicit expansion at the cusp is given, setting y = πτ2, by

E′
n(τ) =

1

4n

[

(−1)n−1 B2n

(2n)!
(4y)n +

4(2n− 3)!

(n− 2)!(n− 1)!
ζ(2n− 1)(4y)1−n

+
2

(n− 1)!

∑

N≥1

Nn−1σ1−2n(N)(qN + qN )

n−1
∑

m=0

(n+m− 1)!

m!(n−m− 1)!
(4Ny)−m

]

, (12)

where Bn is the n-th Bernoulli number, and σk(N) =
∑

d|N dk is a finite power sum running

over the positive divisors of N .

4As explained in [18], one exploits the fact that B2(1 − x) = B2(x) in order to get the nice looking formula

in the corollary instead of the more complicated one then we would naively get just by performing the same

steps of the theorem’s proof.
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Using the series representations (2) for Dl(τ) and (11) for the Eisenstein series one can

immediately see that D2(τ) = E′
2(τ).

Let us briefly see how can we get the same result by comparing the expansion given by

theorem 3.1 and the expansion (12), which becomes in this case

E′
2(τ) =

1

16

[y2

45
+

ζ(3)

y
+ 2

∑

N≥1

(2N + y−1)σ−3(N)(qN + qN )
]

.

Using the intermediate step (9) in the proof of the theorem, for m = 0 we get (1/16)(y2/45),

which is the leading term of the non-exponential part, for m = 1 we get 0, and for m = 2 (so

a = b = c = 0) we get

1

16

∑

k∈Z\{0}
n∈Z

e2πipτ1e−2πτ2(|k|(|n1|+|n2|))

|k|2

∫ 1

0

e−2πτ2x|k|(sgn(−n1)+sgn(−n2))dx,

where we denote p = k(n1 − n2). When p = 0, i.e. when q and q have the same power in

the expansion given by the theorem, then n1 = n2, which implies that the argument of the

exponential in the integral is never zero. Therefore, splitting the sum into the n ≥ 1 part and

the n ≤ 0 part, one gets 2 telescoping sums, both giving as a result

∑

k∈Z\{0}

1

64|k|3y
.

We conclude that the variable τ1 does not appear only in the non-exponentially small part

of D2(τ), which is the Laurent polynomial d2(y) = (y2/45 + ζ(3)/y)/16. This fits with the

expansion of E′
2(τ).

Moreover, if p > 0 one gets again telescoping sums in n, but now we sum only over finitely

many k, which are the divisors of p. We leave as an exercise to the reader to verify that one

gets exactly the same expansion as we get for the non-holomorphic Eisenstein series.

In general it is too messy to repeat the same game as above and explicitly get the full

expansion for other Dl’s, except maybe for D3(τ), which is already known to be equal to

E′
3(τ) + ζ(3) (Zagier, unpublished. Recently an alternative simpler proof was given in [14]). It

is possible, however, to algorithmically get the coefficient of qµqν for any fixed (µ, ν), which in

principle allows to check conjectures on the full expansion or to numerically approximate the

functions very precisely (the sum (7) converges much faster than the sum (2)).

4 The 3-point case

When three particles are involved the only new irreducible diagram that we have to consider is

diagram (b), with all li’s strictly positive, whose associated Dl reads:

Dl(τ) :=
1

43

∫∫

G(z, τ)l1G(w, τ)l2G(z − w, τ)l3
dzdw

τ22
,

where the integration is performed over 2 copies of the torus associated with the lattice Λτ .

We now give the proof of theorem 1.1 also for this case, because it helps to understand

how to explicitly get the coefficients. Since the ideas used here are exactly the same as in the

previous section, and the notation gets much heavier, we will give less details. It is however
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important to understand how the generalization to this case exploits the same ideas used for 2

particles, because in the next section we will give only a sketch of the proof in the general case,

assuming that one has already understood how to take care of the missing details.

Theorem 4.1. For every l = (l1, l2, l3) we have

Dl(τ) =
∑

µ,ν≥0

d
(µ,ν)
l (πτ2)q

µqν ,

where for every µ, ν ≥ 0

d
(µ,ν)
l (x) =

2(l1+l2+l3)−1
∑

j=0

a
(µ,ν)
j xl1+l2+l3−j

is a Laurent polynomial with coefficients a
(µ,ν)
j ∈ C and q = e2πiτ .

Proof. Let us introduce the following notations: l! := l1! l2! l3!, and c l := c l1+l2+l3 . More-

over, for k = (k1, ..., km) we write |k| := |k1| · · · |km|, and ‖k‖ := |k1|+ · · ·+ |km|.

With the substitutions x = z2/τ2, y = w2/τ2 we get

Dl(τ) =
1

2l

∑

r+m=l

l!

r!m!

(πτ2)
r

2m
×

×

∫∫

B2(x)
r1B2(y)

r2B2(x− y)r3P (z, τ)m1P (w, τ)m2P (z − w, τ)m3dz1dw1dxdy.

Using (8) we have

∫∫

(R/Z)2
P (z, τ)m1P (w, τ)m2P (z − w, τ)m3dz1dw1 =

=
∑

(k,h,t)
(n,p,q)

δ0((k, h))δ0((k, t))

|k| |h| |t|
e2πi(k·n+h·p+t·q)τ1e−2πτ2(

∑
|ki||ni−x|+

∑
|hi||pi−y|+

∑
|ti||qi−(x−y)|),

where the sum runs over (k, h, t) ∈ Z
m1
0 × Z

m2
0 × Z

m3
0 and (n, p, q) ∈ Zm1 × Zm2 × Zm3 .

Then we need to calculate, for any fixed r, m, (k, h, t) and (n, p, q),
∫∫

[0,1]2
B2(x)

r1B2(y)
r2B2(x− y)r3e−2πτ2(

∑
|ki||ni−x|+

∑
|hi||pi−y|+

∑
|ti||qi−(x−y)|)dxdy.

Since
∑

|ki||ni − x| =
∑

|ki||ni|+ x
∑

sgn(−ni)|ki|, this is equal to

e−2πτ2(
∑

|ki||ni|+
∑

|hi||pi|+
∑

|ti||qi|)

∫∫

[0,1]2
B2(x)

r1B2(y)
r2B2(x− y)r3e−γxe−δydxdy,

where γ := 2πτ2(
∑

sgn(−ni)|ki|+
∑

sgn(−qi)|ti|) and δ := 2πτ2(
∑

sgn(−pi)|hi|+
∑

sgn(qi)|ti|).

This is equal to

∑

a+b+c=r

r!

a! b! c!

(−1)b

6c
e−2πτ2(

∑
|ki||ni|+

∑
|hi||pi|+

∑
|ti||qi|)×

×
(

∫ 1

0

x2a1+b1e−γxdx

∫ x

0

y2a2+b2(x− y)2a3+b3e−δydy

+

∫ 1

0

y2a2+b2e−δydy

∫ y

0

x2a1+b1(y − x)2a3+b3e−γxdx
)

. (13)
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Since the integral that are left to compute are completely specular, let us describe just the

result of the first one. After using the binomial theorem on (x − y)2a3+b3 , we get a Q-linear

combination of integrals of the kind

∫ 1

0

xMe−γxdx

∫ 1

0

yNe−δydy.

Now, as in the 2-point case, we use integration by parts and finally get a linear combina-

tion of 1, e−(γ+δ) and e−γ , with coefficients that are products of polynomials in δ−1 and

(γ + δ)−1 with rational coefficients (with some obvious modifications in case γ and/or δ are

zero). We do not give the exact formula here, for reasons of space, except for the special case

of the non-exponentially small term, which we describe in the next corollary. However, it is

easy to see, going through the computation, that for any fixed (k, h, t) and (n, p, q) we get a

term of the kind c(p,q)(πτ2)e
2πipτ1e−2πqτ2 , where p =

∑

kini +
∑

hipi +
∑

tiqi ∈ Z, q is a

non-negative integer equal to
∑

|ki||ni − 1| +
∑

|hi||pi − 1| +
∑

|ti||qi − 1| + ϑ, with ϑ = 0

or
∑

sgn(−ni)|ki| +
∑

sgn(−qi)|ti| or
∑

sgn(−ni)|ki| +
∑

sgn(−hi)|qi| or
∑

sgn(−pi)|hi| +
∑

sgn(qi)|ti|, and c(p,q)(πτ2) is a Laurent polynomial with rational (explicitly determined) co-

efficients, whose maximum power is l1 + l2 + l3 and minimum power is 1− (l1 + l2 + l3).

For all the possible ϑ we can apply the method described in the 2-point case to prove that

q ≥ |p| and that p ≡2 q. Moreover, again one can prove that for any (µ, ν) only finitely many

(n, p, q) are allowed, and the coefficients of the Laurent polynomials belong to C (and are very

explicitly determined).

�

In particular one can deduce the following (already found in [18]):

Corollary 2.

dl(x) := 4l d
(0,0)
l (x) = dAl (x) + dBl (x) + dCl (x)

and the three contributions are defined as follows:

dAl (x) = 2(2x)l
∑

a+b+c=l

l!

a!b!c!

(−1)b

6c
(2a2 + b2)!(2a3 + b3)!

(2(a2 + a3) + b2 + b3 + 1)!

1

λ+ 1

is the contribution for m1 = m2 = m3 = 0, where λ := 2(a1 + a2 + a3) + b1 + b2 + b3 + 1;

dBl (x) = dBl1,l2,l3(x) + dBl2,l1,l3(x) + dBl3,l2,l1(x),

with

dBl1,l2,l3(x) =
∑

a+b+c+m=l
u+v=2a3+b3

e+f=2a1+b1+u

2
l!

a!b!c!m!

(−1)b

6c
(2x)c−a−2×

×
(−1)v(2a3 + b3)!(2a1 + b1 + u)!(2a2 + b2 + v + f)!

u!v!f !
R(m1,m2,m3; 2a2+b2+v+f+1, e+1),

is the contribution when at least 2 of the mi’s are > 0, with

R(m1,m2,m3;α, β) :=
∑

(k,h,t)

δ0((k, h))δ0((k, t))

|k||h||t|(‖k‖+ ‖h‖)α(‖k‖+ ‖t‖)β
;

dCl (x) = dCl1,l2,l3(x) + dCl2,l1,l3(x) + dCl3,l1,l2(x),
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with

dCl1,l2,l3(x) =
∑

a+b+c+m=l
u+v=2a3+b3

2
l!

a! b! c!m!

(−1)b

6c
(2x)c−a−2×

×
(2a3 + b3)!

u! v!

(−1)v

2a2 + b2 + v + 1
(λ)!×

×
[

S(m1, λ+ 1) +
λ
∑

j=0

(−1)jS(m1, j + 1)

(λ− j)!
(2πτ2)

(λ−j)
]

,

is the contribution when 2 of the mi’s are zero (m2 and m3 in dCl1,l2,l3), where again λ :=

2(a1 + a2 + a3) + b1 + b2 + b3 + 1 and S(m,α) = R(m, 0, 0, α, 0) is the sum already introduced

in the previous section. In every case where at least one of the mi’s in dB and dC is zero, we

assume that the other mi’s are ≥ 2, otherwise it is easy to see that the contribution given is

zero.

Note that we are computing the non-exponentially small term without dividing it by 4l, in

order to have neater results afterwards. This does not change the proof, but may generate some

confusion concerning the resulting expression.

Sketch of the proof. It is convenient to consider as separated cases: the one with all the

mi’s equal zero; the one with 2 of the mi’s equal zero and one bigger than 1 (it cannot be equal

to one!); the one with one of the mi’s equal zero and 2 bigger than 1; the one with all of them

bigger than zero. The last case is the most complicated (and it gives the same result as the

case when only one is zero); we briefly describe how to treat it, and the same argument can be

applied to the other cases.

Following the proof of the theorem above one arrives at the point (13), and then should

take into account only the (n, p, q) leading to non-exponentially small terms. These are (0, 0, 0),

(1, 0, 1) and (1, 1, 0) for the first integral, (1, 1, 0), (0, 1,−1) and (0, 0, 0) for the second integral.

By substituting x = 1 − x and y = 1 − y in the second integral one gets just 2 copies of the 3

possible cases for the first integral. We call the first one dBl1,l2,l3(x), and then one can easily

notice that the other 2 are given by dBl2,l1,l3(x) and dBl3,l2,l1(x).

�

Let us remark that, since by definition Dl does not depend on the order of the li’s, also dl
does not, even though from this formula it is not clear at first sight. So, for instance, speaking

of d1,2,3 is the same as speaking of d3,1,2.

Evaluating by hands the functions R(m1,m2,m3;α, β) in terms of MZVs, one is able to find

for the lower weights:

d1,1,1(y) =
2

945
y3 +

3

4

ζ(5)

y2
,

d1,1,2(y) =
2

14175
y4 +

ζ(3)

45
y +

5

12

ζ(5)

y
−

1

4

ζ(3)2

y2
+

9

16

ζ(7)

y3
,

d1,1,3(y) =
2

22275
y5 +

ζ(3)

45
y2 +

11

60
ζ(5) +

105

32

ζ(7)

y2
−

3

2

ζ(3)ζ(5)

y3
+

81

64

ζ(9)

y4
,

d1,2,2(y) =
8

467775
y5 +

4ζ(3)

945
y2 +

13

45
ζ(5) +

7

8

ζ(7)

y2
−

ζ(3)ζ(5)

y3
+

9

8

ζ(9)

y4
.

These are all the possible cases up to weight 5. The same result was found in [14], noting

some mistakes in [18].
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Note that until this weight the coefficients of the Laurent polynomials are MZVs, but in the

literature it is not proven yet that this will happen in any weight. Moreover let us remark that

they are MZVs of a very particular kind: they are always polynomials in simple odd zeta values,

as well as it happens (and is proven to be so in any weight by theorem 3.2) in the 2-point case.

What we are now able to say is that, using theorem 4.1 and Terasoma’s result, they have to be

special values at roots of unity of multiple polylogarithms.

For higher weights the sums R(m1,m2,m3;α, β) look impossible to be evaluated by hands,

hence no other dl was known so far.

Since we have seen that the coefficients are conical sums, one can hope to use HyperInt if

the cones and the matrices involved are simple enough. This turns out to be the case with 3

particles, because of the following theorem:

Theorem 4.2. For all l1, l2, l3 ∈ N the coefficients of dl1,l2,l3(y) belong to the algebra B.

The proof of this theorem is constructive, and gives an actual formula to compute the

coefficients, but the formula itself is very long and complicated. It can be found in the Appendix

(see equations 15,...,23), together with the proof.

Thus one gets an algorithm which will certainly compute the coefficients of dl in terms of

MZVs for any l such that only matrices lying in S are involved. For example all the dl of

weight 6 satisfy this condition, after some partial fraction decomposition on the conical sums,

but not all the weight 7: we will come back to this later. Moreover, as remarked before, the

algorithm will produce an answer, either in terms of MZVs or alternating sums, for many more

(0, 1)-matrices than just the ones in S.

Here come the new data obtained so far with this method (we set again y := πτ2):

d1,1,4(y) =
284

18243225
y6 +

2

135
ζ(3)y3 +

5ζ(5)

18
y +

1

10
ζ(3)2 +

51

20

ζ(7)

y
+

11

2

ζ(5)ζ(3)

y2

+
79ζ(9)− 36ζ(3)3

24y3
−

9

4

ζ(3)ζ(7)

y4
+

45

16

ζ(11)

y5
,

d2,2,2(y) =
193

11609325
y6 +

1

315
ζ(3)y3 +

59

315
ζ(5)y +

23

20

ζ(7)

y
+

5

2

ζ(3)ζ(5)

y2
−

65

48

ζ(9)

y3

+
21ζ(5)2 − 18ζ(3)ζ(7)

16y4
+

99

64

ζ(11)

y5
,

d1,2,3(y) =
298

42567525
y6 +

1

315
ζ(3)y3 +

173

1260
ζ(5)y +

3

20
ζ(3)2 +

53

20

ζ(7)

y
−

5

2

ζ(3)ζ(5)

y2

+
223ζ(9) + 96ζ(3)3

32y3
−

99ζ(5)2 + 162ζ(3)ζ(7)

32y4
+

729

128

ζ(11)

y5
,

d1,1,5(y) =
62

10945935
y7 +

2

243
ζ(3)y4 +

119

324
ζ(5)y2 +

11

27
ζ(3)2y +

21

16
ζ(7)

+
46

3

ζ(3)ζ(5)

y
+

7115ζ(9)− 3600ζ(3)3

288y2
+

1245ζ(3)ζ(7)− 150ζ(5)2

16y3

+
288ζ(3, 5, 3)− 288ζ(3)ζ(3, 5)− 5040ζ(5)ζ(3)2 − 9573ζ(11)

128y4

+
2475ζ(5)ζ(7) + 1125ζ(9)ζ(3)

32y5
−

1575

32

ζ(13)

y6
,
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d1,3,3(y) =
34

8513505
y7 +

2

945
ζ(3)y4 +

17

252
ζ(5)y2 +

23

105
ζ(3)2y +

1391

560
ζ(7)

−
3ζ(3)ζ(5)

y
+

953ζ(9) + 144ζ(3)3

32y2
−

1701ζ(3)ζ(7) + 120ζ(5)2

32y3

+
324ζ(3, 5, 3)− 324ζ(3)ζ(3, 5) + 22299ζ(11) + 8460ζ(5)ζ(3)2

320y4

−
891ζ(5)ζ(7) + 702ζ(9)ζ(3)

16y5
+

7209

128

ζ(13)

y6
,

d1,1,6(y) =
262

186080895
y8 +

1

243
ζ(3)y5 +

113

324
ζ(5)y3 +

25

36
ζ(3)2y2 +

749

144
ζ(7)y +

331

18
ζ(3)ζ(5)

+
56ζ(9)− 207ζ(3)3

18y
+

705ζ(3)ζ(7) + 375ζ(5)2

2y2

+
2304ζ(3, 5, 3)− 2304ζ(3)ζ(3, 5)− 38541ζ(11)− 32400ζ(5)ζ(3)2

64y3
+

a

y4

+
b

y5
+

179550ζ(11)ζ(3) + 274050ζ(9)ζ(5) + 155925ζ(7)2

128y6
−

1233225

512

ζ(15)

y7
,

where a cannot be determined because of current limits of HyperInt, and

b =
837

14
ζ(5)ζ(5, 3)−

3375

4
ζ(3)ζ(5)

2
−

6075

8
ζ(7)ζ(3)

2
−

675

56
ζ(3, 7, 3)

+
675

56
ζ(3)ζ(7, 3) +

54

7
ζ(5, 3, 5) +

135

4
ζ(5)ζ(8) −

134257

896
ζ(13).

Starting from weight 7, we can see something new and very interesting happening to the coeffi-

cients: not only polynomials in odd simple zeta values are involved. For example the coefficient

of y−4 in d1,1,5(y) contains ζ(3, 5, 3) and ζ(3)ζ(3, 5), which are not reducible to polynomials in

odd zetas. The fundamental remark is that they are still very special, because that coefficient

can be written as the following linear combination of single-valued multiple zeta values:

9

8
ζsv(3, 5, 3)−

225

16
ζsv(5)ζsv(3)

2
−

9573

256
ζsv(11).

This actually happens to all of the coefficients in the polynomials above (products of odd zeta

values are already single-valued MZVs), the most astonishing case being the coefficient of y−5

in d1,1,6(y), that we called b. Indeed, one can check that, in terms of the basis for single valued

MZVs in weight 13 in [8],

b =
27

7
ζsv(5, 3, 5)−

675

112
ζsv(3, 7, 3)−

4995

4
ζsv(3)ζsv(5)

2
−

7425

8
ζsv(7)ζsv(3)

2
−

134257

1792
ζsv(13).

This means that a multiple zeta value a priori belonging to a vector space of dimension 16

actually belongs to the subspace of dimension 5 of single-valued MZVs, which looks much more

than a coincidence. Let us now draw a parallel between our setting and the closed strings

tree-level: when the genus is zero, in the most trivial case (4 particles) only odd zetas appear,

but going to the next case (5 particles) in general one finds also MZVs of bigger length, and

the coefficients belong to the algebra of single valued MZVs. Therefore we conclude that it

is not too optimistic to conjecture that the coefficients are given by single valued MZVs only,

after such a little evidence. Arguments supporting this conjecture, based on the structure of

the one-loop string amplitude, are given in the forthcoming paper [12].
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We conclude this section by observing that, unfortunately, the matrices appearing do not

always belong to S, even after performing standard manipulations like partial fractioning, and

sometimes they produce polylogarithms at higher roots of unity. This happens, for instance, in

the computation of R(3, 3, 1; 1, 1). However, in this case we only get alternating sums, which are

good enough to be computed by HyperInt, and in the end all the non-MZV part of R(3, 3, 1; 1, 1)

cancels out.

It is actually very tempting to conjecture that the numbers R(m1,m2,m3;α, β) themselves

always lie in A (but they are not single-valued), since our data confirm it so far, however we

do not have any other argument this time to support this evidence.

A very partial result in the direction of proving the conjectures above is the following:

Theorem 4.3. For any n ∈ N the coefficients of d1,1,n(τ) are linear combination of conical sums

whose matrices belong to S, so in particular they are (algorithmically) Q-linear combinations

of multiple zeta values.

Proof. The proof uses the explicit formula given in the Appendix for the numbers R in

terms of elements of B. The only R’s involved are of the kind R(1, 1, j;α, β), R(1, j, 1;α, β)

and R(j, 1, 1;α, β), with j ≤ n and some α, β. Note that R(1, j, 1;α, β) = R(1, 1, j;β, α) and

R(j, 1, 1;α, β) = R(1, 1, j; 0, α+ β), so it is enough to study R(1, 1, j;α, β). Only the sums (16)

and (19) are contributing to this R, but the sum (16) is easily seen to be contained in A, so we

have to study (19) only, which in our case is particularly simple (assume j ≥ 2, otherwise (16)

suffices):
∑

Q,F≥0
Q+F=j−2

∑

l3+a>q1>···>qQ
l3>f1>···>fF

1

(l3 + a)
β+1

aα+2l3q1 · · · qQf1 · · · fF

Following the stuffle procedures described in the Appendix one is left with a linear combination

of sums in B with associated matrices of the kind































1
...

. . .

1 · · · 1

1

A
...

. . .

1 · · · 1

1 · · · 1 0 · · · 0 1

1 · · · 1 1 · · · 1 1































where A is a matrix with rows given either by consecutive ones or by consecutive zeros (this

comes from the stuffle). Since interchanging the rows does not change the conical sum, we can
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rewrite the matrix as














































1
...

. . .

1 · · · 1

1 · · · 1 0
...

... B
...

1 · · · 1 0

1 · · · 1 1 · · · 1 1

1 · · · 1 0 · · · 0 1

0 · · · 0 0
...

... C
...

0 · · · 0 0















































where B and C are matrices with, from left to right, a string of ones followed by a string of

zeros in every row, such that the length of the string of ones increases in B with the increase

of the row’s index and decreases in C. At this point we almost have a matrix belonging to S,

the only problem being the row in the middle of the form r = 1, . . . , 1, 0, . . . , 0, 1.

Note now that a partial fraction operation on the sum of the kind

1

li(x) lj(x)
=

1

li(x) (li + lj)(x)
+

1

lj(x) (li + lj)(x)

is reflected on the matrix just by substituting the i-th or the j-th row by the sum of the 2.

Hence if we do this sum operation on r together with the row immediately below we get the

sum of 2 matrices, one belonging to S (when r is deleted) and one such that the sub-matrix

below r is strictly smaller (after interchanging r with the new row obtained as a sum). Iterating

this process one finally gets that r is the last row in the matrix, and in this case the matrix

belongs to S and we are done.

�

5 The 4-point case

In this section we will briefly explain why the techniques seen in details in the previous sections

allow us to prove theorem 1.1 in its more general statement, with 4 gravitons interacting on a

torus.

Proof of theorem 1.1 (sketch). The most difficult part of proving this result, after

having proved the 2-point case and 3-point case, is probably to find an acceptable notation.

Recall that we are dealing with the integral

Dl(τ) =
1

43

∫∫

(C/Λτ )3
G(z−w, τ)l1G(v, τ)l2G(w− v, τ)l3G(z, τ)l4G(z− v, τ)l5G(w, τ)l6

dzdwdv

τ32

=
1

2l

∑

r+m=l

l!

r!m!

(πτ2)
r

2m

∫∫

B2(x− y)r1B2(u)
r2B2(y − u)r3B2(x)

r4B2(x− u)r5B2(y)
r6×

× P (z − w, τ)m1P (v, τ)m2P (w − v, τ)m3P (z, τ)m4P (z − v, τ)m5P (w, τ)m6dzdwdv,
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where x = z2/τ2, y = w2/τ2 and u = v2/τ2. The integration over τ1 gives

∑ δ0((k
(1), k(4), k(5)))δ0((−k(1), k(3), k(6)))δ0((k

(2),−k(3),−k(5)))

|k(1)| · · · |k(6)|

6
∏

j=1

e2πiτ1(
∑

k
(j)
i

n
(j)
i

)

×

∫

[0,1]3
B2(x− y)r1 · · ·B2(y)

r6e−2πτ2(
∑

|k
(1)
i

||n
(1)
i

−(x−y)|) · · · e−2πτ2(
∑

|k
(6)
i

||n
(6)
i

−y|),

where the sum runs over k(j) ∈ Z
mj

0 and n(j) ∈ Zmj for j = 1, . . . , 6. Let us call I the integral

appearing in the last step. We have

I =
∑

a+b+c=r

r!

a!b!c!

(−1)b

6c

6
∏

j=1

e−2πτ2(
∑

|k
(j)
i

||n
(j)
i

|)×

×
(

∫

P1

+ · · ·+

∫

P6

)

(|x− y|M1uM2 |y − u|M3xM4 |x− u|M5yM6e−γ1xe−γ2ye−γ3udxdydu), (14)

where the Pi is the path 0 ≤ σi(u) ≤ σi(y) ≤ σi(x) ≤ 1, for σi a permutation of the 3 variables

x, y, u, Mi := 2ai + bi, and the γi’s will depend on the path chosen.

Let us consider the path P1 with σ1 = Id only (0 ≤ v ≤ y ≤ x ≤ 1). There we have

γ1 := 2πτ2(
∑

sgn(−n
(1)
i )|k

(1)
i |+

∑

sgn(−n
(4)
i )|k

(4)
i |+

∑

sgn(−n
(5)
i )|k

(5)
i |),

γ2 := 2πτ2(
∑

sgn(n
(1)
i )|k

(1)
i |+

∑

sgn(−n
(3)
i )|k

(3)
i |+

∑

sgn(−n
(6)
i )|k

(6)
i |),

γ3 := 2πτ2(
∑

sgn(−n
(2)
i )|k

(2)
i |+

∑

sgn(n
(3)
i )|k

(3)
i |+

∑

sgn(n
(5)
i )|k

(5)
i |).

The integral on this path reduces to a linear combination of integrals of the kind

∫ 1

0

xN1e−γ1xdx

∫ x

0

yN2e−γ2ydy

∫ y

0

uN3e−γ3udu,

where the Ni’s are non negative integers. One can solve the integral by repeatedly using

integration by parts, and all the possible exponentials involved in the result are e−γ1 , e−(γ1+γ2)

and e−(γ1+γ2+γ3). Multiplying them by the exponential in front of the integral in formula (14)

tell us what are all the possible integers q in the terms of the kind e−2πqτ2 .

It is not difficult to see that the argument used in the 2-point case works for all of these q’s,

and that nothing new happens to the Laurent polynomials involved and to their coefficients,

which are therefore expressible as conical sums.

�

We do not write down here an explicit formula for the Laurent polynomial part of the

functions Dl(τ), because it is really complicated and does not really allow one to work with it.

Indeed, the same method explained in the previous section to explicitly write down the conical

sums as integrals produces, in the 4-point case, matrices with coefficients strictly bigger than 1,

whose computation in terms of special values of polylogarithms goes beyond the nowadays

limits of HyperInt.
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Appendix

Proof of theorem 4.2. In the beginning we will partially exploit the same ideas (and no-

tations) of [28], so we will be slightly sketchy, referring the reader to that reference for more

details.

Let us recall the definition of the function R:

R(m1,m2,m3;α, β) :=
∑

(k,h,t)

δ0((k, h))δ0((k, t))

|k||h||t|(‖k‖+ ‖h‖)α(‖k‖+ ‖t‖)β
.

Note that if we have
∑

i ki = a for some a ∈ Z, then we impose, using the condition in the

numerator, that also
∑

i hi = a and
∑

i ti = a. This means that we can rewrite the series as

R(m1,m2,m3;α, β) = R0(m1,m2,m3;α, β) + 2R>0(m1,m2,m3;α, β) where

R0(m1,m2,m3;α, β) :=
∑

(k,h,t)

δ0(k)δ0(h)δ0(t)

|k||h||t|(‖k‖+ ‖h‖)
α
(‖k‖+ ‖t‖)

β

and

R>0(m1,m2,m3;α, β) :=
∑

a≥1

∑

(k,h,t)

δa(k)δa(h)δa(t)

|k||h||t|(‖k‖+ ‖h‖)
α
(‖k‖+ ‖t‖)

β
.

We define, for l ≥ 1 and for r ≥ 0,

Sr(l) :=
∑

k1,...,kr≥1
k1+···+kr=l

1

|k|
,

setting Sr(l) = 0 if r = 0 or if r > l.

Let us consider now R0(m1,m2,m3;α, β): if r1 is the number of positive ki’s, r2 and r3 the

same for the hi’s and the ti’s, and l1 (resp. l2 and l3) is the sum of the positive ki’s (resp. hi’s

and ti’s), then

R0(m1,m2,m3;α, β) =
∑

r1=0,...,m1
r2=0,...,m2
r3=0,...,m3

∑

l1,l2,l3≥1

∏3
i=1

(

mi

ri

)

Sri(li)Smi−ri(li)

(2l1 + 2l2)
α
(2l1 + 2l3)

β

=
1

2α+β

∑

l1,l2,l3≥1

∏3
i=1 coeffxliyli

[(

Li1(x) + Li1(y)
)mi

]

(l1 + l2)
α
(l1 + l3)

β
,

where Li1(x) =
∑

k≥1 x
k/k.

Hence we get the generating function

∑

m1,m2,m3≥0

R0(m1,m2,m3;α, β)

m1!m2!m3!
Xm1Y m2Zm3 =

1

2α+β

∑

l1,l2,l3≥1

(

X+l1−1
l1

)2(Y +l2−1
l2

)2(Z+l3−1
l3

)2

(l1 + l2)
α(l1 + l3)

β

=
1

2α+β

∑

l1,l2,l3≥1

X2Y 2Z2

(l1 + l2)
α(l1 + l3)

βl21l
2
2l

2
3

l1−1
∏

n=1

(

1 +
X

n

)2 l2−1
∏

p=1

(

1 +
Y

p

)2 l3−1
∏

q=1

(

1 +
Z

q

)2
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=
1

2α+β

∑

l1,l2,l3≥1

X2Y 2Z2

(l1 + l2)
α
(l1 + l3)

β
l21l

2
2l

2
3

×

×

l1−1
∏

n=1

(

1 + 4
∑

γ∈{1,2}

(X/2)γ

nγ

)

l2−1
∏

p=1

(

1 + 4
∑

δ∈{1,2}

(Y/2)δ

pδ

)

l3−1
∏

q=1

(

1 + 4
∑

ε∈{1,2}

(Z/2)ε

qε

)

=
1

2α+β

∑

N,P,Q≥1

∑′ 4N+P+QX2+γY 2+δZ2+ε

2γ+δ+ε(l1 + l2)
α
(l1 + l3)

β
l21l

2
2l

2
3n

γ1

1 · · ·nγN

N pδ11 · · · pδPP qε11 · · · q
εQ
Q

,

where the sum
∑′

runs over l1 > n1 > · · · > nN > 0, l2 > p1 > · · · > pP > 0, l3 > q1 > · · · >

qQ > 0 and over all the γi, δi and εi belonging to {1, 2}.

Comparing the coefficients we get

R0(m1,m2,m3;α, β) =

m1!m2!m3!

2α+β+m1+m2+m3−6

∑′′ 22(N+P+Q)

(l1 + l2)
α
(l1 + l3)

β
l21l

2
2l

2
3n

γ1

1 · · ·nγN

N pδ11 · · · pδPP qε11 · · · q
εQ
Q

, (15)

where
∑′′

runs over all the N,P,Q, and over all the γi, δi and εi belonging to {1, 2} such that

γ1 + · · · + γN = m1 − 2, δ1 + · · · + δP = m2 − 2, ε1 + · · · + εQ = m3 − 2, as well as over

l1 > n1 > · · · > nN > 0, l2 > p1 > · · · > pP > 0, l3 > q1 > · · · > qQ > 0. Note that this sum

is not zero only if all the mi’s are strictly bigger than 1. Note also that, by definition of B,

R0(m1,m2,m3;α, β) ∈ B.

Now let us consider the more complicated sum R>0(m1,m2,m3;α, β):

R>0(m1,m2,m3;α, β) =
∑

a≥1

∑

r1=0,...,m1
r2=0,...,m2
r3=0,...,m3

∑

l1,l2,l3≥1

∏3
i=1

(

mi

ri

)

Sri(li + a)Smi−ri(li)

(2l1 + 2l2 + 2a)
α
(2l1 + 2l3 + 2a)

β

=
1

2α+β

∑

l1,l2,l3≥1
a≥1

∏3
i=1 coeffxli+ayli

[(

Li1(x) + Li1(y)
)mi

]

(l1 + l2 + a)
α
(l1 + l3 + a)

β
,

Therefore we find the generating function

2α+β
∑

m1,m2,m3≥0

R>0(m1,m2,m3;α, β)

m1!m2!m3!
Xm1Y m2Zm3

=
∑

l1,l2,l3≥0
a≥1

(

X+l1+a−1
l1+a

)(

X+l1−1
l1

)(

Y +l2+a−1
l2+a

)(

Y +l2−1
l2

)(

Z+l3+a−1
l3+a

)(

Z+l3−1
l3

)

(l1 + l2 + a)
α
(l1 + l3 + a)

β

=
∑

a≥1

(

X+a−1
a

)(

Y+a−1
a

)(

Z+a−1
a

)

aα+β

+
∑

l1,a≥1

(

X+l1+a−1
l1+a

)(

X+l1−1
l1

)(

Y+a−1
a

)(

Z+a−1
a

)

(l1 + a)α+β

+
∑

l2,a≥1

(

X+a−1
a

)(

Y +l2+a−1
l2+a

)(

Y+l2−1
l2

)(

Z+a−1
a

)

(l2 + a)αaβ

+
∑

l3,a≥1

(

X+a−1
a

)(

Y +a−1
a

)(

Z+l3+a−1
l3+a

)(

Z+l3−1
l3

)

(l3 + a)
β
aα
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+
∑

l1,l2,a≥1

(

X+l1+a−1
l1+a

)(

X+l1−1
l1

)(

Y +l2+a−1
l2+a

)(

Y+l2−1
l2

)(

Z+a−1
a

)

(l1 + l2 + a)α(l1 + a)β

+
∑

l1,l3,a≥1

(

X+l1+a−1
l1+a

)(

X+l1−1
l1

)(

Y +a−1
a

)(

Z+l3+a−1
l3+a

)(

Z+l3−1
l3

)

(l1 + a)α(l1 + l3 + a)β

+
∑

l2,l3,a≥1

(

X+a−1
a

)(

Y +l2+a−1
l2+a

)(

Y +l2−1
l2

)(

Z+l3+a−1
l3+a

)(

Z+l3−1
l3

)

(l2 + a)
α
(l3 + a)

β

+
∑

l1,l2,l3,a≥1

(

X+l1+a−1
l1+a

)(

X+l1−1
l1

)(

Y +l2+a−1
l2+a

)(

Y+l2−1
l2

)(

Z+l3+a−1
l3+a

)(

Z+l3−1
l3

)

(l1 + l2 + a)
α
(l1 + l3 + a)

β

The idea is to apply to all these sums the same method shown for R0(m1,m2,m3;α, β). Just

to fix the notation, we write down explicitly what happens with the last and most complicated

sum:
∑

l1,l2,l3,a≥1

(

X+l1+a−1
l1+a

)(

X+l1−1
l1

)(

Y+l2+a−1
l2+a

)(

Y+l2−1
l2

)(

Z+l3+a−1
l3+a

)(

Z+l3−1
l3

)

(l1 + l2 + a)
α
(l1 + l3 + a)

β

=
∑

l1,l2,l3,a≥1

X2Y 2Z2

(l1 + l2 + a)
α
(l1 + l3 + a)

β
(l1 + a)(l2 + a)(l3 + a)l1l2l3

×

×

l1+a−1
∏

n=1

(

1 +
X

n

)

l1−1
∏

d=1

(

1 +
X

d

)

l2+a−1
∏

p=1

(

1 +
Y

p

)

l2−1
∏

e=1

(

1 +
Y

e

)

l3+a−1
∏

q=1

(

1 +
Z

q

)

l3−1
∏

f=1

(

1 +
Z

f

)

=
∑

N,D≥0
P,E≥0
Q,F≥0

∑∼ X2+N+DY 2+P+EZ2+Q+F

(l1 + l2 + a)
α
(l1 + l3 + a)

β
(l1 + a)(l2 + a)(l3 + a)l1l2l3n1 · · · fF

where
∑∼ runs over a ≥ 1, l1 + a > n1 > · · · > nN > 0, l1 > d1 > · · · > dD > 0,

l2 + a > p1 > · · · > pP > 0, l2 > e1 > · · · > eE > 0, l3 + a > q1 > · · · > qQ > 0,

l3 > f1 > · · · > fF > 0.

Doing this for all the sums involved and comparing the coefficients, one finally obtains that

(m1!m2!m3!/2
α+β)R>0(m1,m2,m3;α, β) is

=
∑ 1

aα+β+3n1 · · · qm3−1
(16)

+
∑

N,D≥0
N+D=m1−2

∑ 1

(l1 + a)
α+β+1

a2l1n1 · · · qm3−1

(17)

+
∑

P,E≥0
P+E=m2−2

∑ 1

(l2 + a)
α+1

aβ+2l2n1 · · · qm3−1

(18)

+
∑

Q,F≥0
Q+F=m3−2

∑ 1

(l3 + a)
β+1

aα+2l3n1 · · · fF
(19)

+
∑

N,D,P,E≥0
N+D=m1−2
P+E=m2−2

∑ 1

(l1 + l2 + a)
α
(l1 + a)

β+1
(l2 + a)a l1l2n1 · · · qm3−1

(20)
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+
∑

N,D,Q,F≥0
N+D=m1−2
Q+F=m3−2

∑ 1

(l1 + a)α+1(l1 + l3 + a)β(l3 + a)a l1l3n1 · · · fF
(21)

+
∑

P,E,Q,F≥0
P+E=m2−2
Q+F=m3−2

∑ 1

(l2 + a)α+1(l3 + a)β+1a l2l3n1 · · · fF
(22)

+
∑

N,D,P,E≥0
N+D=m1−2
P+E=m2−2
Q+F=m3−2

∑ 1

(l1 + l2 + a)
α
(l1 + l3 + a)

β
(l1 + a)(l2 + a)(l3 + a)l1l2l3n1 · · · fF

(23)

The sum in (16) runs over n1 > · · · > nm1−1 > 0, p1 > · · · > pm2−1 > 0, q1 > · · · > qm3−1 > 0,

a > max{n1, p1, q1}.

The sum in (17) runs over l1 + a > n1 > · · · > nN > 0, l1 > d1 > · · · > dD > 0, p1 > · · · >

pm2−1 > 0, q1 > · · · > qm3−1 > 0, a > max{p1, q1}, and is 0 if m1 = 1.

The sum in (18) runs over n1 > · · · > nm1−1 > 0, l2 + a > p1 > · · · > pP > 0, l2 > e1 > · · · >

eE > 0, q1 > · · · > qm3−1 > 0, a > max{n1, q1}, and is 0 if m2 = 1.

The sum in (19) runs over n1 > · · · > nm1−1 > 0, p1 > · · · > pm2−1 > 0, l3 + a > q1 > · · · >

qQ > 0, l3 > f1 > · · · > fF > 0, a > max{n1, p1}, and is 0 if m3 = 1.

The sum in (20) runs over l1 + a > n1 > · · · > nN > 0, l1 > d1 > · · · > dD > 0, l2 + a > p1 >

· · · > pP > 0, l2 > e1 > · · · > eE > 0, a > q1 > · · · > qm3−1 > 0, and is 0 if m1 = 1 or m2 = 1.

The sum in (21) runs over l1 + a > n1 > · · · > nN > 0, l1 > d1 > · · · > dD > 0, a > p1 > · · · >

pm2−1 > 0, l3 + a > q1 > · · · > qQ > 0, l3 > f1 > · · · > fF > 0, and is 0 if m1 = 1 or m3 = 1.

The sum in (22) runs over a > n1 > · · · > nm1−1 > 0, l2 + a > p1 > · · · > pP > 0,

l2 > e1 > · · · > eE > 0, l3 + a > q1 > · · · > qQ > 0, l3 > f1 > · · · > fF > 0, and is 0 if m2 = 1

or m3 = 1.

The sum in (23) runs over l1 + a > n1 > · · · > nN > 0, l1 > d1 > · · · > dD > 0, l2 + a > p1 >

· · · > pP > 0, l2 > e1 > · · · > eE > 0, l3 + a > q1 > · · · > qQ > 0, l3 > f1 > · · · > fF > 0, and

is 0 if one of the mi’s is < 2.

From this formula it is not clear yet whether these numbers are in B, so one needs to

quasi-shuffle, or stuffle, some groups of variables.

In (16) one has to stuffle the 3 groups of ordered variables ni, pi, qi; then setting a >

max{n1, p1, q1} we directly get MZV.

In (17) one has to stuffle the 2 groups of ordered variables pi, qi and the 2 groups of ordered

variables ni and l1 > d1 > · · · > dD, in order to get sums of the kind, for 1 ≤ i ≤ N and

N,M ≥ 1,
∑

yM>···>y1>0
xi+yM>xN>···>x1>0

1

xη1

1 · · · y
ηN+M

M (xi + yM )ε
.

Furthermore, if we stuffle the groups of ordered variables yM > · · · > y1 > 0 and xN − xi >

· · · > xi+1 − xi > 0, then we get numbers in B.

The same reasoning works with some obvious modification for all the other sums, and this

proves our assertion.

�
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