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Deformations of Kolyvagin systems

KÂZIM B ÜYÜKBODUK

ABSTRACT. Ochiai has previously proved that the Beilinson-Kato Euler systems for modular
forms interpolate in nearly-ordinaryp-adic families (Howard has obtained a similar result for
Heegner points), based on which he was able to prove a half of the two-variable main conjec-
tures. The principal goal of this article is to generalize Ochiai’s work in the level of Kolyvagin
systems so as to prove that Kolyvagin systems associated to Beilinson-Kato elements interpo-
late in the full deformation space (in particular, beyond the nearly-ordinary locus) and use what
we calluniversal Kolyvagin systemsto attempt a main conjecture over the eigencurve. Along
the way, we utilize these objects in order to define a quasicoherent sheaf on the eigencurve that
behaves like ap-adicL-function (in a certain sense of the word, in3-variables).
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1. INTRODUCTION

Fix forever a primep > 2. Classical Iwasawa theory concerns the variation of arithmetic
invariants of number fields in aZp-tower. Mazur (resp., Greenberg) extended this study to
abelian varieties (resp., to motives) along aZp-extension. All these may be considered within
the framework of Mazur’s general theory of Galois deformations and hand in hand with this
perspective, Greenberg in [Gre94, Conjecture 4.1] formulated a “main conjecture” for ap-adic
deformation of a motive.

The results of this article are closely related to Greenberg’s main conjecture: Given a ‘big’
Galois representation (attached to ap-adic deformation of a motive), we prove in a wide variety
of cases that an associated ‘big’ Kolyvagin system exists aswell (Theorem A below). As a
rather standard application, we deduce that the relevantstrict Selmer groups are controlled by
the big Kolyvagin systems we prove to exist (Theorem C). Whenthe motive in question is that
attached to an elliptic modular form, we show that theuniversalKolyvagin system we prove to
exist interpolates the Beilinson-Kato Kolyvagin systems associated to the ‘modular points’ of
thep-adic deformation space (Theorem B) in a suitable sense. Furthermore, we use its leading
term in order to define what we call thesheaf of universalp-adicL-function(Definition 4.39
and Theorem D). See Section 1.2.5 for further discussion on (potential) applications of all these
towards a main conjecture over the eigencurve.

Before we explain our results in detail, we provide a quick overview of Mazur’s theory of
Galois deformations in order to motivate for our main technical result; see [Maz89, dSL97,
Gou01] for details.

1.1. Deformations of Galois representations.Let Φ be a finite extension ofQp andO be
the ring of integers ofΦ. Let̟ ∈ O be a uniformizer, and letk = O/̟ be its residue field.
Consider the following categoryC:

• Objects ofC are complete, local, Noetherian commutativeO-algebrasA with residue
field kA = A/mA isomorphic tok, wheremA denotes the maximal ideal ofA.
• A morphismf : A→ B in C is a localO-algebra morphism.

Let Σ be a finite set of places ofQ that containsp and∞. Let GQ,Σ denote the Galois
group of the maximal extensionQΣ of Q unramified outsideΣ. Fix anabsolutely irreducible,
continuous Galois representationρ : GQ,Σ → GLn(k) and letT be the representation space
(so thatT is ann-dimensionalk-vector space on whichGQ,Σ acts continuously).

LetDρ : C −→ Sets be the functor defined as follows. For every objectA of C, Dρ(A)
is the set of continuous homomorphismsρA : GQ,Σ → GLn(A) that satisfyρA ⊗A k ∼= ρ,
taken modulo conjugation by the elements of GLn(A). For every morphismf : A→ B in C,
Dρ(f)(ρA) is the GLn(B)-conjugacy class ofρA ⊗A B.

Theorem (Mazur). The functorDρ is representable.

In other words, there is a ringR(ρ) ∈ Ob(C) and a continuous representation

ρρρ : GQ −→ GLn(R(ρ))

such that for everyA ∈ Ob(C) and any continuous representationρA : GQ,Σ → GLn(A), there
is a unique morphismfA : R(ρ) → A for which we haveρρρ ⊗R(ρ) A ∼= ρA. The ringR(ρ) is
called the universal deformation ring andρρρ the universal deformation ofρ.

Let adρ be the adjoint representation. We say that the deformation problem forρ is unob-
structedif the following hypothesis holds true:
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(H.nOb) H2(GQ,Σ, adρ) = 0.

When (H.nOb) holds true, Mazur proved thatR(ρ) ∼= O[[X1, · · · , Xd]], whered is the
dimension of thek-vector spaceH1(GQ,Σ, adρ).

1.1.1. p-ordinary families.One might also consider a subclass of deformations of a givenρ,
rather than the full deformation spaceR(ρ). The following paragraph illustrates a particular
case which has been much studied by many authors, see Section4.3 for a perspective offered
through the general theory we develop here.

Supposeρ : GQ,Σ −→ GL2(k) is p-ordinary and ap-distinguished, in the sense that the
restriction ofρ to a decomposition group atp is reducible and non-scalar. Assume further
thatρ is odd, i.e.,det(ρ)(c) = −1 wherec is any complex conjugation. Then Serre’s conjec-
ture [Ser87] (as proved in [KW09, Kis09a]) implies thatρ arises from an ordinary newform.
Hida associates in [Hid86b, Hid86a] suchf a family of ordinary modular forms and a Galois
representationT attached to the family, with coefficients in theuniversal ordinary Hecke al-
gebraH. Thanks to the “R = T ” theorems proved in [Wil95, TW95] (and their refinements) it
follows thatH is the universal ordinary deformation ring ofρ, parametrizing all ordinary defor-
mations ofρ. Ochiai in [Och05] (resp., Howard in [How07]) has studied the Iwasawa theory
of this family of Galois representations by interpolating Kato’s Euler system (resp., Heegner
points) for each member of the family to a ‘big’ Euler system for the wholep-ordinary family.

1.2. The results. One of the main goals of the current article is to generalize the works of
Ochiai and Howard so as to treat the full deformation ring (e.g., not necessarily itsp-ordinary
locus) of a modp Galois representation. Our approach is altogether different from theirs: In-
stead of interpolating Euler systems (as in [Och05, How07]), we instead deform Kolyvagin
systems. We remark that a Kolyvagin system has exactly the same use as an Euler system,
when they are used to bound Selmer groups. We recall the definition of a Kolyvagin sys-
tem in Section 3 below. See also [MR04,§3.2] for the relation between Euler systems and
Kolyvagin systems over a DVR or over the cyclotomic Iwasawa algebraΛ = Zp[[Γ]], where
Γ = Gal(Q∞/Q) is the Galois group of the (unique)Zp-extensionQ∞/Q.

1.2.1. The Setup.In this paper we will study the deformation problem for Kolyvagin systems
to one of the following choices of rings:

(i) R = R[[Γ]], whereR is a dimension-2 GorensteinO-algebra with a regular sequence
{̟,X} such thatR/X is a finitely generated torsion-freeO-module.

(ii) R = O[[X1, X2, X3]] (which we shall arise as anunobstructeduniversal deformation
ring of a two dimensional mod̟ Galois representationρ in examples.)

Let m (resp.,M) be the maximal ideal ofR (resp., ofR) andk = R/m (resp.,R/M which
we also denote byk as there will be no danger of confusion) be the residue field. When the
coefficient ring we are interested in is the ringR as in (i) above, we letT be a freeR-module
of finite rank which is endowed with a continuousGQ-action, unramified outside a finite set
of primes. SetT = T ⊗Zp Λ, where we allowGQ act on both factors. When the coefficient
ring we are interested in isR as in (ii), we letT be a freeR-module of finite rank endowed
with a continuousGQ-action unramified outside a finite number of primes. LetΣ be a finite
consisting of primes at whichT is ramified,p and∞. Let QΣ denote the maximal extension
of Q unramified outsideΣ. We setT = T/m (resp.,T = T/M) and defineχ(T) = dimk T

−
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(resp.,χ(T)), whereT
−

is the(−1)-eigensubspace ofT under the action of a fixed complex
conjugation.

Let µµµp∞ be thep-power roots of unity and for anyO[[GQ]]-moduleM , we letM∗ =
Hom(M,µµµp∞) denote its Cartier dual.

The following hypotheses will play a role in what follows:
(H1) T is an absolutely irreducibleGQ-module.
(H2) There is aτ ∈ GQ such thatτ acts trivially onµµµp∞ and theR-moduleT/(τ − 1)T

(resp., theR-moduleT/(τ − 1)T) is free of rank one.
(H3) H0(Q, T ) = H0(Q, T

∗
) = 0.

(H4) Either HomFp[[GQ]](T , T
∗
) = 0, or p > 4.

(H.Tam) For all bad primesℓ 6= p,

(i) H0(Qℓ, T ) = 0.
(ii) H0(Iℓ, A) is p-divisible.

(H.nA) H0(Qp, T
∗
) = 0.

Remark 1.1. The hypotheses (H1)-(H4) are also present in [MR04]. (H.Tam) will be used in
Section 5.2.1 to check that the unramified local conditions arecartesian∗ in a sense to be made
precise.

Remark 1.2.WhenT is the self-dual Galois representation attached to a (twisted) Hida family
with coefficients in the universal ordinary Hecke algebraR (as studied in [How07]), the hy-
pothesis (H.Tam)(ii) asks that there is a single memberf of the twisted Hida family such that
the local Tamagawa numbercℓ(f), defined as in [FPR94,§I.4.2.2], is prime top. As explained
in [Büy14, §3], this in turn implies that the Tamagawa numbercℓ(g) is prime top for every
memberg of the twisted family.

See Section 4.2 (particularly, Proposition 4.17 and Remark4.18) for a discussion of the
content of the hypotheses (H.Tam) and (H.nA) whenT is the modp Galois representation
attached to (the central critical twist of) a cuspidal elliptic modular newformf . We note here
only the fact that these hypotheses simultaneously hold true for infinitely many primesp in that
setting, so our results below are not vacuous.

1.2.2. “Big” Kolyvagin systems.For aGQ,Σ-representationT (resp.,T) as in Section 1.2.1, we
let KS(T,Fcan,P) (respectively,KS(T,Fcan,P)) denote theR-module (respectively, theR-
module) ofbig Kolyvagin systems for thecanonical Selmer structureFcan onT (respectively,
for T). See Sections 2 and 3 for precise definitions of these objects.

Theorem A (Theorem 3.5 below). Supposeχ(T) = χ(T) = 1. Assume that the hypotheses
(H1) - (H4), (H.Tam) and(H.nA) hold true. Then,

(i) theR-moduleKS(T,Fcan,P) is free of rank one, generated by a Kolyvagin systemκκκ
whose imagēκκκ ∈ KS(T ,Fcan,P) is non-zero,

(ii) the R-moduleKS(T,Fcan,P) is free of rank one. When the ringR is regular, the
moduleKS(T,Fcan,P) is generated byκκκ whose imagēκκκ ∈ KS(T ,Fcan,P) is non-
zero.

∗Most importantly in the proof that the mapβ that appears in Lemma 5.15 is injective. Although one may possibly
verify this fact under less restrictive hypothesis, the assumption (H.Tam) is simple to state, easy to check and thus
allows one to produce many interesting examples where Theorem A applies; c.f., Proposition 4.17 below.
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In Theorem A, the Galois modulesT (resp.,T) should of course be thought of as a family
of Galois representations and the conclusion of Theorem A asan assertion that the Kolyvagin
systems for each individual member of the familyT (resp.,T) do interpolate so as to give rise
to abig Kolyvagin system.

Remark 1.3. The rigidity principle that the Kolyvagin systems exhibit as in Theorem A has
been crucially used in his recent work [Büy13] on the Iwasawa theory of abelian varieties for
supersingular primes. More precisely, the author appeals to Theorem A in the verification
that certain bounds in the signed main conjectures for CM elliptic curves over general totally
real fields are indeed sharp, in situations where we do not have direct access to analytic class
number formulas (which were traditionally employed so as topromote various inequalities
in the statements of the main conjectures to equalities). Note also that a variant of Theorem
A plays a further important role in [Büy13, Büy15], providing evidence for the Rubin-Stark
conjectures. We finally remark that the rigidity phenomenonfor Kolyvagin systems has also
played a pivotal role in the proof of Darmon’s conjecture by Mazur and Rubin in [MR11].

Remark 1.4.The author has proved (as part of his Ph.D. thesis) a primal version of Theorem A
whenR is the cyclotomic Iwasawa algebraΛ andT = T ⊗Λ is the cyclotomic deformation of
T . Barry Mazur had asked us then to work out a generalization ofthis result to other types of
deformation rings (and our long due response is Theorem A). Note that Theorem A is not only
much more general than [Büy11, Theorem 3.23] in its scope, it also allows us to gain insight
for the Iwasawa theory on the eigencurve (as we outline in Section 1.2.5). We further remark
that the proof of Theorem A is technically much more demanding. One reason is the fact that
the behavior of unramified cohomology for an arbitrary family of Galois representations at bad
primesℓ 6= p is much more complicated, as compared with the situation when the family is
given as twists ofT by powers of the cyclotomic character. (Note that this matter also makes
its appearance in the statement of [Pot13, Theorem 3.13].)

Remark 1.5. We expect that the arguments used in the proof of Theorem A should generalize
without much effort to handle a general regular ring (not necessarily of relative dimension3
overO, asR above is). Note on the other hand that for explicit arithmetic applications of
our theorem, we would like that the big Kolyvagin system forT (resp., forT) of Theorem A
interpolates Kolyvagin systems which are explicitly related toL-values. At the time when
this article was written up, this was only possible when the residual representationT is two
dimensional andχ(T ) = 1, in which case the unobstructed universal deformation ringis R.
Note that whenT is two dimensional andχ(T ) = 1, we know thatT is modular. A density
theorem due to Böckle shows that the big Kolyvagin system for the universal deformationT
indeed interpolates the Beilinson-Kato Kolyvagin systemsfor elliptic modular forms whose
associated Galois representations are congruent modp toT . See Theorems 4.19, 4.28 and 4.46
below for details.

1.2.3. Universal Kolyvagin systems and Beilinson-Kato elements.LetE/Q be an elliptic curve,
T = E[p] be thep-torsion subgroup ofE(Q̄) andρ = ρE the modp Galois representation on
T . LetΣ be the set of primes that consists of primes at whichE has bad reduction,p and∞.
Define alsoR = R(ρ) to be the universal deformation ring ofρ. The universal deformation
representationT is then a freeR-module of rank two. Until the end of this introduction,
we concentrate on this particular representationT and give applications of Theorem A. See
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Sections 4.2-4.4 below for the most general form of the results we record in§1.2.3-1.2.5 (where
we treat cuspidal elliptic newforms of weight> 2 as well).

Theorem (Flach, [Fla92]). Suppose that

(F1) ρE is surjective,
(F2) H0(Qℓ, T ⊗ T ) = 0 for all ℓ ∈ Σ,
(F3) p does not divideΩ−1L(Sym2(E), 2), whereΩ = Ω(Sym2(E), 2) is the transcendental

period.

ThenE satisfies(H.nOb) andR ∼= Zp[[X1, X2, X3]].

In addition to the assumptions(F1) - (F3), we suppose throughout the introduction thatT
satisfies the hypotheses(H1) - (H4), (H.Tam)(i) and (H.nA). See§4.2 for the content of these
assumptions in a variety of cases of interest.

Remark 1.6. Weston has proved the following result, which is an important generalization of
Flach’s theorem to modular forms of higher weight. Letf be an elliptic newform of levelN ,
weightk > 2 and characterψ. LetK be the number field generated by the Fourier coefficients
of f andOK be its ring of integers. For a prime℘ ofK abovep, letk = OK/℘ andO = W (k),
the Witt vectors ofk. Let

ρ = ρf,℘ : GQ,Σ −→ GL2(k)

be the Galois representation attached tof by Deligne. Weston proved in [Wes04] that the
deformation problem forρ is unobstructed andR(ρ) ∼= O[[X1, X2, X3]], for almost all choices
of a prime℘ of K. Using Weston’s theorem, all our results proved in weight two generalizes
verbatimto higher weights.

We next state a consequence of Theorem A, which may be thoughtof an extension of a
result of Ochiai (on the interpolation of Beilinson-KatoEuler systemin p-ordinary familes),
but beyond the ordinary locus. Let us first set our notation. Let g =

∑
anq

n be a newform of
weightκ ≥ 2 and letOg be the finite flat normal extension ofZp which thean’s generate. Let

ρf : GQ −→ GL2(Og)

be Deligne’s Galois representation attached tog andTg be the freeOg-module of rank two on
whichGQ acts viaρf . Suppose thatρf ∼= ρ, so that by the universality ofR there is a ring
homomorphismψg : R→ Og which induces an isomorphismT⊗ψg Og ∼= Tg and a map

KS(T,Fcan,P)
ψg
−→ KS(Tg,Fcan,P).

For eachg as above, the Beilinson-Kato Euler system of [Kat04] also gives rise to a Kolyvagin
systemκκκBK,g ∈ KS(Tg,Fcan,P) (c.f., [MR04,§3.2]).

We call any generatorκκκ of the cyclicR-moduleKS(T,Fcan,P) a universal Kolyvagin sys-
tem. Universal Kolyvagin systems interpolate the Beilinson-Kato Kolyvagin systems in the
following sense:

Theorem B (Theorem 4.19). Letκκκ be a universal Kolyvagin system. For every newformf as
above, we haveκKato,g = λg · ψg(κκκ) for someλg ∈ Og.

Remark 1.7. It would be very interesting to know whether the interpolation factorsλg above
interpolateto give rise to a global function on Spec(R). In Section 4.3, we are able to answer to
this question affirmatively over Hida’s nearly-ordinary locus (denoted by Spec(R) ⊂ Spec(R)
in the main text below). We also elaborate on this question over affinoid subdomains of the
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eigencurve in Section 4.4 (see also Section 1.2.5) and verify that it has a positive answer in that
case as well, assuming the truth of Conjecture 4.45†.

The question raised in this remark is relevant in the study ofp-adic variation of the Iwa-
sawa invariants associated to the members of the familyT, much in the spirit of [EPW06] and
[Och05]. In order to make use of Theorems A, B above and C belowin this vain, it seems that
one would need a positive answer to this question. See Remark1.8 below for a continuation
of the discussion in the realm of Hida families, dwelling on the main results of [SU14, Ski14].
This theme is the essence of Theorem 4.28, Corollaries 4.29 and 4.30 (for Hida families); and
Theorem 4.46, Remark 4.47 (for families of Galois representations carried by the eigencurve)
in the main body of the text.

1.2.4. Universal Kolyvagin system and the Greenberg-Kato main conjecture. We still work in
the setting of Section 1.2.3. The next result we present (more specifically, its final part) is the
fundamental application of the universal Kolyvagin systemwhose existence is guaranteed by
Theorem A. LetF∗

can denote the dual Selmer structure onT∗ (in the sense of Definition 2.4).
For any abelian groupN , let N∨ denote the Pontryagin dual. IfM is a finitely generated
torsionR-module, set

char(M) =
∏

p

plength(Mp)

where the product is over height one primes ofR.
Given a Kolyvagin systemκκκ ∈ KS(T,Fcan,P), let κ1 ∈ H1

Fcan
(Q,T) denote itsleading

term; see Definition 3.6 for a precise definition of this notion.

Theorem C. Letκκκ be a universal Kolyvagin system forT. Then,

(i) κ1 is notR-torsion,
(ii) TheR-moduleH1

F∗
can
(Q,T∗) is cotorsion andH1

Fcan
(Q,T) is free of rank one.

(iii) char
(
H1

F∗
can
(Q,T∗)∨

)
= char

(
H1

Fcan
(Q,T)/R · κ1

)
.

See Proposition 4.23 for (i), Theorems 4.3 and 4.9 for (ii), Theorem 4.4 for (iii). We actually
prove more in the main text: For a general Galois representation T over a general regular ring
R, we in fact prove in Theorems 4.2 and 4.3 that the statements in (i) and (ii) are equivalent to
each other. In other words, the weak Leopoldt conjecture forT is equivalent to(i.e., not only
implied by) the non-vanishing the leading term of a deformedKolyvagin system.

It is also worth taking a note of the systematic use of Nekovář’s descent procedure (that he
has developed in the context of his Selmer complexes) in the proof of Theorem C(iii) (which
is Theorem 4.4 in the main text below). This is one of the fundamental additions to the tools
utilized in prior works [MR04, Büy11] on the general theoryof Kolyvagin systems.

In view of Theorem B, the statement of (iii) is closely related to Greenberg’s main conjec-
ture [Gre94] on the Iwasawa theory ofp-adic deformations of motives. The reader is invited
to compare our statement especially with Kato’s formulation of themain conjecture without
p-adicL-functionsin [Kat93]. See also Corollaries 4.29 and 4.30 for applications of this state-
ment to the main conjecture for a nearly-ordinary family (which are originally due to Ochiai).
More relevant to the main purpose of this article, see Section 4.4 where we construct utiliz-
ing the universal Kolyvagin system (and relying on the worksof [KPX14, Liu12]) what we
call thequasicoherent sheaf of universalp-adic L-function. We hope that this construction

†As far as the author understands, much of this conjecture hasbeen settled by David Hansen.
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would be useful in deducing a form of main conjecture (with p-adicL-function) over affinoid
subdomains of the eigencurve.

Remark 1.8. This paragraph is a continuation of the discussion in Remark1.7. Under the ad-
ditional hypothesis thatE has split multiplicative reduction atp (and a further mild assumption
on the ramification ofT ), one may prove the existence of a memberg of the Hida family for
T for which the work of Skinner and Urban [SU14] applies. This,along with Theorem C(iii),
shows that theinterpolation factorsλg (which appeared in the statement of Theorem B) are all
units for every formg that belongs to the relevant Hida family; in particular forg = fE itself.
This allows one to prove that the divisibility one obtains using the Beilinson-Kato elements in
the statement of Kato’s main conjecture (c.f., [Kat04, Theorem 12.5]) may be turned into an
equality and leads to a proof of [Ski14, Theorem A].

1.2.5. Sheaf of universalp-adic L-function and the Iwasawa theory of eigencurve.Suppose
that we are still in the setting of Section 1.2.3. Greenberg’s main conjecture predicts the ex-
istence of a several-variablep-adicL-function attached to a familyT , assuming that the rep-
resentationT is Panchishkin-ordinaryat p. Thisp-adicL-function should in return control a
‘big’ Selmer group associated toT ; see Conjecture 4.1 in [Gre94]. The existence of thisp-adic
L-function remains highly conjectural.

The situation in our case with the familyT is all the way more complicated: In this caseT is
no longer Panchishkin-ordinary and one does not even have a definition of a Selmer group for
T. Likewise, it is not altogether clear what thethree-variablep-adicL-function should look
like in this picture (or if it should exist in the first place asan element ofR or its analytification
R† = Γ(X,OSpf(R[1/p])), whereX denotes the (Berthelot) generic fiber of Spf(R[1/p])).

Despite the rather gloomy look of things (off the nearly-ordinary deformation subspace,
that is) we portray above, there has been significant progress in the last few years over the
finite-slopelocus: See [Bel12a] for the construction of a2-variable p-adic L-functions on
the Coleman-Mazur eigencurveC(ρ) and [Pot13, Bel12b, KPX14, Liu12] for the global tri-
angulation onC(ρ) that yields to the construction of a coherent Selmer sheaf over C(ρ). We
now explain how our construction of universal Kolyvagin systems relate to these developments
and provide us with a quasicoherent sheaf on the eigencurve which in many ways resemble
a universalp-adicL-function. We give a definition of this object in this introduction (Defini-
tion 4.39) and outline its basic properties. We refer the reader to Section 4.4 for further details.
This part of our article was heavily influenced by our personal communication with J. Pottharst.
We thank him heartily for his insightful e-mail and detailedresponse to our questions.

Let ΛE = OE [[Γ]] be the cyclotomic Iwasawa algebra,IE be Berthelot’s analytic generic
fiber of SpfΛ andΛ†

E = Γ(IE,OSpfΛE
). Note that ourΛ†

E is denoted byΛ∞ in [Pot12].
Let λ ∈ O(C)× be theUp-eigenvalue function andκ ∈ O(C) the weight function. LetTC

denote the pullback of the universal deformation, which is locally free coherent sheaf onC of
rank2 which equipped with a continuousO(C)-linear Galois action. LetD†

rig(TC) denote the
sheafification of the(ϕ,Γ)-module functor on the weakG-topology ofC given as in [Liu12,
Definition 1.2.4]. The work of Liu and Kedlaya-Pottharst-Xiao equips us with a coherent
subsheafF of the sheafD†

rig(TC) which is locally free of rank one away fromexceptional
points, and saturated away from theunsaturated pointsof C (see Definition 4.37 where these
notions are introduced) and restricts for everyx belonging to this locus to a triangulation of the
(ϕ,Γ)-moduleD†

rig(Vx) associated toVx.
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Let κ1 denote the initial term ofanyuniversal Kolyvagin system andH1
ψ(∗) is the Iwasawa

cohomology sheaf given as in [KPX14] (whereψ is a left inverse of the Frobenius operatorϕ
in the context of(ϕ,Γ)-modules).

Definition 1.9. The quasicoherent sheaf ofuniversalp-adicL-functionis the invertible sheaf

Ξρ := im
(
R · locp(κ1) −→ H1

ψ(D
†
rig(TC))/H

1
ψ(F)

)
.

Here the arrow is obtained via Sen’s theory (through taking Tate twists) and using [Pot13,
Theorem 1.9] along with the identification of [KPX14, Corollary 4.4.11].

The following interpolation property partially justifies why Ξρ deserves to be called the
sheaf of a “p-adicL-function”. See Theorem 4.46 and Remark 4.47 for a strengthening of this
interpolation property.

Theorem D (Theorem 4.43). Let E be a finite extension ofQp andx = (ψ†, λ(x)) ∈ Ccl-fs

be anE-valued saturated point. Letfx denote the corresponding (classical) eigenform with
a distinguishedUp-eigenvalueλ(x). For sometx ∈ ΛE , the following equality of invertible
ideals ofΛ†

E holds true:

tx · LDx/Fx ◦ ψ
†
Λ (Ξρ) = Γκ(x)−1 · δ

−1
x Lp,λ(x)c(f

c
x) · Λ

†
E ,

Here ψ†
Λ : R† → Λ†

E the cyclotomic deformation of the pointψ† (given as in Defini-
tion 4.34),LDx/Fx the Pottharst-Perrin-Riou “big logarithm” map introducedin Definition 4.40,
Lp,λ(x)c(f cψ†) is thep-adicL-function attached to the complex conjugate offx for thep-stabilization
determined byλ(x)c and finally, theΓ andδ-factors are given as in Definition 4.41.

As we have already pointed out in Remark 1.7, whether the factors tx interpolate over affi-
noid subdomains ofC or not is a question that needs to be explored in order to gain under-
standing of the variation of arithmetic data on the eigencurve. See Question 4.44 for precise
formulation of this question and Theorem 4.46 for a result inthis direction.

Theorem 4.46 together with the forthcoming work of Hansen shows that the image of the
sectionsΞρ(A) under what we call the Coleman-trivialization (introducedas part of Conjec-
ture 4.45) lies in the module generated by Bellaı̈che’s two-variablep-adicL-function. Along
with Theorem C (Greenberg’s main conjecture withoutp-adicL-function), this fact is expected
to be one of the main ingredients in deducing a divisibility in the main conjecture (with p-adic
L-function) in this context. What is crucial is that the leading termκ1 (which is used to con-
struct the sheafΞρ as well as to control the strict Selmer group as in Theorem C) of the universal
Kolyvagin system is integral, so that the Euler-Kolyvagin system machinery applies. The only
missing ingredient that prevents us to assemble a proof of the divisibility alluded to above is
a well-behaved descent/control mechanism for Selmer complexes in this context. We hope to
address this matter in a future work.

What is significant about that the modulesΞρ(A) is that (which, as we indicated above, are
related in a precise manner to Bellaı̈che’s two-variablep-adicL-function by Hansen’s work)
they readily patch together overC, andΞρ indeed behaves like a sheaf ofp-adicL-functions on
the eigencurve.
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useful conversations on various technical points; to Shu Sasaki for his comments on an earlier
version of this article and for letting the author know of Kisin’s recent (unpublished) bigR =
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1.3. Notations. For any fieldK, fix a separable closurēK of K and setGK = Gal(K̄/K).
LetF be a number field andλ be a non-archimedean place ofF . Fix a decomposition subgroup
Gλ < GF and letIλ < Gλ denote the inertia subgroup. Often we will identifyGλ byGFλ

. For
a finite setΣ of places ofK, defineKΣ to be the maximal extension ofK unramified outside
Σ.

Let p be an odd prime and letQ∞/Q be the cyclotomicZp-extension. Letµµµpn denote thepn-
th roots of unity and setµµµp∞ = lim−→µµµpn. SetΓ = Gal(Q∞/Q) and fix a topological generator
γ of Γ. LetΛ = Zp[[Γ]] be the cyclotomic Iwasawa algebra.

For a ringS, anS-moduleM and an idealI of S, let M [I] denote the submodule ofM
consisting of elements that are killed byI.

For the ringR = O[[X1, X2, X3]], we setRu,v,w := R/(Xu
1 , X

v
2 , X

w
3 ) andRr,u,v,w :=

R/(̟r, Xu
1 , X

v
2 , X

w
3 ). We define the quotient modulesTu,v,w := T ⊗R Ru,v,w andTr,u,v,w :=

T⊗R Rr,u,v,w.
Similarly for the ringR = R[[Γ]] as above, define the ringsRu,v = R/(Xu, (γ − 1)v) and

Rr,u,v = R/(̟r, Xu, (γ − 1)v). Define also the quotient modulesTu,v := T ⊗R Ru,v and
Tr,u,v := T⊗R Rr,u,v.

Finally, we define thep-divisible goupsAu,v,w := Tu,v,w ⊗ Φ/O andAu,v := Tu,v ⊗ Φ/O.
LetR0 = R/(̟,X) be the dimension-zero Gorenstein artinian ring, whereR is as above.

As explained in [Til97, Proposition 1.4],

(1.1) R0[mR] is a one-dimensionalk-vector space

wheremR denotes the maximal ideal ofR andk = R/mR. Define alsoR1 = R/X. Using the
fact {̟,X} is a regular sequence inR, we see thatR1 is a dimension-1 Gorenstein domain.
Set Φ̃ = Frac(R1). AsR1 is finitely generated and free as anO-module, it follows thatΦ̃
is a finite extension ofΦ. Let O be the integral closure ofR1 in Φ̃. ThenO is a discrete
valuation ring andO/R1 has finite cardinality. LetmO be the maximal ideal ofO andπO be a
uniformizer ofO. DefineTO := T1,1 ⊗R1

O (deformation ofT to O) andA = TO ⊗ Qp/Zp.
As O/R1 is of finite order, it follows thatA ∼= A1,1.

2. LOCAL CONDITIONS AND SELMER GROUPS

We recall a definition from [MR04,§2]. LetM be anyO[[GQ]]-module.

Definition 2.1. A Selmer structureF onM is a collection of the following data:

• A finite setΣ(F) of places ofQ, including∞, p, and all primes whereM is ramified.
• For everyℓ ∈ Σ(F), a local condition onM (which we now view as aO[[Gℓ]]-module),

i.e., a choice of anO-submoduleH1
F(Qℓ,M) ⊂ H1(Qℓ,M).

Definition 2.2. For a Selmer structureF onM , define the Selmer groupH1
F(Q,M) to be

H1
F(Q,M) = ker


H1(QΣ(F)/Q,M) −→

∏

ℓ∈Σ(F)

H1(Qℓ,M)

H1
F(Qℓ,M)


 .
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Definition 2.3. A Selmer tripleis a triple(M,F ,P) whereF is a Selmer structure onM and
P is a set of rational primes, disjoint fromΣ(F).

Definition 2.4. Let F be a Selmer structure onM . For each primeℓ ∈ Σ(F), define
H1

F∗(Qℓ,M
∗) := H1

F(Qℓ,M)⊥ as the orthogonal complement ofH1
F(Qℓ,M) under the lo-

cal Tate pairing. The Selmer structureF∗ on M∗ defined in this manner is called thedual
Selmer structure.

Define the Selmer structureFcan (thecanonical Selmer structure) onTu,v,w as follows:

• Σ(Fcan) = Σ := {ℓ : T is ramified atℓ} ∪ {p,∞}.

• H1
Fcan

(Qℓ,Tu,v,w) :=

{
H1(Qp,Tu,v,w) , if ℓ = p,
H1
f (Qℓ,Tu,v,w) , if ℓ ∈ Σ(Fcan)− {p,∞}.

Here
H1
f (Qℓ,Tu,v,w) := ker

{
H1(Qℓ,Tu,v,w) −→ H1(Iℓ,Tu,v,w ⊗O Φ)

}
.

We denote the Selmer structure on the quotientsTr,u,v,w obtained bypropagatingFcan on
Tu,v,w to Tr,u,v,w also byFcan. See [MR04, Example 1.1.2] for a definition of thepropagation
of local conditions.

We define the Selmer structureFcan onTu,v (and its propagation to its quotientsTr,u,v) in a
similar way:

• Σ(Fcan) = {ℓ : T is ramified atℓ} ∪ {p,∞}.

• H1
Fcan

(Qℓ,Tu,v) :=

{
H1(Qp,Tu,v) , if ℓ = p,
H1
f (Qℓ,Tu,v) , if ℓ ∈ Σ(Fcan)− {p,∞}

,

We also define a Selmer structureFcan onT/m as follows:

• SetH1
Fcan

(Qp,T/m) = H1(Qp,T/m).
• Propagate the local conditions atℓ 6= p given byFcan onT1,1 toT/m.

Note in particular that the Selmer structureFcan onT/m will not always be the propagation of
the canonical Selmer structure onT1,1.

2.1. Local conditions at ℓ 6= p. In this section we compare various alterations of the local
conditions atℓ 6= p. Define

H1
ur(Qℓ,M) := ker

(
H1(Qℓ,M) −→ H1(Iℓ,M)

)

for anyM on whichGQℓ
acts. Using the exact sequence

0 −→ Tu,v,w −→ Tu,v,w ⊗O Φ −→ Au,v,w −→ 0

define also
H1
f (Qℓ,Au,v,w) = im

(
H1

ur(Qℓ,Tu,v,w ⊗O Φ) −→ Au,v,w
)
.

Define finally

H1
f (Qℓ,Tr,u,v,w) = ker

(
H1(Qℓ,Tr,u,v,w) −→

H1(Qℓ,Au,v,w)

H1
f (Qℓ,Au,v,w)

)
,

where the map is induced from the injectionTr,u,v,w →֒ Au,v,w. Lemma 1.3.8(i) of [Rub00]
shows that

(2.1) H1
Fcan

(Qℓ,Tr,u,v,w) = H1
f (Qℓ,Tr,u,v,w).
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Similarly one definesH1
f (Qℓ,Au,v) andH1

f (Qℓ,Tr,u,v), and verifies using [Rub00, Lemma
1.3.8(i)] that

(2.2) H1
Fcan

(Qℓ,Tr,u,v) = H1
f (Qℓ,Tr,u,v).

2.2. Local conditions atp.

Proposition 2.5. Assuming(H.nA),

(i) H1
Fcan

(Qp,Tr,u,v,w) = H1(Qp,Tr,u,v,w),
(ii) H1

Fcan
(Qp,Tr,u,v) = H1(Qp,Tr,u,v).

Proof. We need to check that

coker
(
H1(Qp,Tu,v,w) −→ H1(Qp,Tr,u,v,w)

)
= 0.

Note that

coker
(
H1(Qp,Tu,v,w) −→ H1(Qp,Tr,u,v,w)

)
= H2(Qp,Tu,v,w)[̟

r],

so it suffices to check thatH2(Qp,Tu,v,w) = 0.

Now by local duality,(H.nA) implies thatH2(Qp, T ) = 0. Using the fact that the cohomo-
logical dimension ofGp is two, it follows that

H2(Qp,T)/M·H
2(Qp,T) = 0,

whereM = (̟,X1, X2, X3) is the maximal ideal of the ringR. By Nakayama’s Lemma, we
therefore see thatH2(Qp,T) = 0. Using again the fact that the cohomological dimension of
Gp is two, we conclude that

0 = H2(Qp,T) ։ H2(Qp,Tu,v,w)

and the proof of (i) follows.
The proof of (ii) is similar but more delicate as the ringR is not necessarily regular. As

above, we first check that

(2.3) H2(Qp,T) = 0.

Considering theGp-cohomology induced from the exact sequence

0 −→ T
γ−1
−→ T −→ T −→ 0

and using Nakayama’s lemma, (2.3) is reduced to verifying thatH2(Qp, T ) = 0. Similarly,
using the exact sequences

0 −→ T
X
−→ T −→ T /X −→ 0

0 −→ T /X
̟
−→ T /X −→ T1,1 −→ 0

in turn, we reduce to checking that

(2.4) H2(Qp,T1,1,1) = 0

The assertion (2.4) is proved below. We first show that (ii) follows from (2.4).
As above,

coker
(
H1(Qp,Tu,v) −→ H1(Qp,Tr,u,v)

)
= H2(Qp,Tu,v)[̟

r].

By (2.4) and the fact that the cohomological dimension ofGp is two, it follows that

0 = H2(Qp,T) ։ H2(Qp,Tu,v).
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This proves thatH2(Qp,Tu,v) = 0 and it follows that

H1
Fcan

(Qp,Tr,u,v) = im
(
H1(Qp,Tu,v −→ H1(Qp,Tr,u,v)

)
= H1(Qp,Tr,u,v),

as desired. �

Claim. Assuming(H.nA), we haveH2(Qp,T1,1,1) = 0.

Proof. The property (1.1) shows thatT1,1,1[m] ∼= T , hence thatT∗
1,1,1/m

∼= T
∗
. Since we

assumedH.nA , it thus follows that

H0(Qp,T
∗
1,1,1/m) = 0.

The moduleT∗
1,1,1 is free of of finite rank over the Gorenstein artinian ringR0, hence by

[MR04, Lemma 2.1.4] we conclude thatH0(Qp,T
∗
1,1,1) = 0 as well. Claim now follows by

local duality. �

2.3. Kolyvagin primes and transverse conditions.Let τ ∈ GQ be as in the statement of the
hypothesis (H.2).

Definition 2.6. For n̄ = (r, u, v, w) ∈ (Z>0)
4, define

(i) Hn̄ = ker (GQ → Aut(Tr,u,v,w)⊕ Aut(µprµprµpr)),
(ii) Ln̄ = Q̄Hn̄ ,

(iii) Pn̄ = {primesℓ : Frℓ is conjugate toτ in Gal(Ln̄/Q)}.

The collectionPn̄ is called the collection ofKolyvagin primesfor Tr,u,v,w. SetP = P(1,1,1,1)

and defineNn̄ to be the set of square free products of primes inPn̄.

We similarly define for̄s = (r, u, v) the sollection of Kolyvagin primesPs̄ for Tr,u,v and the
setNs̄ of square free products of primes inPs̄.

Definition 2.7. The partial order≺ on the collection of quadruples(r, u, v, w) ∈ (Z>0)
4 is

defined by setting
n̄ = (r, u, v, w) ≺ (r′, u′, v′, w′) = n̄′

if r ≤ r′, u ≤ u′, v ≤ v′ andw ≤ w′.
We denote the partial order defined on triples of positive integers in an identical manner also

by≺.

To ease notation, setTn̄ := Tr,u,v,w andRn̄ := Rr,u,v,w for n̄ = (r, u, v, w). Define similarly
Tn̄ := Tr,u,v andRn̄ := Rr,u,v.

Remark 2.8. Supposeℓ is a Kolyvagin prime inPn̄ (resp., inPs̄), wheren̄ (resp.,s̄) are as
above. Then asτ acts trivially onµµµpr and Frℓ is conjugate toτ in Gal(Ln̄/Q), it follows that
Frℓ acts trivially onµµµpr and hence thatℓ ≡ 1 mod pr. In particular

|F×
ℓ | · Tr,u,v,w = (ℓ− 1)Tr,u,v,w = 0

(resp.,|F×
ℓ | · Tr,u,v = 0).

Throughout this section, fix a Kolyvagin primeℓ ∈ Pn̄ (or in Ps̄, whenever we talk about
quotients ofT).

Definition 2.9. Let T be one ofTr,u,v,w, Tr,u,v orT/m.
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(i) The submodule ofH1(Qℓ, T ) given by

H1
tr(Qℓ, T ) = ker

(
H1(Qℓ, T ) −→ H1(Qℓ(µℓµℓµℓ), T )

)

is called thetransverse submodule.
(ii) The singular quotientH1

s (Qℓ, T ) is defined by the exactness of the sequence

(2.5) 0 −→ H1
f (Qℓ, T ) −→ H1(Qℓ, T ) −→ H1

s (Qℓ, T ) −→ 0

Definition 2.10. Let T be one ofTr,u,v,w, Tr,u,v or T/m and supposen ∈ Nn̄ (or n ∈ Ns̄ if we
are talking about quotients ofT). Themodified Selmer structureFcan(n) onT is defined with
the following data:

• Σ(Fcan(n)) = Σ(Fcan) ∪ {primesℓ : ℓ | n}.
• If ℓ ∤ n thenH1

Fcan(n)
(Qℓ, T ) = H1

Fcan
(Qℓ, T ).

• If ℓ | n thenH1
Fcan(n)

(Qℓ, T ) = H1
tr(Qℓ, T ).

Remark 2.11.Proposition 1.3.2 of [MR04] shows thatFcan(n)
∗ = F∗

can(n).

Lemma 2.12. Let T be one of the ringsTr,u,v,w, Tr,u,v or T/m. Then thetransverse subgroup
H1

tr(Qℓ, T ) ⊂ H1(Qℓ, T ) projects isomorphically ontoH1
s (Qℓ, T ). In other words(2.5) above

has a functorial splitting.

Proof. This is [MR04, Lemma 1.2.4] which is proved for a general artinian coefficient ring.
�

Proposition 2.13.Let n̄ = (r, u, v, w) and s̄ = (r, u, v) be as above.

(i) There are canonical functorial isomorphisms

H1
f (Qℓ,Tn̄) ∼= Tn̄

/
(Frℓ − 1)Tn̄,

H1
s (Qℓ,Tn̄) ∼= (Tn̄)

Frℓ=1 .

(ii) There is a canonical isomorphism (called the finite-singular comparison isomorphism)

φfsℓ : H1
f (Qℓ,Tn̄) −→ H1

s (Qℓ,Tn̄)⊗ F×
ℓ .

(iii) TheRn̄ modulesH1
f (Qℓ,Tn̄),H1

s (Qℓ,Tn̄) andH1
tr(Qℓ,Tn̄) are free of rank one.

The analogous statements hold true whenTn̄ is replaced byTs̄ or T/m (and the ringRn̄ byRs̄

or k = R/m).

Proof. (i) is [MR04, Lemma 1.2.1]. The finite-singular comparison isomorphism is defined
in [MR04, Definition 1.2.2] and (ii) is [MR04, Lemma 1.2.3]. (iii) follows from (i), (ii) and
Lemma 2.12.

Note that all the results quoted from [MR04] apply in our setting thanks to Remark 2.8.�

3. UNIVERSAL KOLYVAGIN SYSTEMS

Assume in this section thatχ(T) = χ(T) = 1 as well as the truth of the hypotheses (H1) -
(H4), (H.Tam), and (H.nA).
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3.1. Kolyvagin systems over Artinian rings. Throughout this section fix̄n = (r, u, v, w) and
ī ∈ (Z>0)

4 (resp.,̄s = (r, u, v) and j̄ ∈ (Z>0)
3) such that̄n ≺ ī (resp.,̄s ≺ j̄). Let T be one

of Tn̄, Ts̄ or T/m, and letS be the corresponding quotient ringRn̄, Rs̄ or k. LetP denote the
collection of Kolyvagin primesPī (resp.,Pj̄) andN denote the set of square free products of
primes inP.

Many of the definitions and arguments in this section follow closely [MR04] and [Büy11].

Definition 3.1.

(i) If X is a graph and ModR is the category ofR-modules, asimplicial sheafS onX
with values in ModR is a rule assigning
• anR-moduleS(v) for every vertexv of X,
• anR-moduleS(e) for every edgee of X,
• anR-module homomorphismψev : S(v) → S(e) whenever the vertexv is an

endpoint of the edgee.
(ii) A global sectionof S is a collection{κv ∈ S(v) : v is a vertex ofX} such that, for

every edgee = {v, v′} of X, we haveψev(κv) = ψev′(κv′) in S(e). We writeΓ(S) for
theR-module of global sections ofS.

Definition 3.2. (Mazur-Rubin) For the Selmer triple(T,Fcan,P), we define a graphX = X (P)
by taking the set of vertices ofX to beN , and the edges to be{n, nℓ} whenevern, nℓ ∈ N
(with ℓ prime).

(i) TheSelmer sheafH is the simplicial sheaf onX given as follows. SetGn := ⊗ℓ|n F
×
ℓ .

We take
• H(n) := H1

Fcan(n)
(Q, T )⊗Gn for n ∈ N ,

• if e is the edge{n, nℓ} thenH(e) := H1
s (Qℓ, T )⊗Gnℓ.

We define the vertex-to-edge maps to be
• ψenℓ : H

1
Fcan(nℓ)

(Q, T ) ⊗ Gnℓ → H1
s (Qℓ, T ) ⊗ Gnℓ is localization followed by the

projection to the singular cohomologyH1
s (Qℓ, T ).

• ψen : H1
Fcan(n)

(Q, T )⊗Gn → H1
s (Qℓ, T )⊗Gnℓ is the composition of localization

at ℓ with the finite-singular comparison mapφfsℓ .
(ii) A Kolyvagin systemfor the triple(T,Fcan,P) is simply a global section of the Selmer

sheafH.

Let Γ(H) denote theS-module of global sections ofH.

Definition 3.3. We setKS(T,Fcan,P) := Γ(H) and call it theKolyvagin systems for the Selmer
structureFcan on T . More explicitly, an elementκκκ ∈ KS(T,Fcan,P) is a collection{κn} of
cohomology classes indexed byn ∈ N such that for everyn, nℓ ∈ N we have:

• κn ∈ H1
Fcan(n)

(Q, T )⊗Gn,

• φfsℓ (locℓ(κn)) = locsℓ(κnℓ).

Here, locsℓ stands for the composite

H1(Q, T )
locℓ−→ H1(Qℓ, T ) −→ H1

s (Qℓ, T ).
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3.2. Kolyvagin systems overbig rings. We are now ready to state the main technical results
of this article. We shall give a proof of these assertions in Sections 5-5.2 and exhibit various
arithmetic consequences of them in Section 4.

Definition 3.4. TheR-module

KS(T,Fcan,P) := lim←−̄
n

(
lim−→̄
i

KS(Tn̄,Fcan,Pī)

)

is called themodule of universal Kolyvagin systems. Likewise, we define theR-module
KS(T,Fcan,P) := lim←−s̄

lim−→j̄
KS(Ts̄,Fcan,Pj̄).

Theorem 3.5.Under the running hypotheses the following hold.

(i) TheR-moduleKS(T,Fcan,P) is free of rank one, generated by a Kolyvagin systemκκκ
whose imagēκκκ ∈ KS(T ,Fcan,P) is non-zero.

(ii) TheR-moduleKS(T,Fcan,P) is free of rank one. When the ringR is regular, the
moduleKS(T,Fcan,P) is generated byκκκ whose imagēκκκ ∈ KS(T ,Fcan,P) is non-
zero.

The proof of this theorem will be given in Section 5.

Definition 3.6. Given a Kolyvagin system

κκκ = {κm(n̄)}n̄,m∈Nn̄ ∈ KS(T,Fcan,P) = lim←−̄
n

KS(Tn̄,Fcan,Pn̄)

(where the last equality is by Lemma 5.7), we define the leading term ofκκκ to be the element

κ1 = {κ1(n̄)}n̄ ∈ lim←−̄
n

H1(QΣ/Q,Tn̄) = H1(QΣ/Q,T).

We also define the leading term of a Kolyvagin system forT in a similar manner.

4. APPLICATIONS OF UNIVERSALKOLYVAGIN SYSTEMS

4.1. Weak Leopoldt Conjecture and Greenberg’s main conjecture.The notation and the
hypotheses of Section 3 are in effect throughout. We also assume until the end of this section
that the ringR is regular (therefore, so is the ringR).

Remark 4.1.WhenR is Hida’s universal ordinary Hecke algebra (which we have a closer look
at in Section 4.3 below), the ringR is often regular as explained in [FO12, Lemma 2.7].

Our goal in this section is to prove Theorems 4.2, 4.3 and 4.4 below.

Theorem 4.2. If theR-moduleH1
F∗

can
(Q,T∗)∨ is torsion, then there is a Kolyvagin systemκκκ ∈

KS(T,Fcan,P) whose leading termκ1 is non-zero.
The identical statement holds true whenR is replaced byR andT byT.

Theorem 4.3. Suppose that there is a Kolyvagin systemκκκ ∈ KS(T,Fcan,P) whose leading
termκ1 is non-vanishing. Then theR-moduleH1

F∗
can
(Q,T∗)∨ isR-torsion.

Similar statement holds true whenR is replaced byR andT byT.
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SupposeS is a regular ring andM is a finitely generated torsionS-module. We define

charS(M) :=
∏

p

plengthRp
(Mp) ,

the characteristic idealof M , where the product is over all height 1 primes ofS. Observe that
charS(M) is a principal ideal. In caseM is not torsion, we set charS(M) = 0. When the ring
S is understood, we simply write char(M) in place of charS(M).

Theorem 4.4.For κ1 ∈ H1
Fcan

(Q,T) as above, we have

char
(
H1

F∗
can
(Q,T∗)∨

)
= char

(
H1

Fcan
(Q,T)/R · κ1

)
.

Remark 4.5. In this remark, we record the following simple observation:Assuming (H3), the
R-moduleH1(QΣ/Q,T) isR-torsion-free. Indeed, we first note

(4.1) H0(Q, X) = 0

for every subquotientX of T, by [MR04, Lemma 2.1.4]. LetH1(QΣ/Q,T)tor denote theR-
torsion submodule ofH1(QΣ/Q,T). We also letF denote the field of fractions ofR and set
V = T⊗ F , W = V/T. Observe that

H1(QΣ/Q,T)tor = ker
(
H1(QΣ/Q,T) −→ H1(QΣ/Q,V)

)
∼= H0(Q,W),

and thus we are reduced to verify the vanishing ofH0(Q,W). Suppose

0 6= t⊗ 1/g ∈ H0(Q,W)

(with t ∈ T andg ∈ R). We thus obtain a non-trivial elementT ∈ H0(Q,T/gT) and contradict
(4.1). This argument applies verbatim for the regular ringR and the representationT.

Under the hypothesis (H3), the following conditions on an elementc ∈ H1(QΣ/Q, Y ) are
therefore equivalent forY = T orT (and correspondingly,X = R orR):

(1) c 6= 0.
(2) c is notX-torsion.
(3) c /∈ pH1(QΣ/Q, Y ) for infinitely many height one primesp ⊂ X.
(4) c /∈ pH1(QΣ/Q, Y ) for some height one primep ⊂ X.

The only non-obvious step is to verify the implication(2) =⇒ (3) and this may verified out
following the proof of [How07, Lemma 2.1.7].

Before we give the proofs of Theorems 4.2 and 4.3, we prove twogeneral preparatory lem-
mas from commutative algebra. LetH0 be a local integral domain which is a complete, regular
O-algebra that has relative dimensionone overO. SetH = H0[[X ]] and supposeT is a finite
H-module endowed with a continuous action of Gal(QΣ/Q).

In applications,H will either be a certain quotient ofR = O[[X1, X2, X3]] (andT = T⊗R
H) or elseH0 will be the ringR. In case of the latter, we will setH = R := R[[Γ]] andT
will be the representationT = T ⊗ Λ that was introduced in the previous section. Note that in
either case,T satisfies the hypotheses (H1)-(H4), (H.Tam) and (H.nA). Suppose further until
the end thatχ(T ) = 1.

Lemma 4.6. SupposeM is anH-module. Assume for a height one prime℘ of H0 and an
integerN , the quotientM/(℘,X + pN)M is of finite order. ThenM is a finitely generated
H-torsion module.
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Proof. We first give a proof assuming thatp /∈ ℘. To ease notation, writeXN = X + pN . One
can find an integers so that

(4.2) ps · (M/(℘,XN)M) = 0.

By Nakayama’s LemmaM is finitely generated as anH-module, say bym1, . . . , mr ∈ M . It
follows from (4.2) that

psmi =
r∑

j=1

a
(i)
j mj ,

wherea(i)j ∈ (℘,XN). SettingA = [a
(i)
j ] andB = A− ps · Ir×r, we conclude by (4.2) that

i−1∑

j=1

a
(i)
j mj + (a

(i)
i − p

s)mi +

r∑

j=i+1

a
(i)
j mj = 0

=⇒ (A− ps · Ir×r)



m1
...
mr


 = B ·



m1
...
mr


 = 0

=⇒ adj(B) · B



m1
...
mr


 = 0 =⇒ det(B) ·M = 0.

To conclude with the proof of the lemma, we check that the elementdet(B) ∈ H is non-zero.
Observe that

det(B) = det(A− ps · Ir×r) ≡ (−1)rpsr mod (℘,XN)

6≡ 0 mod (℘,XN),

as the ringH/(℘,XN) ∼= H0/℘ is an integral domain of characteristic zero, as we have as-
sumedp /∈ ℘.

In casep ∈ ℘, note that the given condition onM translates into the statement that the mod-
uleM/(℘,X)M has finite cardinality. IfM were not a torsion module,M/(℘,X)M would
contain a submodule isomorphic toH0/℘. The latter ring, however, has infinite cardinality as
it at least contains a ring isomorphic to a formal power series ring in one variable overFp. �

Lemma 4.7. If theR-moduleH1
F∗

can
(Q,T∗)∨ is torsion, then for all but finitely many height one

primes℘ ⊂ R, theR/℘-moduleH1
F∗

can
(Q,T∗)∨/℘H1

F∗
can
(Q,T∗)∨ is torsion.

Proof. LetM be any finitely generated torsionR-module, with generatorsm1, · · · , mr. Since
M is torsion, it follows that for all but finitely many height one primes℘ ofR, we haveM℘ = 0.
This in particular means for every1 ≤ i ≤ r, there issi ∈ R − ℘ such thatsimi = 0. Set
s = s1 · · · sr and lets̄ ∈ R/℘ denote the homomorphic image ofs. Note that̄s 6= 0 and that
s̄ ·M/℘M = 0. This shows that theR/℘-moduleM/℘M is torsion for almost all height one
primes℘. This is exactly the assertion of the Lemma withM = H1

F∗
can
(Q,T∗)∨.

�

Proof of Theorem 4.2.We first give a proof for the statement concerning the ringR and later
use this result to deduce the statement for the ringR.
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For any idealI of R and any subquotientM of T, we have by [MR04, 3.5.2] and the proof
of [MR04, Lemma 3.5.3] (both of which apply thanks to our running hypothesis (H3)) that

H1(QΣ(Fcan)/Q,M
∗[I])

∼
−→ H1(QΣ(Fcan)/Q,M

∗)[I]

and hence also an injection

H1
F∗

can
(Q,M∗[I]) →֒ H1

F∗
can
(Q,M∗)[I],

whereF∗
can onM∗ is induced from the Selmer structureFcan onT∗ by propagation. Passing to

Pontryagin duals, we thus obtain a surjection

(4.3) H1
F∗

can
(Q,M∗)∨ ⊗R/I ։ H1

F∗
can
(Q,M∗[I])∨.

By the assumption thatH1
F∗

can
(Q,T∗)∨ is R-torsion, one may choose by [Mat89, Theorem 6.5]

a specialization

s℘ : R −→ S℘

into the ring of integersS℘ of a finite extensionΦ℘ of Qp, whose kernel℘ is a height one prime
℘ ⊂ R and satisfies with the following properties:

• S℘ is integral closure of the integral domainO℘ := R/℘ in Frac(O℘) = Φ℘,
• ℘ /∈ SuppR(H

1
F∗

can
(Q,T∗)∨), where℘ here denotes by slight abuse the height one prime

which is the kernel of the induced map

R = R[[Γ]]
s℘
−→ S℘[[Γ]].

We denote the induced ring homomorphismO℘ →֒ S℘ also bys℘.
For ℘ chosen as above, it follows that the moduleH1

F∗
can
(Q,T∗)∨/℘ is O℘[[Γ]]-torsion. By

(4.3) this implies that the module

H1
F∗

can
(Q,T∗[℘])∨ ∼= H1

F∗
can
(Q, (T /℘T ⊗ Λ)∗)∨

isOp[[Γ]]-torsion as well. It is therefore possible (using Hensel’s Lemma and [Mat89, Theorem
6.5]) to choose anN >> 0 such that

• O℘[[Γ]]/(γ − 1 + pN) ∼= O℘,

• γ − 1 + pN /∈ SuppO℘[[Γ]]

(
H1

F∗
can
(Q, (T /℘T ⊗ Λ)∗)∨

)
.

ForN chosen as above, we therefore have that the module

H1
F∗

can
(Q, (T /℘T ⊗ Λ)∗)∨/(γ − 1 + pN)

is O℘-torsion. SettingT (℘,N) := T /℘T ⊗ Λ/(γ − 1 + pN) and applying (4.3) again, we
conclude that the module

H1
F∗

can
(Q, (T /℘T ⊗ Λ/(γ − 1 + pN))∗)∨ ∼= H1

F∗
can
(Q, T (℘,N)∗)∨

isO℘-torsion, hence finite.
When we do not varyN , we writeT (℘) in place ofT (℘,N) to ease notation. LetT =

T (℘)⊗s℘ S℘ and define the Selmer structureFT by setting

• Σ(FT ) = Σ(Fcan) =: Σ,
• H1

FT
(Qp, T ) = H1(Qp, T ),

• H1
FT

(Qℓ, T ) = ker
(
H1(Qℓ, T ) −→ H1(Iℓ, T ⊗Zp Qp)

)
, for ℓ 6= p.
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Note thatFT is exactly what Mazur and Rubin call thecanonical Selmer structureonT . Let ι
denote the injectionT (℘) →֒ T . Thenι induces maps

H1(QΣ/Q, T
∗) −→ H1(QΣ/Q, T (℘)

∗)

H1(Qℓ, T (℘)) −→ H1(Qℓ, T )

H1(Qℓ, T
∗) −→ H1(Qℓ, T (℘)

∗)

for every primeℓ. It is easy to see that the image ofH1
Fcan

(Qℓ, T (℘)) lands inH1
FT

(Qℓ, T ) for
everyℓ (and by local duality, the image ofH1

F∗
T
(Qℓ, T

∗) therefore lands inH1
F∗

can
(Qℓ, T (℘)

∗)).
We thence obtain a map

(4.4) H1
F∗

T
(Q, T ∗) −→ H1

F∗
can
(Q, T (℘,N)∗).

In Lemma 4.8 below we check that the kernel and the cokernel ofthis map is finite for all
sufficiently largeN . This shows thatH1

F∗
T
(Q, T ∗) is of finite order forN >> 0, as we have

already verified above thatH1
F∗

can
(Q, T (℘,N)∗) is finite.

Let κκκ ∈ KS(T,Fcan,P) be a generator so that its imageκ̄κκ ∈ KS(T ,Fcan,P) is non-zero
by Theorem 3.5. Hence, the imageκκκ(℘) of κκκ in KS(T,FT ,P) is non-zero as well. Corollary
5.2.13 of [MR04] applies thanks to our running hypotheses and it follows that theκ(℘)1 6= 0 and
henceκ1 6= 0.

As for the assertion forT, we first use Lemma 4.7 to find a height one prime of the form
℘ = (X3 + pM)R that verifies the conclusion of Lemma 4.7. For the chosen height one prime
℘ setH = R/℘ ∼= O[[X1, X2]] andT = T⊗R H. Observe (using (4.3)) that

(4.5) H1
F∗

can
(Q,T∗) ∼= H1

F∗
can
(Q,T∗)[℘]

and upon taking Pontryagin duals

H1
F∗

can
(Q,T∗)∨ ∼= H1

F∗
can
(Q,T∗)∨/℘H1

F∗
can
(Q,T∗)∨.

Letκκκ ∈ KS(T,Fcan,P) be any generator and let

ϕ : KS(T,Fcan,P) −→ KS(T,Fcan,P)

denote the map induced fromR→H. The commutativity of the diagram

(4.6) KS(T,Fcan,P)
ϕ

//

(( ((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗

KS(T,Fcan,P)

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

KS(T ,Fcan,P)

shows thatϕ(κκκ) generates the freeH-moduleKS(T,Fcan,P) of rank one. Furthermore, by
our choice of the prime ideal℘ and (4.5), theH-moduleH1

F∗
can
(Q,T∗)∨ is torsion. Using the

proof above for the ringH in place ofR, we conclude that

ϕ(κ1) = ϕ(κκκ)1 6= 0,

in particular thatκ1 6= 0.
This completes the proof of Theorem 4.2 , modulo Lemma 4.8 below. �

Lemma 4.8. LetT andT (℘,N) be as in the proof of Theorem 4.2. When the positive integer
N is sufficiently large, both the kernel and the cokernel of themap

H1
F∗

T
(Q, T ∗) −→ H1

F∗
can
(Q, T (℘,N)∗)

are finite.
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Proof. We first verify that the kernels and the cokernels of the maps

(4.7) H1(QΣ/Q, T
∗) −→ H1(QΣ/Q, T (℘,N)∗)

(4.8) H1
F∗

T
(Qℓ, T

∗) −→ H1
F∗

can
(Qℓ, T (℘,N)∗)

have finite order for every primeℓ. WhenN is fixed, we will denoteT (℘,N) simply byT (℘).
Observe that the kernel of the map (4.7) lives inH0(QΣ/Q, (T/T (℘))

∗) and its cokernel in
H1(QΣ/Q, (T/T (℘))

∗), which are both finite.
As for the map (4.8) whenℓ = p, our running hypothesis (H.nA) along with the fact that the

ideal℘ is principal‡ (being a height-one prime of the regular ringR) show that

H1
Fcan

(Qp, T (℘)) := im
(
H1(Qp,T) −→ H1(Qp, T (℘))

)
= H1(Qp, T (℘)),

hence we have
H1

F∗
T
(Qℓ, T

∗) = 0 = H1
F∗

can
(Qℓ, T (℘)

∗) ;

so the kernel and cokernel of (4.8) are trivial. It remains tocontrol the kernel and the cokernel
of (4.8) whenℓ 6= p. The kernel of

(4.9) H1
Fcan

(Qℓ, T (℘)) −→ H1
FT

(Qℓ, T )

is controlled by

ker
(
H1(Qℓ, T (℘)) −→ H1(Qℓ, T )

)
= im

(
H0(Qℓ, T/T (℘)) −→ H1(Qℓ, T (℘))

)

which is visibly finite.
We finally prove that the cokernel of (4.9) is finite. Considernow the commutative diagram

0 // H1
ur(Qℓ, T (℘)) //

��

H1(Q, T (℘)) //

��

H1(Iℓ, T (℘))
Frℓ=1 //

��

0

0 // H1
ur(Qℓ, T ) // H1(Q, T ) // H1(Iℓ, T )

Frℓ=1 // 0

The cokernel of the vertical map in the middle is controlled by H2(Qℓ, T/T (℘)) hence it is
finite. Also, the kernel of the the rightmost is finite for a similar reason. This shows by snake
lemma that the cokernel of the leftmost vertical map is also finite. As the index ofH1

ur(Qℓ, T )
in H1

f (Qℓ, T ) = H1
FT

(Qℓ, T ) is finite as well, we therefore proved that

(4.10) the cokernel of the mapH1
ur(Qℓ, T (℘)) −→ H1

FT
(Qℓ, T ) is finite.

Furthermore, it is not hard to see that theΛ-module

H1
ur(Qℓ, T /℘T ⊗ Λ) = H1(GQℓ

/Iℓ, (T /℘T )
Iℓ ⊗ Λ)

is Λ-torsion. (Note in the equality above we use the fact thatIℓ acts trivially onΛ.) Choosing
the positive integerN >> 0 above so thatγ − 1 + pN does not divide the characteristic ideal
of this module, we obtain a finite quotientH1(GQℓ

/Iℓ, (T /℘T )Iℓ ⊗ Λ)/(γ − 1 + pN ). Since
the cohomological dimension ofGQℓ

/Iℓ is one, we have

H1(GQℓ
/Iℓ, (T /℘T )

Iℓ ⊗ Λ)/(γ − 1 + pN)
∼
−→ H1(GQℓ

/Iℓ, (T /℘T )
Iℓ ⊗ Λ/(γ − 1 + pN ))

∼= H1(GQℓ
/Iℓ, (T /℘T ⊗ Λ/(γ − 1 + pN))Iℓ)

∼= H1(GQℓ
/Iℓ, T (℘,N)Iℓ) = H1

ur(Qℓ, T (℘,N)),

‡This is the only point in the proof of Theorems 4.2 and 4.3 where we use that the ringR is regular in an essential
way.
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whereT (℘,N) = T /℘T ⊗Λ/(γ−1+pN) as above. In particular, the index ofH1
Fcan

(Q, T (℘,N))
in H1

ur(Qℓ, T (℘,N)) is finite forN >> 0. This, together with (4.10) shows that the kernel and
cokernel of the map (4.9), and by local duality, also the kernel and the cokernel of the map
(4.8) are finite forN >> 0.

Using the fact that the kernels and cokernels of the maps (4.7) and (4.8) are both finite the
proof of the lemma follows at once. �

Proof of Theorem 4.3.As the proof of this Theorem in fact follows from a more general state-
ment due to Ochiai [Och05] (see the proof Theorem 2.4 and Remark 2.5 of loc.cit.), we only
give a sketch of the proof and only in the situation concerning the ringR and the representation
T. We use the notation from the proof of Theorem 4.2.

Let κκκ ∈ KS(T,Fcan,P) be a given generator. Sinceκ1 is non-torsion, it follows that there
is a height one prime℘ of R as in the proof of Theorem 4.2 and a positive integerN (chosen
in way that the conclusion of Lemma 4.8 holds true) such that the image

red℘,N(κ1) ∈ H
1
Fcan

(Q, T (℘,N))

of κ1 is non-zero. Fix such℘ andN ; defineT (and the Selmer structureFT ) as in the proof of
Theorem 4.2. We letκκκ(℘) ∈ KS(T,FT ,P) be the image ofκκκ. By (H3), the map

H1(QΣ/Q, T (℘,N)) −→ H1(QΣ/Q, T )

is injective. In particular, the imageκ(℘)1 of red℘,N(κ1) insideH1
FT

(Q, T ) is non-zero. Let
κκκ(℘) ∈ KS(T,FT ,P) be the image ofκκκ. We therefore showed the existence of a Kolyvagin
systemκκκ(℘) ∈ KS(T,FT ,P) whose leading term verifies thatκ(℘)1 6= 0. This shows that
H1

F∗
T
(Q, T ∗) is finite.

By Lemma 4.8, we have a map

H1
F∗

T
(Q, T ∗) −→ H1

F∗
can
(Q, T (℘,N)∗)

with finite kernel and cokernel. HenceH1
F∗

can
(Q, T (℘)∗) is finite as well. We conclude by (4.3)

that
H1

F∗
can
(Q,T∗)∨/(℘, γ − 1 + pN) ∼= H1

F∗
T
(Q, T ∗)∨

is also finite. It follows from Lemma 4.6 thatH1
F∗

can
(Q,T∗)∨ is R-torsion, as desired. �

Theorem 4.9. SupposeH1
F∗

can
(Q,T∗)∨ is R-torsion. Under the running hypotheses of this

section, theR-moduleH1
Fcan

(Q,T) is free of rank one.
Similar statement holds true whenR is replaced byR andT byT.

Proof. To simplify the arguments we suppose in addition that the ringR is the power series
ringO[[X ]]; the general case whenR is a general regularO-algebra of dimension two may be
treated after minor alterations. As above, choose a positive integerN >> 0 so that

• O[[X ]]/(X + pN ) ∼= O,
• H1

F∗
can
(Q,T∗)∨/(X + pN) is Λ-torsion.

By settingT := T /(X + pN)T , we conclude using (4.3) that the moduleH1(Q, (T ⊗ Λ)∗)∨

is Λ-torsion. Similarly, choose a positive integerM >> 0 such that

H1
F∗

can
(Q, (T ⊗ Λ)∗)∨/(γ − 1 + pM) ∼= H1

F∗
can
(Q, Ṫ )∨

is finite. Here,Ṫ is the freeO-moduleT ⊗ Λ/(γ − 1 + pM). By [MR04, Corollary 5.2.6],
it follows that rankO(H1

Fcan
(Q, Ṫ )) = χ(T ) = 1. Furthermore, theO-moduleH1

Fcan
(Q, Ṫ ) is
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torsion-free as since we assumed (H3), hence we conclude thatH1
Fcan

(Q, Ṫ ) is a freeO-module
of rank one.

SetX1 = X+pN andX2 = γ−1+pM forM,N as above and defineRu,v = R/(Xu
1 , X

v
2 ),

Rr,u,v = R/(̟r, Xu
1 , X

v
2 ), Tu,v = T ⊗R Ru,v andTr,u,v = T ⊗R Rr,u,v. Note thatT1,1 = Ṫ .

AsH1
Fcan

(Q,Tu,v) = lim←−rH
1
Fcan

(Q,Tr,u,v), it follows by the proof of Proposition 5.26 that

H1
Fcan

(Q,T1,1)
∼
−→ H1

Fcan
(Q,Tu,v)[X

u−1
1 , Xv−1

2 ].

This shows that the module

HomRu,v(H
1
Fcan

(Q,Tu,v),Ru,v)/(X
u−1
1 , Xv−1

2 ) ∼= HomRu,v

(
H1

Fcan
(Q,Tu,v)[X

u−1
1 , Xv−1

2 ],Ru,v

)

∼= HomO

(
H1

Fcan
(Q,T1,1),O

)
,

is cyclic, hence by Nakayama’s Lemma (along with the fact that theO-moduleH1
Fcan

(Q,T1,1) =

H1
Fcan

(Q, Ṫ ) is free of rank one) we conclude that the module HomRu,v

(
H1

Fcan
(Q,Tu,v),Ru,v

)

is cyclic as well.
On the other hand, (H3) shows that the moduleH1

Fcan
(Q,Tu,v) is O-torsion free and the

proof of Proposition 5.29 shows rankO(H
1
Fcan

(Q,Tu,v)) ≥ uv. This shows that the cyclic
Ru,v-module HomRu,v

(
H1

Fcan
(Q,Tu,v),Ru,v

)
is indeed free of rank one, hence the module

H1
Fcan

(Q,Tu,v) itself is free of rank one as anRu,v-module. Passing to limit we conclude with
the proof of the Theorem when the coefficient ring isR. In the situation when the coefficient
ring isR, one easily reduces to the case discussed above using Lemma 4.7. �

Lemma 4.10.SupposeS is a regular ring andπt : S[[t]]→ S the natural ring homomorphism
induced byt 7→ 0. h ∈ S[[t]] andM,N are torsionS[[t]]-modules,M ′, N ′ are torsionS-
modules such that

(i) charS[[t]](M) = charS[[t]](N) · h ,
(ii) M [t] is pseudo-null ,

(iii) charS(M ′/πt(M)) = charS(N [t]) .

whereX [t] stands as usual for the submodule of anS[[t]]-moduleX annihilated bytS[[t]].
Then

charS(M
′) = charS(N

′) · πt(h) .

Proof. This follows from [BBL14, Proposition 1.1]. �

Recall thatκκκ ∈ KS(T,Fcan,P) is a fixed generator andκ1 ∈ H1
Fcan

(Q,T) is its leading term.

Lemma 4.11.Suppose thatκ1 6= 0. Then there exists positive integersα1, α2, α3 such that

• R/(X1 + pα1 , X2 + pα2 , X3 + pα3) ∼= O,
• H1

F∗
can
(Q, Ṫ ∗) is finite, whereṪ := T/(X1 + pα1 , X2 + pα2 , X3 + pα3) .

Proof. theR-moduleH1
F∗

can
(Q,T∗)∨ is torsion by Theorem 4.3 and in this case, one may find a

triple (α1, α2, α3) by proceeding as in the proof of Theorem 4.9, by iteratively using (4.3). �

Definition 4.12. In the situation of Lemma 4.11, we setYi = Xi + pαi. We also define the
quotient ringsS0 = R/(Y1, Y2, Y3), S1 = R/(Y2, Y3), S2 = R/Y3 andS3 = R with natural
surjectionsπi : R ։ Si. Note that eachSi is a power series ring overSi−1 in one variable
(which may be naturally identified withYi). SetTi = T ⊗R Si . Observe thatT3 = T and
T0 = Ṫ .
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Definition 4.13. In the setting of Lemma 4.11 and with the notation of Definition 4.12, we
define Nekovář’s Selmer complexC•

f (Q, X) for X = Ti or T ∗
i (i=1, 2, 3) as the following

complex of (co-)finite typeSi-modules:

C•
f (Q, X) = Cone

(
C•

cont(QΣ/Q, X)⊕
⊕

ℓ∈Σ

C•
f (Qℓ, X) −→

⊕

ℓ∈Σ

C•
f (Qℓ, X)

)
[−1]

where

C•
f (Q, X) =





C•
cont(Qp, U

+
p (X)) if ℓ = p,

C•
cont(GQℓ

/Iℓ, X
Iℓ) if ℓ 6= p,

andU+
p (Ti) = Ti ,U+

p (T
∗
i ) = 0. LetRΓf(Q, X) denote the corresponding object in the derived

category and let̃Hj
f(Q, X) be theith cohomology ofRΓf (Q, X) in degreej.

Proposition 4.14.For i = 1, 2, 3 :

(1) The complexRΓf(Q, Ti) may be represented by a perfect complex(in the sense of
[Gro71, Exp. I, Cor. 5.8.1]) of Si-modules concentrated in degrees1 and2.

(2) There is a natural isomorphismH1
F∗

can
(Q, T ∗

i )
∨ ∼= H̃2

f (Q, Ti) .
(3) The following sequence is exact:

H1
Fcan

(Q, Ti)/Yi ·H
1
Fcan

(Q, Ti) −→ H1
Fcan

(Q, Ti−1) −→ H1
F∗

can
(Q, T ∗

i )
∨[Yi] −→ 0

Proof. (1) follows from the fact our ringSi is regular,Ti is a freeSi-module and using a
result of Serre and Auslander-Buchsbaum. Due top-cohomological dimension considerations,
it is easy to see that the cohomology of the complexRΓf(Q,T) is concentrated in degrees
[0, 3]. By (H3) the cohomologỹH0

f (Q, Ti) in degree zero vanishes. By Matlis duality we have

H̃3
f (Q, Ti)

∼= H̃0
f (Q, T

∗
i )

∨ and the cohomology ofRΓf (Q,T) in degree3 vanishes thanks to
(H3) as well.

It follows from [Nek06, Lemma 9.6.3] and our running hypothesis (H.nA) thatH̃1
f (Q, T

∗
i )
∼=

H1
F∗

can
(Q, T ∗

i ). The isomorphism in (2) is then induced by Matlis duality (c.f., [Nek06, 8.9.6.1]).
We remark that since the residue field ofR is finite, Matlis duality functor coincides with the
Pontryagin duality functor.

(3) follows from Nekovář’s control theorem [Nek06, Proposition 8.10.1], using the identi-
fication in (2) and the isomorphism̃H1

f (Q, Ti)
∼= H1

Fcan
(Q, Ti) (which follows from the exact

sequence of [Nek06, Lemma 9.6.3]). �

Proof of Theorem 4.4.Under the assumptions of the current section, one may show that

(4.11) char
(
H1

Fcan
(Q,T)/R · κ1

)
= char

(
H1

F∗
can
(Q,T∗)∨

)
· h

for someh ∈ R, following the arguments of [Och05]; see particularly the proof of Theorem
2.4 in loc.cit. We will make use Nekovář’s descent formalism alluded to above in order to
verify that thath ∈ R× and therefore, deduce Theorem 4.4.

Assume without loss of generality thatκ1 6= 0 (as otherwise, Theorem 4.2 shows that both
sides of the claimed equality are0 and Theorem 4.4 holds true for trivial reasons). Letκ̇̇κ̇κ be the
image of the generatorκκκ under the map

KS(T,Fcan,P) −→ KS(Ṫ ,Fcan,P)
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induced fromπ0 : R ։ S0. The diagram (4.6) (withT replaced byṪ ) shows that the Koly-
vagin systeṁκ̇κ̇κ is primitive. Let κ̇1 ∈ H1

Fcan
(Q, Ṫ ) denote its leading term. It follows from

[MR04, Theorem 5.2.14] that

(4.12) char
(
H1

F∗
can
(Q, Ṫ ∗)∨

)
= char

(
H1

Fcan
(Q, Ṫ )/S0 · κ̇1

)
.

One may inductively verify that the hypotheses of Lemma 4.10hold true withS = Si−1 ,
S[[t]] = Si , M = H1

Fcan
(Q, Ti)/Si · πi(κ1) andN = H1

F∗
can
(Q, T ∗

i )
∨ for every i = 1, 2, 3

(basically, using Theorem 4.9 and Proposition 4.14) and conclude that

charSi

(
H1

Fcan
(Q, Ti)/Si · πi(κ1)

)
= charSi

(
H1

F∗
can
(Q, Ti

∗)∨
)
· πi(h) .

This shows (applied withi = 0) along with (4.12) thatπ0(h) ∈ S
×
0 and therefore thath ∈ R×,

as desired. �

4.2. Modular Galois representations and the universal Kolyvagin system. LetN be a pos-
itive integer which is prime top and supposep ≥ 5. Letω denote the modp cyclotomic char-
acter (ofGQ), which we view both as ap-adic and complex character by fixing embeddings
Q →֒ Qp, Q →֒ C, as well as a Dirichlet character moduloNp. Let

f =

∞∑

n=1

anq
n ∈ Sk(Γ0(Np), ω

j)

be a normalized cuspidal elliptic modular newform of even weight k, which is an eigenform
for the Hecke operatorsTℓ for ℓ ∤ Np andUℓ for ℓ | Np. LetE/Qp be a finite extension that
containsan for all n and letO = OE be its ring of integers andπ = πE a fixed uniformizer.
Let ρf : GQ → GL2(E) be the Galois representation attached tof by Deligne. Throughout
this subsection, we assume the following hypothesis holds true:

The semi-simple residual representationρf associated toρf is absolutely irreducible.
As explained in [Nek06, 12.2.2], the Galois representationρf admits a self-dual twistρ,

which is Deligne’s Galois representation associated to a twisted cusp formf̃ of weightk with
trivial central character. We assume in addition that the tame levelN(f̃) of f̃ is square-free. In
view of [Nek06, Lemma 12.3.10] this amounts to saying that the local automorphic represen-
tationπ(f̃)ℓ at primesℓ | N(f̃) aretwisted Steinberg(in the sense of [Nek06, 12.3.6.2]).

Let us also choose the primep sufficiently large so that Weston’s theorem that we have
referred to in Remark 1.6 applies for̃f (and its residual representationρ). In Sections 4.2
and 4.3, we shall study the deformations of this modp representationρ. This seems to be the
technically most involved case as compared to the case of non-critical twists; for example, the
hypotheses (H.Tam) and (H.nA) are easier to verify in these cases.

Definition 4.15. Let R denote the universal deformation ring ofρ. Note thatR is isomorphic
to O[[X1, X2, X3]] by Weston’s theorem. Letρρρ the universal deformation ofρ and letT the
deformation space (a freeR-module of rank two) on whichGQ acts byρρρ.

It is easy to see that we haveχ(T ) = 1 for the residual representation ofT.

Example 4.16.When the eigenformf has weightk = 2 and has trivial central character, then
f = f̃ corresponds to an elliptic curveE/Q without CM that has split-multiplicative reduction
at all primesℓ dividing its conductorNE . In this case,T = E[p] is thep-torsion subgroup of
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E(Q) andρE : GQ → Aut(T ) = GL2(Fp) is the modp Galois representation attached toE.
The Weil-pairing shows thatχ(T ) = 1.

Assuming the hypotheses (F1)-(F3), we conclude as in Example 1.2.3 that the deformation
problem in this situation is unobstructed. LetR ∼= Zp[[X1, X2, X3]] be the universal defor-
mation ring,ρρρE be the universal deformation ofρE andT be the free rank-twoR-module on
whichGQ acts byρρρE .

4.2.1. The hypotheses of Section 1.2.1.We explain the contents of the hypotheses on the main
technical results presented in the previous section, when applied to our current situation.

For T as in Definition 4.15, observe that (H1), (H3) and (H4) are verified automatically.
The hypothesis (H2) holds true also for all large enoughp thanks to [Ser72] whenf is as
in Example 4.16, otherwise thanks to [Rib85]. We assume thatT verifies (H2), as well as
(H.Tam) and (H.nA). We discuss the last two hypotheses in Proposition 4.17 andRemark 4.18
below.

Proposition 4.17.For f̃ andT as in Definition 4.15, assume that

• p does not divide the Tamagawa numbercℓ(f̃) at ℓ (defined as in[FPR94, I.4.2.2]),
• p does not divideℓ− 1.

Then(H.Tam)holds true forT.

Proof. We will only provide the details for the case whenf = f̃ is of weight two; the general
case may be handled in a similar manner. LetE denote the elliptic curve attached tof and
T = Tp(E) be thep-adic Tate module ofE. Under the running assumptions, there is a non-split
exact sequence

(4.13) 0 −→ Zp(1) −→ T −→ Zp −→ 0

of Zp[[Gℓ]]-modules. Letσ = ∂(1) ∈ H1(Qℓ,Zp(1)) where∂ : Zp → H1(Qℓ,Zp(1)) is the
connecting homomorphism in the long exact sequence of theGQℓ

-cohomology of the sequence
(4.13). Kummer theory gives an isomorphism

(4.14) ordℓ : H
1(Qℓ,Zp(1))

∼
−→ Q×,∧

ℓ

∼
−→ Zp.

According to [CE56] pp. 290 and 292,−σ is the extension class of the sequence (4.13) inside
Ext1Zp[GQℓ

](Zp,Zp(1)) = H1(Qℓ,Zp(1)). Hence ordℓ(σ) 6= 0 as the sequence (4.13) is non-split

and by [Büy14, Prop. 3.3] it further follows that ordℓ(σ) ∈ Z×
p and therefore∂ is surjective.

We have the following diagram below with exact rows and commutative squares

H0(Qℓ, T )

��

// Zp

��
��

∂
// // H1(Qℓ,Zp(1)) ∼= Zp

��
��

0 // H0(Qℓ,µµµp) // H0(Qℓ, T ) // Z/pZ
∂̄

// H1(Qℓ,µµµp) ∼= Z/pZ

This shows that the map̄∂ is surjective as well and hence

H0(Qℓ, T ) ∼= H0(Qℓ,µµµp) = 0

as we assumedp ∤ ℓ− 1. �
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Remark 4.18. In the situation of Example 4.16, the hypothesis (H.nA) translates into the
requirement thatp is non-anomalousfor E (in the sense of [Maz72]). Given an elliptic curve
E/Q , Mazur in loc.cit. explains that anomalous primes should bescarce. For example, a lemma
due to R. Greenberg shows that ifE(Q) has a point of order2, then any primep > 5 at which
E has good reduction is non-anomalous.

In the case of modular forms of higher weight, it is easy to seethat the hypothesis (H.nA)
holds true equally often.

4.2.2. Interpolation of Beilinson-Kato Kolyvagin systems.SupposeT is as in Definition 4.15
for which the hypotheses (H1)-(H4), (H.Tam) and (H.nA) simultaneously hold true.

Let g be any elliptic newform of weightω ≥ 2 and let

ρg : GQ −→ GL2(Og)

be the Galois representation attached tog by Deligne with coefficients in the ring of integers
Og of a finite extensionΦg of of Qp. Let Tg be the freeOg module of rank2 on whichGQ

acts viaρg. Letmg denote the maximal ideal ofOg and letρg the residual representation ofρg
mod mg. Suppose thatρg ∼= ρ so thatρg is a deformation ofρ to the ringOg. We thus have
a ring homomorphismϕg : R → Og that induces and isomorphismTg ∼= T ⊗ϕg Of , and by
functoriality a commutative diagram

(4.15) KS(T,Fcan,P)
ϕg

//

(( ((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗

KS(Tg,Fcan,P)

vv❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

KS(T ,Fcan,P)

Until the end of this section, we let0 6= κκκ ∈ KS(T,Fcan,P) denote a universal big Kolyvagin
system and we letϕg(κκκ) be its image inKS(Tg,Fcan,P). Let κκκBK

g ∈ KS(Tg,Fcan,P) be the
Kolyvagin system obtained from the Beilinson-Kato Euler system attached to the modular form
g (as in [MR04, Theorem 3.2.4]).

Theorem 4.19(Interpolation). There is aλg ∈ Og such that

λg · ϕg(κκκ) = κκκBK
g .

Proof of Theorem 4.19.Let κ̄κκ be the image ofκκκ in KS(T ,Fcan,P). By Theorem 3.5 it follows
thatκ̄κκ 6= 0, so it follows by [MR04, Theorem 5.2.10(ii)] and the commutative diagram (4.15)
thatϕg(κκκ) generates the freeOg-moduleKS(Tg,Fcan,P) of rank one. �

Remark 4.20.Theorem 4.19 states that theimprovements(by the factorsλg) of the Beilinson-
Kato Kolyvagin systems interpolate to give rise to the big Kolyvagin system, rather than the
Beilinson-Kato Kolyvagin systems themselves. The Kolyvagin systemϕg(κκκ) is called anim-
provementtoκκκBK

g as the bound (on the relevant Selmer group) obtained usingϕg(κκκ) improves
that obtained usingκκκBK

g = λg · ϕg(κκκ) by a factor ofλg. In particular, when the Kolyvagin
systemκκκBK

g is itself primitive (in the sense of [MR04, Definition 4.5.5], see also Corollary
5.2.13(ii) and Theorem 5.3.10(iii) in loc.cit.) we haveλg ∈ O

×
f . It follows from [SU14] that

this is indeed the case in a variety of cases.

Remark 4.21. The most interesting question regarding the interpolationfactors{λg} is the
following: Does there exist a global regular functionλ on the universal deformation space
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specR that takes the valueλg at theOg-valued modular pointϕg, for every modular formg
as above? In Sections 4.3 and 4.4 below, we tackle (and partially answer) somewhat modest
versions (in the sense that they concern smaller deformation spaces) of this question. It is also
worth reminding the reader that an affirmative answer to thisquestion has powerful arithmetic
consequences, as we have pointed out in Remark 1.8.

Remark 4.22. In Theorem 4.4 above we explained how a universal Kolyvagin systemκκκ pro-
duces bounds on the corresponding Selmer groups. Note that:

(i) The Kolyvagin systemκκκBK
g is related to a special value ofL-function attached tog, by

the work of Kato [Kat04,§14];
(ii) The (classical) modular points are Zariski dense in Spec(R) thanks to the main result

of [Böc01].

Thus the leading termκ1 not only controls the dual Selmer group via Theorem 4.4, it also very
much resembles what might be thought of as a (3-variable)p-adicL-function on the universal
deformation space. We shall elaborate on this point in Sections 4.3 and 4.4 below and verify
that one may recover the2-variablep-adic L-functions associated to various pieces of the
universal deformation space fromκ1.

Proposition 4.23.The leading termκ1 of universal Kolyvagin systemκκκ for T is non-zero.

Proof. This follows from [Kat04, Theorem 12.5(2)] considering thecanonical map

KS(T,Fcan,P)
ϕΛ−→ KS(Tf̃ ⊗ Λ,Fcan,P)

that is induced from the ring homomorphismϕΛ : R → O[[Γ]] (which is deduced from the
existence of the deformationTf̃ ⊗ Λ).

�

4.3. Universal Kolyvagin system on Hida’s nearly-ordinary deformation space. Suppose
f andT are as in Section 4.2.2, verifying the hypotheses (H1)-(H4), (H.Tam) and (H.nA)
simultaneously. We further assume in this section thatf is p-ordinary andp-distinguished.
Let Γw = 1 + pZp. Identify ∆ = (Z/pZ)× by µµµp−1 via the Teichmüller characterω so that
we haveZ×

p
∼= ∆ × Γw. SetΛw = Zp[[Γ

w]]. Let hord Hida’s universal ordinary Hecke algebra
parametrizing Hida family passing throughf , which is finite flat overΛw by [Hid86a, Theorem
1.1]. We will recall some basic properties ofhord, for details the reader may consult [Hid86a,
Hid86b] and [EPW06,§2] for a survey.

The eigenformf corresponds to anarithmetic specializationϕf : hord → O . Decompose
hord into a direct sum of its completions at maximal ideals and lethord

m
be the (unique) sum-

mand through whichϕf factors. The localization ofhord at ker(ϕf) is a discrete valuation
ring [Nek06,§12.7.5], and hence there is a unique minimal primea ⊂ hord

m
such thatϕf factors

through the integral domainR = hord
m
/a. TheΛw-algebraR is called the branch of the Hida

family on whichf lives, by duality it corresponds to a familyF of ordinary modular forms.
Hida in [Hid86b] gives a construction of a bigGQ-representationT with coefficients inR. It
follows from [Wil95, TW95] that the ringR is Gorenstein of dimension two and thatT is a free
R-module of rank two. We setR = R⊗Zp Λ andT = T ⊗Zp Λ, whereΛ = Zp[[Gal(Q∞/Q)]]
is the cyclotomic Iwasawa algebra as usual andGQ acts onT diagonally. The representationT
is what Ochiai calls the theuniversal ordinary deformationof T .

Let κκκ be a fixed universal Kolyvagin system and letκκκn.o. denote its image under the natural
mapKS(T,Fcan,P) → KS(T,Fcan,P) induced by the universality ofT. We callκκκn.o. the
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nearly-ordinary universal Kolyvagin system. Note that it follows from Theorem 3.5 that the
R-moduleKS(T,Fcan,P) is free of rank one and it is generated by the nearly-ordinaryuni-
versal Kolyvagin system. This latter fact essentially recovers a result due to Ochiai [Och05],
where he interpolates Beilinson-Kato Euler systems§ along the ordinary locus of the universal
deformation space. For any ordinary eigenformg that lives in the branchR of the Hida family,
let

ϕg : R −→ Og

denote the corresponding arithmetic specialization andTg = T ⊗ϕg Og the associated Galois
representation, whereOg is the integers of a finite extension ofQp. Let

κκκBK ∈ KS(Tg ⊗ Λ,Fcan,P)

be theΛ-adic Kolyvagin system for to the cyclotomic deformationTg ⊗ Λ obtained from the
Beilinson-Kato Euler system as in [MR04,§6.2]. We shall later specify a normalization of the
Beilinson-Kato elements befitting our needs; however the following holds true regardless of
such choice.

Theorem 4.24.Let KS(T,Fcan,P)
ϕg
−→ KS(Tg ⊗ Λ,Fcan,P) denote the map induced from

the arithmetic specializationϕg above by functoriality. Then there is aλg ∈ Og[[Γ]] such that

λg · ϕg(κκκ
n.o.) = κκκBK .

Proof. Identical to the proof of Theorem 4.19. �

Corollary 4.25. Letκn.o.
1 ∈ H

1(Q,T) denote the leading term of the nearly-ordinary universal
Kolyvagin system. Thenκn.o.

1 is non-vanishing.

Proof. For g as above, Kato proved thatκBK
1 ∈ H

1(Q, Tg ⊗ Λ) is non-zero. Corollary follows
from Theorem 4.24. �

Note that one may recover the well-known results of [Och06] when Theorem 4.24 and Corol-
lary 4.25 plugged in the Kolyvagin system machinery (Theorem 4.4). One novelty resulting
from our approach is that the Kolyvagin systems interpolated along the nearly-ordinary locus
are simply obtained byrestrictionfrom the universal deformation space.

In what follows, we shall discuss the questions raised in Remarks 4.21 and 4.22 over the
nearly-ordinary locus Spec(R) of the deformation space. In particular, we show in Theo-
rem 4.28 that the factorsλg of Theorem 4.24 interpolate (asg moves along the Hida family).
This allows us to compare the leading termκn.o.

1 of the nearly-ordinary universal Kolyvagin
system to Ochiai’stwo-variable(optimal) Beilinson-Kato element and deduce the desired vari-
ational results.

We remark that under our running hypotheses onT , the representationT admits aGQp-
stable submoduleF+

p T ⊂ T that is saturated and free of rank one (as anR-module). Set
F−
p T = T/F+

p T and let locsp denote thesingular projection

locsp : H
1(Q,T) −→

H1(Qp,T)

H1(Qp, F+
p T)

=: H1
s (Qp,T) .

We also setF±
p T := F±

p T⊗R k.

§whereas we carry this out in the level of Kolyvagin systems.
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Let LKit (F) ∈ R denote Kitagawa’s two-variablep-adicL-function associated to the Hida
family F, which is normalized in accordance with [Och06, Sec. 6.3] (and denoted byLKi

p,b(T )
in loc.cit). The main theorem of [Och03] equips us with aHida-theoretic Coleman map

Ξd : H
1
s (Qp,T) −→ R

whered is a basis ofDcris(F
+
p T). The mapΞd is injective, has pseudo-null cokernel and it

verifies
Ξd
(
locsp(Z

BKO
1 )

)
= LKit(F) .

HereZBKO
1 ∈ H1(Q,T) is the initial term of Ochiai’s optimized Beilinson-Kato Euler system

for T (denoted byZKi
b,d(1) in [Och06]).

Definition 4.26. We say that the cuspidal newformf =
∑
anq

n is exceptional modp if
p− 1 | k+j

2
− 1 andap ≡ 1(mod̟).

Proposition 4.27. Suppose that we are in the setting of Theorem 4.24 and assume that the
form f is non-exceptional modp. Then the natural injectionH1

s (Qp,T) →֒ H1(Qp, F
−
p T) is

an isomorphism of freeR-modules of rank one. Furthermore,Ξd is an isomorphism as well.

Proof. Letαf,p denote the unramified character ofGQp sending the arithmetic Frobenius toap.

The running assumptions imply that thek-valued characterβf,p := (αf,p · ω
1− k+j

2 mod ̟) is
non-trivial. It follows from [How07, Proposition 2.4.1] thatGQp acts on the one-dimensional
k-vector spaceF−

p T by the characterβf,p and we conclude thatH0(Qp, F
−
p T ) = 0. This

shows by local duality and Nakayama’s lemma thatH2(Qp, F
+
p T) = 0 (recall that we are

working with the self-dual twist of the Hida family) and we conclude with the proof that the
injectionH1

s (Qp,T) →֒ H1(Qp, F
−
p T) is a surjection as well. It also follows from our hy-

pothesis (H.nA) thatH0(Qp, F
+
p T ) = 0 and by local duality along with Nakayama’s lemma

thatH2(Qp, F
−
p T) = 0. Similarly we may prove thatH2(Qp, F

−
p T

D) = 0 whereTD :=
HomR(T,R)(1). As explained in [Büy10, Remark 2.8], we may now deduce thatthe R-
moduleH1(Qp, F

−
p T) is free, since the ringR is Gorenstein. On the other hand, asΞd injects

H1
s (Qp,T) into a cyclicR-module,H1(Qp, F

−
p T) is in fact free of rank one and the first part

of the proposition is now proved.
Note now thatΞd (H1

s (Qp,T)) is a free submodule ofR and Ochiai has proved that the
quotientR/Ξd (H1

s (Qp,T)) is pseudo-null and therefore trivial, verifying the secondassertion.
�

Theorem 4.28.Suppose that we are in the setting of Proposition 4.27. Thereexists an element
λ = λ(F) ∈ R such that for everyg as above we haveλg = λ(g), whereλ(g) denotes the
imageϕg(λ) of λ under the specialization mapϕg : R→ Og[[Γ]].

Proof. Setf = Ξd
(
locsp(κ

n.o.
1 )
)

andg = Ξd
(
locsp(Z

BKO
1 )

)
. The assertion amounts to the state-

ment thatf | g, which is what we verify now. Iff ∤ g, one may use [Fou13, Section 6.3] to
find anS-valued pointπS : R → S of Spec(R) (whereS is a discrete evaluation ring) with
the following properties:

• πS(f) 6= 0,
• πS(f) ∤ πS(g) .

SetTS = T ⊗πS S and letκκκS = πS(κκκ
n.o.) ∈ KS(TS,Fcan,P). Let mS denote the maximal

ideal ofS andT S = T⊗ S/mS . Using the fact that the reduction ofκκκn.o. modulo the maximal
ideal ofR is non-vanishing, it follows that the image ofκκκS in KS(T S,Fcan,P) is non-trivial
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as well. Theorem 5.2.10 of [MR04] now shows thatκκκS generates the moduleKS(TS,Fcan,P).
The Beilinson-Kato-Ochiai Euler system forT gives rise to an Euler system forTS. Let

κκκO,S∈ im
(
ES(TS) −→ KS(TS,Fcan,P)

)

denote the image of this Euler system under the Euler systemsto Kolyvagin systems map of
[MR04]. In particular, we haveκO,S

1 = πS(Z
BKO
1 ) ∈ H1

Fcan
(Q, TS) for the initial term. The

discussion above regardingκκκS shows that there existsλS ∈ S with κκκO,S = λS · κκκS, so that

(4.16) πS(Z
BKO
1 ) = κO,S

1 = λS · κ
S
1 = λS · πS(κ

n.o.
1 )

whereκS1 ∈ H
1
Fcan

(Q, TS) as usual stands for the leading term of the Kolyvagin systemκκκS. Set
F±TS := F±T ⊗πS S. The following equalities lead to a contradiction with the choice ofS
and conclude the proof of the theorem:

πS(g) = πS
(
Fitt
(
H1(Qp, F

−T)/R · locsp(Z
BKO
1 )

))
(4.17)

= λS · Fitt
(
H1(Qp, F

−TS)/S · πS
(
locsp(κ

n.o.
1 )
))

(4.18)

= λS · πS
(
Fitt
(
H1(Qp, F

−T)/R · locsp(κ
n.o.
1 )
))

(4.19)

= λS · πS(f) .(4.20)

We explain these equalities. The ingredients that go in the proof of Proposition 4.27 show that

(4.21) H1(Qp, F
−T)⊗πS S

∼
−→ H1(Qp, F

−TS) .

The equality (4.19) follows from (4.21) whereas (4.18) using (4.16) and (4.21). The equalities
(4.17) and (4.20) are immediate by Proposition 4.27. �

Corollary 4.29. For λ(F) ∈ R as in the statement of Theorem 4.28, we have

λ(F) · charR
(
H1(Qp, F

−
p T)/R · locsp(κ

n.o.
1 )
)
= R · LKit(F) .

Proof. This is immediate after Theorem 4.28 and the main theorem of [Och06, Corollary 6.17].
�

Note that Skinner in [Ski14] has recently made use of a variational argument (essentially
encoded in the equivalence of (iii) and (iv) in Corollary 4.30 below) so as to deduce Mazur’s
main conjecture for a modular form at primesp of multiplicative reduction, by moving to
a form wherep is a good ordinary prime (and where the desired result is known thanks to
[SU14]). Although the equivalence of (iii) and (iv) in Corollary 4.30 is well-known, we still
would like to record it here along with the view point offeredby our universal Kolyvagin
system with the hope that its variants (such as those discussed in Section 4.4 below) might be
useful in other contexts where the technology used in Skinner’s work is no longer available.

Corollary 4.30. The following assertions are equivalent:

(i) λg ∈ Og[[Γ]]× for a single arithmetic memberg of the familyF.
(ii) λ(F) ∈ R× andλg ∈ Og[[Γ]]× for every arithmetic memberg of the familyF.

(iii) Conjecture 2.4 (the two variable main conjecture) of[Och06]holds true.
(iv) The cyclotomic main conjecture holds true for a single (for every) eigenformg in the

familyF.

Proof. The implication (ii)=⇒ (iii) follows from Poitou-Tate Global duality, used along with
the proof of Theorem 4.4 and Corollary 4.29. Assuming the truth of (iv), [Büy11, Theorem
3.23] shows thatκκκBK is a generator of the cyclicΛ-moduleKS(Tg⊗Λ,Fcan,P) and (i) follows.
The remaining implications are clear. �
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4.4. The sheaf of universalp-adic L-function on the eigencurve. Before giving a proof of
the main technical result of this article, we present in thissection applications of our universal
Kolyvagin system towards amain conjectureon the eigencurve and a related discussion on
variational problems (in the flavor of those that were treated over the nearly-ordinary locus in
the previous section).

Suppose we are in the setting of Section 4.2. In particularρ is the residual representation
of the critical-twistf̃ of the normalized cuspidal elliptic modular newformf of even weight.
Assume in addition that̃f is of finite slope, namely that the action ofϕ on the potentially semi-
stable Diuedonné module verifiesDpst(Vf̃)

ϕ=α 6= 0 for someα. HereVf̃ is as usual Deligne’s

Galois representation attached tof̃ .

Definition 4.31. Let E/Qp be a finite extension and letOE be its ring of integers. AnE-
valuedpseudo-geometric specializationis a ring homomorphismψ : R → OE such that the
GQp-representation isT⊗ψ E is potentially semi-stable with distinct Hodge-Tate weights.

We recall some definitions we gave in the introduction. LetX = Spec(R) denote universal
deformation space. Recall that we are working under the assumption (H.nOb) that the defor-
mation problem is unobstructed. LetX denote the (Berthelot) generic fiber of Spf(R) and let
R† := Γ(X,OSpfR). LetΛE = OE [[Γ]] be the cyclotomic Iwasawa algebra,IE be Berthelot’s
analytic generic fiber of SpfΛ andΛ†

E = Γ(IE ,OSpfΛE
). Note that ourΛ†

E is denoted byΛ∞

in [Pot12].

Remark 4.32. Let ψ† : R† → E be anE-valued point. By continuity, we have an induced
OE-valued pointR→ OE that we denote byψ. We say thatψ† is pseudo-geometric ifψ is in
the sense of Definition 4.31. We denote theGQ,Σ-representationT⊗ψ E by Vψ† .

Definition 4.33. A pseudo-geometric specializationψ† is called finite-slope ifDpst(Vψ†)ϕ=α is
non-zero for someα.

Definition 4.34.Givenψ† ∈ X(E) andψ ∈ X(OE) as above, the deformation(T⊗ψ OE)⊗ΛE
of ρ to ΛE induces a ring homomorphismψΛ : R → ΛE, which in turn induces a mapψ†

Λ :

R† → Λ†
E on the analytic global sections. SetṼψ† := T† ⊗ψ†

Λ

Λ†
E , thecyclotomic deformation

of Vψ† .

Let C(ρ) denote the Coleman-Mazurρ-eigencurve which admits a Zariski-analytic dense
subset whoseCp-valued points correspond bijectively to(g, α) whereg is a cuspidal eigen-
form (of tame levelN) of finite-slope whose residual Galois representation has the same semi-
simplification asρ. Sinceρ is fixed throughout this section, we will denoteC(ρ) simply byC.
Let λ ∈ O(C)× be theUp-eigenvalue function andκ ∈ O(C) the weight function. Finally, let
TC denote the pullback of the universal deformation, which is locally free coherent sheaf onC
of rank2 which equipped with a continuousO(C)-linear Galois action.

Remark 4.35. One may give an alternative description of the eigencurve using a theorem of
Kisin [Kis09b]: C is the Zariski-analytic closure ofCpst-fs, whereCpst-fs ⊂ X × Gm is the set
of pointsr = (ψ†, λ(r)) such thatψ† is finite-slope with Hodge-Tate weights0, κ(r)− 1 with
κ(r) ∈ Z≥2.

Definition 4.36. Let PS(T ) = T 2 + aT + b ∈ O(X)[T ] denote the Sen polynomial and letX0

denote Sen’s null locus, which is the closed subspace cut byb = 0, which has codimension
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one everywhere. For a pointr = (x, α) ∈ C(Qp), the Sen polynomial ofρr is PS(x) =
T 2+a(x)T+b(x). It follows from a theorem of Faltings and Jordan that ifr is a refined modular
point (in the sense of Coleman and Mazur) thenb(x) = 0 and therefore thatC ⊂ X0 ×Gm.

Definition 4.37. We say that a pointr ∈ C is p-exceptionalif κ(r) = 0 and the corresponding
Galois representationVr is crystalline atp with dimDcris(Vr)

ϕ=λ(r) = 2. We say thatr is
unsaturatedeither

(i) r is p-exceptional or;
(i) r is notp-exceptional,κ(r) is a positive integer andvp(λ(r)) > κ(r) or;
(ii) r is notp-exceptional,Vr has a rank one sub-GQp-representationV ′

r which is crystalline
with Hodge-Tate weightκ(r),

and otherwise we callr a saturated point.

LetD†
rig(TC) denote the sheafification of the(ϕ,Γ)-module functor on the weakG-topology

of C given as in [Liu12, Definition 1.2.4] andC0 be the set of saturated points.

Theorem 4.38(Liu, Kedlaya-Pottharst-Xiao). There is a coherent subsheafF of the sheaf
D†

rig(TC) which is locally free of rank one away from exceptional points, and saturated away
from the unsaturated points ofC and restricts on this locus to a triangulation of the(ϕ,Γ)-
moduleD†

rig(Vr) associated toVr.

Definition 4.39.The quasicoherent sheaf ofuniversalp-adicL-functionis the invertible sheaf

Ξρ := im
(
R · locp(κ1) −→ H1

ψ(D
†
rig(TC))/H

1
ψ(F)

)
.

Hereκ1 is the initial term ofany universal Kolyvagin system (the definition ofΞρ clearly
does not depend on the choice of this Kolyvagin system),H1

ψ(∗) is the Iwasawa cohomology
sheaf of [KPX14] (whereψ is a left inverse of the Frobenius operatorϕ in the context of
(ϕ,Γ)-modules) and the arrow is obtained as follows: Sen’s theoryand Tate twisting yields a
morphismτ : Sp(Λ†) × C → X × Gm which gives by pullback a mapT† → TC ⊗̂Λ†. The
desired arrow comes using [Pot13, Theorem 1.9] and the identification of [KPX14, Corollary
4.4.11].

We would like to think of the sheafΞρ as a generalization of Perrin-Riou’s [PR95] module
of algebraicp-adicL-function, whose definition she gives for the cyclotomic deformation of
a motive. The interpolation property we prove in Theorem 4.43 partially justifies whyΞρ
deserves to be called a “p-adicL-function”.

Definition 4.40. Let g be a cuspidal new eigenform of weightk which has finite-slope atp
and letE/Qp be a finite extension that contains all Fourier coefficients of g. LetD denote the
(ϕ,Γ)-module associated tog. Let F ⊂ D be the rank one(ϕ,Γ)-submodule ofD chosen
as in [Pot12, Section 5] (which is characterized by the property that its potentially semi-stable
Dieudonné moduleFpst is spanned byei, where{ei, ei′} is a distinguishedE-basis ofDpst

described fully in loc.cit). Let{e∗i , e
∗
i′} ∈ D∗

pst be the dual basis of{ei, ei′}. Given these

choices there exists abig logarithmH1
Iw(Qp, D/F )

LogD/F
−→ Dpcris ⊗ Λ†, whereDpcris is the

potentially crystalline Dieudonné module (c.f. [Pot12, Section 4]) and the cohomology group
is Pottharst’s (analytic) Iwasawa cohomology group. This map composed withe∗i′ yields a
homomorphism

LD/F = e∗i′ ◦ LogD/F : H1
Iw(Qp, D/F ) −→ Λ†

E .
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Definition 4.41. Forg as above, we define following [PR94, Pot12]

Γj = ℓ−1
1 ℓ−1

2 · · · ℓ
−1
j ∈ Frac(Λ†)

whereℓi =
log(γ χcyc(γ)

−i)

log(χcyc(γ))
. We also setδi = charΛ† H i

Iw(Qp, D/F )tors andδg = δ−1
1 δ2. As

explained in [Pot12, Section 5], the idealsδi are non-trivial only wheng has weight2, has
semistable reduction atp and the restriction of the central character toGQp factors throughΓ.

Definition 4.42. For a saturated pointx ∈ Ccl-fs, we letFx ⊂ Dx denote the triangulation
of the associated(ϕ,Γ)-module. Notice that this is the restriction of the global triangulation
F ⊂ D†

rig(TC) by Theorem 4.38.

Theorem 4.43.For anE-valued saturated pointx = (ψ†, λ(x)) ∈ Ccl-fs (whereE is a finite
extension ofQp) let fx denote the corresponding (classical) eigenform with a distinguished
Up-eigenvalueλ(x). For sometx ∈ ΛE , the following equality of invertible ideals ofΛ†

E holds
true:

tx · LDx/Fx ◦ ψ
†
Λ (Ξρ) = Γκ(x)−1 · δ

−1
x Lp,λ(x)c(f

c
x) · Λ

†
E ,

whereLp,λ(x)c(f cψ†) is thep-adic L-function attached to the complex conjugate offx for the
p-stabilization determined byλ(x)c.

Proof. Forψ : R→ OE as in Remark 4.32, let̃Tψ := T⊗ψ ΛE and letκκκψ ∈ KS(T̃ψ,Fcan,P)
be the image of (any) universal Kolyvagin systemκκκ. It follows from Kato’s explicit reciprocity
law and the (unpublished) work of Kato-Kurihara-Tsuji thatthere is a Beilinson-Kato Koly-
vagin systemκκκBK,ψ ∈ KS(T̃ψ,Fcan,P) attached to the modular formfx whose initial term
verifies

LDx/Fx(locp(κ
BK,ψ
1 )) = Γκ(x)−1 · δ

−1
x Lp,λ(x)c(f

c
x) · Λ

†
E .

As theΛ-moduleKS(T̃ψ,Fcan,P) is free of rank one and generated byκκκψ, there istx ∈ Λ
such thatκκκKato,ψ = tx · κκκψ.

�

Inspired by the conclusion of Corollary 4.29 we raise the following two questions. It would
be very desirable to have affirmative answers to these questions as they would have interesting
consequences regarding the variational behavior of arithmetic data in families, similar to those
over the nearly-ordinary locus indicated in Section 4.3 above.

Question 4.44.Is it possible to interpolatetx over an affinoid subdomain Sp(S) of the eigen-
curve that contains no unsaturated points to an elementtS ∈ S ⊗̂Λ†? If yes, is it then possible
to patch thetS to a quasicoherent sheafT overC0?

In relation to these questions, we propose the following Conjecture¶ that should be of in-
dependent interest. Its first part predicts that the Coleman-Perrin-Riou maps interpolate over
sufficiently nice affinoid subdomains Sp(A) of the eigencurve. Its second and third parts have
to do with the behavior of the Beilinson-Kato elements over Sp(A), in line with the construc-
tion of the sheafΞρ overC. Theorem 4.46 below shows that first of the questions raised above
holds true assuming the truth of this conjecture. See also Remark 4.47 regarding the second
question.

¶As far as the author understands, much of this conjecture hasbeen settled by David Hansen.
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Conjecture 4.45.Letx0 ∈ Ccl-fs be a classical saturated point on the eigencurve. There exists
an admissible affinoid subdomain neighborhoodSp(A) ⊂ C ofx0 that contains no unsaturated
points and an elementα, β, θ ∈ A with the following properties:

(i) There exists aColeman-trivialization

LogA : H1
ψ(D

†
rig(TA))/H

1
ψ(F(A)) −→ A ⊗̂Λ†

such that for everyE-valued pointx ∈ Ccl-fs∩Sp(A) the following diagram commutes:

H1
ψ(D

†
rig(TA))/H

1
ψ(F(A))

��

LogA
// A ⊗̂Λ†

��

H1
Iw(Qp, Dx/Fx)

α(x)LDx/Fx
// Λ†

E

(ii) There exist an elementZBK,A
1 ∈ H1

Iw(Q,TA) (of Pottharst’s analytic Iwasawa coho-
mology) that restricts for everyE-vauled pointx = (ψ†, λ(x)) ∈ Ccl-fs ∩ Sp(A) to
β(x) · κBK,ψ

1 (whereκBK,ψ
1 is given as in the proof of Theorem 4.43).

(iii) For everyE-valued pointy = (φ†, λ(y)) ∈ Sp(A), let Ty denote aGQ-stableOE-
lattice contained in theE-vector spaceVy and letZBK,A

1 (y) ∈ H1
Iw(Q, Vy) denote the

restriction ofZBK,A
1 to y. There exists an Euler systemcBK,y for Ty whose initial term

c
BK,y
Q ∈ H1(Q, Ty ⊗ Λ) along the cyclotomic tower identifies withZBK,A

1 (y) under the
natural analytification morphism.

Theorem 4.46.Let x0 ∈ Ccl-fs be a classical saturated point on the eigencurve and suppose
that there exists an admissible affinoid subdomain neighborhoodSp(A) ⊂ C ofx0 that contains
no unsaturated points and which verifies Conjecture 4.45. Then the first part of Question 4.44
has a positive answer onA.

Proof. This follows from the existence of a two-variablep-adicL-function ([Bel12a]) and a
slight modification of the arguments in the proof of Theorem 4.28 (where the corresponding
assertions (over the ordinary locus) to those of Conjecture4.45 have already been verified by
T. Ochiai). �

Remark 4.47. The forthcoming work of Hansen we have referred to above alsorecovers
Bellaı̈ce’s two-variablep-adic L-function Lp,λ(A) ∈ A ⊗̂Λ† from the Beilinson-Kato ele-
ments. This together with Theorem 4.46 shows that the image of the sectionsΞρ(A) of the
sheaf of universalp-adicL-function onA under the Coleman-trivialization lies in the module
generated byLp,λ(A). The following two features of this picture is noteworthy:

• The sheafΞρ is constructed out of an integral elementκ1. This fact should be useful
in applications towards the proof of Main Conjectures over affinoid subdomains of the
eigencurve (through the form of main conjecture we deduced in Section 4.1 above over
the full deformation space), which (given the technology ofthe day) would necessarily
rely on the Euler-Kolyvagin system machinery that is only available at integral level.
We note that one missing ingredient is a well-behaved descent/control mechanism for
Selmer complexes in this context and we hope to address this matter in a future work.
• The modulesΞρ(A) (which, by Hansen’s work, are closely related toLp,λ(A)) readily

patch together along the eigencurve.
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5. CORE VERTICES AND DEFORMINGKOLYVAGIN SYSTEMS

Our goal in this section is to give a proof of Theorem 3.5 (aside from Theorem 5.2 below,
which will be proved later in Section 5.2), assuming (H1)-(H4), (H.Tam) and (H.nA).

Let n̄ = (r, u, v, w) ∈ (Z>0)
4 ands̄ = (r, u, v) ∈ (Z>0)

3. Assume throughout this section
thatχ(T) = χ(T) = 1.

5.1. Core vertices. SupposeT is one ofTn̄, Ts̄ or T/m andS is the corresponding quotient
ringRn̄, Rs̄ or k.

Definition 5.1. The integern ∈ Nn̄ (resp.,n ∈ Ns̄) is called acore vertexfor the Selmer
structureFcan onT if

(i) H1
Fcan(n)∗

(Q, T ∗) = 0,
(ii) H1

Fcan(n)
(Q, T ) is a freeS-module of rank one.

Suppose that the hypotheses (H1)-(H4), (H.Tam), and (H.nA) hold true. The following
theorem is fundamental in proving the existence of Kolyvagin systems.

Theorem 5.2.Letn ∈ Nn̄ (resp.,n ∈ Ns̄) be a core vertex for the Selmer structureFcan on the
residual representationT . Thenn is a core vertex for the Selmer structureFcan onT as well.

Theorem 5.2 is proved in§5.2. In this section we show how it may be used to prove the
existence of Kolyvagin systems forT andT, given as in Definitions 3.2 and 3.4.

Theorem 5.3.TheS-moduleKS(T,Fcan,P) is free of rank one.

Theorem 5.3 is proved in two steps. As the first step, we prove:

Theorem 5.4.Supposen ∈ N is any core vertex for the Selmer structureFcan onT . Then the
natural map

KS(T,Fcan,P) −→ H1
Fcan(n)(Q, T )⊗Gn

(given byκκκ 7→ κn) is surjective.

Proof. The arguments utilized in the proof of [Büy11, Theorem 3.11] may be modified without
much difficulty in order to prove Theorem 5.4. The main point is that we have Theorem 5.2
here in place of [Büy11, Theorem 2.27]. �

Define a subgraphX 0 = X 0(P) of X whose vertices are the core vertices ofX and whose
edges are defined as follows: We joinn andnℓ by an edge inX 0 if and only if the localization
map

H1
Fcan(n)(Q, T ) −→ H1

f (Qℓ, T )

is non-zero. We define the sheafH0 onX 0 as the restriction of the Selmer sheafH toX 0.

Lemma 5.5. The graphX 0 is connected.

Proof. The edges ofX 0 are defined in terms ofT (and notT itself) so the arguments that go
into the proof of [MR04, Theorem 4.3.12] apply. �

The following Theorem, combined with Theorem 5.4 completesthe proof of Theorem 5.3.

Theorem 5.6.Supposen ∈ N is any core vertex for the Selmer structureFcan onT . Then the
natural map

KS(T,Fcan,P) −→ H1
Fcan(n)(Q, T )⊗Gn

is is injective.
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Proof. One may argue as in the proof of [Büy11, Theorem 3.12] in order to prove this assertion.
The essential input is the fact that the graphX 0 is connected (Lemma 5.5). �

Lemma 5.7. Fix a quadruplēn as above. For anȳi ≻ n̄, the natural restriction map

KS(Tn̄,Fcan,Pn̄) −→ KS(Tn̄,Fcan,Pī)

is an isomorphism.

Proof. Theorems 5.4 and 5.6 applied with a core vertexn ∈ Nī, we have isomorphisms

KS(Tn̄,Fcan,Pn̄)
∼
−→ H1

Fcan(n)(Q,Tn̄)
∼
←− KS(Tn̄,Fcan,Pī)

compatible with the restriction map

KS(Tn̄,Fcan,Pn̄) −→ KS(Tn̄,Fcan,Pī).

Note thatn ∈ Nī as above exists by [MR04, Corollary 4.1.9] and Theorem 5.2 above. �

Lemma 5.8. Let n̄′ ≺ n̄ and letn ∈ Nn̄ be a core vertex. The map

H1
Fcan(n)(Q,Tn̄) −→ H1

Fcan(n)(Q,Tn̄′)

is surjective.

Proof. We verify the assertion of the Lemma forn̄′ = (r, u, v, w) andn̄ = (r+1, u, v, w). The
proof of the general case follows by applying this argument (or where necessary, its slightly
modified form) repeatedly.

We have the following commutative diagram, where the vertical isomorphism is obtained
from (a slight variation of) Proposition 5.26(iv) below:

H1
Fcan(n)

(Q,Tr+1,u,v,w)
reduction

//

̟

++❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱

H1
Fcan(n)

(Q,Tr,u,v,w)

[̟]∼=

��

H1
Fcan(n)

(Q, Tr+1,u,v,w)[̟
r]

Sincen ∈ Nn̄ is a core vertex (and thereforeH1
Fcan(n)

(Q,Tn̄) is a freeRn̄-module of rank one),
the map on the diagonal is surjective. This proves that the horizontal map is surjective as
well. �

Lemma 5.9. The map

KS(Tn̄,Fcan,Pn̄) −→ KS(Tn̄′ ,Fcan,Pn̄)

is surjective for̄n′ ≺ n̄.

Proof. By Theorem 5.4, Theorem 5.6 and Lemma 5.7 applied with a core vertexn ∈ Nn̄ to
bothTn̄ andTn̄′ , we obtain the following commutative diagram with verticalisomorphisms:

KS(Tn̄,Fcan,Pn̄) //

∼=
��

KS(Tn̄′ ,Fcan,Pn̄)

∼=
��

H1
Fcan(n)

(Q,Tn̄)⊗Gn
// // H1

Fcan(n)
(Q,Tn̄′)⊗Gn

where the surjection in the second row is Lemma 5.8. It follows at once that the upper hori-
zontal map in the diagram is surjective as well. �
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Proof of Theorem 3.5.Lemma 5.7 shows that

lim−→̄
i

KS(Tn̄,Fcan,Pī) = KS(Tn̄,Fcan,Pn̄).

The proof of (i) now follows by Theorem 5.3 and Lemma 5.9. (ii)is proved similarly, by
appropriately modifying the ingredients that go into the proof of (i). �

5.2. The existence of core vertices.In this subsection we verify the truth of Theorem 5.2.

5.2.1. Cartesian properties.Let Quot(T) denote the collection{Tn̄ : n̄ ∈ (Z+)4} of quotients
of T and similarly, let Quot(T) = {Tm̄ : m̄ ∈ (Z+)3} ∪ {T/m}.

Givenᾱ = (α1, · · · , αd) ∈ (Z+)d and1 ≤ i ≤ d, we defineᾱ+,i ∈ (Z+)d to be thed-tuple
whosejth coordinate isαi + δij . Hereδij is Kronecker’s delta.

Definition 5.10. A local conditionF at a primeℓ is said to becartesianon the collection
Quot(T) if it satisfies the following conditions:

For ᾱ ∈ (Z+)4,

(C1) (Weak functoriality)
(C1.a) H1

F(Qℓ,Tᾱ) is the exact image ofH1
F(Qℓ,Tᾱ+,1) under the canonical map

H1(Qℓ,Tᾱ+,1) −→ H1(Qℓ,Tᾱ),

(C1.b) For i ∈ {2, 3, 4},H1
F(Qℓ,Tᾱ) lies in the image ofH1

F(Qℓ,Tᾱ+.i
) under the map

H1(Qℓ,Tᾱ+.i
) −→ H1(Qℓ,Tᾱ).

(C2) (Cartesian property) For1 ≤ i ≤ 4,

H1
F(Qℓ,Tᾱ) = ker

(
H1(Qℓ,Tᾱ) −→

H1(Qℓ,Tᾱ+,i
)

H1
F(Qℓ,Tᾱ+,i

)

)
.

If i > 1, the arrow here is induced from the injectionTᾱ
[Xi]
−→ Tᾱ+,i

, where [Xi]
stands for multiplication byXi. Wheni = 1, the arrow is induced from the injection

Tᾱ
[̟]
−→ Tᾱ+,1 .

Definition 5.11. A local conditionF at a primeℓ is said to becartesianon the collection
Quot(T) if it satisfies the following conditions:

For ᾱ ∈ (Z+)3,

(D1.a) H1
F(Qℓ,Tᾱ) is the exact image ofH1

F(Qℓ,Tᾱ+,1) under the canonical map

H1(Qℓ,Tᾱ+,1) −→ H1(Qℓ,Tᾱ),

(D1.b) For i ∈ {2, 3},H1
F(Qℓ,Tᾱ) lies in the image ofH1

F(Qℓ,Tᾱ+.i
) under the map

H1(Qℓ,Tᾱ+.i
) −→ H1(Qℓ,Tᾱ).

(D2) For1 ≤ i ≤ 3,

H1
F(Qℓ,Tᾱ) = ker

(
H1(Qℓ,Tᾱ) −→

H1(Qℓ,Tᾱ+,i
)

H1
F(Qℓ,Tᾱ+,i

)

)
.

(D3) H1
F(Qℓ,T/m) = ker

(
H1(Qℓ,T/m) −→

H1(Qℓ,T1,1,1)

H1
F(Qℓ,T1,1,1)

)
,where the arrow is induced

from the injectionR/m = k
∼
→ R0[m] →֒ R0.



Deformations of Kolyvagin systems 39

5.2.2. Cartesian properties atp.

Proposition 5.12. Assuming(H.nA), the local condition atp given byFcan on the collection
Quot(T) (resp., on the collectionQuot(T)) is cartesian.

Proof. This is obvious thanks to Proposition 2.5. �

5.2.3. Cartesian properties primesℓ 6= p for the coefficient ringR. Throughout this section
the hypothesis (H.Tam) is in force.

Lemma 5.13.

(i) H1
f (Qℓ,Au,v,w) = H1

ur(Qℓ,Au,v,w).
(ii) H1

f (Qℓ,Tu,v,w) = H1
ur(Qℓ,Tu,v,w).

(iii) H1
Fcan

(Qℓ,Tr,u,v,w) = H1
ur(Qℓ,Tr,u,v,w).

(iv) The following sequence is exact:

0 // H1
Fcan

(Qℓ,Tr,u,v,w) // H1(Qℓ,Tr,u,v,w) // H
1(Qℓ,Au,v,w)

H1
f (Qℓ,Au,v,w)

Proof. (iv) follows from (2.1).
By [Rub00, Lemma 1.3.5] we have the following two exact sequences:

(5.1) 0 −→ H1
f (Qℓ,Au,v,w) −→ H1

ur(Qℓ,Au,v,w) −→W/(Frℓ − 1)W −→ 0

(5.2) 0 −→ H1
ur(Qℓ,Tu,v,w) −→ H1

f (Qℓ,Tu,v,w) −→W
Frℓ=1 −→ 0

whereW = AIvu,v,w/(A
Iℓ
u,v,w)div. In Lemma 5.14, we check under the assumption (H.Tam) that

WFrℓ=1 = 0. SinceW is a finite module, the exact sequence

0 −→ WFrℓ=1 −→W
Frℓ−1
−→ W −→W/(Frℓ − 1)W

shows thatW/(Frℓ − 1)W = 0. This proves that

(5.3) H1
f (Qℓ,Au,v,w) = H1

ur(Qℓ,Au,v,w) , H
1
ur(Qℓ,Tu,v,w) = H1

f (Qℓ,Tu,v,w).

This proves (i) and (ii). By (2.1) and (5.3) it now follows that

H1
Fcan

(Qℓ,Tr,u,v,w) = im
(
H1

ur(Qℓ,Tu,v,w)→ H1(Qℓ,Tr,u,v,w)
)
⊂ H1

ur(Qℓ,Tk,u,v,w)

H1
Fcan

(Qℓ,Tr,u,v,w) = ker

(
H1(Qℓ,Tr,u,v,w) −→

H1(Qℓ,Au,v,w)

H1
ur(Qℓ,Au,v,w)

)
⊃ H1

ur(Qℓ,Tk,u,v,w)

and the proof of (iii) follows. �

Lemma 5.14.WFrℓ=1 = 0.

Proof. As we haveA1,1,1[̟] = T , it follows thatH0(Qℓ,A1,1,1[̟]) = 0 since we assume
H.Tam, hence also that

H0(Qℓ,A1,1,1) = 0.

Using theGQℓ
-cohomology of the exact sequences

0 −→ A1,1,w
[X3]
−→ A1,1,w+1 −→ A1,1,1 −→ 0

0 −→ A1,v,w
[X2]
−→ A1,v+1,w −→ A1,1,w −→ 0,

0 −→ Au,v,w
[X1]
−→ Au+1,v,w −→ A1,v,w −→ 0,
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it follows by induction that

(5.4) H0(Qℓ,Au,v,w) = 0.

Taking theGQℓ
/Iℓ-invariance of the short exact sequence

0 −→ (AIℓu,v,w)div −→ A
Iℓ
u,v,w −→ W −→ 0

we see by (5.4) that

WFrℓ=1 →֒ H1(GQℓ
/Iℓ, (A

Iℓ
u,v,w)div) ∼= (AIℓu,v,w)div/(Frℓ − 1).

To conclude with the proof, it therefore suffices to show that

(AIℓu,v,w)div/(Frℓ − 1) = 0.

For anyα ∈ Z+, (5.4) shows

(5.5) H0(GQℓ
/Iℓ, (A

Iℓ
u,v,w)div[̟

α]) = 0.

The exact sequence
(
(AIℓu,v,w)div[̟

α]
)Frℓ=1

→ (AIℓu,v,w)div[̟
α]

Frℓ−1
−→ (AIℓu,v,w)div[̟

α]→ AIℓu,v,w[̟
α]/(Frℓ − 1)→ 0

and (5.5) shows thatAIℓu,v,w[̟
α]/(Frℓ − 1) = 0. Passing to direct limit the Lemma follows.

�

By Lemma 5.13(iv) we have the following commutative diagramwith exact rows:

0 // H1
Fcan

(Qℓ,Tr,u,v,w) //

��

H1(Qℓ,Tr,u,v,w) //

��

H1(Qℓ,Au,v,w)

H1
f (Qℓ,Au,v,w)

α

��

0 // H1
Fcan

(Qℓ,Tr,u+1,v,w) // H1(Qℓ,Tr,u+1,v,w) // H
1(Qℓ,Au+1,v,w)

H1
f (Qℓ,Au+1,v,w)

Lemma 5.15.The mapα is injective if

β : H1(Iℓ,Au,v,w)
Frℓ=1 −→ H1(Iℓ,Au+1,v,w)

Frℓ=1

is injective.

Proof. This follows from the commutative diagram

0 −→ H1(Qℓ,Au,v,w)

H1
f (Qℓ,Au,v,w)

//

α

��

H1(Iℓ,Au,v,w)
Frℓ=1

β

��

0 −→ H1(Qℓ,Au+1,v,w)

H1
f (Qℓ,Au+1,v,w)

// H1(Iℓ,Au+1,v,w)
Frℓ=1

whose exact rows come from the Hochschild-Serre spectral sequence and the fact that

H1
f (Qℓ,Au,v,w) = H1

ur(Qℓ,Au,v,w) := ker
(
H1(Qℓ,Au,v,w) −→ H1(Iℓ,Au,v,w)

Frℓ=1
)
,

where the first equality is Lemma 5.13(i). �
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Consider the short exact sequence

0 −→ Au,v,w
[X1]
−→ Au+1,v,w −→ A1,v,w −→ 0

TheIℓ-cohomology of this sequence gives

(5.6) 0 −→ AIℓu+1,v,w/A
Iℓ
u,v,w −→ A

Iℓ
1,v,w −→ H1(Iℓ,Au,v,w) −→ H1(Iℓ,Au+1,v,w)

To ease the notation set
Kv,w = AIℓu+1,v,w/A

Iℓ
u,v,w,

so that the sequence (5.6) may be rewritten as

(5.7) 0 −→ AIℓ1,v,w/Kv,w −→ H1(Iℓ,Au,v,w) −→ H1(Iℓ,Au+1,v,w)

TakingGQℓ
/Iℓ-invariance in (5.7), we conclude that

Lemma 5.16.ker(β) ∼= H0(GQℓ
/Iℓ,A

Iℓ
1,v,w/Kv,w).

Lemma 5.17.Under the assumption that(H.Tam) holds true,

(i) H0(Qℓ,A1,v,w) = 0,
(ii) H0(Qℓ,Kv,w) = 0.

Proof. Noting thatT ∼= A1,1,1, Hypothesis (H.Tam) shows that

H0(Qℓ,A1,1,1[̟]) = 0

and also thatH0(Qℓ,A1,1,1) = 0. TheGQℓ
-invariance of the sequence

0 −→ A1,1,w−1
[X3]
−→ A1,1,w −→ A1,1,1 −→ 0

shows by induction thatH0(Qℓ,A1,1,w) = 0 for all w ∈ Z≥2. Using similarly the exact
sequence

0 −→ A1,v−1,w
[X2]
−→ A1,v,w −→ A1,1,w −→ 0

we conclude with the proof of (i). (ii) follows from (i) asKv,w is a submodule ofA1,v,w. �

Proposition 5.18.ker(β) = 0.

Proof. Taking theGQℓ
/Iℓ-invariance of the short exact sequence

0 −→ Kv,w −→ A
Iℓ
1,v,w −→ A

Iℓ
1,v,w/Kv,w −→ 0,

we conclude using Lemma 5.17 that

(5.8) ker(β) →֒ H1(GQℓ
/Iℓ,Kv,w) ∼= Kv,w/(Frℓ − 1)Kv,w.

Lemma 5.17(ii) yields (using the fact thatKv,w is̟∞-torsion) an exact sequence

0 −→ Kv,w[̟
α]

Frℓ−1
−→ Kv,w[̟

α] −→ Kv,w[̟
α]/(Frℓ − 1) −→ 0

for everyα ∈ Z+. Noting that the moduleKv,w[̟α] has finite cardinality, it follows now that

Kv,w[̟
α]/(Frℓ − 1) = 0.

Passing to direct limit, Proposition follows by (5.8). �

Proposition 5.19. The local condition at a primeℓ 6= p, given byFcan on the collection
Quot(T) is cartesian.

Proof. (C1.a) holds true by definition and (C1.b) by Lemma 5.13(iii). The parts of (C2) con-
cerning the cases2 ≤ i ≤ 4 follow from Lemma 5.15 and Proposition 5.18; the part concerning
the casei = 1 from [MR04, Lemma 3.7.1]. �
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5.2.4. Cartesian properties atℓ 6= p for the coefficient ringR. Assume throughout this section
that (H.Tam) holds true. Recall thatR = R[[Γ]] whereR is a GorensteinO-algebra of
dimension2 with maximal idealmR.

Lemma 5.20.

(i) H1
Fcan

(Qp,Tr,u,v) = H1
ur(Qp,Tr,u,v).

(ii) The sequence

0 −→ H1
Fcan

(Qℓ,Tr,u,v) −→ H1(Qℓ,Tr,u,v) −→
H1(Qℓ,Au,v)

H1
ur(Qℓ,Au,v)

is exact.

Proof. The proof of Lemma 5.13 above works verbatim. �

Lemma 5.21. In the commutative diagram

0 // H1
Fcan

(Qℓ,Tr,u,v) //

��

H1(Qℓ,Tr,u,v) //

��

H1(Qℓ,Au,v)
H1

ur(Qℓ,Au,v)

α

��

0 // H1
Fcan

(Qℓ,Tr,u+1,v) // H1(Qℓ,Tr,u+1,v) // H
1(Qℓ,Au+1,v)

H1
ur(Qℓ,Au+1,v)

the mapα is injective.

Proof. Identical to the proof of Proposition 5.18. �

Recall the ringO and the moduleTO from §1.3.

Proposition 5.22.

(i) H1
f (Qℓ, TO) = H1

ur(Qℓ, TO), where

H1
f (Qℓ, TO) = ker

(
H1(Qℓ, TO)→ H1(Iℓ, TO ⊗Qp)

)
.

(ii) H1
Fcan

(Qℓ,T1,1) = H1
ur(Qℓ,T1,1).

(iii) H1
Fcan

(Qℓ,T1,1,1) = H1
ur(Qℓ,T1,1,1).

(iv) H1
Fcan

(Qℓ, T ) = im
(
H1

ur(Qℓ, TO)→ H1(Qℓ, T )
)
= H1

ur(Qℓ, T ).
(v) H1

ur(Qℓ, T ) is the inverse image ofH1
ur(Qℓ,T1,1)[m] under the map induced from(1.1).

Proof. (i) and (ii) follows from [Rub00, Lemma 1.3.5] since we assumed (H.Tam), and (iii)
follows mimicking the proof of Lemma 5.13(iii). We next verify (iv). By the very definition of
H1

Fcan
(Qℓ, T ) (see the beginning of§2),

H1
Fcan

(Qℓ, T ) = im
(
H1

Fcan
(Qℓ,T1,1)→ H1(Qℓ, T )

)
= im

(
H1

ur(Qℓ,T1,1)→ H1(Qℓ, T )
)
,

where the second equality is thanks to (i). Thus, the assertion (iv) amounts to the statements

(5.9) im
(
H1

ur(Qℓ,T1,1)→ H1(Qℓ, T )
)
= H1

ur(Qℓ, T ),

(5.10) im
(
H1

ur(Qℓ, TO)→ H1(Qℓ, T )
)
= H1

ur(Qℓ, T ).

In order to verify (5.9), it suffices to check that we have a surjection

H0(Iℓ,T1,1) ։ H0(Iℓ, T )

asGQℓ
/Iℓ has cohomological dimension 1. Taking theIℓ-invariance of the exact sequence

(5.11) 0 −→ mRT1,1 −→ T1,1 −→ T −→ 0
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we see that
coker

(
H0(Iℓ,T1,1) −→ H0(Iℓ, T )

)
→֒ H1(Iℓ,mRT1,1).

As the moduleH0(Iℓ, T ) is of finite order, the image of the injection above lands in the Zp-
torsion submoduleH1(Iℓ,mRT1,1)tors of H1(Iℓ,mRT1,1). On the other hand,

H1(Iℓ,mRT1,1)tors
∼= (mT1,1 ⊗Qp/Zp)

Iℓ/div = AIℓ/div = 0

where

• M/div is short forM/Mdiv;
• the second equality is obtained tensoring the exact sequence (5.11) byQp/Zp and not-

ing that the exactness is preserved asmRT1,1 isZp-torsion free, and thatT⊗Qp/Zp = 0;
• the last equality is (H.Tam).

This shows that
coker

(
H0(Iℓ,T1,1) −→ H0(Iℓ, T )

)
= 0

as desired and (5.9) is verified.
To verify (5.10), it again suffices to check that

coker
(
H0(Iℓ, TO) −→ H0(Iℓ, T )

)
.

Considering theIℓ-invariance of the exact sequence

0 −→ TO
πO−→ TO −→ T −→ 0

we see that
coker

(
H0(Iℓ, TO) −→ H0(Iℓ, T )

)
→֒ H1(Iℓ, TO)tors.

As above,H1(Iℓ, TO)tors
∼= AIℓ/div = 0 and this completes the proof of (iv).

We now prove (v). Consider the sequence

(5.12) 0 −→ T −→ T1,1 −→ Q −→ 0

where the arrowT → T1,1 is obtained from (1.1) andQ is defined by the exactness of this
sequence. Taking theIℓ-invariance of the sequence (5.12), we obtain another exactsequence

0 −→ Q0 −→ H1(Iℓ, T ) −→ H1(Iℓ,T1,1)

whereQ0 := QIℓ
/
TIℓ1,1/T

Iℓ. Taking theGQℓ
/Iℓ-invariance of the final exact sequence, we

conclude that
ker
(
H1(Iℓ, T )

Frℓ=1 −→ H1(Iℓ,T1,1)
Frℓ=1

)
= QFrℓ=1

0

hence by Lemma 5.23 below that

(5.13) ker
(
H1(Iℓ, T )

Frℓ=1 −→ H1(Iℓ,T1,1)
Frℓ=1

)
= 0.

Consider now the commutative diagram

0 // H1
ur(Qℓ, T ) //

��

H1(Qℓ, T ) //

��

H1(Iℓ, T )
Frℓ=1 //

ϕ

��

0

0 // H1
ur(Qℓ,T1,1) // H1(Qℓ,T1,1) // H1(Iℓ,T1,1)

Frℓ=1 // 0

(5.13) shows thatϕ is injective, and a simple diagram chase yields

H1
ur(Qℓ, T ) = ker

(
H1(Qℓ, T ) −→ H1(Qℓ,T1,1)/H

1
ur(Qℓ,T1,1)

)

which is a restatement of (v). �
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Lemma 5.23.QFrℓ=1
0 = 0

Proof. As T
GQℓ = 0, it follows by the proof of [MR04, Lemma 2.1.4] thatSGQℓ = 0 for any

subquotientS of T, in particular forS = Q0. �

Proposition 5.24. The local condition at a primeℓ 6= p, given byFcan on the collection
Quot(T) is cartesian.

Proof. One verifies (D1) using Lemma 5.20, (D2) using Lemma 5.21 and [MR04, Lemma
3.7.1]. (D3) follows from Proposition 5.22(i) and Proposition 5.22(iv). �

5.2.5. Cartesian properties for the transverse condition.Recall the partial order≺ from Def-
inition 2.7 on the quadruples (resp., on the triples) of positive integers.

Proposition 5.25.For n̄0 = (r0, u0, v0, w0), supposeℓ ∈ Pn̄ is a Kolyvagin prime in the sense
of Definition 2.6. Then the transverse local condition atℓ is Cartesian on the family{Tn̄}n̄≺n̄0

(resp., on the family{Tn̄}n̄≺n̄0
∪ {T/m}).

Proof. Supposēn = (r, u, v, w) andn̄′ = (r′, u′, v′, w′) are such that̄n ≺ n̄′ ≺ n̄0. Then we
have the following commutative diagram whose rows are exactby Lemma 2.12:

0 // H1
tr(Qℓ,Tn̄′) // H1(Qℓ,Tn̄′) //

��

H1
f (Qℓ,Tn̄′) //

��

0

0 // H1
tr(Qℓ,Tn̄) // H1(Qℓ,Tn̄) // H1

f (Qℓ,Tn̄) // 0

Here the vertical arrows are induced from the natural surjection Tn̄′ ։ Tn̄. This shows that
H1

tr(Qℓ,Tn̄′) is mapped intoH1
tr(Qℓ,Tn̄). Furthermore, as theRn̄′-moduleTFrℓ=1

n̄′ (resp., the
Rn̄-moduleTFrℓ=1

n̄ ) is free of rank one, it follows by Lemma 2.12 and Proposition2.13(i) that

H1
tr(Qℓ,Tn̄′) ։ H1

tr(Qℓ,Tn̄),

i.e., the transverse local condition on the quotientsTn̄ is the same as the propagation of the
local conditionH1

tr(Qℓ,Tn̄0). This verifies (even a stronger form of) (C1).
As the quotient

H1(Qℓ,Tn̄0)/H
1
tr(Qℓ,Tn̄0)

∼= H1
f (Qℓ,Tn̄0)

is a freeRn̄0-module of rank one, (C2) follows from the proof of [MR04, Lemma 3.7.1(i)],
using the argument in loc.cit. for the multiplication by[X1], [X2], [X3] and[̟]maps separately.

One verifies (D1) and (D2) for the collection{Tn̄}n̄≺n̄0
∪ {T/m} in an identical way. It

remains to verify (D3). To settle that, consider the commutative diagram with exact rows:

0 // H1
tr(Qℓ,T/m) //

��
✤

✤

✤

H1(Qℓ,T/m) //

��

H1
f (Qℓ,T/m) //

��

0

0 // H1
tr(Qℓ,T1,1,1)[mR] // H1(Qℓ,T1,1,1)[mR] // H1

f (Qℓ,T1,1,1)[mR] // 0

As theR0-moduleH1
f (Qℓ,T1,1,1) (resp., thek-vector spaceH1

f (Qℓ,T/m)) is free of rank one
(resp., is one-dimensional), it follows that the right-most arrow is injective and by chasing the
diagram it follows that

H1
tr(Qℓ,T/m) = ker

(
H1(Qℓ,T/m) −→

H1(Qℓ,T1,1,1)

H1
tr(Qℓ,T1,1,1)

)
,
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which is exactly the statement of (D4). �

5.3. Controlling the Selmer sheaf. Assume throughout this section thatχ(T) = χ(T) = 1 in
addition to the running hypotheses. Letn̄ = (r, u, v, w) ∈ (Z>0)

4 ands̄ = (r, u, v) ∈ (Z>0)
3.

Define the quotientsRn̄ = R/(̟r, Xu
1 , X

v
2 , X

w
3 ) andRs̄ = R/(̟r, Xu, (γ − 1)v).

5.3.1. The upper bound.

Proposition 5.26.We have the following isomorphisms:

(i) H1(QΣ(Fcan)/Q, T )
∼
−→ H1(QΣ(Fcan)/Q,Tn̄)[M],

(ii) H1(QΣ(Fcan)/Q,T/m)
∼
−→ H1(QΣ(Fcan)/Q,T1,1,1)[m],

(iii) H1(QΣ(Fcan)/Q,T1,1,1)
∼
−→ H1(QΣ(Fcan)/Q,Ts̄)[(̟,X, γ − 1)],

(iv) H1
Fcan(n)

(Q, T )
∼
−→ H1

Fcan(n)
(Q,Tn̄)[M],

(v) H1
Fcan(n)

(Q,T/m)
∼
−→ H1

Fcan(n)
(Q,Ts̄)[m].

Proof. (i), (ii) and (iii) follows from the proof of [MR04, Lemma 3.5.2]; see in particular the
displayed equation (7) in loc.cit. (iv) is now verified using(i) and Propositions 5.12, 5.19 and
5.25. (v) follows from (ii), (iii) and Propositions 5.12, 5.24 and 5.25. �

Corollary 5.27. Letn ∈ Nn̄ (resp.,n ∈ Ns̄) be a core vertex for the Selmer structureFcan on
T (in the sense of Definition 5.1). Then,

(i) theRn̄-moduleHom
(
H1

Fcan(n)
(Q,Tn̄),Φ/O

)
and,

(ii) theRs̄-moduleHom
(
H1

Fcan(n)
(Q,Ts̄),Φ/O

)

are both cyclic.

Proof. By Proposition 5.26(iii), it follows that

Hom
(
H1

Fcan(n)(Q,Tn̄),Φ/O
)/
M∼= Hom

(
H1

Fcan(n)(Q, T ),Φ/O
)
.

Since thek-vector space Hom
(
H1

Fcan(n)
(Q, T ),Φ/O

)
is one-dimensional (thanks to our as-

sumption thatn is a core vertex and thatχ(T) = 1), it follows Hom
(
H1

Fcan(n)
(Q,Tn̄),Φ/O

)

is a cyclicRn̄-module by Nakayama’s Lemma. The statement forTs̄ is proved in an identical
fashion, using Proposition 5.26(iv) instead of Proposition 5.26(iii). �

Remark 5.28. There exists infinitely manyn as in the statement of Corollary 5.27 thanks to
[MR04, §4.1].

5.3.2. The lower bound.As above, let̄n = (r, u, v, w) ∈ (Z>0)
4 ands̄ = (r, u, v) ∈ (Z>0)

3.

Proposition 5.29.For n ∈ Nn̄ we have,

lengthO
(
H1

Fcan(n)(Q,Tn̄)
)
− lengthO

(
H1

Fcan(n)∗(Q,T
∗
n̄)
)
= lengthO(Rn̄).

Similarly forn ∈ Ns̄,

lengthO
(
H1

Fcan(n)(Q,Ts̄)
)
− lengthO

(
H1

Fcan(n)∗(Q,T
∗
s̄)
)
= lengthO(Rs̄).
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Proof. By [MR04, Corollary 2.3.6] it suffices to verify the assertions of the proposition only
whenn = 1.

Let Tu,v,w be as in§1.3, so thatTu,v,w is a freeO-module of rankuvw. Theorem 4.1.13 of
[MR04] (applied with theO[[GQ]]-representationT = Tu,v,w and its quotientTn̄ = Tu,v,w/̟

r)
shows that

lengthO
(
H1

Fcan
(Q,Tn̄)

)
− lengthO

(
H1

F∗
can
(Q,T∗

n̄)
)
= ruvw · χ(T) = lengthO(Rn̄),

as desired. Similarly, repeating the arguments above for the freeO-moduleTu,v (of rank
uv · dimk(R0)), we conclude with the second assertion. �

Corollary 5.30. For n as in Proposition 5.29,

(i) lengthO
(
H1

Fcan(n)
(Q,Tn̄)

)
≥ lengthO(Rn̄),

(ii) lengthO
(
H1

Fcan(n)
(Q,Ts̄)

)
≥ lengthO(Rs̄).

We are now ready to prove Theorem 5.2:

Corollary 5.31.

(i) Letn ∈ Nn̄ be a core vertex for the Selmer structureFcanon the residual representation
T . Then, theRn̄-moduleH1

Fcan(n)
(Q,Tn̄) is free of rank one andH1

Fcan(n)∗
(Q,T∗

n̄) = 0.

(ii) Let s ∈ Ns̄ ) be a core vertex forFcan onT .Then, theRs̄-moduleH1
Fcan(s)

(Q,Ts̄) is free
of rank one andH1

Fcan(s)∗
(Q,T∗

s̄) = 0.

Proof. It follows from Corollaries 5.27 and 5.30 that Hom
(
H1

Fcan(n)
(Q,Tn̄),Φ/O

)
(resp.,

Hom
(
H1

Fcan(s)
(Q,Ts̄),Φ/O

)
) is a freeRn̄-module (resp., a freeRs̄-module) of rank one. The

first halves of (i) and (ii) follow from the Gorenstein property of R andR, c.f., [Gro67, Prop.
4.9 and 4.10]. The point is thatΦ/O is an injective hull ofk and thus a dualizing module for
R andR.

The second halves (the vanishing statements of the dual Selmer groups) follow from the first
halves and Proposition 5.29. �
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[Böc01] Gebhard Böckle. On the density of modular points in universal deformation spaces.Amer. J. Math.,

123(5):985–1007, 2001.
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