
Max-Planck-Institut für Mathematik
Bonn

On real forms of a Belyi action of alternating groups

by

C. Bagiński
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ON REAL FORMS OF A BELYI ACTION OF ALTERNATING
GROUPS

C. BAGIŃSKI, J. J. ETAYO, G. GROMADZKI, E. MARTÍNEZ

Abstract. In virtue of the Belyi Theorem a complex algebraic curve can be

defined over the algebraic numbers if and only if the corresponding Riemann

surface can be uniformized by a subgroup of a Fuchsian triangle group. Such

surfaces are known as Belyi surfaces. Here we study certain natural actions of

the alternating groups An on them. We show that they are symmetric and we

calculate the number of connected components, called ovals, of the corresponding

real forms. It will be obvious that all symmetries with ovals are conjugate and

we shall calculate the number of purely imaginary real forms both in case of An

considered here and Sn considered in an earlier paper of the last three authors.

1. Introduction

In virtue of the Belyi Theorem [1] an algebraic curve can be defined over the alge-

braic numbers if and only if the corresponding Riemann surface can be uniformized

by a subgroup of a Fuchsian triangle group. Such surfaces are known as Belyi sur-

faces and, by results of Köck, Lau and Singerman [5] and [6] they are symmetric if

and only if these algebraic numbers can be simultaneously real. An important class

of Belyi surfaces is formed by the Riemann surfaces with so called large groups of

automorphisms, and necessary and sufficient algebraic conditions for them to be

symmetric were found by Singerman in [9]. In [3], the third author has developed

an algebraic method to calculate the number of connected components of the real

forms corresponding to the symmetries given by the above theorem of Singerman.

In [2] that method was successfully applied to study certain canonical actions of

symmetric groups on Riemann surfaces.

Here we study the alternating groups actions within described above framework.

Namely, we take a certain canonical and, considered by the group theorists as one
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of the most, natural action of the alternating groups on Belyi Riemann surfaces

given by Propositions 3.3 and 3.4. We show that such surfaces are symmetric and

then we calculate the number of connected components of the corresponding real

forms for alternating groups. It will be obvious that all symmetries with ovals are

conjugate. The importance of An in this context follows from the Cayley embedding

theorem which gives that an arbitrary finite group acts as a group of birational

automorphisms on some algebraic curve defined over algebraic reals.

The last section is devoted to purely imaginary complex algebraic curves. We

show there that their number for a symmetric quasi-platonic Riemann surface X

with the action of G = Aut(X) corresponding to a pair of generating cycles α, β for

which the application α 7→ α−1, β 7→ β−1 extends to an automorphism of G does

not depend on this pair if G = Sn, while for G = An it depends on it exactly up to

such extent up to which it forces Aut±(X) to be Sn or An × Z2 which turn out to

be the only cases that can happen for the actions considered in this paper.

2. Preliminaries and known results

We shall use the combinatorial method based on the Riemann uniformization

theorem and on the theory of Fuchsian groups. Following them, a compact Rie-

mann surface X of genus g ≥ 2 can be represented as the orbit space H/Γ of the

hyperbolic plane H, with respect to the action of some Fuchsian surface group Γ

being a discrete and cocompact subgroup of the group of isometries of H, isomor-

phic to the fundamental group of the surface. Furthermore, the group of conformal

automorphisms of the surface given in such a way can be represented as the factor

group G = ∆/Γ for some other Fuchsian group ∆. Thus we can write the faithful

action of a finite group G as a group of automorphisms of a Riemann surface X

of genus g ≥ 2 by a smooth epimorphism θ : ∆ → G, which means that its kernel

Γ is torsion free or, equivalently, it preserves the orders of the canonical elliptic

generators of ∆. However since we shall deal with surfaces with large groups of au-

tomorphisms such a group can be assumed to be a triangle group ∆ with signature

(0; k, l,m) and so, since such a group is unique up to conjugacy in the group of all

isometries of H, the corresponding surface is determined, up to isomorphism, by a

pair of generators a, b of orders k and l whose product is an element of order m and

with these notations we have the, mentioned above, result of Singerman from [9].

Theorem 2.1. Let X be a Riemann surface with the full large group of auto-

morphisms G, corresponding to a generating pair (a, b), where a, b and ab have

orders k, l and m respectively. Then X is symmetric if and only if the mapping
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φ(a) = a−1, φ(b) = b−1 or φ(a) = b−1, φ(b) = a−1 induces an automorphism of G.

�

The set of fixed points of a symmetry of a Riemann surface of genus g ≥ 2 is

homeomorphic to the set of R-rational points of a real form of the complex algebraic

curve corresponding to this surface and its symmetry. In turn, the latter consists

of k disjoint Jordan curves called ovals for some k ranging between 0 and g + 1 in

virtue of the classical Harnack theorem [4].

Now given an automorphism φ of G, two elements x, y ∈ G are said to be φ-

conjugate (x ∼φ y) if x = wyφ(w)−1 for some w ∈ G. Observe that for φ = 1 this

coincides with the ordinary notion of conjugacy ∼. Recall also that the isotropy

group of φ is the subgroup consisting of all elements of G fixed by φ. With these

notations we have the following result from [3] which describes the number of ovals

of the conjugacy classes of symmetries from Theorem 2.1.

Theorem 2.2. Let a and b be a generating pair of elements of G of orders k = 2k′+1

and l = 2l′ + 1 respectively so that ab has order m = 2m′. Then the corresponding

Riemann surface X has at most two types of symmetries: one with and one without

ovals. Symmetries with ovals always exist and a symmetry without ovals exists if and

only if φ(g) = g−1 for some g ∈ G not φ-conjugate to 1. Furthermore all symmetries

with fixed points are conjugate and they have N/M ovals, where N is the order of

the isotropy group of φ in G and M/2 is the order of (ab)m
′
a−k′b−l′(ab)m

′
bl

′
ak

′
.

Proof. For x = ab, y = b−1, we have a generating pair for G of elements of orders

m, l whose product xy = a has order k. So by Theorem 4.1 in [3], the only symme-

try up to conjugacy with fixed points has N/M ovals, where N is the order of the

isotropy group of φ in G, where φ(x) = x−1, φ(y) = y−1 and M/2 is the order of

xm′
(xy)−k′yl

′
xm′

y−l′(xy)k
′
= (ab)m

′
a−k′b−l′(ab)m

′
bl

′
ak

′
. �

Theorem 2.3. Let a and b be a generating pair of elements of G of order k = 2k′+1

and l = 2l′+1 respectively so that ab has order m = 2m′+1. Then the corresponding

Riemann surface X has at most two types of symmetries: one with and one without

ovals. Symmetries with ovals always exist while a symmetry without ovals exists

if and only if φ(g) = g−1 for some g ∈ G not φ-conjugate to 1. Furthermore all

symmetries with fixed points are conjugate and they have N/M ovals, where N is

the order of the isotropy group of φ in G and M is the order of (ab)−m′
bl

′
ak

′
.

Proof. This is the case with three odd parameters which can be found directly in

[3]. �
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3. Generating sets of the alternating groups

We are going to consider three sets of generators of the alternating group An.

These sets are already known but we shall use through the paper the relationship

between them. The starting point goes back to Moore in 1897 who gave in [8] a

complete presentation of An by means of defining generators and relations.

Proposition 3.1. The elements ai = (1, 2)(i, i+ 1) for 2 ≤ i ≤ n− 1 generate An,

and a complete presentation of this group is

⟨ai | a32, a2i for i ≥ 3, (aiai+1)
3, (aiaj)

2 for |i− j| ≥ 2⟩.

�Proposition 3.2. For i ≥ 3 the elements vi = (1, 2, i) generate An.

Proof. For i ≥ 3 we have

v2i vi+1v
2
i = (1, i, 2)(1, 2, i+ 1)(1, i, 2) = (1, 2)(i, i+ 1) = ai.

Thus elements ai for i ≥ 3 can be expressed by the elements vi and since a2 = v23
the set of vi generates the group An. �

Proposition 3.3. Let n be odd. The elements α = (1, 2, 3) and β = (1, 2, . . . , n)

generate An.

Proof. First of all let us observe that v3 = α. Now we have

(α−1β)vi(β
−1α) = (1, 3, 2)(1, 2, . . . , n)(1, 2, i)(1, n, n− 1, . . . , 2)(1, 2, 3)

= (1, 2, i+ 1)

= vi+1.

Hence by induction on i all the elements vi are generated by α and β and so is

generated the group An. �

Proposition 3.4. For even n, α = (1, 2, 3) and γ = (2, 3, . . . , n) generate An.

Proof. Here

(γα)v2i (γα)
−1 = (1, 2, 3)(2, 3, . . . , n)(1, i, 2)(2, n, n− 1, . . . , 3)(1, 3, 2)

= (1, 2, i+ 1)

= vi+1
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and so as in the previous case, the elements α = v3 and γ generate An. �

4. The actions

This Section is devoted to construct an automorphism φ of An satisfying the

condition in Theorem 2.1.

First let n be odd. Consider α′ = (1, 2) and β′ = (1, 2, . . . , n) which is a pair

of generators of the group Sn. The mapping φ′ defined by φ′(α′) = α′−1 = α′,

φ′(β′) = β′−1, is an automorphism of Sn. When n is odd the mapping φ′ is the

conjugation by

f = (1, 2)(3, n)(4, n− 1) . . . ((n+ 1)/2, (n+ 1)/2 + 2),

see [2, Theorem 3.1].

Theorem 4.1. Let n be odd. The mapping φ defined by φ(α) = α−1, φ(β) = β−1

is an automorphism of An which is the restriction of β−1φ′β to An.

Proof. Recall that α = (1, 2, 3), β = (1, 2, 3, . . . , n). Then, with the above α′, β′

we have α′β′α′β′−1 = α. Hence

φ′(α) = φ′(α′β′α′β′−1)

= α′β′−1α′β′

= β′−1(β′α′β′−1α′)β′

= β′−1(α′β′α′β′−1)−1β′

= β′−1α−1β′

= β−1φ(α)β

φ′(β) = φ′(β′)

= β′−1

= β−1

= β−1β−1β

= β−1φ(β)β.

This way φ(α) = β−1φ′(α)β, and φ(β) = β−1φ′(β)β, and so φ is the restriction of

β−1φ′β to the group An. �

Consider now the case n even. Conjugating suitably α and γ from Proposition

3.4, we can get new generators (1, 2, n) and (1, 2, . . . , n− 1) of An which we denote

by α and β and with them we have

Theorem 4.2. The mapping φ defined by φ(α) = α−1, φ(β) = β−1 induces an

automorphism of An which is a conjugation in Sn.
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Proof. It suffices to check that δαδ = (1, n, 2) = α−1 and δβδ = (1, n − 1, n −
2, . . . , 3, 2) = β−1 for δ = (1, 2)(3, n− 1)(4, n− 2) . . . (n/2, n/2 + 2). �

Hence for any value of n we have a pair of generators α and β of An, and an

automorphism φ of An satisfying φ(α) = α−1 and φ(β) = β−1. Now we are looking

for the orders of the isotropy groups in Theorems 2.2 and 2.3. From the proof of

Theorems 4.1 and 4.2 we have

Corollary 4.3. If n is odd, Gφ = CSn(βf) ∩ An, if n is even, Gφ = CSn(δ) ∩ An,

where CG means the centralizer in the group G. �

Because of corollary 4.3, in order to determine the order of Gφ we are going to

consider the relevant centralizers.

For n even, δ = (1, 2)(3, n−1)(4, n−2) . . . (n/2, n/2+2). Evidently, σ = (1, 2) ∈
CSn(δ); and for n odd,

βf = (1, 2, 3, . . . , n)(1, 2)(3, n)(4, n− 1)(5, n− 2) . . .

((n− 1)/2, (n− 1)/2 + 4)((n+ 1)/2, (n+ 1)/2 + 2)

= (1, 3)(4, n)(5, n− 1)(6, n− 2) . . . ((n− 1)/2, (n− 1)/2 + 5)

((n+ 1)/2, (n+ 1)/2 + 3)((n+ 3)/2, ((n+ 3)/2 + 1).

So σ′ = (1, 3) ∈ CSn(βf).

We have seen that in both cases the centralizer contains elements of Sn not

belonging to An.

Let us denote by x!! the even factorial (or double factorial) of x, that is to say,

x!! = x(x− 2)(x− 4) . . .

Theorem 4.4. Gφ has order (n−2)!! or (n−1)!!/2 for n even and odd, respectively.

Proof. Let n be even. Then Gφ = CSn(δ) ∩ An. Since δ is a product of n/2 − 1

transpositions with two fixed points, its centralizer in Sn has order 2 · 2n/2−1(n/2−
1)! = 2(n − 2)!!, (see [7, Prop. 23, page 133]). That centralizer contains elements

not belonging to An and hence |Gφ| = 1
2
|CSn(δ)| = (n− 2)!!
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For n odd, Gφ = CSn(βf)∩An. Since βf is a product of (n−1)/2 transpositions

with one fixed point, its centralizer in Sn has order 2(n−1)/2((n− 1)/2)! = (n− 1)!!,

and as above |Gφ| = (n− 1)!!/2. �

5. The number of ovals

In this Section we find the number of connected components, that is to say ovals,

of real forms corresponding to the symmetries of Riemann surfaces with the action

of An given by the generating pair (α, β) from Theorems 4.1 and 4.2. We shall use

Theorems 2.2 and 2.3, as well as the results of Section 3.

Let n be odd, we have α = (1, 2, 3) and β = (1, 2, 3, . . . , n). The elements α and

β generate An. These generators are of (3, n, n) type.

Theorem 5.1. Let X be a symmetric Riemann surface corresponding to the gen-

erating pair (α, β) of a finite (3, n, n) group An, where n is odd. Then X has a

symmetry without ovals and a symmetry with (n− 1)!!/4 ovals.

Proof. The group An is generated by a = α = (1, 2, 3), b = β = (1, 2, 3, . . . , n) and

so ab = (1, 3, 4, . . . , n− 1, n, 2). Then, in terms of Theorem 2.3, k = 3, l = m = n,

and so k′ = 1, l′ = m′ = (n− 1)/2.

First we show that the surface has a symmetry without ovals. Let g = (1, 3)(4, n).

Then φ(g) = βφ′(g)β−1 = βfgf−1β−1 = βfg(βf)−1 = g = g−1. Now gβf is a

composition of (n − 5)/2 transpositions, whilst βf is a composition of (n − 1)/2

transpositions. Hence gβf is not conjugate to βf , and so g is not φ-conjugate to 1.

Now we calculate the number of ovals of the symmetry with ovals. By using

Theorems 2.3 and 4.4, N = (n − 1)!!/2. On the other hand M is the order of the

element (ab)−(n−1)/2b(n−1)/2a which is equal to

(1, 3, 4, . . . , n−1, n, 2)−(n−1)/2(1, 2, . . . , n)(n−1)/2(1, 2, 3) = (2, 3)((n+3)/2, (n+5)/2).

So M = 2 and hence N/M = (n− 1)!!/4. �

Let now n > 4 be even. Then α = (1, 2, n) and β = (1, 2, . . . , n− 1) generate An.

These generators are of (3, n− 1, n− 2) type.

Theorem 5.2. Let X be a symmetric Riemann surface corresponding to the gen-

erating pair (α, β) of a finite (3, n− 1, n− 2) group An, where n is even. Then X
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has a symmetry without ovals and a symmetry with (n − 4)!! or (n− 4)!!/2 ovals

depending on n to be a multiple of 4 or not.

Proof. The group An is generated by a = α = (1, 2, n), b = β = (1, 2, 3, . . . , n−1),

and ab = (1, n)(2, 3, . . . , n − 1). Then in terms of Theorem 2.2, k = 3, l = n − 1,

m = n− 2, and so k′ = 1, l′ = m′ = n/2− 1.

As in the previous Theorem the surface has a symmetry without ovals. Let

g = (1, 2)(3, n − 1). Then φ(g) = δgδ = g = g−1. Since gδ is a composition of

n/2− 3 transpositions, and δ is a composition of n/2− 1 transpositions, gδ is not

a conjugate of δ, and so g is not φ-conjugate to 1.

Take now the symmetry with ovals. By Theorem 4.4, the value of N in Theorem

2.2 is equal to (n− 2)!!. On the other hand M/2 is the order of the element

(ab)n/2−1a−1b−(n/2−1)(ab)n/2−1bn/2−1a

which is equal to the product

(1, n)n/2−1(2, 3, . . . , n− 1)n/2−1(1, n, 2)(1, 2, 3, . . . , n− 1)−(n/2−1)

(1, n)n/2−1(2, 3, . . . , n− 1)n/2−1(1, 2, 3, . . . , n− 1)n/2−1(1, 2, n).

When n is multiple of 4, the last permutation is

(1, 3, 4, . . . , n/2)(n/2 + 2, n, n− 1, . . . , n/2 + 3),

and hence has order n/2− 1, whilst in the other case, it is

(1, 3, 4, . . . , n/2, n, n− 1, n− 2, . . . , n/2 + 2)(2, n/2 + 1),

and so has order n− 2.

Therefore M is respectively n − 2 and 2(n − 2), and so M/N is respectively

(n− 4)!! and (n− 4)!!/2 as claimed. �

6. Purely imaginary forms

¿From Theorems 2.2 and 2.3 we know necessary and sufficient conditions for Rie-

mann surfaces described there to admit a symmetry without ovals which correspond

to purely imaginary forms. Now we shall deal with the number of conjugacy classes

of such symmetries of Riemann surfaces corresponding both to the action of G = An

considered here and to the one for G = Sn which was considered in [2]. By [9] (se
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also [3] for explicite statement), G± = Aut±(X) = G o Z2 = ⟨a, b⟩ o ⟨t⟩, where
tgt = φ(g). With these notations we have

Theorem 6.1. Two elements g1, g2 of G give rise to nonconjugate fixed point free

symmetries if and only if

(a) (a) φ(gi) = g−1
i and gi ̸∼φ 1,

(b) g1 ̸∼φ g2 and g1 ̸∼φ φ(g2).

Proof. Clearly each element of G± \ G has the form gt for some g ∈ G.

Now for a symmetry, we have 1 = (gt)2 = gφ(g) and gt has ovals if and only

if gt ∼G± t which in turn means gt = wtw−1 = wtw−1tt. Consequently g ∼φ 1

and so (a). Now g1t ∼G± g2t if and only if g1t = w(g2t)w
−1 = wg2φ(w)t or

g1t = (wt)(g2t)(wt)
−1 = wφ(g2)φ(w)

−1t for some w ∈ G which gives (b). �

We shall not only find the number of purely imaginary real forms of surfaces

considered in this paper but we shall show, actually, that this number for symmetric

quasi-platonic Riemann surfaces with the action of G depends on α and β only up

to a certain extent. For effective use of this theorem for our actions we need some

preparation. The first lemma is rather easy.

Lemma 6.2. Let γ be a cycle of length m and let ξ, η be involutions such that

γ = ξη, and supp(ξ), supp(η) ⊆ supp(γ).

(a) If m is odd then both ξ and η are products of (m− 1)/2 disjoint transposi-

tions.

(b) If m is even then one of the involutions ξ, η is a product of m/2 disjoint

transpositions and the other one is a product of m/2− 1 disjoint transposi-

tions.

�

Let G ∈ {An, Sn}. For G = An, let α and β be its generating cycles given in

Propositions 3.3 and 3.4. For G = Sn, let α = (1, 2), β = (1, 2, 3, . . . , n) be a pair

of generating cycles defining the action of Sn studied in [2].

Proposition 6.3. Let φ be an automorphism of G ∈ {An, Sn} such that αφ = α−1

and βφ = β−1. Let G̃ = Go ⟨φ⟩.

(a) If G = An and n ≡ 1, 2 (mod 4) or G = Sn, then G̃ ∼= G× Z2, where Z2 is

a cyclic group of order 2.

(b) If G = An and n ≡ 0, 3 (mod 4), then G̃ ∼= Sn.
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Proof. (a) Let G = An. If n = 4k + l, where l ∈ {1, 2}, then β has length 4k + 1

and is a product of two involutions which are products of 2k disjoint transpositions,

by Lemma 6.2. So they are even involutions. By the Lemmata 4.1 an 4.2 and

[2, Theorem 3.1] we can choose one of them in such a way that a previously fixed

automorphism of An acts as a conjugation by one of these involutions, say τ . Hence

in the group G̃ we have τφ = φτ . It is obvious that τφ has order 2 and centralizes

An. Therefore G̃ = G⟨τφ⟩ = G× ⟨τφ⟩. We have an analogous proof for G = Sn.

(b) Let again G = An. If n = 4k+l, where l ∈ {0, 3}, then β has length 4(k−1)+3

or 4k+3, and then it is a product of odd involutions being products of 2k−1 or 2k+1

disjoint involutions. Moreover there are not even involutions with product equal

to β. It is well known that Sn is a semidirect product of An and a subgroup gen-

erated by an odd involution acting on the set {1, 2, . . . , n} and G̃ is such a group. �

Now observe that for a fixed positive even integer m in the range 1 ≤ m ≤ n, the

set of all involutions τ ∈ An such that |supp(τ)| = m form one conjugacy class of

An and Sn as well. The symmetric group Sn has ⌊n/2⌋ different conjugacy classes of

involutions while the alternating group An has ⌊n/4⌋ such classes. So in particular

we get

Lemma 6.4. Let G̃ be as in Proposition 6.3.

(a) If G = Sn then the number of conjugacy classes of involutions from G̃ − G

is equal to ⌊n/2⌋.
(b) Let G = An. If G̃ ∼= G × Z2 then the number of conjugacy classes from

G̃−G is equal to ⌊n/4⌋ . If G̃ ∼= Sn then the number of conjugacy classes of

involutions from G̃−G is equal to ⌊n/2⌋ − ⌊n/4⌋.

Proof. (a) By Proposition 6.3, G̃−G = Gτ , where τ is an involution centralizing

G. If Cγ is the conjugacy class of γ in G then Cγτ is a conjugacy class of γτ in

G̃. Hence, the number of conjugacy classes of involutions of G is the same as the

number of conjugacy classes of involutions of G̃ contained in G̃−G.

(b) For the case G̃ ∼= G × Z2 the proof is the same as for (a). Let τ ∈ G̃ − G

be a fixed involution. Let G̃ = Sn. If τ ∈ An is an involution, then the conju-

gacy class of τ in Sn is equal to the conjugacy class of this element in An. Hence

the number of conjugacy classes of involutions of G̃−G is equal to ⌊n/2⌋−⌊n/4⌋. �

Suppose now that α and β are fixed arbitrary cycles generating G ∈ {An, Sn},
such that τατ = α−1 and τβτ = β−1 for an involution τ . From the proof of Theorem
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6.1, it follows that in order to calculate the number of purely imaginary forms we

have to find in G̃ = G o ⟨τ⟩ the number of conjugacy classes of involutions of G̃

which are not in G and which are not conjugated to ατ , τ and βτ . Observe however

that for G = Sn with |supp(β)| odd, the elements τ and βτ are conjugated but τ

and ατ not, as |supp(α)| is even. If both |supp(α)| and |supp(β)| are even then ατ

is conjugated to βτ but not conjugated to τ . If G = An then the three elements

τ, ατ, βτ are conjugated with each other. As a consequence we obtain our final

theorem.

Theorem 6.5. Let G be the symmetric group Sn or the alternating group An gen-

erated by two cycles α, β, so that the correspondence φ(α) = α−1 and φ(β) = β−1

induces an automorphism of G. Then the complex algebraic curve corresponding to

α, β has

⌊n/2⌋ − 2 if G = Sn,

⌊n/2⌋ − ⌊n/4⌋ − 1 if G̃ ∼= Sn,

⌊n/4⌋ − 1 if G̃ ∼= An × Z2,

purely imaginary forms. �

Remark 6.6. If α and β giving the action of G are not cycles, and τατ = α−1 and

τβτ = β−1 for some involution τ , then in all three cases the elements τ , ατ , βτ

may lie in one, two or three conjugacy classes.
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E. Mart́ınez: Departamento de Matemáticas Fundamentales. UNED, Paseo Senda

del Rey 9, 28040 Madrid, Spain, emartinez@mat.uned.es


	19_Baginski_cover
	19_Baginski

