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ON THE SECTION CONJECTURE OVER FUNCTION FIELDS

Mohamed Säıdi

Abstract. We investigate sections of arithmetic fundamental groups of hyperbolic

curves over function fields. As a consequence we prove that the anabelian section
conjecture of Grothendieck holds over all finitely generated fields over Q if it holds

over all number fields, under the condition of finiteness of certain Shafarevich-Tate
groups.
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§0. Introduction. Let k be a field of characteristic 0 and X a smooth, projective,
and geometrically connected hyperbolic curve (i.e., g(X) ≥ 2) over k. Let π1(X)
be the arithmetic étale fundamental group of X which sits in the following exact
sequence

1→ π1(X)→ π1(X)
pr−→ Gk

def
= Gal(k/k)→ 1,

where k is an algebraic closure of k and X = X ×k k. In this paper we investigate
continuous group-theoretic sections s : Gk → π1(X) of the projection pr : π1(X) �
Gk, which we will refer to as sections of π1(X).

Sections of π1(X) arise naturally from k-rational points of X. More precisely, a
rational point x ∈ X(k) determines a decomposition subgroup Dx ⊂ π1(X), which
is defined only modulo conjugation by the elements of π1(X), and which maps
isomorphically to Gk via the projection pr : π1(X) � Gk. We will refer to such a
section of π1(X) as point-theoretic, and say that it arises from the rational point
x ∈ X(k). We have a set-theoretic map

ϕX : X(k)→ Secπ1(X), x 7→ ϕX(x) = [sx],

where Secπ1(X) is the set of conjugacy classes of sections of π1(X), modulo conju-

gation by the elements of π1(X), and [sx] denotes the image (i.e., conjugacy class)
of a section sx associated to x ∈ X(k).

Typeset by AMS-TEX
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Definition 0.1. (i) We say that the SC (section conjecture) holds for X if the
map ϕX : X(k)→ Secπ1(X) is bijective.
(ii) We say that the SC holds over k if the SC holds for every smooth, projective,
and geometrically connected hyperbolic curve X over k (cf. (i)).

In his seminal letter to Faltings, Grothendieck formulated the following conjec-
ture (cf. [Grothendieck]).

Grothendieck’s Anabelian Section Conjecture (GASC). Assume that k is
finitely generated over the prime field Q. Then the SC holds over k.

The injectivity of the map ϕX if k is finitely generated over Q, or more generally
if k is a sub-p-adic field, is well-known (cf. [Mochizuki], Theorem C). The statement
of the GASC is thus equivalent to the surjectivity of the map ϕX , i.e., that every
section of π1(X) is point-theoretic under the above assumptions on the field k. The
GASC, even over number fields, is still wide open. More generally, one can ask:
what are all fields (of characteristic 0) for which the SC holds? In this paper we
investigate the section conjecture over function fields (of curves) in characteristic
0.

Given a smooth, projective, and connected curve C over a field k with function

field K
def
= k(C), an abelian variety A over K, define the Shafarevich-Tate group

X(A)
def
= Ker(H1(GK , A)→

∏
c∈Ccl

H1(GKc
, Ac)),

where c ∈ Ccl is a closed point, Kc is the completion of K at c, Ac
def
= A ×K Kc,

and the product is over all closed points of C.

Definition 0.2. Let k′ be a field with char(k′) = 0. Consider the following condi-
tions.
(i)(a) k′ is `-cyclotomically full for some prime integer `, meaning that the `-
cyclotomic character χ` : Gk′ → Z×` has open image.

(b) The `′-cyclotomic character χ`′ : Gk′ → Z×`′ is non-Tate in the sense of [Cadoret-
Tamagawa] (§2, Definition), meaning that the 1 dimensional `′-adic representation
Z`′(1) doesn’t appear as a sub-representation of the representation arising from the
`′-adic Tate module of an abelian variety over k′, ∀ prime integer `′.
(ii) The SC holds over k′.

(iii) Given a function field K
def
= k′(C) of a smooth, projective, and connected curve

C over k′, an abelian variety A over K, then TX(A) = 0 (cf. Notations).
(iv) Given an abelian variety A over k′, the group of k′-rational points A(k′), and
a quotient A(k′) � D, the followings hold.
(a) The natural map D → D∧ (cf. Notations) is injective.
(b) The torsion group D[N ] is finite ∀N ≥ 1, and TD = 0 (cf. Notations).
(v) Given a function field K = k′(C) as in (iii), K admits a structure of Haus-
dorff topological field so that X(K) becomes compact for any proper, smooth, and
geometrically connected hyperbolic curve over K.
(vi) Given a smooth and connected (not necessarily projective) curve C over k′ with

function field K
def
= k′(C), a finite étale morphism C̃ → C, then the followings hold.

If C̃c(k
′(c)) 6= ∅, ∀c ∈ Ccl with residue field k′(c), where C̃c is the scheme-theoretic

inverse image of c in C̃, then C̃(K) 6= ∅.
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Given a field k with char(k) = 0, we say that k strongly satisfies one of the
conditions (i), (ii), (iii), (iv), (v), and (vi) above, if this condition is satisfied by
any finite extension k′/k of k. We say that the field k satisfies the condition (?) if
k strongly satisfies each of the conditions (i), (ii), (iii), (iv), (v), and (vi).

Conditions (i), (iv), (v), and (vi) above are satisfied by finitely generated fields
over Q. In this case, (i)(b) follows from the theory of weights, (iv) follows from
the Mordell-Weil and Lang-Néron Theorems, (v) follows (for the discrete topology)
from Mordell’s conjecture: Faltings’ Theorem and Néron specialisation Theorem,
and (vi) follows from the Hilbertian property (cf. Lemma 4.1.5).

Definition 0.3. Let k be a field with char(k) = 0, and K = k(C) the function field
of a smooth, projective, and connected curve C over k. Let X be a proper, smooth,
and geometrically connected hyperbolic curve over K. We say that X satisfies the
condition (??) if the followings hold.
(i) X(K) 6= ∅.
(ii) X admits a stable model X → C over C such that for each closed point c ∈ Ccl

with Xc
def
= X ×C Spec k(c) singular it holds that all the irreducible components of

Xc are smooth, geometrically connected, hyperbolic, and the singular points of Xc
are all k(c)-rational.

Our main results in this paper are the following.

Theorem A. Let k be a field with char(k) = 0, and K = k(C) the function field of
a smooth, projective, and connected curve C over k. Assume that k strongly satisfies
the conditions (i), (ii), (iv), (v), and (vi) in Definition 0.2. Let X be a proper

smooth and geometrically connected hyperbolic curve over K, and J
def
= Pic0X/K

its jacobian. Assume that X satisfies the condition (??) (cf. Definition 0.3), and
TX(J) = 0. then the SC holds for X.

Theorem B. Let k be a field with char(k) = 0, and K = k(C) the function field
of a smooth and connected curve C over k. Assume that k satisfies the condition
(?) (cf. Definition 0.2). Let L/K be a finite extension. Then the SC holds over L,
i.e., K strongly satisfies the condition (ii).

In the case of finitely generated fields one obtains immediately from Theorem A,
and Theorem B; respectively, the following corollaries.

Theorem A1. Assume that the SC holds over all finitely generated fields over Q
of transcendence degree i ≥ 0. Let k be a field with tr degQ k = i, and K = k(C)
the function field of a smooth projective and connected curve C over k. Let X be

a proper, smooth, and geometrically connected hyperbolic curve over K, and J
def
=

Pic0X/K its jacobian. Assume that X satisfies the condition (??), and TX(J) = 0.
then the SC holds for X.

Theorem B1. Assume that the SC holds over all number fields (i.e., all finite
extensions of Q) and that the condition (iii) (in Definition 0.2) holds for any field
k′ which is finitely generated over Q. Then the SC holds over all finitely generated
fields over Q.

Our method to prove Theorem A relies on a local-global approach and follows
from a thorough investigation of sections of arithmetic fundamental groups of hy-
perbolic curves over local fields of equal characteristic 0, and over function fields
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of curves in characteristic 0. In §1 we establish some basic facts on geometrically
abelian admissible fundamental groups and their sections. In §2 we investigate (un-
der the assumption that condition (i) holds) sections of arithmetic fundamental
groups of curves over local fields of equal characteristic 0. We observe that the
section conjecture SC doesn’t hold over local fields of equal characteristic 0 (cf.
Lemma 2.1.3 and Proposition 2.3.1). We discuss those sections which are point-
theoretic in the case of stable curves (cf. Lemma 2.1.4 and Lemma 2.2.2). In §3 we
investigate sections of arithmetic fundamental groups of curves over function fields
(of transcendence degree 1), and establish some of the basic techniques in order
to investigate their point-theoreticity via a local-global approach. In §4 we prove
Theorem A and explain how Theorem B can be derived from Theorem A.

Theorems A and B concern sections of arithmetic fundamental groups of proper
curves over function fields. One can prove similar results for non-cuspidal sections
of arithmetic fundamental groups of affine curves over function fields.

Acknowledgment. I would like to thank Akio Tamagawa for several discussions
we had on the topic of this paper.

Notations. Given a scheme Y over a field L with algebraic closure L we write

YL
def
= Y ×SpecL SpecL for the geometric fibre of Y . Given a scheme C, a field L,

Y → C and SpecL→ C morphisms of schemes, we write YL
def
= Y ×C SpecL. For

an algebraic group G over a field L of characteristic 0, with algebraic closure L, we

write TG
def
= lim←−

N≥1
G[N ](L) for the Tate module of G, where G[N ]

def
= Ker(G

[N ]−−→ G)

is the kernel of the homomorphism of multiplication by N . For a profinite group H
we write Hab for the maximal abelian quotient of H. For an abelian group D we

write D∧
def
= lim←−

N≥1
D/ND, where ND

def
= {N.a | a ∈ D}. Given an integer N ≥ 1, we

write D[N ]
def
= {b ∈ D | N.b = 0}, and TD

def
= lim←−

N≥1
D[N ] for the Tate module of D.

§1 Geometrically abelian admissible fundamental groups. Both in 1.1, and
1.2, K will denote a field of characteristic 0.

1.1. Let 0 → H → B → A → 0 be a semi-abelian scheme over K, where A →
SpecK is an abelian variety and H = Grm,K is a (split) torus over K of rank r ≥ 0.
Let η be a geometric point of B with value in the zero section, which induces a
geometric point η of A and H. Then η determines an algebraic closure K of K.
Write η for the geometric point of BK , AK , and HK ; respectively, which is induced
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by η. We have a commutative diagram of exact sequences

1 1y y
π1(HK , η) π1(HK , η)y y

1 −−−−→ π1(BK , η) −−−−→ π1(B, η) −−−−→ GK −−−−→ 1y y id

y
1 −−−−→ π1(AK , η) −−−−→ π1(A, η) −−−−→ GK −−−−→ 1y y

1 1

where GK
def
= Gal(K/K) (cf. [Grothendieck1], Exposé IX, Théorème 6.1, for the

exactness of the horizontal sequences. One verifies easily the exactness of the
vertical sequences). Moreover, there is a natural identification of GK-modules

π1(BK , η)
∼→ TB, where TB is the Tate module of B. Thus, we have an exact

sequence of GK-modules 0 → TH → TB → TA → 0. Further, there is a natural
identification of GK-modules TH

∼→ Ẑ(1)r.

The Kummer exact sequences 0 → B[N ] → B
N−→ B → 0, ∀ N ≥ 1, induce a

natural exact sequence; the so called Kummer exact sequence

(1.1) 0→ B(K)∧ → H1(GK , TB)→ TH1(GK , B)→ 0.

We will identify B(K)∧ with its image in H1(GK , TB) via the above Kummer map
B(K)∧ → H1(GK , TB).

Lemma 1.1.1. We have a commutative diagram of exact sequences

0 0 0y y y
H(K)∧ −−−−→ B(K)∧ −−−−→ A(K)∧ −−−−→ 0y y y

H0(GK , TA) −−−−→ H1(GK , TH) −−−−→ H1(GK , TB) −−−−→ H1(GK , TA)y y y
0 −−−−→ TH1(GK , B) −−−−→ TH1(GK , A)y y

0 0

where the vertical sequences are the Kummer exact sequences.

Proof. Follows easily from the fact that H1(GK ,Gm) = 0, and the exact sequence
0→ H(K)→ B(K)→ A(K)→ 0 of GK-modules. �
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Definition 1.1.2. Let η ∈ H1(GK , TB).
(i) We say that η is pro-geometric if η lies in the subgroup B(K)∧ of H1(GK , TB)
(cf. sequence (1.1)).
(ii) We say that η is geometric if η is in the image of the composite homomorphism
B(K)→ B(K)∧ → H1(GK , TB).

1.2. Let X → SpecK be a proper, smooth, and geometrically connected hyperbolic
curve over K. Let ξ be a geometric point of X with value in its generic point. Thus,
ξ determines an algebraic closure K of K. Write ξ for the geometric point of XK

which is induced by ξ. We have a natural exact sequence of étale fundamental
groups

(1.2) 1→ π1(XK , ξ)→ π1(X, ξ)
pr−→ GK → 1,

whereGK
def
= Gal(K/K). Write π1(X, ξ)(ab)

def
= π1(X, ξ)/Ker(π1(XK , ξ) � π1(XK , ξ)

ab).

We will refer to π1(X, ξ)(ab) as the geometrically abelian quotient of π1(X, ξ). As-

sume that X(K) 6= ∅. Write J
def
= Pic0X/K for the jacobian variety of X, and

ι : X → J for the embedding which maps a rational point x0 ∈ X(K) to the zero
section of J . Then ι induces a commutative diagram of exact sequences

(1.3)

1 −−−−→ π1(XK , ξ)
ab −−−−→ π1(X, ξ)(ab) −−−−→ GK −−−−→ 1y y id

y
1 −−−−→ π1(JK , ξ) −−−−→ π1(J, ξ) −−−−→ GK −−−−→ 1

where the vertical maps are isomorphisms, hence a natural identification of GK-
modules π1(XK , ξ)

ab ∼→ π1(JK , ξ)
∼→ TJ . Let

s : GK → π1(X, ξ)

be a section of π1(X, ξ). Then s induces a section

sab : GK → π1(X, ξ)(ab)

of the projection π1(X, ξ)(ab) � GK . The set of splittings of the upper sequence in
diagram (1.3) is, up to conjugation by the elements of π1(XK , ξ)

ab, a torsor under

the Galois cohomology group H1(GK , π1(XK , ξ)
ab)

∼→ H1(GK , TJ). Fix a base
point of the torsor of splittings of this exact sequence; for example the splitting
arising from the zero section of J , i.e., the splitting arising from the rational point
x0 ∈ X(K) (cf. above discussion). Then the above (conjugacy class of the) section
sab corresponds to an element

sab ∈ H1(GK , TJ).

We will refer to sab as the abelian portion of the section s.
Recall the Kummer exact sequence:

(1.4) 0→ J(K)∧ → H1(GK , TJ)→ TH1(GK , J)→ 0.

Note that there exist natural maps X(K)
ι−→ J(K)→ J(K)∧, where for x ∈ X(K)

the image ι(x) is the class [x− x0] of the degree 0 divisor x− x0.
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Definition 1.2.1. Let η ∈ H1(GK , TJ). We say that η is point-theoretic if η is in

the image of the composite map X(K)
ι−→ J(K)→ J(K)∧ → H1(GK , TJ).

The following Lemma follows easily from the various definitions.

Lemma 1.2.2. Suppose that the section s = sx, x ∈ X(K), is point-theoretic (cf.
§0). Then sab ∈ H1(GK , TJ) is point-theoretic (cf. Definition 1.2.1), and sab is

the image of x via the composite map X(K)
ι−→ J(K) → J(K)∧ → H1(GK , TJ).

In particular, sab is pro-geometric and geometric (cf. Definition 1.1.2).

1.3. In this section k is a field of characteristic 0, K is a complete discrete valuation
field with residue field k, and OK the valuation ring of K. Let X → SpecOK be
a proper, stable, and geometrically connected (relative) curve over OK , with XK

smooth. Assume that the irreducible components {Xi}i∈I of Xk =
∑
i∈I Xi are

smooth, geometrically connected, and the singular points {xj}j∈J of Xk are all k-
rational. Let ξ (resp. ξ′) be a geometric point of X with value in its generic point
(resp. with value in the generic point of some irreducible component Xi0 of Xk).
Thus, ξ (resp. ξ′) determines an algebraic closure K (resp. k) of K (resp. k). We
have exact sequences of arithmetic ”admissible” fundamental groups

1→ π1(XK , ξ)→ π1(XK , ξ)→ GK → 1,

and

1→ π1(Xk, ξ
′
)adm → π1(Xk, ξ

′)adm → GK → 1,

where GK
def
= Gal(K/K), and the geometric point ξ (resp. ξ

′
) is naturally induced

by ξ (resp. ξ′). Here, the superscript ”adm” means admissible fundamental group
(cf. [Mochizuki1], §2, for more details on the definition of πadm

1 ). Moreover, we
have a commutative diagram of exact sequences

(1.5)

1 −−−−→ π1(XK , ξ) −−−−→ π1(XK , ξ) −−−−→ GK −−−−→ 1y Sp

y y
1 −−−−→ π1(Xk, ξ

′
)adm −−−−→ π1(Xk, ξ

′)adm −−−−→ GK −−−−→ 1

where the middle and left vertical maps are continuous homomorphisms of special-
isation, which are isomorphisms since char(k) = 0, and are defined up to inner
conjugation (cf. loc. cit.).

Let J
def
= Pic0XK/K be the jacobian of XK . Consider the exact sequence of K-

algebraic groups

0→ Λ→ B → J → 0,

where B � J is the rigid analytic uniformisation of J , 0 → H → B → A → 0
is the generic fibre of an OK-semi-abelian scheme 0 → H → B → A → 0, where
A is an OK-abelian scheme, H ∼→ Grm,OK

is a split OK-torus of rank r ≥ 0, and

Λ ⊂ B(K) is a K-lattice of rank r (cf. [Fresnel-Van der Put], 6.7).

Lemma 1.3.1. The exact sequence 0 → Λ → B → J → 0 induces an exact

sequence of GK-modules 0 → TB → TJ → Λ∧ → 0, where Λ∧
def
= Λ ⊗Z Ẑ is a

trivial GK-module.
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Proof. Follows easily from the exact sequence 0 → Λ → B(K) → J(K) → 0 of
GK-modules, and the fact that Λ is torsion free. �

Thus, we have a commutative diagram of exact sequences

(1.6)

0 0x x
0 −−−−→ TA −−−−→ TJ/TH −−−−→ Λ∧ −−−−→ 0x x id

x
0 −−−−→ TB −−−−→ TJ −−−−→ Λ∧ −−−−→ 0x x

TH THx x
0 0

The fundamental group π1(Xk, ξ̄
′) is the maximal quotient of π1(Xk, ξ̄

′)adm

which classifies admissible covers of Xk which are étale above Xk, let π1(XK , ξ̄)
et be

the corresponding quotient of π1(XK , ξ̄) (cf. diagram (1.5)). Write π1(Xk, ξ̄
′)cs for

the maximal quotient of π1(Xk, ξ̄
′) which classifies finite étale covers of Xk which

arise from finite topological coverings of the intersection graph associated to Xk

(the quotient π1(Xk, ξ̄
′)cs factorizes through π1(Xk, ξ̄

′)ab), and π1(XK , ξ̄)
cs for the

corresponding quotient of π1(XK , ξ̄)
et (which is in fact a quotient of π1(XK , ξ̄)

et,ab).

Lemma 1.3.2. Under the identification π1(XK , ξ̄)
ab ∼→ TJ , the quotient π1(XK , ξ̄)

ab �
π1(XK , ξ̄)

cs is identified with the quotient TJ � Λ∧, and the quotient π1(XK , ξ̄)
ab �

π1(XK , ξ̄)
et,ab is identified with the quotient TJ � TJ/TH. Thus, TH

∼→ Ẑ(1)r

is naturally identified with the subgroup of π1(Xk, ξ̄
′)adm,ab which is generated by

the inertia subgroups at the double points of Xk. Moreover, TA is naturally iden-

tified (as a GK-module) with
∏
i∈I TJi where Ji

def
= Pic0Xi/k is the jacobian of the

irreducible component Xi of Xk (GK acts on TJi via its quotient GK � Gk
def
=

Gal(k/k)).

Proof. Follows easily from the various definitions (cf. [Fresnel-Van der Put], 6.7.4). �

§2. Sections of arithmetic fundamental groups of curves over local fields
of equal characteristic 0. In this section K is a complete discrete valuation field
of equal characteristic 0, OK its valuation ring, and k its residue field. We use
the notations introduced in §0 and §1. Moreover, we assume that k satisfies the
condition (i)(b) in Definition 0.2, unless we specify otherwise.

Both in 2.1 and 2.2 we will use the notations and assumptions in 1.3. Thus, X
is a proper, stable, and geometrically connected OK-curve with XK smooth as in
1.3. We assume that XK is hyperbolic, i.e., g(XK) ≥ 2. We have a natural exact

sequence 1 → IK → GK → Gk
def
= Gal(k/k) → 1 where IK is the inertia group.

Moreover, there exists a natural isomorphism IK
∼→ Ẑ(1) where the ”(1)” is a Tate

twist.
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2.1. The good reduction case. Assume that X is smooth. Recall the notations
in 1.3. In this case we have a commutative diagram of exact sequence

(2.1)

1 −−−−→ π1(XK , ξ̄) −−−−→ π1(XK , ξ) −−−−→ GK −−−−→ 1y Sp

y y
1 −−−−→ π1(Xk, ξ̄

′) −−−−→ π1(Xk, ξ
′) −−−−→ Gk −−−−→ 1

where the middle vertical map is the surjective homomorphism of specialisation
(defined up to conjugation, cf. [Grothendieck1], Exposé X, §2), the left vertical map
is an isomorphism (since char(k) = 0), and the right vertical map is a surjection.

Lemma 2.1.1. The followings hold.
(i) The right square in diagram (2.1) is cartesian.

(ii) The projection π1(XK , ξ) � GK induces a natural isomorphism Ker(Sp)
∼→ IK .

Proof. The proof of (i) is similar to the proof of Lemma 3.3.2 in [Säıdi]. Assertion
(ii) is clear in light of (i). �

Let
s : GK → π1(XK , ξ)

be a section of π1(XK , ξ) which induces, by composing with the specialisation

homomorphism Sp : π1(XK , ξ) → π1(Xk, ξ
′), a continuous homomorphism s′

def
=

Sp ◦s : GK → π1(Xk, ξ
′).

Lemma 2.1.2. The equality Ker(s′) = IK holds. In particular, s′ factorizes
through Gk and induces a section s̃ : Gk → π1(Xk, ξ

′) of π1(Xk, ξ
′).

Proof. It suffices to show that the image s′(IK) of the inertia subgroup in π1(Xk, ξ
′)

is trivial. This image is contained in π1(Xk, ξ̄
′) by diagram (2.1). A standard

(well-known) weight argument, using the fact that k satisfies the condition (i)(b)
in Definition 0.2, shows that this image must be trivial (cf. [Hoshi-Mochizuki],
Lemma 1.6). �

Assume that the section s is point-theoretic, i.e., s = sx : GK → π1(XK , ξ) is
associated to a rational point x ∈ X(K) (cf. §0). Let x ∈ X(k) be the specialisation
of the point x. Then one verifies easily that the section s̃ : Gk → π1(Xk, ξ

′) of
π1(Xk, ξ

′), which is induced by s (cf. Lemma 2.1.2), is point-theoretic and arises
from the k-rational point x, i.e., [s̃] = [sx] holds in Secπ1(Xk,ξ′).

Lemma 2.1.3. We use the same notations as above. Let x′ ∈ X(K) be a rational
point which specialises in x. Then [sx] = [sx′ ]. In particular, the natural map
ϕX : X(K)→ Secπ1(XK ,ξ) (cf. §0) is not injective.

Proof. Indeed, it follows immediately from lemma 2.1.1(i) and Lemma 2.1.2 that a
section s : GK → π1(XK , ξ) of π1(XK , ξ) is uniquely determined by the continuous

homomorphism s′
def
= Sp ◦s : GK � GK/IK → π1(Xk, ξ

′) that it induces. In
particular, all rational points x′ ∈ X(K) which specialise in x (there are infinitely
many such points x′) give rise to the same conjugacy class of sections of π1(XK , ξ),
from which the second assertion follows. �

Conversely we have the following.
9



Lemma 2.1.4. Assume that the section s̃ : Gk → π1(Xk, ξ
′) of π1(Xk, ξ

′) which is
induced by s (cf. Lemma 2.1.2) is point-theoretic, i.e., s̃ = sx for some k-rational
point x ∈ X(k). Then the section s is point-theoretic, i.e., s = sx for some (non
unique) x ∈ X(K) which specialises in the point x.

Proof. Let x ∈ X(K) be a rational point which specialises in x (such a point x
exists since X is smooth). Then [s] = [sx] holds by the same argument used in the
proof of Lemma 2.1.3. �

2.2. The bad reduction case. In this section, and in addition to our assump-
tions, we will assume that k satisfies the condition (iv)(a) in Definition 0.2.

Next, suppose that Xk is singular. Recall that the irreducible components
{Xi}i∈I of Xk =

∑
i∈I Xi are smooth, geometrically connected, and the singular

points {xj}j∈J of Xk are all k-rational (cf. 1.3). Let Xi be an irreducible com-
ponent of Xk and DXi

⊂ π1(Xk, ξ
′)adm a decomposition group associated to Xi.

Thus, DXi
is the decomposition group of an irreducible component of the special

fibre of a universal admissible cover X̃ of X which lies above the component Xi,
and DXi

is only defined up to conjugation (cf. [Mochizuki1], §4). Let Xi be the
(unique, since Xi is geometrically connected) irreducible component of Xk above
Xi. Then we have a commutative diagram

(2.2)

1 −−−−→ ∆Xi
−−−−→ DXi −−−−→ GK −−−−→ 1y y id

y
1 −−−−→ π1(Xi, ∗)adm −−−−→ π1(Xi, ∗)adm −−−−→ GK −−−−→ 1y y y
1 −−−−→ π1(U i, ∗)tame −−−−→ π1(Ui, ∗)tame −−−−→ Gk −−−−→ 1

Here, ∆Xi
is defined so that the upper horizontal sequence is exact, ∗ denote

base points, and ”π1( )adm” denote the admissible fundamental group of Xi, and
Xi, which are marked by the cusps, i.e., the double points of Xk (resp. Xk) lying

on Xi (resp. Xi), and Ui
def
= Xi \ {cusps}, U i

def
= Xi \ {cusps}, respectively. The

superscript ”tame” means tame fundamental group. The left and middle upper
vertical maps are natural isomorphisms (cf. loc. cit.), and the lower right square is
cartesian. Note that π1(U i, ∗)tame = π1(U i, ∗), and π1(Ui, ∗)tame = π1(Ui, ∗), since
char(k) = 0.

Let

s : GK → π1(XK , ξ)

be a section of π1(XK , ξ), which induces a section s′
def
= Sp ◦s : GK → π1(Xk, ξ

′)adm

of the projection π1(Xk, ξ
′)adm � GK (cf. diagram (1.5)).

Suppose that X is regular and s is point-theoretic, i.e., s = sx arises from a
K-rational point x ∈ X(K) (cf. §0). Then the K-rational point x specialises in
a k-rational point x ∈ X(k) which is a smooth point of Xk and lies on a unique
irreducible component Xi of Xk (cf. [Liu], Corollary 9.1.32). Moreover, it follows
from the various definitions that s(GK) ⊂ DXi

⊂ π1(Xk, ξ
′)adm holds, where DXi

is a decomposition group associated to Xi (cf. above discussion). In particular,
10



the section s = sx induces a section si : GK → π1(Xi, ∗)adm of the projection
π1(Xi, ∗)adm � GK , and a continuous homomorphism s̃i : GK → π1(Ui, ∗)tame (cf.
diagram (2.2)).

Lemma 2.2.1. The followings hold.
(i) The section si is unramified, i.e., s̃i(IK) = {1}. In particular, s̃i induces a
section si : Gk → π1(Ui, ∗)tame of π1(Ui, ∗)tame.
(ii) The section si : Gk → π1(Ui, ∗)tame in (i) is point-theoretic and arises from
the k-rational point x ∈ Ui(k). In particular, the section si is non-cuspidal, i.e.,
si(Gk) is not contained in a cuspidal decomposition group associated to a cusp. �

Proof. Note that Ui is hyperbolic since X is stable. Assertion (i) follows from the
assumptions (i)(b) and (iv)(a). First, assumption (iv)(a) implies that the closed
points of Xi are uniquely determined by their corresponding (conjugacy classes
of) decomposition groups in π1(Ui, ∗)tame, such a decomposition group is self-
normalising in π1(Ui, ∗)tame, and no non-cuspidal decomposition group is contained
in a cuspidal decomposition group (cf. the arguments used in the proof of Theorem
1.3 in [Mochizuki2], and [Tamagawa], Proposition 2.8(i)). Second, if s̃i(IK) is non
trivial then one shows, using the condition (i)(b), that s̃i(IK) ⊆ π1(U i, ∗)tame would
be a non-trivial (necessarily torsion free) procyclic group contained in an inertia
group Iy at a cusp y ∈ Xi \ Ui (cf. [Hoshi-Mochizuki], Lemma 1.6), hence s̃i(GK)
will be contained in a decomposition group associated to y, and the latter would
contain a decomposition group associated to x which is a contradiction (cf. above
discussion). Assertion (ii) follows easily. �

Conversely, suppose that the section s satisfies s(GK) ⊂ DXi
, i.e., the image

of s is contained in a decomposition group associated to an irreducible component
Xi of Xs. Thus, s induces a section si : GK → π1(Xi, ∗)adm of the projection
π1(Xi, ∗)adm � GK , which induces a homomorphism s̃i : GK → π1(Ui, ∗)tame (cf.
diagram (2.2)). Assume further that si is unramified, i.e., s̃i(IK) = {1}. Then s̃i
induces naturally a section si : Gk → π1(Ui, ∗)tame of π1(Ui, ∗)tame (cf. diagram
(2.2)).

Lemma 2.2.2. With the same notations/assumptions as above suppose that the
section si : Gk → π1(Ui, ∗)tame is point-theoretic and arises from a k-rational point
x ∈ Ui(k). Then the section s is point-theoretic, and s arises from a (non unique)
rational point x ∈ X(K) which specialises in the point x ∈ Ui(k).

Proof. Similar to the proof of Lemma 2.1.4. �

2.3. In what follows we provide examples of sections of arithmetic fundamental
groups of hyperbolic curves over local fields of equal characteristic 0 which are not
point-theoretic. We use the notations and assumptions in 2.2.

Let X be a regular and stable OK-curve satisfying the conditions in 2.2. Let
xj ∈ X(k) be a k-rational double point of Xk and write Dxj ⊂ π1(Xk, ξ

′)adm for
the decomposition group of xj . Thus, Dxj

is the decomposition group of a closed

point of the special fibre of a universal admissible cover X̃ of X which lies above
the double point xj , and Dxj

is only defined up to conjugation (cf. [Mochizuki1], §5
and §6). We have an exact sequence 1→ ∆xj

→ Dxj
→ GK → 1, where ∆xj

is the
kernel of the projection Dxj � GK . Moreover, there exists a natural isomorphism

∆xj

∼→ Ẑ(1) (cf. loc. cit., the discussion in page 22). The profinite group Dxj
is

11



isomorphic to the admissible fundamental group πadm
1 (X ) of X def

= Spec OK [[S,T ]]
(ST−π) ,

where π is a uniformiser of OK (cf. loc. cit.). The above exact sequence splits.
Indeed, the (admissible) covers YN → X defined generically by extracting an N-th
root of S with YN normal, for all integers N ≥ 1, define a splitting of this sequence.
Such a splitting induces naturally a section sxj

: GK → π1(XK , ξ)
∼→ π1(Xk, ξ

′)adm

of π1(XK , ξ). The section sxj is not point-theoretic. Indeed, if sxj arises from a
rational point x ∈ X(K), then x specialises in a smooth non-cuspidal point of
an irreducible component Xi (cf. Lemma 2.2.1 and the discussion before) which
is necessarily adjacent to an irreducible component Xi′ passing through xj (cf.
[Hoshi-Mochizuki1], Corollary 1.15(iv)). Let si : Gk → π1(Ui, ∗)tame be the section
of π1(Ui, ∗)tame which is induced by sxj

(cf. Lemma 2.2.1.). This section would
then be cuspidal which contradicts Lemma 2.2.1(ii).

Proposition 2.3.1. Let K be a complete discrete valuation field with residue field
k of characteristic 0. Assume that k satisfies the conditions (i)(b) and (iv)(a)
(cf. Definition 0.2). Then there exists a proper, smooth, geometrically connected
hyperbolic curve C over K, and a section s : GK → π1(C, ∗) of π1(C, ∗) which is
not point-theoretic.

Proof. Write OK for the valuation ring of K. Using formal patching techniques one
can construct a proper, stable, and regular OK-curve X satisfying the assumptions

in 2.2. In particular, C
def
= XK is smooth, hyperbolic, geometrically connected, and

the double points of Xk are k-rational (compare with [Säıdi1], Lemma 6.3). Then
as in the above discussion (before Proposition 2.3.1) let sxj

: GK → π1(C, ∗) be a
section arising from a double point xj of the special fibre Xs of X. Then sxj

is not
point-theoretic as explained above. �

Despite the somehow ”negative” result in Proposition 2.3.1 showing the existence
of non point-theoretic sections we prove the following ”positive” result which will
be used in the proof of Theorem A.

Proposition 2.3.2. Let K be a complete discrete valuation field with residue field k
of characteristic 0. Assume that k satisfies the conditions (i) and (ii) in Definition
0.2. Let C be a proper, smooth, and geometrically connected hyperbolic K-curve,
and s : GK → π1(C, ∗) a section of π1(C, ∗). Assume that C(K) 6= ∅, and C admits
a stable model X over the ring of integers OK of K which satisfies the conditions
in 2.2 and such that the irreducible components {Xi}i∈I of Xk are all hyperbolic.
Then the abelian portion sab of s is pro-geometric (cf. Definition 1.1.2(i) and the
discussion in 1.2).

Proof. First, if C has good reduction over OK , i.e., if X is smooth, then the as-
sertion follows immediately from Lemma 2.1.4 and Lemma 1.2.2. Next, we assume

that Xk =
∑
i∈I Xi is singular. Let X̃ → X be the pro-universal admissible cover

of X. Then the following holds (cf. [Mochizuki-Hoshi1], Corollary 1.15(iii)): the set

of irreducible components X̃i0 ⊂ X̃k such that s(GK) ⊆ DX̃i0
is nonempty. (Here

one uses condition (i)(a) which implies that GK is `-cyclotomically full for some
prime integer `.) The quotient π1(CK , ∗)cs of π1(CK , ∗) (cf. §1, the discussion
before Lemma 1.3.2) is a quotient of π1(C, ∗) (since it is naturally a quotient of
π1(X, ∗)), and is naturally identified with Λ∧ (cf. Lemma 1.3.2 and the notations
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therein). We have a commutative diagram of exact sequence

1 1y y
1 −−−−→ ∆C −−−−→ ΠC −−−−→ GK −−−−→ 1y y y
1 −−−−→ π1(CK , ∗) −−−−→ π1(C, ∗) −−−−→ GK −−−−→ 1y y

π1(CK , ∗)cs π1(CK , ∗)csy y
1 1

where ∆C and ΠC are defined so that the vertical sequences are exact. The image of

the decomposition group of an irreducible component of X̃k in π1(CK , ∗)cs is trivial
(by the very definition of π1(CK , ∗)cs). Thus, the image s(GK) of the section s
maps trivially to π1(CK , ∗)cs via the lower right vertical map in the above diagram
(by the above mentioned result), and s induces a section s : GK → ΠC of the

projection ΠC � GK . Write Xcs → X for the sub-cover of X̃ → X corresponding
to the quotient π1(C, ∗) � π1(CK , ∗)cs, and Ccs → C for the corresponding cover
on the generic fibres.

We have a commutative diagram of exact sequences

1 −−−−→ ∆C −−−−→ ΠC −−−−→ GK −−−−→ 1y y id

y
1 −−−−→ ∆et

C −−−−→ Πet
C −−−−→ GK −−−−→ 1

where Πet
C is the maximal quotient of ΠC which corresponds to étale covers of Ccs

which extend to étale covers above Xcs, and ∆et
C (which is defined so that the lower

sequence is exact) is naturally identified with the free product ?i∈Iπ1(Xi,k, ∗). Thus,

Πet
C is identified with the fibre product ?i∈I(π1(Xi, ∗)×Gk

GK) over GK . Moreover,
s induces a section set : GK → Πet

C of the projection Πet
C � GK , which corresponds

to a family of sections si : Gk → π1(Xi, ∗) of π1(Xi, ∗), ∀i ∈ I (cf. Lemma 2.1.2).
The sections si arise from (uniquely determined) rational points xi ∈ Xi(k) by our
assumption that k satisfies (ii), ∀i ∈ I. Now, recall the commutative diagram (1.6)
in §1. The exact sequence of GK-modules 0 → TB → TJ → Λ∧ → 0 (where

J
def
= Pic0C/K (cf. 1.2 and the discussion before Lemma 1.3.1)) induces an exact

cohomology sequence Λ∧ → H1(GK , TB) → H1(GK , TJ) → Hom(GK ,Λ
∧). The

image of sab ∈ H1(GK , TJ) in Hom(GK ,Λ
∧) is trivial (cf. above discussion), hence

sab is the image of an element η ∈ H1(GK , TB). The image of η in H1(GK , TA)
∼→∏

i∈I H
1(GK , TJi) (cf. the diagram in Lemma 1.1.1) coincides with (s̄abi )i∈I ∈∏

i∈I H
1(Gk, TJi) ↪→

∏
i∈I H

1(GK , TJi), where sabi ∈ H1(Gk, TJi) is the abelian
portion of the section si : Gk → π1(Xi, ∗) which is point-theoretic ∀i ∈ I (where
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Ji
def
= Pic0Xi/k, cf. Lemma 1.3.2 and Lemma 1.2.2). (Indeed, this image coincides

with the abelian portion of the section set : GK → Πet
C of the projection Πet

C � GK
which is induced by s.) In particular, the image of η in H1(GK , A) is pro-geometric,

i.e., lies in A(K)∧
∼→

∏
i∈I Ji(k)∧ (cf. Lemma 3.3 for this latter isomorphism). It

follows then immediately from the diagram in Lemma 1.1.1 that η is pro-geometric,
i.e., lies in B(K)∧. From this we deduce that sab lies in the image of B(K)∧

in H1(GK , TJ) via the above map H1(GK , TB) → H1(GK , TJ), this image is
contained in J(K)∧. �

§3. Sections of arithmetic fundamental groups of curves over function
fields in characteristic 0. We use the notations introduced in §1 and §2. In this
section k is a field of characteristic 0 which strongly satisfies the condition (i)(b)
in Definition 0.2. Let C be a projective, smooth, connected algebraic curve over k,

and K
def
= k(C) the function field of C.

Let X → SpecK be a proper, smooth, and geometrically connected hyperbolic
curve over K. Consider a model X of X over C, i.e., X → C is a flat and proper
morphism with XK = X. Let U ⊆ C be the largest nonempty open subscheme of

C such that the fibres of X over U are smooth, and XU
def
= X ×C U . Let c ∈ U cl be

a closed point and Xc
def
= Xk(c) the fibre of X at c. Let ξ (resp. ξc) be a geometric

point of X with value in its generic point (resp. with value in the generic point of

Xc). Then ξ (resp. ξc) determines an algebraic closure K (resp. k(c)) of K (resp.
of the residue field k(c) of C at c).

Lemma 3.1. For c ∈ U cl, there exists a commutative diagram

(3.1)

1 −−−−→ π1(XK , ξ) −−−−→ π1(X, ξ) −−−−→ GK −−−−→ 1

id

y y y
1 −−−−→ π1(XK , ξ) −−−−→ π1(XU , ξ) −−−−→ π1(U, ξ) −−−−→ 1x x x
1 −−−−→ π1(X

k(c)
, ξc) −−−−→ π1(Xc, ξc) −−−−→ Gk(c) −−−−→ 1

where GK = Gal(K/K), Gk(c) = Gal(k(c)/k(c)), ξ (resp. ξc) are geometric points
induced by ξ (resp. ξc), the middle and right upper vertical maps are natural con-
tinuous surjective homomorphisms, the middle lower vertical map is defined up to
conjugation, the right lower vertical map is injective, and both squares on the right
are cartesian.

Proof. Follows from the functoriality of fundamental groups and the homotopy
exact sequence for π1 (cf. [Grothendieck1], Éxposé XIII, §4). �

Let

s : GK → π1(X, ξ)

be a section of π1(X, ξ).

Lemma 3.2. There exists a section sU : π1(U, ξ) → π1(XU , ξ) of the projection
π1(XU , ξ) � π1(U, ξ) which extends the section s. Moreover, for each closed point
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c ∈ U cl the section sU restricts to a section sc : Gk(c) → π1(Xc, ξc) of π1(Xc, ξc),
and we have a commutative diagram

(3.2)

GK
s−−−−→ π1(X, ξ)y y

π1(U, ξ)
sU−−−−→ π1(XU , ξ)x x

Gk(c)
sc−−−−→ π1(Xc, ξc)

where the vertical maps are the ones in diagram (3.1).

Proof. Follows easily from Lemma 2.1.2 and Lemma 3.1. �

Next, for a closed point c ∈ Ccl write Kc for the completion of K at c, Oc the ring

of integers of Kc, and X̂c
def
= X ×C SpecOc. Note that X̂c ×SpecOc

Spec k(c) = Xc,
and X̂c ×Spec(Oc) SpecKc = XKc . Let ηc be a geometric point of X̂c with value in

its generic point which determines an algebraic closure Kc of Kc.
Let c ∈ U cl. There exists a commutative diagram of exact sequences

(3.3)

π1(X̂c, ηc) −−−−→ π1(Oc, ηc) −−−−→ 1y y
π1(X , ξ) −−−−→ π1(U, ξ) −−−−→ 1x x
π1(Xc, ξc) −−−−→ Gk(c) −−−−→ 1

where the upper vertical maps are defined up to conjugation (the lower vertical
maps are as in diagram (3.1)), as well as a commutative digram

(3.4)

π1(Xc, ξc) −−−−→ π1(X̂c, ηc)y y
π1(X , ξ) id−−−−→ π1(X , ξ)

where the vertical maps are as in diagram (3.3), the upper horizontal map is an
isomorphism, and which commutes with the various projections to Gk(c), π1(Oc, ηc),
and π1(U, ξ); respectively, i.e., commutes with the induced commutative diagram

Gk(c) −−−−→ π1(Oc, ηc)y y
π1(U, ξ)

id−−−−→ π1(U, ξ)

Moreover, the squares in diagram (3.3) are cartesian. In particular, the section
sU : π1(U, ξ)→ π1(XU , ξ) (cf. Lemma 3.2) induces naturally a section

s̃c : π1(Oc, ηc)→ π1(X̂c, ηc)
15



of the projection π1(X̂c, ηc) � π1(Oc, ηc), which induces naturally by pull back via
the natural cartesian diagram

π1(XKc , ηc) −−−−→ GKc −−−−→ 1y y
π1(X̂c, ηc) −−−−→ π1(Oc, ηc) −−−−→ 1

a section

ŝc : GKc
→ π1(XKc

, ηc)

of π1(XKc , ηc), ∀c ∈ U cl, where GKc = Gal(Kc/Kc). Further, recall the digram
(2.1):

1 −−−−→ π1(XKc
, ηc) −−−−→ π1(Xc, ηc) −−−−→ GKc

−−−−→ 1y Sp

y y
1 −−−−→ π1(X

k(c)
, ξc) −−−−→ π1(Xc, ξc) −−−−→ Gk(c) −−−−→ 1

where the vertical specialisation map is deduced, by pull back, from the upper hori-
zontal map in diagram (3.4) via the natural surjective map π1(Xc, ηc) � π1(X̂c, ηc).
Then it follows that the above section ŝc of π1(XKc

, ηc) induces, via the above di-
agram, the section sc of π1(Xc, ξc) in Lemma 3.2 (cf. Lemma 2.1.2).

From now on we assume that X(K) 6= ∅. Let J def
= Pic0XU/U → U be the

(relative) jacobian of the (relative) smooth curve XU → U , J
def
= JK the jacobian

variety of X, Jc
def
= Jk(c) the jacobian variety of Xc, and Ĵc

def
= J ×U SpecOc the

(relative) jacobian of X̂c. For c ∈ Ccl write Jc
def
= JKc

for the jacobian variety of
Xc.

For c ∈ U cl the above diagram induces a commutative diagram of exact sequences

(3.5)

1 −−−−→ π1(XKc
, ηc)

ab −−−−→ π1(XKc
, ηc)

(ab) −−−−→ GKc
−−−−→ 1y y y

1 −−−−→ π1(X
k(c)

, ξc)
ab −−−−→ π1(Xc, ξc)(ab) −−−−→ Gk(c) −−−−→ 1

whose right square is cartesian. Further, we have a natural identification TJc
∼→

TJc between Tate modules (since char k(c) = 0). We will identify π1(XKc
, ηc)

ab

and π1(X
k(c)

, ξc)
ab via the isomorphism in diagram (3.5), and will further identify

them (as Galois modules) with the Tate modules TJc, and TJc, respectively.

Lemma 3.3. Let c ∈ U cl. Then we have a commutative diagram of exact sequences
(3.6)

0 −−−−→ J(Kc)
∧ −−−−→ H1(GKc

, TJc) −−−−→ TH1(GKc
, Jc) −−−−→ 0x x x

0 −−−−→ Jc(k(c))∧ −−−−→ H1(Gk(c), TJc) −−−−→ TH1(Gk(c),Jc) −−−−→ 0
16



where the middle vertical map is the inflation map (deduced from diagram (3.5)),
the left vertical map is an isomorphism, the middle and right vertical maps are
injective, and the horizontal sequences are the Kummer exact sequences (cf. §1).

Proof. Follows from the fact that there exist isomorphisms H1(Gk(c), TJc)
∼→

H1(Gal(Kur
c /Kc), TJc) and TH1(Gk(c),Jc)

∼→ TH1(Gal(Kur
c /Kc), Jc), whereKur

c /Kc

denotes the maximal unramified subextension ofKc/Kc, and the fact that the kernel
of the specialisation map Jc(Kc) � Jc(k(c)) is uniquely divisible (cf. [Lang-Tate],
Proposition 8). (See also the commutative diagram in loc. cit. page 675.) �

Next, for c ∈ U cl, we fix compatible base points of the torsor of splittings of the
horizontal sequences in diagram (3.5). The sections ŝc : GKc → π1(XKc , ηc) and
sc : Gk(c) → π1(Xc, ξc) give rise naturally to sections ŝabc : GKc

→ π1(XKc
, ηc)

(ab)

and sabc : Gk(c) → π1(Xc, ξc)(ab) of the projections π1(XKc , ηc)
(ab) � GKc and

π1(Xc, ξc)(ab) � Gk(c); respectively, which correspond to elements ŝabc ∈ H1(GKc
, TJc)

and sabc ∈ H1(Gk(c), TJc), respectively (cf. §1). It follows from the various def-

initions that sabc maps to ŝabc via the middle vertical map in diagram (3.6). The
following follows from the various definitions (cf. Lemma 1.2.2).

Lemma 3.4. Let c ∈ U cl. Assume that the section sc is point-theoretic (in partic-
ular, ŝc is point-theoretic by Lemma 2.1.4). Then sabc and ŝabc are point-theoretic
(cf. Definition 1.2.1). In particular, sabc and ŝabc are pro-geometric (cf. Definition
1.1.2(i) and Lemma 1.2.2).

Let c ∈ Ccl \ U cl. We have a commutative diagram of exact sequences

1 −−−−→ π1(XKc
, ηc) −−−−→ π1(XKc , ηc) −−−−→ GKc −−−−→ 1y y y

1 −−−−→ π1(XK , ξ) −−−−→ π1(X, ξ) −−−−→ GK −−−−→ 1

where the middle vertical map is defined up to conjugation and the right square
is cartesian. In particular, the section s : GK → π1(X, ξ) induces via the above
diagram a section ŝc : GKc

→ π1(XKc
, ηc) of π1(XKc

, ηc).
Next, consider the following commutative diagram

(3.7)
0 −−−−→ J(K)∧ −−−−→ H1(GK , TJ) −−−−→ TH1(GK , J) −−−−→ 0y y y
0 −−−−→

∏
c Jc(Kc)

∧ −−−−→
∏
cH

1(GKc
, TJc) −−−−→

∏
c TH

1(GKc
, Jc) −−−−→ 0

where the horizontal sequences are the Kummer exact sequences, the vertical maps
are the diagonal mappings, and the product in the lower sequence is over all closed
points c ∈ Ccl. For c ∈ U cl, the above vertical map H1(GK , TJ)→ H1(GKc , TJc)
factorizes as H1(GK , TJ) → H1(Gk(c), TJc) → H1(GKc , TJc) where the map

H1(GK , TJ)→ H1(Gk(c), TJc) is deduced from diagram (3.1), and the latter map

H1(Gk(c), TJc) → H1(GKc
, TJc) is as in Lemma 3.3. For c ∈ Ccl \ U cl the ver-

tical map H1(GK , TJ) → H1(GKc
, TJc) is deduced from the map π1(XKc

, ηc) →
π1(X, ξ) discussed above.
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Fix a base point of the torsor of splittings of the exact sequence 1→ π1(XK , ξ)
ab →

π1(X, ξ)(ab) → GK → 1, the corresponding base points of the torsors of splittings
of the sequences 1→ π1(XKc

, ηc)
ab → π1(XKc

, ηc)
(ab) → GKc

→ 1, ∀c ∈ Ccl \ U cl,

deduced from the maps π1(XKc
, ηc) → π1(X, ξ) above, and for c ∈ U cl the corre-

sponding base points of the torsors of splittings of the lower and upper sequence in
diagram (3.5) (cf. diagram (3.1) and Lemma 3.2). The section s : GK → π1(X, ξ)
gives rise naturally to an element sab ∈ H1(GK , TJ) whose image in H1(GKc , TJc)
coincides with the element ŝabc ∈ H1(GKc

, TJc) which arises from the section
ŝc : GKc

→ π1(Xc, ξ) which is induced by s, ∀c ∈ Ccl (cf. above discussion).
Recall (cf. §0)

X(J)
def
= Ker(H1(GK , J)→

∏
c∈Ccl

H1(GKc
, Jc)).

Note that the kernel of the map TH1(GK , J) →
∏
c∈C TH

1(GKc
, Jc) in diagram

(3.7) is naturally identified with the Tate module TX(J) of the Shafarevich-Tate
group X(J). The following is immediate from the various definitions.

Lemma 3.5. Suppose that ŝabc ∈ H1(GKc
, TJc) is pro-geometric (cf. Definition

1.1.2(i)) ∀c ∈ Ccl, and TX(J) = 0. Then sab ∈ J(K)∧ is pro-geometric.

§4. Proofs of Theorems A and B. In this section we prove Theorems A and
B.

4.1. Proof of Theorem A. Recall the notations introduced in §3 that we will
use throughout. Let k, C, K = k(C), X → SpecK, be as in §3. We assume that X
satisfies the condition (??) (cf. Definition 0.3). In particular, X(K) 6= ∅ by (??) (i).
Let X → C be the stable model of X over C (which satisfies the condition (??)(ii))
and U ⊆ C the largest nonempty open subscheme of C such that the fibres of X
over U are smooth. Assume that k strongly satisfies the conditions (i), (ii), (iv),

(v), and (vi), in Definition 0.2. Let J
def
= Pic0X/K be the jacobian of X, and assume

that TX(J) = 0. We will show that the map (cf. §0)

ϕX : X(K)→ Secπ1(X,ξ), x 7→ ϕX(x) = [sx],

is bijective.

First, we prove ϕX is injective. Let x1, x2 ∈ X(K) such that [s1
def
= sx1 ] =

[s2
def
= sx2

] holds in Secπ1(X,ξ). Thus, [s1,c] = [s2,c] in Secπ1(Xc,ξc), ∀c ∈ U cl,
and si,c = sxi,c is point-theoretic, where xi,c ∈ Xc(k(c)) is uniquely determined
by si,c for i ∈ {1, 2} by our assumption that k strongly satisfies (ii). The map

ϕXc : Xc(k(c)) → Secπ1(Xc,ξc) is bijective by assumption, hence x1,c = x2,c, ∀c ∈
U cl. Moreover, xi,c is the specialisation of xi in Xc (cf. discussion before Lemma
2.1.3). From this it follows that x1 = x2 and ϕX is injective. Indeed, the natural
specialisation map X(K)→

∏
c∈Ucl Xc(k(c)) is injective.

Next, we prove that ϕX is surjective. Let

s : GK → π1(X, ξ)

be a section of π1(X, ξ). We will show that s is point-theoretic under the above
assumptions.
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First, it follows from the condition (ii) that the section sc (cf. diagram (3.2))
is point-theoretic and arises from a unique rational point xc ∈ X (k(c)), ∀c ∈ U cl.
In particular, ŝabc ∈ H1(GKc

, TJc) is point-theoretic in this case (cf. discussion
before Lemma 3.4, Definition 1.2.1, and Lemma 2.1.4). Moreover, it follows from
the conditions (i) and (ii) in Definition 0.2, as well as the condition (??)(ii), that
ŝabc ∈ J(Kc)

∧ ⊂ H1(GKc , TJc) is pro-geometric in the sense of Definition 1.1.2(i),
∀c ∈ Ccl (cf. Lemma 1.2.2, Proposition 2.3.2, and the discussion before Lemma 3.5).
Then it follows from the assumption TX(J) = 0 that sab ∈ J(K)∧ ⊂ H1(GK , TJ)
is pro-geometric (cf. Lemma 3.5).

Lemma 4.1.1. The natural homomorphism J(K)→ J(K)∧ is injective and sab ∈
J(K) ⊆ J(K)∧ is geometric.

Proof. There exist closed points c1, c2 ∈ U cl such that the natural specialisation
homomorphism J(K) → Jc1(k(c1)) × Jc2(k(c2)) is injective (cf. [Poonen-Voloch],
Proposition 2.4). We have a commutative diagram of exact sequences

0 −−−−→ J(K) −−−−→ H
def
= Jc1(k(c1))× Jc2(k(c2)) −−−−→ H/J(K) −−−−→ 0y φ

y y
0 −−−−→ J(K)∧

ψ−−−−→ H∧ = Jc1(k(c1))∧ × Jc2(k(c2))∧ −−−−→ (H/J(K))∧ −−−−→ 0

where the right and middle vertical maps are injective homomorphisms by the
assumption (iv)(a), and the maps ψ and φ are the natural ones. (The exactness of
the lower sequence in the above diagram follows easily from the assumption (iv)(b).)
In particular, the left vertical map is injective, and the equality J(K) = φ(H) ∩
ψ(J(K)∧) holds inside H∧. The image of sab ∈ J(K)∧ in H∧ via the map ψ is the
element (sabc1 , s

ab
c2 ) ∈ H∧ ⊂ H1(Gk(c1), TJc1) × H1(Gk(c2), TJc2) associated to the

sections sci : Gk(ci) → π1(Xci , ξci), for i ∈ {1, 2} (induced by the section s) which

are point-theoretic by the assumption (ii). Hence sabci ∈ Jci(k(ci)) is geometric (cf.

Lemma 1.2.2), and sab ∈ J(K) is geometric by the above discussion. �

Let XU
ι−→ J be an embedding mapping an element of XU (U) = X(K) (which

is nonempty by our assumptions) to the zero section.

Lemma 4.1.2. The element sab ∈ ι(X(K)) ⊂ J(K) is point-theoretic.

Proof. For each closed point c ∈ U cl the element sabc ∈ J (k(c))∧ ⊂ H1(Gk(c), TJc)
corresponding to the section sc : Gk(c) → π1(Xc, ξc) lies in the subset ι(X (k(c))) ⊂
J (k(c)) ⊂ J (k(c))∧, since the section sc is point-theoretic by (ii). We view sab ∈
J(K) as a rational section of J → U , in fact sab : U → J is a morphism since
U is a smooth curve. For each closed point c ∈ U cl the image sab(c) is a closed
point of Xc ⊂ Jc, where we view Xc as a closed subscheme of Jc via the closed

immersion Xc
ιc−→ Jc induced by ι. From this it follows that the morphism sab :

U → J factorizes as sab : U → XU
ι−→ J and sab belongs to the subset ι(X(K)) ⊆

J(K). �

Let x̃ ∈ X(K) such that ι(x̃) = sab. For c ∈ U cl let x̃c be the specialisation of x̃
in Xc.
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Lemma 4.1.3. The equality x̃c = xc holds in X (k(c)), ∀c ∈ U cl.

Proof. First, the equality sabc = sabx̃c
= sabxc

holds in H1(Gk(c), TJc) (cf. dia-
gram (3.5)). The equality x̃c = xc follows then from the injectivity of the maps
ι(Xc) ↪→ Jc(k(c)) ↪→ Jc(k(c))∧ → H1(Gk(c), TJc), for c ∈ U cl (see the assumption
(iv)(a)). �

Next, and in order to show that the section s is point-theoretic it suffices to show,
by a well-know limit argument in anabelian geometry (cf. [Tamagawa], Proposition
2.8 (iv)), using the assumption (v) (cf. Definition 0.2), the following. Let H ⊆
π1(X, ξ) be an open subgroup such that s(GK) ⊂ H, corresponding to an étale
cover Y → X, then Y (K) 6= ∅ holds. There is a natural identification H = π1(Y, ξ).
Moreover, the cover Y → X extends to an étale cover YU → XU and YU is a
smooth model of Y over U (cf. Lemma 3.1 and Lemma 3.2). Let Y → X be the

normalisation of X in YU , and for a closed point c ∈ Ccl write Yc
def
= Yk(c). We will

show that Y (K) 6= ∅.
Let s′ : GK → π1(Y, ξ) be the section of π1(Y, ξ) = H induced by s, which

extends to a section s′U : π1(U, ξ) → π1(YU , ξ) of the projection π1(YU , ξ) �
π1(U, ξ), and further induces a section s′c : Gk(c) → π1(Yc, ξc) of π1(Yc, ξc), ∀c ∈ U cl

(cf. loc. cit.). Note that s′c is induced by the section sc. The section s′c is point-
theoretic and arises from a unique rational point yc ∈ Yc(k(c)). Moreover, xc is the
image of yc in Xc via the morphism Yc → Xc (cf. condition (ii), the fact that sc
is point-theoretic and arises from xc, and s′c is induced by sc). View x̃ ∈ X(K) =
X (U) as a section x̃ : U → XU , and let Yx̃ be the scheme-theoretic inverse image of
x̃(U) in YU via the above étale map YU → XU . Thus, Yx̃ → x̃(U) is a finite étale
map. We have yc ∈ Yx̃(k(c)), ∀c ∈ U cl, as follows from the various definitions. Then
Yx̃(K) 6= ∅ by the assumption (vi), and a fortiori Yx̃(K) ⊆ YU (K) = Y (K) 6= ∅.

Thus, we proved that [s] = [sx] holds in Secπ1(X,ξ) for a (unique) x ∈ X(K).
The following follows from Lemma 4.1.3 (cf. above proof that ϕX is injective).

Lemma 4.1.4. The equality x = x̃ holds.

This finishes the proof of Theorem A. �
Finally, we show that Hilbertian fields satisfy the condition (vi).

Lemma 4.1.5. Let k be a Hilbertian field. Then k strongly satisfies the condition
(vi).

Proof. Let k′/k be a finite extension and C a smooth and connected curve over k′

with function field K
def
= k′(C). Let C̃ → C be a finite étale cover with C̃c(k

′(c)) 6=
∅, ∀c ∈ Ccl with residue field k′(c). Note that k′ is Hilbertian (cf. [Serre], 9.5). We

show C̃(K) 6= ∅. Assume that C̃(K) = ∅. Then for each connected component C̃α
of C̃ the degree of the morphism C̃α → C is ≥ 2. Hilbert’s irreducibility theorem
(cf. [Serre], 9.2) implies that there exist points c ∈ Ccl such that the fibre of c

in each connected component of C̃ is irreducible. This contradicts the assumption

that C̃c(k(c)) 6= ∅, ∀c ∈ Ccl. Thus, C̃(K) 6= ∅ holds. �

In the course of proving Theorem A we proved the following ”adelic Mordell-
Lang” statement.

Proposition 4.1.6. With the same notations as above, assume that k only satisfies
the condition (iv) in Definition 0.2 (where we take k′ = k), and X → C is only a
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proper and flat model of X over C. Then the map J(K)∧ →
∏
c∈Ucl Jc(Kc)

∧ ∼→∏
c∈Ucl Jc(k(c))∧ (cf. diagram (3.7) and Lemma 3.3) is injective. Further, inside∏
c∈Ucl Jc(k(c))∧ the equality J(K)∧

⋂
(
∏
c∈Ucl ι(Xc(k(c)))) = ι(X(K)) holds.

Proof. See the statements and proofs of lemma 4.1.1, and Lemma 4.1.2. �

4.2. Proof of Theorem B. In this section we briefly explain how Theorem B can
be derived from Theorem A. Let k be a field with char(k) = 0, and K = k(C) the
function field of a smooth and connected curve C over k. Assume that k satisfies
the condition (?) (cf. Definition 0.2). Let L/K be a finite extension. Then we
prove the SC holds over L. We can without loss of generality assume that L = K.
Let X be a proper smooth and hyperbolic curve over K, we need to prove that the
SC holds for X, i.e., that the map (cf. §0)

ϕX : X(K)→ Secπ1(X,ξ), x 7→ ϕX(x) = [sx],

is bijective. The injectivity of the map ϕX follows as in the proof of Theorem A,
where one only uses the fact that k strongly satisfies the condition (ii) (cf. loc. cit.)

Next, we prove that ϕX is surjective. Let

s : GK → π1(X, ξ)

be a section of π1(X, ξ). We need to show that s is point-theoretic, under the
above assumptions. For this purpose we can, in the course of the proof, replace
K by a finite extension L′/K. Indeed, let L′/K be a finite Galois extension, s′ :

GL′
def
= Gal(K/L′) → π1(XL′ , ξ) the section of π1(XL′ , ξ) which is induced by s,

and assume that s′ = sx′ is point-theoretic where x′ ∈ X(L′). Then s′(GL′) is
self-normalising in π1(XL′ , ξ), and s(GK) is contained in the normaliser of s′(GL′)
in π1(X, ξ) which coincides with a decomposition group associated to the image x
of x′ in X (this follows from condition (?)(iv)(a), cf. proof of Lemma 2.2.1 and
the references therein). The point x is then necessarily K-rational. We can also,
without loss of generality, replaceX by a neighbourhood of the section s, i.e., an étale
cover Y → X corresponding to an open subgroup H ⊆ π1(X, ξ) containing s(GK).
Now one verifies easily that there exists a finite extension L′/K, the corresponding

section s′ : GL′
def
= Gal(K/L′) → π1(XL′ , ξ) of π1(XL′ , ξ) which is induced by s,

and a neighbourhood of the section s′, i.e., an étale cover Y → XL′ corresponding
to an open subgroup H ⊆ π1(XL′ , ξ) containing s′(GL′), such that Y satisfies the
condition (??) (cf. Definition 0.3). The section s′ : GL′ → H = π1(Y, ξ) of π1(Y, ξ)
is then point-theoretic by Theorem A. From this it follows easily that s is point
theoretic (cf. above discussion).
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semi-stable des courbes, Manuscripta Math. 89 (1996), no.2, 245-265.
[Serre] Serre, J-P., Lectures on the Mordell-Weil Theorem, Translated and edited
by Martin Brown from notes by Michel Waldschmidt, 2nd edition, Aspect of Math-
ematics, 1990.
[Tamagawa] Tamagawa, A., The Grothendieck conjecture for affine curves, Com-
positio Math. 109 (1997), no. 2, 135–194.

Mohamed Säıdi
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