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THE THIRD HOMOTOPY GROUP AS A m;—-MODULE

HANS-JOACHIM BAUES AND BEATRICE BLEILE

ABSTRACT. It is well-known how to compute the structure of the second homotopy group of a
space, X, as a module over the fundamental group, 71X, using the homology of the universal
cover and the Hurewicz isomorphism. We describe a new method to compute the third homotopy
group, m3X, as a module over w1 X. Moreover, we determine m3X as an extension of 71 X—
modules derived from Whitehead’s Certain Exact Sequence. Our method is based on the theory
of quadratic modules. Explicit computations are carried out for pseudo—projective 3—spaces
X = ST Ue2Ue? consisting of exactly one cell in each dimension < 3.

1. INTRODUCTION

Given a connected 3—dimensional CW-complex, X, with universal cover, X , Whitehead’s Cer-
tain Exact Sequence [W2] yields the short exact sequence

(1.1) Iy X T3 X H3 X

of m;—modules, where m; = m1(X). As a group, the homology H;X is a subgroup of the free
abelian group of cellular 3—chains of X , and thus itself free abelian. Hence the sequence splits
as a sequence of abelian groups. This raises the question whether (L)) splits as a sequence of
mi1—modules — there are no examples known in the literature.

It is well-known how to compute ma(X) 2 Hg)/(: as a mp—module, using the Hurewicz isomor-
phism, and how to compute Hg)? using the cellular chains of the universal cover. In this paper we
compute 73(X) as m;—module and ([J)) as an extension over 7. We answer the question above
by providing an infinite family of examples where ([LT)) does not split over 71, as well as an infinite
family of examples where it does split over 7;. As a first surprising example we obtain

Theorem 1.1. There is a connected 3—dimensional CW-complex X with fundamental group m =
m X = 7Z/27Z, such that w1 acts trivially on both T'meX and H3 X, but non—trivially on ns X . Hence

I X 73 X X

does not split as a sequence of w1 —modules.

Below we describe examples for all finite cyclic fundamental groups, 7, of even order, where

([II) does not split over 1. The examples we consider are CW—complexes,
X =5'ueue’,

with precisely one cell, €, in every dimension i = 0,1,2,3. In general, we obtain such a CW-
complex, X, by first attaching the 2-cell e; to S! via f € m S' = Z. We assume f > 0.
This yields the 2-skeleton of X, X2 = Py, which is a pseudo—projective plane, see [O]. Then
m =mX =mP; =2Z/fZis a cyclic group of order f. We write R = Z[m] for the integral group
ring of m; and K for the kernel of the augmentation ¢ : R — Z. Then the pseudo—projective
3-space, X = Py, is determined by the pair, (f, z), of attaching maps, where & € mP; = K is
the attaching map of the 3—cell e3. In this case

and ~
H3X =ker(d, : R — R,z — xy),
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where xy is the product of z,y € R.

A splitting function u for the exact sequence (1)) is a function between sets, u : HgX — m3X,
such that u(0) = 0 and the composite of u and the projection m3X — Hg)? is the identity. Such
a splitting function determines maps

A=A, HsX x H3X - T(mX) and B = B, :H3X — I'(mX),
by the cross—effect formulae

Ay, 2) = uly +2) = (u(y) + u(2)) and B(y) = (u(y))' — uly").
Here B is determined by the action of the generator 1 in the cyclic group 7, denoted by y — 3.

Remark 1.2. The functions A and B determine 73X as a mj—module. In fact, the bijection
HsX x I'(meX) = m3(Py,z), which assigns to (y,v) the element u(y) + v is an isomorphism of
mi—modules, where the left hand side is an abelian group by

(yav)+(sz) = (y+zvv+w+A(yvz))

and a m—module by
(y,0)' = (¥, 0" + B(y)).
The cross—effect of B satisfies

B(y +z) = (B(y) + B(2)) = (A(y,2))" — A(y", 2"),
such that B is a homomorphism of abelian groups if A = 0.

In this paper we describe a method to determine a splitting function v = u,, which, a priori,
is not a homomorphism of abelian groups. We investigate the corresponding functions A and B
and compute them for a family of examples.

Theorem 1.3. Let X = Py, be a pseudo—projective 3—space with x = Z([1]—[0]) € K,Z € Z,% # 0

and f>1. Let N = Zifz_ol [i] be the norm element in R. Then
H3(Pro) ={yN |y € Z} = Z
is a w1 —module with trivial action of w1, and
m2(Pre) = (Z/TZ) @z K,

with the action of w1 induced by the m1—module K. There is a splitting function u = uy such that,
for y=gN and z € H3(Ps ), the functions A and B are given by

Aly,z) = 0

Bly) = —gyq([1]-[0]),
where 7y : mo( Py o) — I(ma(Pyz)) is the universal quadratic map for the Whitehead functor I' and
q: K = m(Prg), k= 1®k. As in[l3 the pair A, B computes m3X as a w1 -module.

~

As H3(X) is free abelian, the exact sequence ([LT]) always allows a splitting function which is a
homomorphism of abelian groups. This leads, for X = Py ., to the injective function

~

T : Extr, (H3(X),T'(72X)) — coker(f),
with

3 : Homg(H3(X), (12 X)) — Homgz(Hs(X), T(m2 X)), t — B,
given by
Bu(l) = —t(€h) + (t(0)".
The function 7 maps the equivalence class of an extension to the element in cokerf represented by
B = B, where u is a Z-homomorphic splitting function for the extension. Hence the equivalence
class, {m3X}, of the extension 73X in () is determined by the image 7{m3X} € coker(3). For
the family of examples in [[.3] we show
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Theorem 1.4. Let X = Py, be a pseudo—projective 3-space with x = Z([1]—[0]),% € Z,& # 0 and
f>1. Then B:T((Z)FZ) @z K) — T((Z/ZZ) ®z K) maps € to — + (* and 7{m3X} € coker(S)
is represented by Tyq([1] — [0]) € T'(m2). Hence 7{m3X} = 0 if T is odd, so that, in this case,
w3 X in (L) is a split extension over m. If both & and f are even, then T{m3X} is a non—trivial
element of order 2, and the extension w3 X in (I1l) does not split over my. Moreover, T{m3 X} is
represented by B in[L.3. If Z is even and f is odd, then T{m3X} is trivial and the extension w3 X
in (L) does split over .

This result is a corollary of [[3] the computations are contained at the end of Section

Given a pseudo-projective 3-space, Py, and an element z € m3(Py ), we obtain a pseudo-
projective 4-space, X = Py, ., = St Ue? Ue? Ue*, where z is the attaching map of the 4-cell
e*. For n > 2, the attaching map z of an (n + 1)-cell in a CW-complex, X, is homologically

non—trivial if the image of z under the Hurewicz homomomorphism is non-trivial in H,, X™.

Theorem 1.5. Let X = St Ue?Ue®Ue* be a pseudo—projective 4—space with m X = Z/27 and
homologically non—trivial attaching maps of cells in dimension 3 and 4. Then the action of m X
on w3 X is trivial.

Theorem is a corollary to Theorem

2. CROSSED MODULES

We recall the notions of pre-crossed module, Peiffer commutator, crossed module and nil(2)—
module, which are ingredients of algebraic models of 2— and 3—dimensional CW—-complexes used
in the proofs of our results, see [B] and [BHS]. In particular, Theorem provides an exact
sequence in the algebraic context of a nil(2)-module equivalent to Whitehead’s Certain Exact
Sequence ([IIJ).

A pre—crossed module is a homomorphism of groups, 0 : M — N, together with an action of V
on M, such that, for x € M and o € N,

A(z*) = —a+ 0z + .

Here the action is given by (a,z) — x® and we use additive notation for group operations even
where the group fails to be abelian. The Peiffer commutator of z,y € M in such a pre—crossed
module is given by
(w,y) = —w —y+a+y°".

The subgroup of M generated by all iterated Peiffer commutators (z1,...,2,) of length n is
denoted by P, (0) and a nil(n)-module is a pre—crossed module 0 : M — N with P,,;1(9) =0. A
crossed module is a nil(1)-module, that is, a pre—crossed module in which all Peiffer commutators
vanish. We also consider nil(2)-modules, that is, pre—crossed modules for which P5(9) = 0.

A morphism or map (m,n) : & — 9@ in the category of pre—crossed modules is given by a
commutative diagram

M M

|

N—=N

in the category of groups, where m is n—equivariant, that is, m(z®) = m(x)"(o‘), for x € M
and o € N. The categories of crossed modules and nil(2)-modules are full subcategories of the
category of pre—crossed modules.

Note that P,41(9) C kerd for any pre—crossed module, 9 : M — N. Thus we obtain the
associated nil(n)-module r,,(0) : M /P, +1(0) — N, where the action on the quotient is determined
by demanding that the quotient map ¢ : M — M/P,11(0) be equivariant. For n = 1 we write
O =1r1(0) : M = M/Py(9) — N for the crossed module associated to 0.

Given a set, Z, let (Z) denote the free group generated by Z. Now take a group, N, and a
group homomorphism, f : FF = (Z) — N. Then the free N-group generated by Z is the free
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group, (Z x N), generated by elements denoted by 2% = ((z,«)) with € Z and o € N. These
are elements in the product Z x N of sets. The action is determined by

(2.1) ((z,0))? = ((z,a + B)).

Define the group homomorphism 9y : (Z x N) — N by ((z,)) — —a + f(x) + «, for generators
((z,@)) € Z x N, to obtain the pre-crossed module 0 with associated nil(n)-module 7,(0y) :
(ZxN)/P,41(05) — N. Note that r,(d¢)¢ = f, where ¢ = ptp is the composition of the inclusion
tp : F = (Z) - (Z x N) and the projection p : (Z x Ny - M = (Z x N)/P,4+1(05) onto the
quotient.

Remark 2.1. The nil(n)-module, r,(9y) : M = (Z x N)/P,4+1(05) — N, satisfies the following
universal property: For every nil(n)-module, &' : M’ — N’ and every pair of group homomor-
phisms, mp : F = (Z) - M', and n : N — N’ with mp = nf, there is a unique group
homomorphism, m : M — M’, such that m¢ = mp, and (n,m) : r,(df) — 0 is a map of
nil(n)-modules.

Thus 7, (0y) is called the free nil(n)-module with basis f. A free nil(n)-module is totally free it N
is a free group.

Given a path connected space Y and a space X obtained from Y by attaching 2—cells, let Z5
be the set of 2—cells in X — Y, and let f: Zy — m1(Y) be the attaching map. J.H.C. Whitehead
[W1] showed that

(2.2) 0:m(X,Y) > m((Y)

is a free crossed module with basis f. Then ker 9 = m3(X), coker @ = m1(X) and 0 is totally free if
Y is a one—point union of 1-spheres. Whitehead also proved that the abelianisation of the group
m2(X,Y) is the free R-module (Z3); generated by the set Z;, where R = Z[m(X)] is the group
ring [W1].

Now take a totally free nil(2)-module 0 : M — N with associated crossed module 9°" : M°" —
N. Let

q ha

M Mer C = (Mcr)ab

be the composition of projections. Put K = ha(ker(9°")). Further, let I be Whitehead’s quadratic
functor and 7 : T(K) — K ® K C C®C the composition of the injective homomorphism induced
by the quadratic map K — K ® K,k — k®k and the inclusion. The Peiffer commutator map, w :
C@C — M, is given by w({z} & {y}) = (z,), for ,y € M with {z} = ha(a(2)), {y} = ha(a(y)).
Lemma (IV 1.6) and Theorem (IV 1.8) in [B] imply

Theorem 2.2. Let 9 : M — N be a totally free nil(2)-module. Then the sequence
F(K)>—T>O®CL>M—(Z»MCT

is exact and the image of w is central in M.

3. PSEUDO—PROJECTIVE SPACES IN DIMENSIONS 2 AND 3

Real projective n—space RP™ has a cell structure with precisely one cell in each dimension < n.
More generally, a CW—complex,

X=5uelu...uen,



THE THIRD HOMOTOPY GROUP AS A 7;-MODULE 5

with precisely one cell in each dimension < n, is called a pseudo—projective n—space. For n = 2
we obtain pseudo—projective planes, see [O]. In this section we fix notation and consider pseudo—
projective spaces in dimensions 2 and 3. In particular, we determine the totally free crossed module
associated with a pseudo—projective plane and begin to investigate the totally free nil(2)-module
associated with a pseudo—projective 3—space.

The fundamental group of a pseudo-projective plane Py = S' U e?, with attaching map f €
m1(S1) = Z, is the cyclic group m = m1(Pf) = Z/fZ. We obtain m = Z for f =0, m = {0} for
f =1, and the bijection of sets

{0,1,2,....f =1} =»m =2Z/fZ, k> k=k+ fZ,
for 1 < f. Addition in 7y is given by

- - k+¢ for k+4<f;
E+l=¢
k+0—f for k+10> f.

Denoting the integral group ring of the cyclic group m; by R = Z[m1], an element x € R is a linear

combination
f-1
x = Z Tola] = Zazﬂk],
k=0

aEemy
with 24,27 € Z. Note that 1z = [0] is the neutral element with respect to multiplication in R
and, for x =3 - zalal,y =350 yslBls

f-1 ¢ f-1
zy= Y waysla+8l= (D wpyrp+ Y wpvrer)ll

a,Bem =0 k=0 k=0+1

The augmentation € = eg : R — Z maps ZaEm Zola] to Zaéﬂ'1 Zo. The augmentation ideal, K,
is the kernel of €. For a right R—module, C, we write the action of & € m on € C' exponentially
as x* = zlal.

Given a pseudo—projective plane Py = S'Ue? with attaching map f € m1(S') = Z, Whitehead’s
results on the free crossed module (2:2) imply that
(3.1) d: ma(Py, SY) — m(Sh)
is a totally free crossed module with one generator, e;, in dimensions ¢ = 1,2, and basis f 2l =
{ea} — m1(S?) given by f(ea) = fer. Note that d has cokernel m (Py) = Z/fZ = m and kernel
U} (Pf)

Lemma 3.1. The diagram

(P, 8') 27y (S1)
7

R
is an isomorphism of crossed modules, where eg : R — Z is the augmentation.

fer

Proof. By Whitehead’s results [W1] on the free crossed module [2.2)), it is enough to show that

Ta(Py, S') is abelian. As @ is a totally free crossed module with basis f, m(Pf, S?) is generated
by elements e™ = ((ez,n)), see (ZI). Note that we obtain €™ by the action of n € Z on w(e2) =

((e2,0)) = €® and d(e™) = —n + de +n = de = f as m1(S) = Z is abelian. We obtain

(", ™) — (™, e™) = —e"—e"+e"+ (em)a(en) —(—em—em4em+ (em)a(em))
= —e"—emte"+ (em) —(em) +em
(e",e™),
where (a,b) = —a— b+ a+b denotes the commutator of a and b. Thus commutators of generators

are sums of Peiffer commutators which are trivial in a crossed module. O
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With the notation of Theorem 221 and M = ma(Py, S'), Lemma Bl shows that M = M =
(Me)ab = R and that ma(Pf) = ker 0 = ker 9" = ker(f - €) = K is the augmentation ideal of R,
for f # 0. Thus the homotopy type of a pseudo—projective 3—space,

(3.2) P, =S'Ue?uUe?,

is determined by the pair (f,z) of attaching maps, f € m(S!) = Z of the 2-cell €2, and = €
m2(Pf) = K C R of the 3-cell e3. We obtain the totally free nil(2)-module

(3.3) MZWQ(Pf@,S'l)—6>N:7T1(Sl).

In the next section we use Theorem 22 to describe the group structure of mo (Pt ., S'), as well as
the action of N on ma(Pf,S'). The formulae we derive are required to compute the homotopy
group 73 (P 4) as a mp—module.

4. COMPUTATIONS IN NIL(2)-MODULES

In this Section we consider totally free nil(2)-modules, d : M — N, generated by one element,
e;, in dimensions i = 1,2, with basis f : {ea} = N = Z. Then 7 = cokerd = Z/fZ and, with
R = Z[m], we obtain (M°")% = C' = R. Thus Theorem 2.2] yields the short exact sequence

(4.1) (R® R)/T(K)—%~ M —1~R

with the image of (R ® R)/T(K) central in M. This allows us to compute the group structure
of M, as well as the action of N = Z on M, by computing the cross—effects of a set—theoretic
splitting s of (&I) with respect to addition and the action of N, even though here M need not be
commutative.

The element z ® y € R ® R represents an equivalence class in R ® R/T'(K), also denoted by
x®y, so that w(z ®y) = (&, ) is the Peiffer commutator for z,y € R, with :C q(Z) and y = q(9).

As a group, M is generated by elements e™ = ((ez,n)), in particular, e = e’ = ((e2,0)), see (ZT).
We write
e" 4+ ...+ e" (ksummands) fork >0,
ke =<0 for k = 0 and
—e" —...—¢e" (—ksummands) fork <0,

and define the set-theoretic splitting s of ([@I) by

f-1
R — M, Zx— »—>er —l—x—e +. —I—xfjeffl.
k=0

Then every m € M can be expressed uniquely as a sum m = s(x) + w(m®) with z € R and
® € (R®R)/T(K). The following formule for the cross—effects of s with respect to addition and

the action provide a complete description of the nil(2)-module M in terms of R and R® R/T'(K).
Given a function, f : G — H, between groups, G and H, we write

(4.2) flzly) = fle+y) = (f(2) + fy)), forz,yeC.
Lemma 4.1. Takew—zm Oxm,y—zn Oyn[ 7| € R. Then

s(zly) = w(V(z,y)),

where

)_.

-1 m—

s

o ymw([n] © [m] — [m] © [m]).

3
Il

Thus V(x,y) is linear in x and y, yielding a homomorphism V: R® R - R® R.
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Proof. First note that, by definition, V(k[m], ¢[7]) = 0 unless m > n. To deal with the latter case,
recall that commutators are central in M and use induction, first on &, then on ¢, to show that

(ke™, te™) = kl(e™,e),
for k,¢ > 0. To show equality for negative k or ¢, replace €™ or e by —e™ and —e", respectively.
Furthermore, note that the equality
(4.3) (e e™)=—e"—em e +e™m = (e",e™) — (™, e™)
for commutators of generators of totally free cyclic crossed modules derived in the proof of Lemma
3.1 holds in any totally free nil( )-module generated by one element in each dimension. Taking
x_z o T M) andy—zn Oyn[ 7|, we obtain
s(z +y)
=(zgt+yg)et. ..+ @mt+ym e +...+ (:Cﬁ—l—yf—l)ef_l
—1m-1
:(:1:1—.6—0—...—I—xleef_l)—l—(yge—l—...—l—ylee +Zmeyn ,e™)

m=1 n=0

Corollary 4.2. Take x € R and r € Z. Then
-1
s(ra) =rs(x) + (;>w(V(:v,$))a where (g) = %

As N = Z is cyclic, the action of N on M is determined by the action of the generator, 1 € Z.
The formula for general k € Z provided in the next lemma is required for the definition of the
set—theoretic splitting u, of (II]) and the explicit computation of A and B in Theorem

Lemma 4.3. Takew—zn Oxn[]ERandEEM Write R="7[0,...,f — 1] = Ry, x Ry,, where
Ry=17[0,....f—k—1] and Ry = Z[f — k,..., f — 1]. Then

(s(2))" = s(a%) + w(Vi(a,b)),

where z = (a,b) and

Vi:Re xRy > ROR, (a,b) = Qrla,b) + Li(b)

with
f—t—1¢-1 L
Q(a,b) = > Y wpagr(p+led- (@)
o
L) = 3 egprlale

Thus Qy. is linear in a and b and Ly, is linear in b.

Proof. For j € my and p € Z,
P (ej)a(e)
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Thus, for @,k € w1, with m+ k = 7,

e for 0 <n < f—F,
(s(m))” = {ej+<ej7ej>, for f-k<n<f

_ s([AlF), for0<n< f—k,
s()*) + w(jl @ [j]), for f—k<n<f.
Hence, for z = Z;{;o x5 ),
= ags([0)* + 2 s(A* + ... + 2= s([f = 1"
_ _ B f—1
=g s([0") +2rs([0°) + ... + 2= s((f 1) + znw(n+k—floh+k=7)
n=f—k
= o s((F=KF) + ..+ 2= s((F= 1) + 25 s(0F) + ... + 2= s([F = & — 1)
—k—1 f—1 -
- (aps([p+ k), ams([ + &) + Y 25— w((7] ® [7])
p=0 n=f—k q=0
_ —k—1k—1 k—1
= s(z*) + rprgrgw(p+kl @ —[geq)+ me zw([g ® [q])
p=0 ¢=0 q=0

Remark 4.4. We use the final results of this section to define and establish the properties of
the set—theoretic splitting u, of (LI)). The next result shows how the cross—effects interact with
multiplication in R.

Lemma 4.5. Take x,y € R. Then

f-1 _
> i (s(@) = s(zy) +w(p(z, y)),
1=0

where 1 : R X R — R® R is given by

- = 1 — = =
) = = S V) 4 3 (Talyse) = () Vo).

i<j i=0

Proof. By Lemmata [4.]] and and Corollary [£.2] we obtain, for z,y € R,

f-1 } f-1 }
yi(s(2))" = D (uss(@)’
=0 =0
F-1
= S X y{ w xr,T !
= 3 G~ (% )utve )
= 3 ) + @il — (4§ )wl Va2
=0
f-1 _ _ _ f-1 . ~ _
= (X vra) = S wl et g5e) + 3 wTilysa)) - (4 )Tl
i=0 i<j i=0

Finally, the definitions and a simple calculation yield
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Lemma 4.6. For z,y,z € R and with the notation in (@),

wla,ylz) = =Y (yrz5+ 2755) V(o' 27) + 221/121@1 Zw V(z,z)

i<j

Hence, for fived v € R,pu(x, ): RXx R — R® R, (y, z) — p(z,y|z) is bilinear.

5. QUADRATIC MODULES

In dimension 3, quadratic modules assume the role played by crossed modules in dimension
2. We recall the notion of quadratic modules and totally free quadratic modules, see [B], which
we require for the description of the third homotopy group ms(Py,z) of a 3—dimensional pseudo—
projective space Py ., as in (3.2).

A quadratic module (w,d,d) counsists of a commutative diagram of group homomorphisms

CeC

such that
e J: M — N is a nil(2)-module with quotient map M — C = (M) z — {z}, and
Peiffer commutator map w given by w({z} @ {y}) = (x,y);
e the boundary homomorphisms O and ¢ satisfy 09 = 0, and the quadratic map w is a lift of
w, that is, for z,y € M,

dw({z} @ {y}) = (,y);
e N acts on L, all homomorphisms are equivariant with respect to the action of N and, for
a€Land x € M,

(5.1) a®® =4+ w({da} ® {z} + {z} @ {da});
e finally, for a,b € L,
(5.2) (a,b) = —a—b+a+b=w({da} ® {ob}).

A map ¢: (w,8,0) = (W', 8,0 of quadratic modules is given by a commutative diagram

CoC- M2 N

Cod Y N

where [ is n—equivariant, and (m,n) is a map between pre—crossed modules inducing @, : C — C".

Given a nil(2)-module 9 : M — N, a free group F' and a homomorphism f:F — M with
df = 0, a quadratic module (w,d,0) is free with basis f, if there is a homomorphism i : F — L
with §i = f , such that the following universal property is satisfied: For every quadratic module
(w',0’,0") and map (m,n) : @ = & of nil(2)-modules and every homomorphism Ir : FF — L’ with
mf = &'lp, there is a unique map (I, m, n) of quadratic modules with l7 = If.

9 N
l‘ n
\
\ /
v £ e
L M’ N’

5’ o’
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For F = (Z), the homomorphism f is determined by its restriction f|; which is then called a basis
for (w,d,0). A quadratic module (w, §, 9) is totally free if it is free, if 0 is a free nil(2)-module and
if N is a free group.

6. THE HoMmoTOPY GROUP w3 OF A PSEUDO-PROJECTIVE 3—SPACE AND THE ASSOCIATED
SPLITTING FUNCTION wu,

In this section we return to pseudo—projective 3—spaces
P, = Stue?ued,

determined by the pair (f,z) of attaching maps, f € 71(S?) =Z and z € m3(Pf) = K C R, as in
B2). Using results on totally free quadratic modules in [B], we investigate the structure of the
third homotopy group m3(Pr ) as a m—module by defining a set—theoretic splitting u, of J.H.C.

Whitehead’s Certain Exact Sequence of the universal cover, Py .,

(6.1) D(ma(Py.a)) = 73(Py.o) —>= Ha(Py).

Uz

Recall that m = m (Py) = Z/ fZ with augmentation ideal K = ker fe, and let B be the image
ofd, : R— R,y zy. Then

(6.2) m2(Py2) = Hy(Pya) = K/B = (ker fe)/xR.

The functor o in (IV 6.8) in [B] assigns a totally free quadratic module (w,d,d) to the pseudo-
projective 3—space Py, and we obtain the commutative diagram

[(mo(Pf..)) > R® B/Ap —> R® R/T(K)

m3(Pf) L M 9 N
L ]
35 x fe

Hg(Pf@) R R 7

of straight arrows. Here the generators es € L, e € M and e; =1 € N = Z correspond to the
cells of Py, and 0 is the totally free nil(2)-module of Lemma [3]1 The right hand column is the
short exact sequence (1)) with the set theoretic splitting s defined in Section @l The short exact
sequence in the middle column is described in (IV 2.13) in [B], where the product [o, 8] of @ € K
and 8 € B is given by [a, f]=a® 8+ 8®a € R® R and

Ap =T(B) + K, B).

By Corollary (IV 2.14) in [B], taking kernels yields Whitehead’s short exact sequence (G1]) in
the left hand column of the diagram, that is, ker ¢ = I'(m2 (ﬁfx)), ker§ = m3(Py,) and kerd, =
Hs (ﬁfw) As (w, 9, 9) is a quadratic module associated to Py, we may assume that d(e3) = s(z).
In Section M we determined the structure of M as an N-module by computing the cross—
effects of the set—theoretic splitting s with respect to addition and the action. Analogously to the
definition of s, we now define a set-theoretic splitting of the short exact sequence in the second
column of this diagram by
-1
ty : R— L, Zyz[%] »—)yﬁeg—l—...—l-yfje?{
k=0

-1

The cross—effects of ¢, with respect to addition and the action determine the N-module structure
of L, but we want to determine the module structure of m3( Py ;). To obtain a set-theoretic splitting
of the first column which will allow us to do so, we must adjust ¢, such that the image of Hs (ﬁfx)
under the new splitting is contained in ker § = m3(Py,;). Recall that ¢ is a homomorphism which
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is equivariant with respect to the action of N and d(e3) = s(x). Thus Lemma yields, for
y € Hy(Py,z) = kerdg, that is, for d,(y) = 2y =0,

f-1
5(2%63 Zyz 63 Zyl
i=0

= s(ay) +w(p(e ,y))
= dwp(z,y).
Hence t,(y) —wp(z,y) € ker § = m3(Py,¢), giving rise to the set theoretic splitting

5(t=(y))

Ug * HS(ﬁf,w) — 7T3(Pf,1)7 Yyr— tw(y) - wﬂ(xuy)

of the Hurewicz map w3 — Hs. The cross—effects of u, with respect to addition and the action
determine (G.I)) as a short exact sequence of m;—modules. In Section [l we determine the cross—
effects of ¢, and investigate the properties of the functions A and B describing the cross—effects
of uy.

7. COMPUTATIONS IN FREE QUADRATIC MODULES

The first two results of this Section describe the cross—effects of ¢, with respect to addition and
the action, respectively. We then turn to the properties of the cross—effects of u,.

Lemma 7.1. Take z,y € R. Then, with the notation in (£.3),
ta(2ly) = w(¥(z,y)),

where
—1 m-—1

Zzzmyn ® x[m].

m=1 n=0
Thus V(z,y) is linear in z and y, yielding a homomorphism ¥ : R® R — R® R.
Proof. As in the proof of Lemma Il we obtain
-1 m-1

Zzzmyn ? 3ﬁ

m=1 n=0

Note that {6(eT)} = {8(tz([A]))} = du([7]) = z[m]. Thus (m) yields

f—1 m— —1m-—1
amymw({0(e5)} @ {d(ef) Z > zmymw(zn] @ zm]).
m=1 n=0 m=1 n=0

As N = Z is cyclic, the action of N on L is determined by the generator 1 € Z.
Lemma 7.2. Take x € R. Then
1 T p—
(ta(y)) = ta(y') + w(¥i(a, b)),

where
f-2
U = gy + 1 @20 + gy (@ ® [0 + [0] @ 2).
p=0

Proof. With {6(e})} = z[n] from above and (5.1]), we obtain
st = (ed) = () = ¢! +w({d(e3)} @ {e} + {e} ® {3(e3)})

= to([7)) + w(z(1 @ [0] + [0] ® =[T).
Thus, for @ € 7,
w1l W(tm([ﬁ]T) for 0<n<f—1,
(D) = { (to([)") + 2[1] ® [0] + [0] ® z[1)) for n=f—4.
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With (5.2]), we obtain, for y = Zi;é y=[7),
1
(ta(¥))

F—1
yﬁeé—i—yTeg...—i—ymeg —i—ylee?{

= (0 + .+ yrst(T- 1)+ yr=t(F— 1) + yy=w@ 2 [0] + 0] © 2)

e
= t(y")+ D vpyrr (e ) +yrw@ @ [0+ 0] ® 2)
p=0

s
= (") + ) ypyrrzlp+ 1 @20 + y— (z @ [0] + [0] @ x)

O

The next two results concern the properties of the maps A and B which describe the cross—effects
of u, with respect to addition and the action, respectively.

Lemma 7.3. For x € K the map
A: Hgﬁf@ X Hgﬁf@ — D(mo Py 2), (y, 2) = uz(y|2)
1s bilinear.
Proof. Take x € K and y,z € Hgﬁf@. By definition
Ay, 2) = us(yl2) = ta(yl2) —wplz,ylz) = w(¥(y, 2) — ulz,y[2)).
Thus Lemmata and [[. 1] imply that A is bilinear. O
Lemma 7.4. For x € K define
B: H;Ppo = T(maPra)y = (ua(v) —ua(y')

Then
H3 Py x H3 Py — T(m2 Py 2), (y, 2) = B(yl?)

s bilinear.

Proof. Take x € K and y,z € Hgﬁf@ . Then

Ay, 2))' = (uay+2) = (Ua(y) + ua(2))'
= (ua(y+2)" = (ux(y)' — (ua(2))!
= Bly+2)+u((y+2)") = (B(y) + ue(y') + B(z) +u.(z1)).
= B(ylz)+ A", 2"

Thus
(7.1) B(ylz) = (Aly, 2))" — A(y*, 2")
and bilinearity follows from that of A and the properties of an action. O

8. EXAMPLES OF PSEUDO-PROJECTIVE 3—SPACES

In this Section we provide explicit computations for examples of pseudo—projective 3—spaces,
including proofs for Theorem [[LT], Theorem and Theorem [[4]

Note that, as abelian group, the augmentation ideal K of a pseudo—projective 3—space Py ;, as
in ([32)), is freely generated by {[T1]—[0],...,[f — 1]—[0]}. We consider pseudo-projective 3-spaces,
Py, with = Z([T] — [0]) and # € Z. We compute m3(Py.,), Hs(Py.,), as well as the cross—effects
of u, for this special case. For f = 2, the general case coincides with the special case and provides
an example where 7y acts trivially on I'my (P2 z) and on Hg (ﬁgj), but non-trivially on m3(Ps z).
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Lemma 8.1. For z = Z([1] — [0]) with & € Z,
Hy(Pry) = {N | € 2} = Z,
1s generated by the norm element N = Ei;é [k]. Hencem acts trivially on H3 (ﬁfw) Furthermore,
o (Pt ) = (Z)TZL) @z K.
Hence 320 = 0 for every { € T'(ma(Pfy)).

Proof. Take x = Z([1] — [0]) with Z € Z and y = Zé;é yz|k] € kerd,. Then

f-1
de(y) =2y =0 <= &Y yp(F+T-[k])=0
k=0
= Yra =YY=V = =Y = Y

for some § € Z. Hence y = yN. B
By ©2), m(Pfs) = K/xR. As abelian group, K = kere is freely generated by {[k] —

[[0]}1<k<f—1 and hence also by {[k] — [k — 1]}1<k<f—1. For y = Zif:_ol y;[i] € R we obtain

f—1
oy = &3y - [=1) + (0 - T=1)
o o1
= & ulfl - = 1) — gy (@ - = 1)
f-1

As K C xR, we obtain xR = ZK and hence
7o (Pry) = K/eR = K/ZK = (Z/%Z) ®z K.

If 7 is odd, then every element ¢ € I'(m2(Py,)) has order Z. If Z is even, an element ¢ € I'(m2(Py,z))
has order 27 or #. In either case, 7*¢ = 0 for every £ € T'(m2(Ps )). O

Lemma 8.2. Take z = &([T| — [0]) and y,z € H3(P;.). Then
Ay, z) = 0.
Proof. By definition,
Ay, 2) = uz(ylz) = ta(yl2) — wp(z,yl2) = w(¥(y, 2) — (2, yl2)).
The definition of ¥ and Lemma yield

f—1p—1 f—1p—1 f-1 f—1
U(y, z) — ule,ylz) = §2( plg@apl+2) Y V(@,aT) =2) Q)+ > (V(w,x)F).
p=1¢=0 q=1 p=0 p=1 p=0

Recall that #2¢ = 0 for every ¢ € I'(m2(Pyf,,)) and note that, by the properties of @ and V, each
summand in the above sum has a factor of 2. O

Lemma 8.3. Let v : ma(Pr ) — I(ma(Pry)) be the universal quadratic map for the Whitehead
functor T'. Take q: K — w2(Py), k— 1@ k,x = 2([1] — [0]) and y = gN. Then

B(y) = —zgyq([1] - [0]).
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Proof. Note that y® =y for 8 € m. As 32 = 0 for every ¢ € T'(m2(Py,)), any summand with a
factor 2 is equal to 0. By Lemma [T.2]

Uiy) = > 7@~ 0)p 1 @ - 0) +§(@(T - 0) 0] + 0] @ &(1] - [0]))

Lemma yields
f-1q-1 f-1
pxy) = =D FPV((p+1 - (a+1-[@) + > V(51 - [0)
q=0p=0 p=0
—# () (v - @) - m)°
= Vs (zg([I] - [0))
#7*([f =1 @ [0] - [0] @ [0]) + 7 [0] © [0]
= zy[0]®[0]
Thus

B(y) = (us(y))' — us(y?) = w(T1(y) — (u(z,y)* + p(z,y)) = —25ye([1] - [0)).

Together Lemmata 811 and B3] provide a proof of Theorem
For f = 2 the special case coincides with the general case and we obtain

Theorem 8.4. Let X = Ps, be a pseudo-projective 3-space with x = &([1] — [0]), for T € Z
and T # 0. Then u, is a homomorphism and the fundamental group m1 = Z/27 acts trivially on
D(mePs ) and on H3Ps ;. The action of m1 on w3 P, is non—trivial if and only if & is even.

Proof. For f = 2 the augmentation ideal K is generated by k = [1] — [0]. Since k[1] = —k, the
action of m; = Z/27Z on K and hence on me Py, = K /xR = 7Z/ZZ is multiplication by —1. As the
I'—functor maps multiplication by —1 to the identity morphism, the action on m on I'(maPs ) is

trivial. The group H3 P, , is generated by the norm element N = [0] + [1]. As N[1] = N, m; acts
trivially on Hg Py .. As ma = Z/ZZ is cyclic, I'mg = m if  is odd and T'my = Z/237Z if T is even,
that is,

(8.1) I'my =7/ ged(2,2)2 Z.

By Lemma B3 and [B1]), the action of w1 on m3X is non-trivial if and only if Z is even. O

Theorem [[T]is a corollary to Theorem B4

Proof of[1.4] Note that Z/ZZ ®z K is generated by {as = q([k] — [k — 1]) }o<r<f, where ¢ : K —
Z)3Z @z K,k — 1® k. Thus D(r2(Py)) = D(Z/TZ ® K) C (Z/3Z &z K) ® (Z/3Z ®z K)
is generated by {vq(ax),[q(a;), q(ar)]o<j<ko<k<f. With ai = ag1 for 1 < k < f—1 and
ab_y =0 - [F=1 = = /2 e, we obtain, for £ = 32771 Gey(an) + Y1y Y5—) 4 klay, au] €
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D(m2(Prz)),
f-1 f—1k-1 f-1 f—1k—1
-t = Ceyglar)' + Z Z@ k lalay), glar)]t - Z%W(%) - Z Zf‘,k[Q(%‘)a q(a)]
k=1 k=2 j=1 = k=2 j=1
f—2 f- —2k—1
= Ceyq(aks) + Lp—17vq(— Z ;) + Z Z Cik la(ags1), g(aky1)]
k=1 k=2 j=1
f—1 f— f—1k—1
+) i palvalegn), va(— Z waq o) ZZE kla(ay), alar)]
7j=1 i=1 =2 j=1

Fo1
= (L1 —0)yg(en) + Y ey — Li + Lp 1 — 26k, s-1)7q(0)
k=2

f—l
(lp—1 =Ll — le—1,p—1)[q(1, q(ag)]
k=2
j 1k
Zﬁj 1+l e—1 =L — i1, 5—1 — Lp—1,7— 1)[‘](0@) q(ag)].
k=3 j

Thus the sequence ([ILTI) splits if and only if there is at least one solution of the system of equations

(A) 0= gf—l — fl mod 2%
(B;g) 0="Vp_1— 4} +ff_1 — 2£k—1,f—1 mod 27 for2 < k< f—1
(Ck) 0= éffl — 517]@ — ékflyffl mod z for2 <k < f—1

(Dj7k) 0=ty 1+l p—1—Ljr—Ci—1,5—1 — lr—1,51 mod z for2 <j<k2<k<f-—1.

For odd f, a solution of the system is given by £;, =0for 1 <j<k-1,1<k< f—-1,4,=0
for k odd, and ¢, = & for k even. Hence (IT)) splits if f is odd. It remains to show that there are
no solutions for even f > 2.

For 2 < j < &(f — 2), subtract the equation (D; s_;;) from the equation (D; s_ji;—1) for
2 <i<j. Add (Dj¢-1) and (Cy_;), then subtract (Cy—j41). Adding the resulting equations
yields

(Ej) 0= ff_l — fj7f_1 — ﬂf—j—l,f—l mod T.

Multiplying the equations (Cy_1) and (E};),2 < j < %(f —2) by 2 and adding them we obtain

f-2
0=(f=2);1—2) Lis1 mod?2i.
j=1

On the other hand, adding the equations (A) and (Bg),1 < k < f — 1, the resulting equation is

f—2
T=(f-2)ly-1—2 ij,f_1 mod 27.
j=1
Hence there are no solutions for f even. 0

9. PSEUDO-PROJECTIVE SPACES IN DIMENSION 4

In the final section we consider 4—dimensional pseudo—projective spaces and provide a proof
of Theorem We begin by constructing a 4-dimensional pseudo—projective space associated
to given algebraic data. Namely, take f € Z with f > 0,2,y € R = Z[Z/ 7] with xy = 0 and
fe(x) = 0, where € is the augmentation of the group ring, R, so that xR C kere. Finally, take
~v € T'((ker fe)/xzR). Given such data, (f,z,y, «), take a 3-dimensional pseudo—projective space
Py asin (32). Then the set—theoretic splitting u, of the short exact sequence

[(m2(Pyp)) == m3(Pp.0) —= H3(Py,)
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implies that every element of m3(Pf ) may be expressed uniquely as a sum u,(v) + 8 with v €
Hs(Py), that is, zv = 0, and 8 € I'(m2(Prz)) = I'((ker fe)/xR), see [6.2). Using u,(y) + « €
73 (Pt ) to attach a 4-cell to Py, we obtain the 4-dimensional pseudo-projective space,

P=Pj,ya=5S1Uctuctue

Note that the homotopy type of P = Py, is determined by (f,z,y,«) and that every 4—
dimensional pseudo—projective space is of this form. The cellular chain complex, C,(P), of the
universal cover, P = P, 4 «, is the complex of free R-modules,

dy ds da dy

(e2)r — (e1)r — (€0)R,

(ea)r (e3)r

given by dy(e1) = eo([1] — [0]), d2(e2) = e1 N, that is, multiplication by the norm element, N =
Zifz_ol [i],d3(e3) = eax, and d4(es) = e3y. Let b: R — m3 Py, be the homomorphism of R—modules
which maps the generator [0] € R to b([0]) = u,(y) + «, so that composition with the projection
onto Hgﬁfym yields the homomorphism of R—modules induced by the boundary operator ds. Thus
we obtain the commutative diagram

H,P — > TP
R—E>773Pf,m > 7T3P

N

Hgﬁf@ e Hgﬁ
in the category of R—modules, where the middle column is the short exact sequence (61 and

h

(9.1) HiP —to P L = 1P Hs P
is Whitehead’s Certain Exact Sequence of the universal cover, P = ﬁfymyyya.

Now we restrict attention to the case f = 2. Then m = m P = Z/27Z and the augmentation
ideal, K is generated by [1] — [0]. Thus

v=2(1]—[0) and y=g([I]+[0]), for some i,y € Z.
We assume that x and y are non—trivial, that is, Z,y # 0.

Theorem 9.1. For P = P54, with x and y as above, ;P = Z/2Z acts on mP = Z/%Z
via multiplication by —1, trivially on H3P = 7Z/§Z and via multiplication by —1 on HyP =7 =
([1] = [0]). The exact sequence (91) is given by

(9.2) HP =7t~ TmP =T1(2/7Z) — > msP —" H,P = 7/§L.

Denoting the generator of T'moP by &, the boundary b is determined by

b([T] — [0)) = 2,

and the action of my P on w3 P is trivial. As abelian group, w3 P is the extension of Hgﬁ by cokerbd
giwen by the image of —a € I'my under the homomorphism

7 : I'mg ——> cokerb ——s= cokerb/gcokerb = Ext(Z/§Z, coker b).
Hence the extension w3 P over Z determines o modulo ker 7.

Theorem is a corollary to Theorem
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Proof. As the augmentation ideal K = Z is generated by k = [1] — [0], the action of 71 = Z/2Z
on K = myP, and hence on mP = K/xR = 7Z/%Z is multiplication by —1, since k[1] = —k. But
the I'—functor maps mutliplication by —1 to the identity morphism, so that 7 acts trivially on
F(Wg P)

As ds(es3) = esx, we obtain H31627E =~ 7, generated by the norm element N = [1] + [0]. Since
NJ[1] = N, the action of 1 on Hgﬁgym is trivial.

As dy(eq) = esy, we obtain HyP = Z/§Z and HyP = Z, generated by k = [T] — [0]. Hence the
action of 7 on H416 is multiplication by —1.

Now let € = ([1] — [0]) @ ([1] — [0]) be the generator of I'(K). Note that v[1] = v and B[1] = 3,
for v € Hgﬁzz and 8 € I'(meP), since m; acts trivially on both Hgﬁzz and ['(maP). Lemma
implies

(w(v) + B[] = =2 w(&) +u(v[1]) + w(B)[1] = —2Fw(€) + u(v) +w(B).
We obtain
blea(I] = [0))) = (uly)+w(a))([1] - [0])
= —fgw(§) +uly) +w(a) — (u(y) +w(a))
= —ajw(©).

By definition of b, -
7T3P = 7T3P2)m/im b.
Hence 7y acts trivially on m3(P).
Sequence (@) yields the short exact sequence

h

(9.3) G = cokerb 73 P H3P =~ 7,/§Z,

which represents w3 P as an extension of Z/§Z by G = cokerb. Thus the extension w3 P over Z
determines 7 modulo the kernel of the map

7 : I'mg —> coker b ——> coker b/gcoker b = Ext(Z/§Z, cokerb) .
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