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A FAMILY OF MULTIPLE HARMONIC SUM AND

MULTIPLE ZETA STAR VALUE IDENTITIES

ERIN LINEBARGER AND JIANQIANG ZHAO

Abstract. In this paper we present a new family of identities for multiple harmonic
sums which generalize a recent result of Hessami Pilehrood et al. [7]. We then apply it to
obtain a family of identities relating multiple zeta star values to alternating Euler sums.
In such a typical identity the entries of the multiple zeta star values consist of blocks of
arbitrarily long 2-strings separated by positive integers greater than two while the largest
depth of the alternating Euler sums depends only on the number of 2-string blocks but
not on their lengths.

1. Introduction

In a recent paper [7] Hessami Pilehrood et al. proved a few families of identities involv-
ing (alternating) multiple harmonic sums and binomial coefficients and, as applications,
discovered some new congruences for multiple harmonic sums. In particular, they are able
to confirm several conjectures contained in [10] posed by the second author of this paper.
They can also provide some new families of identities of MZSV and a new proof of the
identity of Zagier [9].

To state one of their results we recall that the (alternating) multiple harmonic sums
are multiple variable generalizations of harmonic sums defined by the following: for any
r ∈ N and s = (s1, s2, . . . , sr) ∈ (Z∗)r

Hn(s1, s2, . . . , sr) =
∑

n≥k1>k2>...>kr≥1

r∏

i=1

sgn(si)
ki

k
|si|
i

.

Throughout the paper we will use n̄ to denote a negative entry sj = −n. For example,
H(2̄, 1) = H(−2, 1). Another kind of sums which is closely related to the above is the
following star version (also denoted by S in the literature)

H⋆
n(s1, s2, . . . , sr) =

∑

n≥k1≥k2≥...≥kr≥1

r∏

i=1

sgn(si)
ki

k
|si|
i

.

We call l(s) := r the depth of this MHS and |s| :=∑r

i=1 |si| the weight. For convenience
we set Hn(s) = 0 if n < l(s), Hn(∅) = H⋆

n(∅) = 1, and {s1, s2, . . . , sj}d the set formed
by repeating the composition (s1, s2, . . . , sj) d times. When taking the limit n → ∞
we get the so-called the (alternating) Euler sum and the (alternating) star Euler sum,
respectively:

ζ(s) = lim
n→∞

Hn(s), ζ⋆(s) = lim
n→∞

H⋆
n(s). (1)

When s ∈ Nℓ they are called the multiple zeta value (MZV) and the multiple zeta star
value (MZSV), respectively.

The following is one of the main results of [7].
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Theorem 1.1. ([7, Thm. 2.1]) Let a and b be two non-negative integers. Set An,k =

(−1)k−1
(
n

k

)
/
(
n+k

k

)
for any positive integers n and k. Then for any integer c ≥ 2,

H⋆
n({2}a, c, {2}b) = 2

n∑

k=1

An,k

k2a+2b+c
+ 4

∑

i+j+|x|=c
i≥1,j≥2,x∈Nr,r≥0

2l(x)
n∑

k=1

Hk−1(x, i+ 2b)An,k

k2a+j
,

where in the sum i ≥ 1, j ≥ 2 and x runs through all possible compositions of positive
integers (or the empty set when r = 0) satisfying the restriction i+ j + |x| = c.

In sections 2 and 3 we generalize Theorem 1.1 to express H⋆
n(s) using binomial coef-

ficients where s = ({2}a1 , c1, . . . , {2}ar , cr, {2}ar+1) with positive integers c1, . . . , cr ≥ 2.
Taking limit and using a key lemma we shall obtain a new family of identities of MZSV
involving alternating Euler sums in the following Theorem (an equivalent form of Theo-
rem 4.1).

Theorem 1.2. Let n be a positive integer and s = ({2}a1, c1, . . . , {2}ar , cr, {2}ar+1) where
aj , cj ∈ N0 and cj ≥ 3. Then we have

ζ⋆(s) = −
∑

p=(2a1+2)◦1◦(c1−3)◦(2a2+3)◦1◦(c2−3)◦···◦(2ar+3)◦1◦(cr−3)◦(2ar+1+1)

2ℓ(p)ζ(p)

where ◦ is either the comma “,” or the O-plus “⊕” defined by α⊕β = sgn(α) sgn(β)(|α|+
|β|) for all α, β ∈ Z∗, and 1◦c = 1 ◦ · · · ◦ 1

︸ ︷︷ ︸

c times

.

For example,

ζ⋆({2}7, 3, {2}2, 3, {2}3) =− 8ζ(16, 7, 7)− 4ζ(23, 7)− 4ζ(16, 14)− 2ζ(30),

ζ⋆({2}3, 3, {2}2, 4, {2}5) =− 16ζ(8, 7, 1, 11)− 8ζ(8, 7, 12)− 8ζ(8, 8, 11)

−8ζ(15, 1, 11)− 4ζ(15, 12)− 4ζ(16, 11)− 4ζ(8, 19)− 2ζ(27).

Broadhurst considered alternating Euler sums as “honorary” MZVs and relates them to
the study of knots and Feynman diagrams (see [1]. From the point of view of algebraic
geometry, Goncharov and Manin [5] showed that the MZVs and MZSVs are periods of
mixed Tate motives over Z (see also [2]) while Deligne and Goncharov [4] proved that the
alternating Euler sums are periods of mixed Tate motives over Z ramified at 2 (see also
[3]). This provides a kind of inverse to “Galois descent’ since the linear combinations of
the Euler sums in the above examples are invariant under a certain motivic Galois group.
In general it is not easy to show this unramifiedness property directly. Another important
aspect of Theorem 1.2 is that the depth of the MZSV can be very large when the 2-strings
are very long, but the largest depth of the Euler sums on the right hand side depends only
on the number of such strings but not on their lengths.

The ideas used in this paper have been applied to obtain similar results for other types
of strings in [11]. In particular, the conjectural Two-one formula of Ohno and Zudlin is
proved there. Its q-analog has been obtained by Hessami Pilehroods recently in [6]. In [8]
Hessami Pilehroods and the second author further prove a q-analog of the main result of
this paper (Theorem 2.3) and some similar results for other types of strings contained in
[11].

2. Identities for multiple harmonic sums

The following lemma is the special case of [7, Lemma 2.2] when m = 2 and c
(2)
n =

n!2/(2n)!.
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Lemma 2.1. For any positive integers n and k define An,k = (−1)k−1
(
n

k

)
/
(
n+k

k

)
. Then

for every c ∈ N and v ∈ Nt (t ≥ 0) we have

1

nc

n∑

k=1

Hk−1(v)An,k

ka
=

n∑

k=1

Hk−1(v)An,k

ka+c
+

∑

j+|x|=a+c
j≥0,xr>a

2l(x)
n∑

k=1

Hk−1(x,v)An,k

kj

where x = (x1, x2, . . . , xr) ∈ Nr for r ≥ 0, and |x| = ∑r

i=1 xi, l(x) = r. Here |x| = 0 if
r = 0 which implies that x = ∅.

Definition 2.2. Suppose s = ({2}a1 , c1, . . . , {2}ar , cr, {2}ar+1). We define two kinds of
string operations on the condensation s̃ := (2a1, c1, . . . , 2ar, cr, 2ar+1) of s as follows.

• A merge µt for some 1 ≤ t ≤ r changes the symbols “, ct,” to “+ct+”,
• A substitution σt changes the symbols “, ct,” to “+jt,xt, it+”.

Let I = {i1, . . . , it} be a subset of [r] := {1, . . . , r}. Define

• The merge operation µI = µi1 ◦ · · · ◦ µit and similarly for substitutions σI ,
• The complement I = [r] \ I,
• The combined operation κI = σI ◦ µI .

For any composition (e1, . . . , er) of natural numbers we denote

• The first component e1 = ϕ(e)
• The truncation operator Tr(e1, . . . , er) = (e2, . . . , er).
• The negation operator ν(e1, . . . , er) = (e1, e2, . . . , er).

Notice that if r = 1 then Tr(e1) = ∅.

Theorem 2.3. Let n be a positive integer and s = ({2}a1, c1, . . . , {2}ar , cr, {2}ar+1) where
aj , cj ∈ N0 and cj ≥ 2. Set An,k = (−1)k−1

(
n

k

)
/
(
n+k

k

)
. Then

H⋆
n(s) = 2

∑

I⊆[r]

∑

it+jt+|xt|=ct,
it≥1,jt≥2 ∀t6∈I

2
|I|+∑

t 6∈I

l(xt)
n∑

k=1

Hk−1

(

Tr ◦κI(s̃)
)

An,k

kϕ◦κI(s̃)
, (2)

where s̃ = (2a1, c1, . . . , 2ar, cr, 2ar+1) is the condensation of s.

Example 2.4. When r = 1 we have two possible subsets of [1]: I = ∅ and I = [1]. our
Theorem 2.3 becomes Theorem 1.1. When r = 2 we get the following: For a positive
integer n and non-negative integers a1, a2, a3 and and positive integers c1, c2 ≥ 2 we set
s = ({2}a1, c1, ({2}a2 , c2, ({2}a3). Then

κ[2] = (2a1 + c1 + 2a2 + c2 + 2a3), κ∅ = (2a1 + j1,x1, i1 + 2a2 + j2,x2, i2 + 2a3),

κ{1} = (2a1 + c1 + 2a2 + j2,x2, i2 + 2a3), κ{2} = (2a1 + j1,x1, i1, 2a2 + c2 + 2a3).
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Hence by Theorem 2.3

H⋆
n(s) = 2

n∑

k=1

An,k

k2a1+c1+2a2+c2+2a3
+ 4

∑

i+j+|x|=c2
i≥1,j≥2

2l(x)
n∑

k=1

Hk−1(x, i+ 2a3)An,k

k2a1+c1+2a2+j

+ 8
∑

i1+j1+|x1|=c1,i2+j2+|x2|=c2
i1,i2≥1,j1,j2≥2

2l(x1)+l(x2)
n∑

k=1

Hk−1(x1, i1 + 2a2 + j2,x2, i2 + 2a3)An,k

k2a1+j1

+ 4
∑

i+j+|x|=c1
i≥1,j≥2

2l(x)
n∑

k=1

Hk−1(x, i+ 2a2 + c2 + 2a3)An,k

k2a1+j
.

3. Proof of Theorem 2.3

We proceed by induction on the sum r+n. Since r ≥ 0, n ≥ 1, our base case is r+n = 1
which implies H⋆

1 ({2}a) = 1, and therefore the formula is true. Suppose the statement is
true when r + n = k − 1, and let r + n = k. Then by definition

H⋆
n(s) =

a1∑

l=0

1

n2(a1−l)
H⋆

n−1(tl) +
1

n2a1+c1
H⋆

n(u),

where tl = ({2}l, c1, {2}a2, c2, . . . , cr, {2}ar+1) and u = ({2}a2, c2, . . . , cr, {2}ar+1). We now
set their condensations as follows:

t̃l = (2l, c1, 2a2, c2, . . . , cr, 2ar+1), ũ = (2a2, c2, . . . , cr, 2ar+1).

By inductive hypothesis,

H⋆
n(s) =

a1∑

l=0

2

n2(a1−l)

∑

I⊆[r]

∑

it+jt+|xt|=ct,
it≥1,jt≥2 ∀t6∈I

2
|I|+∑

t 6∈I

l(xt)
n−1∑

k=1

Hk−1

(

Tr ◦κI(t̃l)
)

An−1,k

kϕ◦κI(t̃l)

+
2

n2a1+c1

∑

I⊆[r]\{1}

∑

it+jt+|xt|=ct,
it≥1,jt≥2 ∀t6∈I

2
|I|+∑

t 6∈I

l(xt)
n∑

k=1

Hk−1

(

Tr ◦κI(ũ)
)

An,k

kϕ◦κI(ũ)
.

Changing the order of summation and summing the inner sum we get

An−1,k

a1∑

l=0

n2l

k2l
= (−1)k−1n

2a1+2 − k2a1+2

(n2 − k2)k2a1

(
n−1
k

)

(
n−1+k

k

) =

(
n2a1

k2a1
− k2

n2

)

An,k.

Thus

H⋆
n(s) =2

∑

I⊆[r]

∑

it+jt+|xt|=ct,
it≥1,jt≥2 ∀t6∈I

2
|I|+∑

t 6∈I

l(xt)
n∑

k=1

Hk−1

(

Tr ◦κI(t̃l)
)

An,k

kϕ◦κI(t̃l)−2l+2a1

− 2

n2a1+2

∑

I⊆[r]

∑

it+jt+|xt|=ct,
it≥1,jt≥2 ∀t6∈I

2
|I|+∑

t 6∈I

l(xt)
n∑

k=1

Hk−1

(

Tr ◦κI(t̃l)
)

An,k

kϕ◦κI(t̃l)−2l−2
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+
2

n2a1+c1

∑

I⊆[r]\{1}

∑

it+jt+|xt|=ct,
it≥1,jt≥2 ∀t6∈I

2
|I|+∑

t 6∈I

l(xt)
n∑

k=1

Hk−1

(

Tr ◦κI(ũ)
)

An,k

kϕ◦κI(ũ)
.

Since t̃l coincides with s̃ everywhere except for the first component, Tr ◦κI(t̃l) = Tr ◦κI(ũ).
Similarly, ϕ ◦κI(t̃l)− 2l+2a1 = ϕ ◦κI(ũ). Hence, by induction we only need to show the
following quantity vanishes:

2

n2a1+c1

∑

I⊆[r]\{1}

∑

it+jt+|xt|=ct,
it≥1,jt≥2 ∀t6∈I

2
|I|+∑

t 6∈I

l(xt)
n∑

k=1

Hk−1

(

Tr ◦κI(ũ)
)

An,k

kϕ◦κI(ũ)

− 2

n2a1+2

∑

I⊆[r]

∑

it+jt+|xt|=ct,
it≥1,jt≥2 ∀t6∈I

2
|I|+∑

t 6∈I

l(xt)
n∑

k=1

Hk−1

(

Tr ◦κI(t̃l)
)

An,k

kϕ◦κI(t̃l)−2l−2

=
2

n2a1+c1

∑

I⊆[r]\{1}

∑

it+jt+|xt|=ct,
it≥1,jt≥2 ∀t6∈I

2
|I|+∑

t 6∈I

l(xt)
n∑

k=1

Hk−1

(

Tr ◦κI(ũ)
)

An,k

kϕ◦κI(ũ)

− 2

n2a1+2

∑

I⊆[r]\{1}

∑

it+jt+|xt|=ct,
it≥1,jt≥2 ∀t6∈I

2
|I|+∑

t 6∈I

l(xt)
n∑

k=1

Hk−1

(

Tr ◦κI(t̃l)
)

An,k

kϕ◦κI(t̃l)−2l−2

− 4

n2a1+2

∑

I⊆[r]\{1}

∑

it+jt+|xt|=ct,
it≥1,jt≥2 ∀t6∈I

2
|I|+∑

t 6∈I

l(xt)
n∑

k=1

Hk−1

(

Tr ◦κI∪{1}(t̃l)
)

An,k

kϕ◦µĪ◦σI∪{1}(t̃l)−2l−2

=
2

n2a1+2

∑

I⊆[r]\{1}

∑

it+jt+|xt|=ct,
it≥1,jt≥2 ∀t6∈I

2
|I|+∑

t 6∈I

l(xt)
(

1

nc1−2

n∑

k=1

Hk−1

(

Tr ◦κI(ũ)
)

An,k

kϕ◦κI (ũ)

−2
∑

i1+j1+|x1|=c1,
i1≥1,j1≥2

2l(x1)
n∑

k=1

Hk−1

(

Tr ◦κI(t̃l)
)

An,k

kϕ◦κI (t̃l)−2l−2
−

n∑

k=1

Hk−1

(

Tr ◦κI∪{1}(t̃l)
)

An,k

kϕ◦κI∪{1}(t̃l)−2l−2

)

. (3)

Note that if 1 6∈ I then Tr ◦κI(ũ) = Tr ◦κI∪{1}(t̃l), which we will now denote by v.

Furthermore, ϕ ◦ κI∪{1}(t̃l) = ϕ ◦ κI(ũ) + c1 + 2l. Let a = ϕ ◦ κI(ũ). Then

κI(t̃l) = σI ◦ µI(t̃l) = σ1(2l, c1, a, . . . ) = (j1 + 2l,x1, i1 + a, . . . ).

Set w = (x1, i1 + a). Then we see that the three sums inside the parenthesis (3) can be
rewritten as

1

nc1−2

n∑

k=1

Hk−1(v)An,k

ka
−

∑

j1+|w|=c1+a1,
j1≥2,wp>a1

2l(w)

n∑

k=1

Hk−1(w,v)An,k

kj1−2
−

n∑

k=1

Hk−1(v)An,k

ka+c1−2
,
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where wp = i + a1 (i ≥ 1) is the last component of w. This last expression vanishes by
taking c = c1 − 2 and j = j1 − 2 in Lemma 2.1. We have now completed the proof of
Theorem 2.3.

4. The key lemma and an identity family of MZSV

In [7], using the corresponding identities of MHS Hessami Pilehrood et al. find some
new families of identities of MZSV and a new proof of the identity of Zagier [9]. We can
similarly use Theorem 2.3 to obtain a new family of MZSV as follows.

Theorem 4.1. Let n be a positive integer and s = ({2}a1, c1, . . . , {2}ar , cr, {2}ar+1) where
aj , cj ∈ N0 and cj ≥ 2. Set s̃ = (2a1, c1, . . . , 2ar, cr, 2ar+1). Then with notation given by
Definition 2.2 we have

ζ⋆(s) = 2
∑

I⊆[r]

∑

it+jt+|xt|=ct,
it≥1,jt≥2 ∀t6∈I

2
|I|+∑

t 6∈I

l(xt)

ζ
(

ν ◦ κI(s̃)
)

. (4)

Proof. By taking limit n → ∞ in Theorem 2.3 we see that (4) follows immediately from
the following lemma. �

Lemma 4.2. Let d ∈ N0 and let e be a real number with e > 1. Then for all s ∈ (Z∗)d

(s = ∅ if d = 0) we have

lim
n→∞

n∑

k=1

|Hk−1(s)|
ke

(

1−
(
n

k

)

(
n+k

k

)

)

= 0. (5)

Remark 4.3. This is the key step which enables us to go from MHS identities to MZSV
identities in this paper. Apparently the authors of [7] have already used this result in
their paper although no proof is given there. Because of its importance we provide the
following detailed analysis. Notice that for any fixed k we have limn→∞

(
n

k

)
/
(
n+k

k

)
= 1 but

for k close to n, say k = n, we have limn→∞
(
n

k

)
/
(
n+k

k

)
= 0 by Stirling’s formula. So (5) is

not obvious to us.

Proof. First we have

0 <1−
(
n

k

)

(
n+k

k

) = 1− n(n− 1)(n− 2) · · · (n− k + 1)

(n+ 1)(n+ 2) · · · (n + k)

=1−
n(n− 1)(n

2
− 1) · · · ( n

k−1
− 1)

k(n+ 1)(n
2
+ 1) · · · (n

k
+ 1)

=1− nkHk−1({1}k−1)− nk−1Hk−1({1}k−2) + · · ·+ (−1)kn2Hk−1(1)− n(−1)k

k
(
nkHk({1}k) + nk−1Hk({1}k−1) + · · ·+ nHk(1) + 1

) (6)

≤nk−1Hk({1}k−2) + nk−2Hk({1}k−3) + · · ·+ n2Hk(1) + n

k(nkHk({1}k) + nk−1Hk({1}k−1) + · · ·+ nHk(1) + 1)
(7)

+
nk−1Hk({1}k−1) + · · ·+ nHk(1) + 1

nkHk({1}k) + nk−1Hk({1}k−1) + · · ·+ nHk(1) + 1
.

Here from (6) to (7) we canceled the leading term of the numerator in (6) because of
Hk({1}k) = 1/k!, took absolute values of each term on the right and then changed all
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Hk−1 to Hk. Observe that for any 1 ≤ j ≤ k we have

Hk({1}j) =
∑

k≥n1>···>nj>0

1

n1 · · ·nj

≤
∑

k≥n1>···>nj>nj+1>0

k

n1 · · ·nj · nj+1

= kHk({1}j+1) ≤ · · · ≤ kk−jHk({1}k),

which is even true for j = 0. Thus we get

1−
(
n

k

)

(
n+k

k

) ≤ 2(nk−1k + nk−2k2 + · · ·+ nkk−1 + kk)

nk
≤ 2k2

n
.

Now for any s ∈ (Z∗)d we clearly have

|Hk−1(s)| ≤ Hk−1({1}d) ≤ C logd(k)

for some positive constant C. Therefore by setting δ = min{(e− 1)/2, 1/2} > 0 we have

n∑

k=1

|Hk−1(s)|
ke

(

1−
(
n

k

)

(
n+k

k

)

)

≤ 2C

n

⌊nδ⌋
∑

k=1

logd(k)

ke−2
+ C

∞∑

k=⌊nδ⌋+1

logd(k)

ke
. (8)

If e ≥ 2 then

2C

n

⌊nδ⌋
∑

k=1

logd(k)

ke−2
≤ 2C

n

√
n

∑

k=1

logd(k) ≤ 2C logd(
√
n)√

n
→ 0 as n → ∞.

If 1 < e < 2 then

2C

n

⌊nδ⌋
∑

k=1

logd(k)

ke−2
≤ 2Cnδ(3−e) logd(nδ)

n
≤ 2Cδd logd(n)√

n
→ 0 as n → ∞,

since 1 + δ(e− 3) = 1 + (e− 1)(e− 3)/2 = (e− 2)2/2 + 1/2 ≥ 1/2. Now the last sum on
the right of (8) is the tail of a convergent series so (5) follows immediately and therefore
the lemma is proved. �
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