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SECANT CUMULANTS AND TORIC GEOMETRY

MATEUSZ MICHA LEK, LUKE OEDING, AND PIOTR ZWIERNIK

Abstract. We study the secant line variety of the Segre product of projective spaces using special
cumulant coordinates adapted for secant varieties. We show that the secant variety is covered by
open normal toric varieties. We prove that in cumulant coordinates its ideal is generated by binomial
quadrics. We present new results on the local structure of the secant variety. In particular, we show
that it has rational singularities and we give a description of the singular locus. We also classify all
secant varieties that are Gorenstein. Moreover, generalizing [SZ12], we obtain analogous results for
the tangential variety.

1. Introduction

Cumulants are basic objects in probability and statistics used to describe probability distribu-
tions. In this paper we use a variation of cumulants that we call secant cumulants to study secant
varieties of Segre products. The Cartesian product of n projective spaces Pk1 × · · · × Pkn embeds
naturally in PN−1 (N =

∏
(ki + 1)) via the Segre embedding. The secant variety of the Segre

product (the secant variety hereafter) is the Zariski closure of all points on all secant lines to the
Segre product, and is denoted Sec

(
Pk1 × · · · × Pkn

)
. The tangential variety is, similarly, the union

of all points on all tangent lines to the given variety.
The secant of the Segre embedding can also be described as the Zariski closure of the locus of

tensors of rank two, or the tensors of border rank ≤ 2. While the Segre variety and its higher secant
varieties have been studied classically, there is also current interest in these topics due to the wide
variety of applications. For example, determining the rank and border rank of a tensor is connected
to computational problems, such as fast matrix multiplication. The border rank of a tensor tells the
minimal secant variety on which the tensor lives, and could be determined by explicit knowledge of
the implicit defining equations of secant varieties. Finding these equations turns out to be a difficult
problem in general. The reader may consult [Lan12, Ch. 5] for a modern account of the topic.

Garcia, Stillman and Sturmfels studied the secant of the Segre in the case of binary tensors
(k1 = . . . = kn = 1) from the point of view of Bayesian networks, conjecturing that its defining ideal
was generated by the 3×3 minors of flattenings [GSS05, Conjecture 21]. Since then the so-called GSS
conjecture had many partial solutions, including work of Allman and Rhodes [AR08], Landsberg
and Manivel [LM04], Landsberg and Weyman [LW07]. The GSS conjecture was finally resolved by
Raicu [Rai12], who also proved analogous results in the partially symmetric (Segre-Veronese) case.

Like secants, tangential varieties were also studied by classical geometers (see, for instance
[Zak93]). Its stratification by tensor rank, varying from 1 to n, was given in [BB12] and is also
contained in the more general work [BL12]. They are also connected to Algebraic Statistics be-
cause of their interpretation as special context-specific independence models (see [Oed11, § 6]).
Speaking of algebraic properties, it was known that it is always arithmetically Cohen-Macaulay
[LW07b, Theorem 7.3]. Landsberg and Weyman studied the equations of tangential varieties of
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compact Hermitian symmetric spaces, and, in particular they conjectured the defining equations
of the tangential variety of the Segre (see [LW07b, Conjecture 7.6]). Their conjecture was proved
set theoretically by one of us in [Oed11], and ideal theoretically in [OR12], both making use of
representation theoretic methods. Still we are not aware of any explicit description of the singular
locus, apart from the fact that the variety is normal, hence the codimension of the singular locus is
at least 2.

Common methods for studying the secants and tangents of the Segre use the fact that there is
a natural action of the product of general linear groups on the ambient space, which enables the
application of methods of the representation theory of GL(n). Our approach is completely different.
It relates to toric geometry, however not, as one could expect, to the action of the dense torus orbit of
the Segre variety. Our inspirations come from statistics (see [SZ12, Z10]), and from other uses of toric
techniques in Algebraic Statistics and Phylogenetics such as [SS05, SS06, SS08, BW06, DK08, M12].

Our idea is to study an affine open subset of the projective space, for which we can then use
probabilistic and combinatorial techniques. Secant cumulants are well-defined on this open set of
tensors and give a non-linear birational change of coordinates on projective space. This change
of coordinates enables us to explicitly provide a covering of the secant variety with affine toric
varieties (Thm. 4.5), which are defined by quadratic binomials (Cor. 4.8). Each of these varieties is
a cone over a projective toric variety. These toric varieties are described by normal polytopes with
unimodular regular triangulations. Adapting the arguments in the previous work of Sturmfels we
can show that their ideals have a quadratic square-free Gröbner bases (Thm. 7.9). In particular,
the varieties have rational singularities, thus are normal and Cohen-Macaulay (Thm. 7.10). As
a consequence, we also obtain a short proof of the (slightly weaker) scheme-theoretic version of
Raicu’s theorem (Thm. 6.4).

In the remainder of this section we highlight (and slightly rephrase) our results on the secant.
Our methods also adapt to the case of the tangential variety, for which we find analogous results
with straightforward proofs. We report on these in Section 8.

We consider the following our main result.

Theorem 7.10. The secant variety of the Segre product of projective spaces Sec
(
Pk1 × · · · × Pkn

)

is covered by normal affine toric varieties. In particular it has rational singularities.

Toric geometry facilitates the following description of the singular locus.

Corollary 7.17. The singular locus of the secant variety Sec
(
Pk1 × · · · × Pkn

)
is

⋃

1≤i1<i2≤n

Pk1 × · · · × P̂ki1 × · · · × P̂ki2 × · · · × Pkn × Sec(Pki1 × Pki2 ),

where ·̂ denotes omission.

Moreover, we classify all the the secant varieties that are Gorenstein as follows:

Theorem 7.18. Assume that k1 ≤ k2 ≤ · · · ≤ kn. The secant variety Sec
(
Pk1 × · · · × Pkn

)
is

Gorenstein only in the following cases:

(1) n = 5 and k1 = k2 = k3 = k4 = k5 = 1,
(2) n = 3 and (k1, k2, k3) equal to one of (1, 1, 1), (1, 1, 3), (1, 3, 3), or (3, 3, 3),
(3) n = 2 and k1 = k2 or k1 = 1, k2 arbitrary.

Here is an outline for the rest of the paper. In Section 2 we describe secant cumulants. To
keep the notation as simple as possible we first present the case of the Segre product of projective
lines. In Section 3 we study the secant variety in secant cumulants. In Section 4 we describe the
toric varieties that give an open covering of the secant variety and further study the geometry of the
secant variety in Section 5. In Section 6 we show the explicit connection between equations in secant
cumulants to minors of flattenings. Then we show how this setting can be generalized. In Section 7
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we adopt our results to the secant variety of the Segre embedding of arbitrary projective spaces.
In Section 8 we present analogous results for the tangential variety. Most of our results hold over
a field of arbitrary characteristic. However, some of them concern notions typical for characteristic
zero, like rational singularities. Thus, for simplicity, we work over the complex ground field C.

2. Secant cumulants

In this section we introduce secant cumulants as a special kind of L-cumulants described in [Z10].
This is a purpose-built coordinate system suitable for studying the secant Sec((P1)×n) ⊆ P2n−1.
After setting up notation we will make this change of coordinates on P2n−1 in two steps: from
moments xI , to central moments yI then to secant cumulants zI , where all indices I are subsets of
[n]. The interested reader can consult [SZ12, Z10] for more statistical background.

We say that π = B1| . . . |Bk is a set partition (or partition) of [n] := {1, . . . , n}, if the blocks
Bi 6= ∅ are disjoint sets whose union is [n]. In a similar way we define any set partition of any finite
set. We are interested in very special type of set partitions.

Definition 2.1. An interval set partition of [n] is a set partition π of a form

1 · · · i1|(i1 + 1) · · · i2| · · · |(ik + 1) · · · n,

for some 0 ≤ k ≤ n− 1 and 1 ≤ i1 < . . . < ik ≤ n− 1. Denote the poset of all interval set partitions
by IP([n]). For any I ⊂ [n] denote by IP(I) the poset of interval partitions of I induced from IP([n])
by constraining each partition to elements of I. There is an order-preserving bijection between the
poset IP([n]) and the Boolean lattice of subsets of [n− 1].

For example IP({1, 2, 3}) consists of four set partitions: 123, 1|23, 12|3 and 1|2|3.

Remark 2.2. Note that in Definition 2.1 we used the total ordering 1 < 2 < · · · < n. Other
total orderings lead to other interval set partition lattices. For example for ordering 3 < 1 < 2 the
corresponding interval set partitions are: 123, 3|12, 13|2 and 1|2|3. This will play a role in Section 6.

Let xI for I ⊆ [n] be the coordinates of P2n−1. Write xi for x{i}, xij for x{i,j} and so on. We now
construct the secant cumulants zI . Let U∅ denote the affine subset given by x∅ = 1. We first write
all the coordinate changes in U∅. The first change of coordinates U∅ → U∅ is defined by

(1)
yi := xi, for i = 1, . . . , n,

yI :=
∑

A⊆I(−1)|I\A|xA
∏

i∈I\A xi, for all I ⊆ [n], s.t. |I| ≥ 2.

By construction the change of coordinates is triangular, that is yI = xI + lower terms for every
I ⊆ [n]. Hence it forms an isomorphism between C [xI : I ⊆ [n]] and C [yI : I ⊆ [n]] where we set
y∅ = x∅ = 1.

Now we define U∅ → U∅ by

(2)
zi := yi, for i = 1, . . . , n,

zI :=
∑

π∈IP(I)(−1)|π|−1
∏

B∈π yB for I ⊆ [n], s.t. |I| ≥ 2,

where the sum runs over all interval set partitions without singleton blocks. Again the change of
coordinates is triangular, hence an isomorphism between C[yI : I ⊆ [n]] and C[zI : I ⊆ [n]] with
z∅ = y∅ = 1. In both cases explicit forms of the inverse maps can be given by the Möbius inversion
formula.

Example 2.3. If n = 3 then yi = xi, yij = xij − xixj for i 6= j ∈ {1, 2, 3} and

y123 = x123 − x1x23 − x2x13 − x3x12 + 2x1x2x3.

Moreover, zi = yi, zij = yij, z123 = y123 so the second change of coordinates is just the identity.
The inverse maps are given by xij = yij + yiyj and

x123 = y123 + y1y23 + y2y13 + y3y12 + y1y2y3.
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If n = 4 then yij = xij − xixj, yijk = xijk − xixjk − xjxik − xkxij + 2xixjxk for distinct
i, j, k ∈ {1, 2, 3, 4}; and

y1234 = x1234 − x1x234 − x2x134 − x3x124 − x4x123 +

+ x12x3x4 + x13x2x4 + x14x2x3 + x23x1x4 + x24x1x3 + x34x1x2 − 3x1x2x3x4.

Moreover, zij = yij, zijk = yijk and z1234 = y1234 − y12y34.

3. The secant variety of the Segre variety

In this section we define the secant variety. When expressed in secant cumulants it will reveal its
nice local structure. Consider the product of projective lines in the Segre embedding given by

P1 × · · · × P1 → P2n−1

(
[a1

1, a
2
1], . . . , [a1

n, a
2
n]
)

7→


xI =

∏

i∈I

a1
i

∏

i 6∈I

a2
i


 .

On the affine open set U∅ we can assume that [a1
i , a

2
i ] = [ai, 1] and the Segre embedding is parame-

terized by

xI =
∏

i∈I

ai, for all I ⊆ [n].

The secant variety to a variety X, denoted Sec(X), is the Zariski closure of all lines connecting
pairs of points on the variety. On the open set U∅, the secant variety Sec((P1)×n) is parameterized
by

xI = (1 − t)
∏

i∈I

ai + t
∏

i∈I

bi, for all I ⊆ [n],

where ai and bi are C valued parameters. We introduce the affine variety V given by

V := Sec((P1)×n) ∩ U∅.

By I(V ) denote its defining ideal. We will see that in secant cumulants, V has a monomial param-
eterization. To show this we first prove the following result.

Lemma 3.1. The variety V in the coordinate system given by the secant cumulants is the Zariski
closure of the image of the parameterization given by:

zi = (1 − t)ai + tbi, for all i = 1, . . . , n, and

zI = t(1 − t)(1 − 2t)|I|−2
∏

i∈I

(bi − ai) for |I| ≥ 2.

Proof. Consider a point of the secant given by

xI = (1 − t)
∏

i∈I

ai + t
∏

i∈I

bi, for all I ⊆ [n].

The formula for zi follows directly from the fact that zi = xi for all i = 1, . . . , n. We therefore
focus on the case |I| ≥ 2. First we will prove that yI vanishes for |I| ≥ 2 if ai = bi for some i ∈ I.
Then we will show that the remaining factors in the expression of yI only depend on t and give
the precise expression. Finally, and in a similar fashion, we convert the expression for yI to the
resulting expression for zI .



SECANT CUMULANTS AND TORIC GEOMETRY 5

Consider i fixed, |I| ≥ 2 and a subset of A ⊆ I, such that i ∈ A and ai = bi. The corresponding
term in the expression of yI satisfies

xA
∏

j∈I\A

xj = ((1 − t)
∏

j∈A

aj + t
∏

j∈A

bj)
∏

j∈I\A

xj

= ai((1 − t)
∏

j∈A\i

aj + t
∏

j∈A\i

bj)
∏

j∈I\A

xj

= ((1 − t)
∏

j∈A\i

aj + t
∏

j∈A\i

bj)((1 − t)ai + tbi)
∏

j∈I\A

xi

= xA\i

∏

j∈I\(A\i)

xi.

We can pair the subsets indexing term in the sum in the expression for yI in (1) by (B,B \ i), where
B contains i. From the previous computation we see that the sum in each pair will be zero, hence
yI = 0. Thus yI = fI(aj, bj , t)

∏
i∈I(bi − ai), for some polynomial fI . Notice that yI is of degree |I|

in variables aj , bj for j ∈ I. Hence fI depends only on the variable t. To determine fI set all ai = 0
and bi = 1. Then

fI(t) =
∑

∅6=A⊆I

(−1)|I\A|t
∏

i∈I\A

t + (−1)|I|
∏

i∈I

t

=
∑

∅6=A⊆I

(−1)|I\A|t|I\A|+1 + (−1)|I|t|I|

= (−t)|I| +

|I|∑

k=1

(−1)|I|−k

(
|I|

k

)
t|I|−k+1

= (−t)|I| − (−1)|I|t|I|+1 +

|I|∑

k=0

(−1)|I|−k

(
|I|

k

)
t|I|−k+1

= (−t)|I|(1 − t) + t(1 − t)|I|.

As fI depends only on the size of I we will denote it by f|I|. Substituting yI in the definition of
zI we see that zI = h|I|(t)

∏
i∈I(bi − ai) for some polynomial h|I|(t). Let us prove inductively on

the size of I that h|I|(t) = t(1− t)(1− 2t)|I|−2. The case |I| = 2 can be easily checked by hand. Let
m := |I|. By induction, assume that the result holds for sets of cardinality strictly smaller than m.
We have

h|I|(t) = (−t)m(1 − t) + t(1 − t)m −
m−2∑

i=2

∑

π:I−i

fi(t)hm−i(t).

Here the two first terms correspond to the partition of I into one set. The sum runs over nontrivial
interval partitions, where i denotes the size of the first set in the interval partition and the second
sum runs over interval partitions of I without the first i elements. By the inductive assumption we
have:

−
m−2∑

i=2

∑

π:I−i

fi(t)hm−i(t) = t2(1 − t)2
m−2∑

i=2

((−t)i−1 − (1 − t)i−1)(1 − 2t)m−i−2

= t2(t− 1)2
m−3∑

i=0

((−t)i − (1 − t)i)(1 − 2t)m−i−3
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Notice that

(1 − t)(

m−3∑

i=0

(−t)i(1 − 2t)m−i−3) = ((1 − 2t) − (−t))(

m−3∑

i=0

(−t)i(1 − 2t)m−i−3)

= (1 − 2t)m−2 − (−t)m−2

and

(−t)(

m−3∑

i=0

(1 − 2t)m−i−3(1 − t)i) = (1 − 2t− (1 − t))(

m−3∑

i=0

(1 − 2t)m−i−3(1 − t)i)

= (1 − 2t)m−2 − (1 − t)m−2.

Substituting this, we easily prove the inductive step. �

4. The toric varieties Ta,b and the ideal I(V )

We define a special toric variety, which is closely related to the secant variety.

Definition 4.1 (Ta,b, Ja,b). Fix three integers 0 ≤ a ≤ b ≤ n. Consider the lattice Zn+1 and the
set Ja,b consisting of all points p with the following properties:

(1) p ∈ {1} × {0, 1}n,
(2) a + 1 ≤ #p ≤ b + 1, where #p denotes the number of non-zero coordinates of p.

We define the affine toric variety T n
a,b to be the spectrum of the semigroup algebra associated to the

monoid generated by Ja,b. The reader may wish to consult [Stu96, Ch. 13] for more details on this
type of construction. By Pn

a,b denote the associated polytope in Rn+1 given as the convex hull of
points in Ja,b. Typically n is fixed and we omit the superscript so that Ta,b := T n

a,b and Pa,b := Pn
a,b.

Various versions of the varieties Ta,b have already appeared in the literature (with or without the
homogenizing condition). For a = 0 and b = n we obtain the affine cone over the Segre variety.
For a = b = 2 we obtain toric varieties arising from complete graphs [OH98]. For a = 2 and b = n
without the homogenizing condition we obtain a variety related to the tangential variety of the
Segre [SZ12, Theorem 4.1] also studied in [GP12].

Remark 4.2. The polytope Pa,b is a special case of [Stu96, Section 14A]. Indeed, using the notation
from the book, up to lattice isomorphism it corresponds to the set A for d := n+ 1, s1, . . . , sn := 1,
sn+1 := b− a, r := b.

Each point of Ja,b can be represented by a subset of [n] of indices on which it is nonzero. Thus
points of Ja,b correspond to subsets of cardinality at least a and at most b. Notice that the variety
Ta,b is the Zariski closure of the image of the map

(C∗)n+1 → C|Ja,b|

(t0, t1, . . . , tn) 7→

[
zI = t0

∏

i∈I

ti

]
, for all a ≤ |I| ≤ b.

The variety Ta,b is a cone over a projective variety due to condition (1). The projectivization of Ta,b

will be denoted by P(Ta,b). Notice that

dim(T n
a,b) = n + 1 for a 6= b

because the polytope is full dimensional, hence so is the cone over it, and so is the toric variety. We
also have dimT n

a,a = n for a 6= n.
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Example 4.3. For T2,3 the subset J2,3 consists of points

(1, 1, 1, 0); (1, 1, 0, 1); (1, 0, 1, 1); (1, 1, 1, 1),

and thus its convex hull is a simplex. The corresponding subsets are respectively:

{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

Example 4.4. For T1,2 the subset J1,2 consists of points

(1, 1, 0, 0); (1, 0, 1, 0); (1, 0, 0, 1), (1, 1, 1, 0); (1, 1, 0, 1); (1, 0, 1, 1),

and thus its convex hull is an octahedron. The corresponding subsets are respectively:

{1}, {2}, {3} {1, 2}, {1, 3}, {2, 3}.

The following theorem is the main result of this section.

Theorem 4.5. The variety V is the trivial affine bundle of rank n over the variety T2,n. In
particular the secant variety is locally isomorphic to the trivial affine bundle of rank n over the
variety T2,n.

Proof. Introduce variables di = (bi−ai)(1−2t) and t′ = t(1− t)/(1−2t)2. The parameterization
from Lemma 3.1 is given by zI = t′

∏
i∈I di for |I| ≥ 2. Moreover, zI depends on ai, bi only through

bi − ai. Hence we see that zi can be arbitrary, by varying ai and keeping the difference fixed. For
the last statement, note that the secant variety can be covered by varieties isomorphic to a trivial
vector bundle over T2,n by taking different hyperplanes xI 6= 0. �

This result motivates a further study of the toric variety Ta,b and hence also the ideal I(V ). We
now show that the ideal of Ta,b is generated by very special quadrics. For a point p we denote by
pi its i-th coordinate.

Definition 4.6 (bumping, swapping). Let a ≤ b be fixed integers. Denote by ei ∈ {0, 1}n+1 the
unit vector with zeros everywhere apart from position corresponding to i ∈ {0} ∪ [n].

(1) Suppose that p, q ∈ Ja,b−1. If pi = qi = 0 for some i ∈ [n] then all four points p, q, p+ei, q+ei
lie in Ja,b. The obvious relation holds:

(p + ei) + q = p + (q + ei).

We call this relation bumping.
(2) Suppose that p, q ∈ Ja−1,b−1 and there exist two elements i, j ∈ [n] such that pi = pj = qi =

qj = 0. Then all four points p + ei, p + ej , q + ei, q + ej lie in Ja,b and

(p + ei) + (q + ej) = (p + ej) + (q + ei).

We call this relation swapping.

Every relation
d∑

i=1

pi =

d∑

i=1

qi

among points pi, qi in Ja,b induces a binomial relation

d∏

i=1

zIi =

d∏

i=1

zJi ,

where Ii, Ji are subsets of [n] corresponding to points pi and qi respectively. It is a well-known fact
that the polynomials in the ideal of Ta,b are linear combinations of binomials of the above form –
see [Stu96, Lemma 4.1]. Two important examples of such relations are the bumping and swapping
relation of Definition 4.6. The bumping relation corresponds to a binomial of the form

zI∪{i}zJ = zIzJ∪{i}, where a ≤ |I|, |J | ≤ b− 1, i /∈ I ∪ J,
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and the swapping relation to

zI∪{i}zJ∪{j} = zI∪{j}zJ∪{i}, where a− 1 ≤ |I|, |J | ≤ b− 1, i, j /∈ I ∪ J.

Their importance is due to the following proposition.

Proposition 4.7. The ideal of the variety Ta,b is generated by quadrics corresponding to bumping
and swapping. In particular the ideal I(V ) of V is the ideal generated by bumping and swapping
relations in J2,n.

Proof. Consider any relation
d∑

i=1

pi =
d∑

i=1

qi

between points pi, qi ∈ Ja,b. We have the same number of summands on both sides because p0 = 1
for every point p in Ja,b. By bumping we can assume that all points pi and qi have exactly m or
m + 1 nonzero entries for some a + 1 ≤ m ≤ b + 1. Moreover we can assume that p1 and q1 have
exactly m nonzero entries. Write the vector

∑
pi as (d, a1, . . . , an) ∈ Zn+1. Without loss we can

assume a1 ≥ a2 ≥ · · · ≥ an. Now we show that p1 can be transformed to (1, 1, . . . , 1, 0, . . . , 0) with
m ones. Suppose p1

i = 0 for i ≤ m. Then p1
j = 1 for some j > m. It follows by ai ≥ aj that

there exists k such that pki = 1, pkj = 0. Swap. Pick new i, j and swap recursively until done. The
same argument applies to q1, which allows us to decrease the degree of the relation and finishes the
proof. �

In the special case when a = 2 and b = n we obtain the following simpler set of generators.

Corollary 4.8. The ideal of T2,n, and hence also I(V ), is generated by all bumping relations:
zIzJ∪{j} = zJzI∪{j} for j 6∈ I ∪ J and |I|, |J | > 1, together with a subset of swapping relations of
the form: zijzkl = zilzjk for i, j, k, l all distinct.

Proof. By Proposition 4.7 it is enough to show that the remaining swapping relations can be
generated from the provided binomials. Notice that when one of two sets has cardinality at least 3
then swapping can be generated by two consecutive bumpings. When both sets are of cardinality 2
we obtain the second relation. �

The next Proposition follows from [Stu96, Theorem 14.2] and Remark 4.2.

Proposition 4.9. There exists a term order for which I(V ) has a quadratic square-free Gröbner
basis. �

This Proposition gives us the following general characterization of the singular locus of the secant.
In Corollary 5.7 we will provide a more in-depth analysis.

Corollary 4.10. The secant variety Sec((P1)×n) has rational singularities. In particular it is
normal, Cohen-Macaulay and has singular locus of codimension at least 2.

Proof. By Proposition 4.9 there exists a square-free Gröbner basis. By [Stu96, Corollary 8.9]
this induces a unimodular triangulation of the polytope P2,n. In particular, P2,n is normal, thus
so is T2,n – [Stu96, Proposition 13.15]. By [CLS11, Theorem 11.4.2] it has rational singularities, in
particular Cohen-Macaulay. Because all of the notions are local the corollary follows. �

Remark 4.11. In Theorem 7.10 we give an easy adaptation of Corollary 4.10 to the secant variety
of Segre products of projective spaces of arbitrary size.

In the next section we use tools of toric geometry to analyze local properties of the secant in
more detail.
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5. The singular locus of the secant

Let us further study the toric geometry of the obtained variety. As we know that the polytope
is normal, it is natural to describe its fan. For what follows recall Ja,b from Def. 4.1.

Lemma 5.1. Consider the projection of P2,n ⊆ Rn+1 to Rn by forgetting the first coordinate. Denote
by Q the image of P2,n. Then Q is given by the points (qi) ∈ Rn satisfying the following inequalities:

• 0 ≤ qi ≤ 1,
•
∑n

i=1 qi ≥ 2.

Moreover, if n ≥ 4, these inequalities provide the minimal facet description of the polytope.

Proof. The inequality description is a special case of Proposition 7.13. The remaining thing is to
show that for n ≥ 4 each of the defining inequalities of Q corresponds to a facet. We prove it easily
by checking that for each inequality, the affine combination of the set of points in J2,n satisfying
this inequality as equality is a linear subspace of codimension 1. �

Lemma 5.1 gives us immediately the description of P2,n. Let us describe the toric divisors
associated to each facet of P2,n. Each lattice point of the polytope corresponds to a coordinate
of the embedded affine space. Fix a face F . Recall, that a toric variety associated to F is an
intersection of T2,n with the linear space defined by vanishing of all the variables not belonging to
F . The polytope associated to the intersection is exactly the face F . If F is a facet, we obtain in
this way a divisor and all toric divisors are of this form.

Proposition 5.2. The toric divisors of T n
2,n are each isomorphic to one of the following:

(1) T n−1
2,n−1, associated to the facet qi = 0,

(2) T n
2,2, associated to the facet

∑
qi = 2,

(3) T n−1
1,n−1, associated to the facet qi = 1.

We give the explicit parameterizations in the proof.

Proof. The isomorphisms of the divisors with given varieties follow directly from the description
of the facets. Let us give the descriptions of the paremeterizations.

(1) The facet qi = 0:
The divisor contains exactly those points of T2,n that are equal to zero on the coordinates

parameterized by monomials containing di = (bi − ai)(1− 2t) with nonzero exponent. Thus
it can be parameterized by setting di = 0, and therefore the parameterization of this variety
in original coordinates is obtained by restricting the original parameterization of the secant:

(t, a1, . . . , an, b1, . . . , bn) → (t
∏

j∈I

aj + (1 − t)
∏

j∈I

bj) = xI

to the subspace ai = bi.
(2) The facet

∑
qi = 2:

In this case we are setting to zero those zI -coordinates that correspond to points with
at least three nonzero entries. Recall that the parameterization of the secant in cumulant
coordinates is given by

(t, a1, . . . , an, b1, . . . , bn) → t(1 − t)(1 − 2t)|I|−2
∏

i∈I

(bi − ai) = zI

so the image for t = 1/2 is indeed contained in the divisor. As it is irreducible and of
the right dimension, its Zariski closure must coincide with the divisor. In particular the
intersection of the divisor with a given open affine set is given by midpoints of segments
joining two points of the Segre variety.
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(3) The facet qi = 1:
Consider the full affine parameterization of the affine cone over the secant:

(t1, t2, a
1
i , a

2
i , b

1
i , b

2
i ) →

(
t1
∏

i∈I

a1
i

∏

i/∈I

a2
i + t2

∏

i∈I

b1
i

∏

i/∈I

b2
i

)
= xI .

We will show that the divisor is the closure of the image of the restriction of the param-
eterization to b2

i = 0 (the closure of the image is the same if we restrict to a2
i = 0).

Consider any point of the given parameterization that is in U∅. We claim that yI = 0 for
i 6∈ I. Indeed for i 6∈ I we have xI = t1

∏
j∈I aj

∏
k 6∈I ak. So indeed yI = 0 – one can check it

either by direct computation or by the fact that on such I the point coincides with a point
of the Segre. Hence, a fortiori, zI = 0 for i 6∈ I. But this is a condition of our divisor, so
the image of the parameterization belongs to the divisor. By the dimension argument, the
closure of the parameterization map must be equal to the divisor. �

The polytope P2,n induces the following polyhedral fan.

Definition 5.3. The fan Σ2,n of the toric variety P(T2,n) consists of 2n−n− 1 maximal polyhedral
cones and their subcones. The maximal cones are constructed as follows. For each vertex v ∈ J2,n

consider normal vectors to all facets containing v pointing inside the polytope. The corresponding
polyhedral cone generated by these vectors is denoted by σv.

Suppose n ≥ 4. In this case P2,n has exactly 2n + 1 faces given by inequalities in Lemma 5.1.
Every vertex v of J2,n such that |v| > 2 lies in exactly n facets of P2,n. In addition there are

(n
2

)

vertices satisfying |v| = 2, which lie in n + 1 facets. If |v| > 2 then

σv = cone((−1)v1e1, . . . , (−1)vnen),

where (ei) denotes the standard basis of Rn, and hence σv is one of the orthants of Rn and thus
smooth. If |v| = 2 then

σv = cone(e1 + · · · + en, (−1)v1e1, . . . , (−1)vnen).

In particular it is not simplicial as there are n + 1 rays. We have just proved the following lemma.

Lemma 5.4. Let n ≥ 4 and consider the polyhedral fan Σ2,n. If v ∈ J2,n is such that |v| > 2 then
the corresponding cone σv of Σ2,n is smooth. If |v| = 2 then σv is not simplicial.

This analysis provides a precise description of the singular locus of T2,n.

Proposition 5.5. For n = 2 and n = 3 the variety T2,n fills the whole ambient space, hence it is
smooth. For n ≥ 4 the singular locus of T2,n has codimension equal to n. It consists of

(n
2

)
maximal

dimensional components. In particular, singular locus is always of codimension at least 4.

Proof. For n = 2 the statement is trivial. For n = 3 the polytope is the simplex from Example 4.3.
In particular, T2,3 is the 4 dimensional affine plane filling the whole space. Suppose now that n ≥ 4
and consider the fan Σ2,n. Note that we never have two vectors ei and −ei in one cone of the fan.
First let us prove that cones of dimension smaller than n are smooth. For sure they are smooth
if they consist only of vectors of type ±ei. Suppose that the cone contains e1 + · · · + en and r
vectors of type ±ei, where r ≤ n − 1. Since it never contains both ei and −ei, each such cone is
smooth. Thus we only have to study cones of dimension n. By Lemma 5.4, σv is smooth whenever
|v| > 2 and there are

(n
2

)
non-simplicial cones σv corresponding to |v| = 2. Thus, by [CLS11, Prop.

11.1.2] the projective variety has exactly
(
n
2

)
singular points and the affine variety has

(
n
2

)
singular

lines. �

Proposition 5.5 describes the singular locus of the variety T2,n, not the secant. Hypothetically,
it may happen that some components of the singular locus of the secant are contained in the
hyperplane section x∅ = 0. As we will easily prove, this is not the case.
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Corollary 5.6. For n ≥ 4, the singular locus of the secant variety has codimension exactly n. It has(n
2

)
components, each two intersecting precisely on the Segre variety. Specifically, each component

of the singular locus is isomorphic to P3 × (P1)×(n−2) ≃ Sec(P1 × P1) × (P1)×(n−2).

Proof. First we prove the statements regarding the number of components and their codimensions.
Then we will give a parameterization of each of the components, proving the last statement.

Proposition 5.5 provides a lower bound for the number of components of the singular locus (those
outside the hyperplane xI = 0) and tells the dimensions of each of them. We now show that there
are no other components contained in the hyperplane xI = 0.

Notice that each component of the singular locus contains the Segre. Choose any component of
the singular locus and a hyperplane xI = 0 that does not contain it. The intersection of the secant
with the complement of this hyperplane is isomorphic to the trivial bundle over T2,n. The singular
component must be one of the singular components described in Proposition 5.5. In particular, it
must contain the fiber of the vector bundle over the zero point, which corresponds to the Segre
variety.

Since the Segre is not contained in any of the hyperplanes xI = 0, also all the components of the
singular locus have nonempty intersection with the complement of any hyperplane. In particular
each component of the singular locus corresponds to a component of the singular locus of T2,n.

We will prove that the intersection of any two components is precisely the Segre variety. Fix an
affine that is a complement of a hyperplane xI = 0. Two components, in cumulant coordinates,
correspond to trivial vector bundles over two distinct lines. Thus their intersection is the trivial
vector bundle over 0 that is precisely the Segre.

Now let us describe the singular locus explicitly in the original coordinates. Choose two indices
i1, i2 ∈ [n]. We give a description of the component of the singular locus corresponding to the
vertex v with exactly two nonzero entries on coordinates i1 and i2. Note that the intersection of
the facets qi = 0 for i 6= i1, i2 is precisely the vertex v. This means that the intersection of the toric
divisors corresponding to these facets is precisely the given component of the singular locus. Let us
parameterize this intersection. By Proposition 5.2 the restriction of the parameterization map:

(t, a1, . . . , an, b1, . . . , bn) 7→

(
xI = t

∏

i∈I

ai + (1 − t)
∏

i∈I

bi

)

to the subspace ai = bi for i 6= i1, i2 is contained in the intersection of the given divisors. Although
there are n + 3 parameters, the closure of the image of the restriction is not of dimension n + 3.
Indeed, looking at the toric variety we see that the given restriction corresponds to setting all di = 0
for i 6= i1, i2. Thus the dimension of the closure of the image equals n + 1 and coincides with the
affine bundle over the singular line.

We can also see that each component of the singular locus of the secant is isomorphic to P3 ×
(P1)×(n−2). Indeed, consider the Segre embedding of this variety:

((a′0, a
′
1, a

′
2, a

′
3), (b1

1, b
1
2), . . . , (bn−2

1 , bn−2
2 )) 7→ (a′i

∏

k

bkj ),

where 0 ≤ i ≤ 3, j = 1, 2. We may restrict the parameterization to a′0 = bk1 = 1 for all k. Recall that
the secant of P1 × P1 fills the whole P3. In particular, we see that the image of the map coincides
with the parameterization of the singular component corresponding to the subset {i1, i2}, where we
set bk2 = bk(= ak) for k 6= i1, i2 and (a′i) ∈ P3 is the point corresponding to the point on the secant
line t((1, ai1) × (1, ai1)) + (1 − t)((1, bi1) × (1, bi1)). �

The toric description allows one to find a precise description of the singularities of the secant.
Specifically, we have the following characterization.
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Corollary 5.7. For n = 2 and n = 3 the secant is a smooth variety. For n ≥ 4 it has rational
singularities, but is never Q-factorial. There are

(n
2

)
components of the singular locus, each isomor-

phic to the secant of P3 × (P1)×(n−2). Each two components intersect precisely in the Segre. For
n = 5 the variety T2,n is Gorenstein, with terminal singularities. For n ≥ 4, n 6= 5 the variety is
not Q-Gorenstein.

Proof. As we have shown in Proposition 5.5 for n ≥ 4 we can find a cone in the fan that is not
simplicial, thus the variety is not Q-factorial.

Consider the cone σ ∈ Rn+1 over the polytope P2,n corresponding to the affine toric variety T2,n.
Assume n ≥ 4. By Lemma 5.1 the ray generators of the dual cone σ∨ are:

• ei for i = 1, . . . , n;
• e0 − ei for i = 1, . . . , n;
• −2e0 +

∑n
i=1 ei.

Assume n = 5. The ray generators belong to the hyperplane 2e∨0 +
∑4

i=1 e
∨
i = 1. This proves that

the variety T2,n is Gorenstein – [CLS11, Definition 8.2.14]. As there are no integral points in the
convex hull of the ray generators and the point zero, by [CLS11, Proposition 11.4.12] we see that
the singularities are terminal.

For n ≥ 4, n 6= 5 it is a straightforward check that the ray generators do not belong to an affine
subspace, thus the variety is not Q-Gorenstein. �

6. Relation to flattenings

Given a partition I1|I2 of an index I, let Mx
I1|I2

denote the flattening of x = [xI ] with row indices

given by subsets A ⊆ I1 and column indices given by subsets B ⊆ I2 and the entry indexed by A,B
is xA∪B. For example the flattening of x corresponding to a partition 12|34 is given by

Mx
12|34 :=




x∅ x3 x4 x34

x1 x13 x14 x134

x2 x23 x24 x234

x12 x123 x124 x1234


 .

Similarly define My
I1|I2

and Mz
I1|I2

as flattenings of y = [yI ] and z = [zI ] respectively.

Recently it was proved by Raicu [Rai12] that 3× 3 minors of all flattenings of the tensor x = [xI ]
generate the ideal of the secant variety. In this section we show how these equations are related
to the generators of I(V ). In Theorem 6.4 and Corollary 6.5 we present a basic proof that if we
consider flattenings with I1 of cardinality at most 3, then the 3 × 3 minors define the projective
scheme of the secant variety.

In what follows we will need another description of the generators of the ideal of Ta,b.

Definition 6.1 (Flattening quadrics). Choose any partition I1|I2 of [n]. Consider the following
restricted flattening matrix of z = [zI ] with respect to this partition:

• rows are indexed by nonempty subsets of I1;
• columns are indexed by nonempty subsets of I2;
• an entry indexed by subsets A ⊆ I1, B ⊆ I2 is zero, if |A∪B| < a or |A∪B| > b. Otherwise

it is the variable zA∪B .

For example, for T 5
2,3 we associate to the partition 15|234 the restricted flattening matrix:




2 3 4 23 24 34 234
1 z12 z13 z14 z123 z124 z134 0
5 z25 z35 z45 z235 z245 z345 0
15 z125 z135 z145 0 0 0 0


 .
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We define the flattening quadrics as 2 × 2 minors of this matrix involving only nonzero entries.
Every such a quadratic relation lies in the ideal of Ta,b. So, in the above example, we would consider∣∣∣∣
z123 z134

z235 z345

∣∣∣∣, but not

∣∣∣∣
z35 z235

z135 0

∣∣∣∣.

Lemma 6.2. The flattening quadrics described in Definition 6.1 generate the ideal of Ta,b for a ≥ 2.
Moreover it is enough to consider partitions I1|I2 for which the set I1 is of cardinality at most 3.

Proof. By Proposition 4.7 it is enough to prove that the flattening quadrics generate bumping
and swapping.

1) Swapping. Suppose that a − 1 ≤ |I|, |J | ≤ b − 1 and i, j /∈ I ∪ J . Consider the partition
{i, j}|([n] \ {i, j}). Then swapping is given by the equation given by the 2 × 2 minor of the matrix

(
zI∪{i} zJ∪{i}
zI∪{j} zJ∪{j}

)

with rows indexed by {i}, {j} and columns by I, J .
2) Bumping. Suppose a ≤ |I|, |J | ≤ b− 1 and i /∈ I ∪ J . Consider two cases. First, if there exists

j ∈ I ∩ J then consider the partition {i, j}|([n] \ {i, j}) and the minor given by
(
zI∪{i} zI
zJ∪{i} zJ

)

with rows indexed by I \ {j}, J \ {j} and columns {i, j}, {j}. Second, if I ∩ J = ∅, choose two
indices j ∈ I \ J and k ∈ J \ I. Consider the partition {i, j, k}|([n] \ {i, j, k}) and the minor given
by (

zI∪{i} z(J\{k}∪{j})∪{i}

zI\{j}∪{k} zJ

)

with rows indexed by {i, j}, {k} and columns by I \{j}, J \{k}. This is not yet a bumping relation.
However by swapping we obtain

zI\{j}∪{k}z(J\{k}∪{j})∪{i} = zIzJ∪{i}.

Hence, up to swapping of elements j, k, the above minor generates the bumping relation. �

From Lemma 6.2 it follows that V is described by the flattening quadrics in z = [zI ]. In what
follows we show how these flattening quadrics are related to 3 × 3 minors of the flattenings of the
tensor x = [xI ].

Let us first present an example for n = 4. We start with Mx
12|34 (described above) and we assume

that x∅ = 1. Perform obvious elementary operations to set to zero the off-diagonal elements of the
first column (e.g. subtract from the second row the first row multiplied by x1). This results in the
following matrix 



1 x3 x4 x34

0 x13 − x1x3 x14 − x1x4 x134 − x1x34

0 x23 − x2x3 x24 − x2x4 x234 − x2x34

0 x123 − x12x3 x124 − x12x4 x1234 − x12x34


 .

Using simple elementary operations we also reduce elements in the first row to zeros. Note that
zij = xij − xixj for all i < j. Now subtract from the last column: the second column multiplied
by x4 and the third column multiplied by x3. Similarly subtract from the last row: the second row
multiplied by x2 and the third row multiplied by x1. For every 1 ≤ i < j < k ≤ 4

zijk = xijk − xixjk − xjxik − xkxij + 2xixjxk,

and

(3)
z1234 = x1234 − x12x34 − x1x234 − x2x134 − x3x124 − x4x123+

+ 2x12x3x4 + x13x2x4 + x14x2x3 + x1x23x4 + x1x24x3 + 2x1x2x34 − 4x1x2x3x4.
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We check directly that every element of the resulting matrix is equal to the corresponding zI .
Hence, after all the above elementary operations we obtain

M̂z
12|34 :=




1 0 0 0
0 z13 z14 z134

0 z23 z24 z234

0 z123 z124 z1234


 .

The rank of this matrix is one higher than the rank of

(Mz
12|34)(1) :=




z13 z14 z134

z23 z24 z234

z123 z124 z1234


 .

In particular, as the matrices were obtained by row and column operations, the 2 × 2 minors of
(Mz

12|34)(1) are linear combinations with polynomial coefficients of the 3 × 3 minors of Mx
12|34.

The same is not true if we consider the flattening matrix Mx
13|24. After applying the same

elementary operations as to Mx
12|34 the right-bottom element of the resulting matrix will not be

equal to z1234. One way to see that is to note that the formula for z1234 given in (3) contains a term
−x12x34 but it does not contain −x13x24 and so the symmetry is broken.

If M and M ′ are matrices similar by elementary row and column operations we denote this by

M ∼ M ′. For a matrix M , let M̂ denote the matrix obtained by replacing the first row and column
with all entries equal to 0, apart from the (1, 1) entry equal to 1, and let M (i) denote the principal
sub matrix of M obtained by deleting the i-th row and column.

Lemma 6.3. Let A1|A2 be an interval partition of [n]. On U∅ we have

Mx
A1|A2

∼ M̂z
A1|A2

.

In particular, the 2 × 2 minors of (Mz
A1|A2

)(1) are generated, as polynomials, by 3 × 3 minors of

Mx
A1|A2

.

Proof. Let I ⊆ A1 and J ⊆ A2. Define M̃y
A1|A2

to be equal to My
A1|A2

everywhere apart from

these elements of the first row and column that correspond to (I, J) = ({i}, ∅) and (∅, {i}), which

are assumed to be zero. Let ỹ be the entries of the matrix M̃y. Note that the formula (1) holds for
all ỹI . As A1 and A2 are disjoint we have:

ỹI∪J =
∑

I′⊆I

∑

J ′⊆J

(−1)|I\I
′|(−1)|J\J

′|xI′∪J ′

∏

i∈I\I′

xi
∏

i∈J\J ′

xi.

We can rearrange that to obtain

ỹI∪J =
∑

I′⊆I

∑

J ′⊆J

uII′xI′∪J ′vJ ′J ,

where uII′ = (−1)|I\I
′|
∏

i∈I\I′ xi and vJ ′J = (−1)|J\J
′|
∏

i∈J\J ′ xi. Therefore, we have

M̃y
A1|A2

= UMx
A1|A2

V,

where U = [uIJ ] is lower triangular (in any total ordering of the standard basis such that eI < eJ
if I ⊂ J) and V = [vIJ ] is upper triangular and both have ones on the diagonal.

From now on IP([n]) denotes the poset of interval partitions with no singleton blocks. Let A1|A2 ∈

IP([n]). Let us consider the following triangular matrices Ũ = [ũIJ ], Ṽ = [ṽIJ ] with ones on the
diagonal. Consider two subsets I, I ′ ⊆ A1. We define:

ũII′ :=
∑

β∈IP(I\I′)

(−1)|β|−1
∏

B∈β(I\I′)

yB
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if I ′ ⊂ I and all elements of I ′ are greater than all elements of I \ I ′ – notice that I ′ may be empty.
Otherwise we set ũII′ := 0. Analogously we define:

ṽJ ′J :=
∑

γ∈IP(J\J ′)

(−1)|γ|−1
∏

B∈γ(J\J ′)

yB

if J ′ ⊂ J and all elements of J ′ are smaller than all elements of J \ J ′ and ṽJ ′J := 0 otherwise. We
claim that

M̂z
A1|A2

= ŨM̃y
A1|A2

Ṽ .

Indeed, let us consider an entry indexed by subsets I, J . If both of them are not empty we have:

zI∪J =
∑

π∈IP(I∪J)

(−1)|π|−1
∏

B∈π

yB .

The corresponding (I, J)-th entry of the matrix ŨM̃y
A1|A2

Ṽ equals:

∑

I′⊆A1

∑

J ′⊆A1

uII′ ỹI′J ′vJ ′J =
∑

I′⊆I

∑

J ′⊆J

uII′ ỹI′J ′vJ ′J

=
∑

I′⊆I

∑

J ′⊆J

(
∑

β∈IP(J\J ′)

(−1)|β|−1
∏

B∈β(J\J ′)

yB)yI′J ′(
∑

γ∈IP(I\I′)

(−1)|γ|−1
∏

B∈γ(I\I′)

yB).

Let us compare this with the expression for zI∪J above. First of all notice that interval partitions
π in the expression for zI∪J that are not subdivisions of I|J correspond exactly to those elements
in the above double sum, where I ′ and J ′ are both nonempty. Indeed it is enough to choose I ′ ∪ J ′

to be the only partition in π that has got nonempty intersection with I and J . We choose β and
γ to be compatible with π. Now to each partition π that is a subdivision of I|J let us associate
exactly 3 elements of the sum indexed by I ′, J ′, β, γ. For the first element we take I ′ = J ′ = ∅
and compatible β and γ. Notice that this element appears with opposite sign than in zI∪J . The
following two elements are:

(1) I ′ = ∅, J ′ equal to the first part in J ;
(2) J ′ = ∅, I ′ equal to the last part in I.

These two elements appear with the same sign as in zI∪J . Thus the sum is indeed equal.
Suppose now that I = ∅ and J is nonempty. In this case we must have I ′ = ∅. We see that,

as above, we can pair the elements appearing in the sum by taking J ′ = ∅ or J ′ equal to the first
partition in J . These two elements appear with the opposite sign, so indeed the entries in both

matrices are equal to zero – in M̂z just by definition. The case J = ∅ and I nonempty is analogous.
If I = J = ∅ the entries of both matrices are equal to 1.

As Ũ and Ṽ are triangular we obtain the proof of the lemma. �

Let us now consider all the partitions [n] = I1|I2 and the corresponding flattening matrix.

Theorem 6.4. The 3 × 3 minors of all flattening matrices Mx
I1|I2

generate the ideal of V .

Proof. Consider a filtration on the rings A2 ⊂ · · · ⊂ An = C[zI : I ⊆ [n]], where Ai is the
polynomial ring in coordinates zI with I 6= ∅ of cardinality at most i. Let J ′ be the ideal generated
by the 3 × 3 flattenings in the ring An (we put x∅ = 1). We want to show that I(V ) is generated
by 3 × 3 minors of all flattening matrices Mx

I1|I2
.

We define the ideal Ji in the ring Ai as I(V ) ∩ Ai, which is a toric ideal. Let us note that any
polynomial f , in any toric ideal, can be expressed as a sum of binomials that are only in variables
appearing in f . It follows that Ji is the ideal of the variety T n

2,i. Thus, by Lemma 6.2, Ji is generated

by 2 × 2 minors of flattening quadrics in the sense of Def. 6.1 (not indexed by the empty set) in
coordinates zI , with |I| ≤ i. We also define the ideal J ′

i of the ring Ai as the ideal generated by
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those 3×3 minors of the flattening matrices in coordinates xI for which |I| ≤ i. We will inductively
prove that Ji ⊆ J ′

i – the other inclusion is obvious.
Step 1. For i = 2 consider any 2 × 2 minor that is a flattening quadric (with columns and rows

not labeled by the empty set). It is equal to the corresponding 3× 3 minor of the flattening matrix
in xI where we add the row and column labeled by the empty set:




1 xk xl
xm xmk xml

xj xjk xjl


 .

To show that, it suffices to check that zmkzjl−zmlzjk is the determinant of the above matrix, which
follows immediately from the fact that zab = xab − xaxb.

Induction: Consider any minor zB∪CzD∪E − zB∪EzD∪C with nonempty B,D ⊆ I1, C,E ⊆ I2

and |B ∪ C|, |D ∪ E|, |B ∪ E|, |D ∪ C| ≤ i + 1. Let us choose a bijection σ of the set [n] such that
σ(I1)|σ(I2) is an interval partition. Define the variables z′I by the same formula, as zI but with the
ordering of the set [n] induced from σ (see also Remark 2.2). The formula in Lemma 3.1 holds for
z′I as it is independent on the ordering. In particular zI − z′I ∈ Ji+1 if |I| ≤ i + 1. Moreover, we
have zI = xI + g(x) and z′I = xI + h(x), where g and h are polynomials in variables labeled by
sets of cardinality strictly smaller than |I|. In particular zI − z′I ∈ Ai, thus zI − z′I ∈ Ji. Hence,
by induction zI − z′I ∈ J ′

i ⊂ J ′
i+1. In order to prove that the given minor is in J ′

i+1 it is enough to
consider the same minor with all z replaced by z′. Notice that the minor in z′ belongs to J ′

i+1 by
Lemma 6.3. �

Corollary 6.5. The 3 × 3 minors of the flattening matrices corresponding to partitions I1|I2 with
|I1| ≤ 3 define the projective scheme of the secant variety.

Proof. From Theorem 6.4 we know that the flattenings define the scheme on the open affine
x∅ 6= 0. Obviously, we obtain the same results on any open affine set UI , by repeating the same
proof, letting xI play the role of x∅. These open sets cover the whole space. �

7. Generalization to higher dimensions

It is well-known that, in order to describe the ideal of the k − th secant of the Segre variety
when all the vector spaces have dimension at least k, it is enough to consider vector spaces of
dimension k [LW07, Prop. 5.1]. Still, it is not clear what other properties of the secant variety are
inherited from vector spaces of dimension k to higher dimensions. One might expect that normality,
Cohen-Macaulay and rational singularities are inherited. However it is a nontrivial result [LW07,
Lemma 5.3], with an additional technical assumption, that the property of being arithmetically
Cohen-Macaulay is inherited. The aim of this section is to show that all the arguments in our paper
can be adopted to higher dimensional vector spaces.

7.1. Secants in higher dimensions. Fix vector spaces V1, . . . , Vn where dimVi = ki + 1. Fix a
basis ei0, . . . , e

i
ki

of Vi. The basis of the tensor product V1 ⊗ · · · ⊗ Vn =: U can be identified with

sequences (i1, . . . , in) with 0 ≤ ij ≤ ki. Slightly abusing notation we denote these sequences by I,
where I ∈

∏
j{0, . . . , kj}. Let xI = x(i1,...,in) be the homogeneous coordinates of the projectivization

of the tensor product. Further, let Supp(I) denote the support of I, that is Supp(I) = {j ∈ [n] :
ij 6= 0}, and |I| to be the cardinality of Supp(I). We change the coordinates of the affine space
U(0,...,0) as follows:

yI := xI for |I| = 1,

yI := y(i1,...,in) =
∑

A⊆Supp(I)

(−1)|I\A|x{ia:a∈A}

∏

j∈Supp(I)\A

xij , for |I| ≥ 2,
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where we use the convention that an index missing in a subscript of a variable is always equal to 0.
With the same convention:

zI := yI for |I| = 1,

zI := z(i1,...,in) =
∑

π∈IP(Supp(I))

(−1)|π|−1
∏

B∈π

y{ib:b∈B}, for |I| ≥ 2

where the last sum is taken over interval partitions of the set I without singleton blocks. Note that
this is exactly the same change of coordinates that we have used before (in (1) and (2)), as in each
vector space Vk only two basis vectors are involved: ek0 and ekik .

Consider the Segre embedding given by

P(V1) × · · · × P(Vn) → P(V1 ⊗ · · · ⊗ Vn)

(
[a1

0, . . . , a
1
k1 ], . . . , [an0 , . . . , a

n
kn ]
)

7→


x(i1,...,in) =

n∏

j=1

ajij


 .

On an affine open set U(0,...,0) we can assume that [ai0, . . . , a
i
ki

] = [1, ai1, . . . , a
i
ki

] and the Segre
embedding is parameterized by

xI =
∏

j∈Supp(I)

ajij , for all I ∈
∏

j

{0, . . . , kj}.

On this open subset the secant variety Sec(P(V1) × · · · × P(Vn)) is parameterized by

xI = x(i1,...,in) = (1 − t)
∏

j∈Supp(I)

ajij + t
∏

j∈Supp(I)

bjij , for all I ∈
∏

j

{0, . . . , kj},

where ajij and bjij are C valued parameters. We introduce the affine variety V given by

V := Sec(P(V1) × · · · × P(Vn)) ∩ U(0,...,0).

Since Supp(I) is a subset of [n], we can literally reprove Lemma 3.1 obtaining the following.

Lemma 7.1. The variety V in the coordinate system given by the higher order secant cumulants is
the Zariski closure of the image of the parameterization given by:

z(0,...,0,ij ,0,...,0) = (1 − t)ajij + tbjij ,

zI = z(i1,...,in) = t(1 − t)(1 − 2t)|I|−2
∏

j∈Supp(I)

(bjij − ajij) for |I| ≥ 2.

�

Consider the lattice M := Zk1+1 × · · · × Zkn+1, where each factor has a distinguished basis.

Definition 7.2 (Polytope P ). To every I = (i1, . . . , in) ∈
∏

j{0, . . . , kj} such that |I| ≥ 2 we

associate a point e1
i1
⊕ · · · ⊕ enin in M , where eij are corresponding unit vectors. Denote by J the set

of all these points. Define now P as the convex hull of J.

This is a direct generalization of the set J2,n and polytope P2,n introduced in Definition 4.1.
Directly from the definition it follows that integral points of P satisfy:

• each point belongs to the cube
∏n

j=1[0, 1]kj+1;

• after projecting to any Zkj+1 exactly one coordinate is nonzero;
• there exist at least two projections to Zkj1+1 and Zkj2+1 such that the first coordinate is

zero.
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Different versions of such polytopes have already appeared in the literature. Without the last
assumption we obtain the usual Segre. Also similar varieties appear in phylogenetics, where basis
vectors of each lattice correspond to group elements. This is the case of group–based models [SS08],
G-models [M11] and certain toric varieties arising from graphs [Buc12].

Denote by T the toric variety associated to the polytope P .

Theorem 7.3. The variety V is a toric variety that is the trivial affine bundle of rank k1 + · · ·+kn
over the spectrum of the algebra associated to the monoid generated by integral points of T . �

It is not obvious that P is normal. Let us prove more, namely that it admits a unimodular
triangulation. As before in Section 3, we find a squarefree Gröbner basis. First let us describe the
monomial order we use.

Definition 7.4 (Order of the variables). We have zJ < zI if either

• |Supp(J)| < |Supp(I)| or
• |Supp(I)| = |Supp(J)| and min(Supp(J) \ Supp(I)) < min(Supp(I) \ Supp(J)) or
• Supp(I) = Supp(J) and J < I lexicographically.

Theorem 7.5. The following set of binomials forms a square free Gröbner basis, with respect to
reverse lexicographic order, of the ideal of the toric variety given by P :

(1) zi1,...,inzj1,...,ja=0,...,jn −zi1,...,ja=0,...,inzj1,...,ia,...,jn where the support |i1, . . . , in| ≥ 3 (cf. bump-
ing),

(2) zi1,...,ia 6=0,...,inzj1,...,ja 6=0,...,jn − zi1,...,ja,...,inzj1,...,ia,...,jn (pseudoswapping),
(3) zi1,...,ia=0,...,ib 6=0,...,inzj1,...,ja 6=0,...,jb=0,...,jn − zi1,...,ja,...,jb=0,...,inzj1,...,ia=0,...,ib,...,jn (swapping),
(4) zi1,...,ia=0,...,ib 6=0,...inzj1,...,ja,...,jb=0,...,jnzl1,...,la 6=0,...,lb 6=0,...,ln −

zi1,...,la,...,jb=0,...,inzj1,...,ja,...,ib 6=0,...,jnzl1,...,ia=0,...,lb 6=0,...,ln , where the support |i1, . . . , in| ≥ 3 and
|i1, . . . , ia = 0, . . . , ib 6= 0, . . . , in| = 2,

(5) zi1,...,ia=0,...,ib 6=0,...,inzj1,...,jr 6=0,...,jb=0,...,jnzl1,...,la 6=0,...,lr=0,...,ln −
zi1,...,la,...,jb=0,...,inzj1,...,lr=0,...,ib 6=0,...,jnzl1,...,ia=0,...,jr 6=0,...,ln, where the supports are |(l1, . . . , ln)| =
|(i1, . . . , ia = 0, . . . , ib 6= 0, . . . , in)| = 2, however we do not assume that r < b.

Proof. Choose any binomial m1−m2 in the ideal with m1 > m2. Let zi1,...,in =: zI be the smallest
variable dividing m1 and let zj1,...,jn =: zJ be the smallest variable dividing m2. Let Is := Supp(I)
be the support of zI and Js := Supp(J) of zJ . Without loss we may assume that zJ < zI .

Consider the following two cases:
1) |I| > 2. If there is a variable zK |m1 such that Is 6⊆ Supp(K), then we may apply relation

(1) reducing Is. Thus we assume that Is is contained in the support of every variable dividing m1.
Hence the same is true for all variables dividing m2, in particular, for zJ . As zJ < zI , we must have
Is = Js and ia > ja for certain a ∈ Is. So there must be a variable zL := zl1,...,ln |m1 with la = ja.
We can apply relation (2) to zLzI .

2) |I| = 2. Proceeding as in step 1), we know that Is 6= Js. Let i := max(Is \ Js). There exists
zL|m1 such that i /∈ Supp(L). In particular, as |I| = 2 and |L| ≥ 2, we know that Supp(L) 6⊆ Is.
Thus we can define j as the smallest index j 6∈ Is appearing in the support of some zK |m1. We
consider three subcases.

2a) j < min(Is). If Is 6⊆ Supp(K) we may apply relation (3). Otherwise |K| ≥ 3 and we may
apply relation (4).

2b) min(Is) < j < max(Is). First note that min(Js) = min(Is). Indeed, we know that
min(Js) ≤ min(Is) and by the choice of j the equality cannot be strict. Thus i = max(Is \ Js) =
max(Is). Recall that i /∈ Supp(L). Notice that i ∈ Supp(K) because otherwise we could apply
relation (3). If |K| ≥ 3 then apply relation (4). If |K| = 2 then there exists r ∈ Supp(L)\Supp(K).
Apply relation (5).

2c) max(Is) < j. In this case we must have Is = Js, hence apply relation (2), as in case 1). �
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The Gröbner basis in Theorem 7.5 is square-free with respect to a degrevlex order. By [Stu96,
Corollary 8.9] it induces a unimodular pulling triangulation. Let us recall the recursive construction
of the pulling triangulation -cf. [Stu96, p. 67].

Consider any polytope with linearly ordered integral points. If it is a simplex there is nothing to
be done.

(1) Choose the smallest integral point p of the polytope;
(2) Consider the set F of facets that do not contain p;
(3) For each element of F perform the pulling triangulation;
(4) Enlarge each simplex on facets by p.

Example 7.6. Consider the variety T2,4 for n = 4. The associated polytope is of dimension 4, has
volume equal to 1/2 and 11 (ordered) vertices in {1} × Z4

(1, 1, 1, 0, 0); (1, 1, 0, 1, 0); (1, 1, 0, 0, 1); (1, 0, 1, 1, 0); (1, 0, 1, 0, 1); (1, 0, 0, 1, 1);

(1, 1, 1, 1, 0); (1, 1, 1, 0, 1); (1, 1, 0, 1, 1); (1, 0, 1, 1, 1); (1, 1, 1, 1, 1).

The pulling triangulation consists of 12 simplices:

(0, 1, 2, 5, 8), (0, 1, 3, 5, 9), (0, 3, 4, 5, 9), (0, 2, 4, 5, 9), (0, 1, 5, 9, 10), (0, 1, 5, 8, 10),

(0, 2, 5, 9, 10), (0, 2, 5, 8, 10), (0, 2, 4, 9, 10), (0, 2, 4, 7, 10), (0, 1, 3, 9, 10), (0, 1, 3, 6, 10),

where each simplex is represented by the vertices it contains with the numbering of vertices given
above (according to the monomial order), starting from 0.

The polytope can be considered in the lattice Z4 with the standard basis. Let (ei) be the dual
basis. The fan of the polytope is given by 9 rays: ±ei for 1 ≤ i ≤ 4, and e1 + e2 + e3 + e4. It has 11
maximal cones, corresponding to vertices. It is not the fan obtained by the blow up of (P1)4 in one
point. In particular, it has 6 maximal cones that are not simplicial. This should not be surprising,
as the singular locus of the secant variety strictly contains the Segre variety. This implies that the
0 point of the affine toric variety we consider should not be the only singular point.

Let us prove further interesting properties of the toric varieties that have appeared in our con-
struction. We will prove the existence of degree two square-free Gröbner basis. We adapt the
methods from [Stu96, Section 14A]. First let us introduce new notation.

Definition 7.7 (AI , ĀI , admissible). To each I = (i1, . . . , in) we associate a set of pairs

AI := {(j, ij) : j = 1, . . . , n such that ij 6= 0}.

Such pairs are naturally ordered by

(1, 1) < · · · < (1, k1) < (2, 1) < · · · < (n, kn).

We add a pair (∞,∞) to AI with multiplicity n−|I| to obtain a multiset ĀI with exactly n elements.
We call a set of AI admissible if it is of cardinality at least 2. We call a multiset ĀI admissible if
AI is.

Recall that the variables z were indexed by sequences I = (i1, . . . , in) such that |I| ≥ 2. W can
index the variables z by admissible sets or equivalently admissible multisets.

Consider a pair (C,D) of admissible multisets, where C = {c1, . . . , cn}, D = {d1, . . . , dn}. We
call the pair (C,D) sorted if c1 ≤ d1 ≤ c2 ≤ d2 ≤ · · · ≤ cn ≤ dn.

Consider any quadratic monomial zAzB , where A,B are admissible multisets. Define multiset
S := A ∪ B. We claim that there exists a unique sorted pair (C,D) of admissible multisets, such
that S = C ∪ D. Indeed, it is enough to sort elements of S and define C as elements appearing
on odd places and D as elements appearing on even places. Notice that C and D are admissible.
Thus the quadratic binomial zAzB − zCzD belongs to the ideal of the toric variety associated to the
polytope P . Moreover if A = B then A = B = C = D and the binomial is zero, so we may assume
that zA 6= zB .
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Definition 7.8 (Basis binomials, leading terms). Consider any two admissible multisets A,B, such
that the pairs (A,B) and (B,A) are not sorted. Let (C,D) be a sorted pair constructed above. We
call the quadratic binomial zAzB − zCzD a basis binomial. We also define zAzB to be its leading
term. By the following theorem there really exists a term order with respect to which zAzB is a
leading term.

Theorem 7.9. There exists a term order, with respect to which the basis binomials form a Gröbner
basis. Moreover, with respect to this term the leading monomials are as defined in 7.8. In particular,
the Gröbner basis is quadratic and the leading monomials are square-free.

Proof. The main concept of the proof is to apply [Stu96, Theorem 3.12]. It is enough to prove that
the reduction using basis binomials with marked leading terms in noetherian. In other words we have
to prove that there is no infinite sequence of monomials m1 → m2 → . . . where mi+1 is obtained
from mi by replacing two variables zAzB by zCzD, where A,B,C,D are as in Definition 7.8. To show
this, to each monomial m we associate a nonnegative integer l(m) and we show that l(mi+1) < l(mi).
Fix a monomial m = zB1

· · · zBd
of degree d, where Bi = {bi1, . . . , b

i
n} are admissible multisets –

recall that each bij is a pair. To fix the notation we assume that bij ≤ bij+1. Consider any permutation

σ of the set {1, . . . , d}. To this permutation we associate a sequence:

(b
σ(1)
1 , b

σ(2)
1 , . . . , b

σ(d)
1 , b

σ(1)
2 , . . . , b

σ(d)
2 , . . . , bσ(1)

n , . . . , bσ(d)
n ).

We define lσ(m) as the number of inversions in the above sequence, that is a number of pairs of
indices i < j such that the i-th element of the sequence is greater than the j-th. We also define
l(m) = minσ lσ(m). It is an obvious observation that each reduction with basis binomials strictly
decreases l. �

The following is the main result of this section.

Theorem 7.10. The secant variety Sec(P(V1) × · · · × P(Vn)) is covered by normal toric varieties.
Hence it has rational singularities and in particular it is normal and Cohen-Macaulay. �

Remark 7.11. Some special cases of Theorem 7.10 were known. For the variety P1 × Pa × Pb

the statement about normality and rational singularities can be found in [LW07, Theorem 1.1].
For arbitrary three factors the fact that the singular locus has codimension 2 is stated in [BL12,
Theorem 1.3]. The statement about the normality, in the general case, can be found in [V09,
Theorem 2.2].

7.2. Singular locus of the secant. Let us describe the singular locus of the secant variety of any
Segre. First let us describe the polytope P and the fan of the associated toric variety.

Definition 7.12 (Projection π, Q). Let π be the projection of lattices π : Zk1+1 × · · · × Zkn+1 →
Zk1 × · · · × Zkn defined by forgetting in each component the first coordinate. We also define
Q := π(P ). Note that P and Q are isomorphic as polytopes, but the monoids they span are
different.

Let us provide a precise facet description of the polytope Q.

Proposition 7.13. The polytope Q is given by points q = (qjii ) satisfying the inequalities:

• qij ≥ 0 for all i = 1, . . . , n and j = 1, . . . , ki;

•
∑ki

j=1 q
i
j ≤ 1 for all i = 1, . . . , n;

•
∑n

i=1

∑ki
j=1 q

i
j ≥ 2.

Proof. Let Q′ be the polytope given by the inequalities. It is straightforward that points of Q
lie in Q′. We will prove inductively on d that each integer point of dQ′ belongs to dQ. This will
prove that all rational points of Q′ belong to Q what proves the other inclusion. For d = 1 this is
a direct check. Suppose the statement is true for d. Let (aij) ∈ (d + 1)Q′ be an integral point. Let
us consider three subcases.
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• There exists i1 6= i2 such that
∑ki1

j=1 a
i1
j =

∑ki2
j=1 a

i2
j = d + 1.

In this case let I be the set of all indices with the above property. By assumption we
have |I| ≥ 2. For each i ∈ I choose aiji 6= 0. Let us write (aij) = (bij) + (cij), where bij := aij if

i 6∈ I or i ∈ I and j 6= ji, b
i
ji

= aiji − 1 for i ∈ I and cij = 0 unless i ∈ I and j = ij in which

case ciji = 1. If is straightforward that (bij) ∈ dQ′ = dQ and (cij) ∈ Q, hence (aij) ∈ (d+ 1)Q.

• There exists exactly one i0 such that
∑ki0

j=1 a
i0
j = d + 1.

As
∑n

i=1

∑ki
j=1 a

i
j ≥ 2d + 2 we may choose ai

′

j′ 6= 0 for i′ 6= i0. We also choose ai0j0 6= 0.

Defining (aij) = (bij) + (cij) with ci
′

j′ = ci0j0 = 1 and cij = 0 otherwise we may conclude as in
the previous example.

• There are no i such that
∑ki0

j=1 a
i0
j = d + 1.

In this case we just choose any two nonzero aij for different i, what is possible as∑n
i=1

∑ki
j=1 a

i
j ≥ 2d + 2, and conclude as before. �

Remark 7.14. Note that the proof of Proposition 7.13 proves normality of the polytope Q and
hence of P . Indeed, we have shown that each lattice point of (d+ 1)Q is a sum of two lattice points
respectively from Q and dQ. Thus, by induction on d, each lattice point of dQ is a sum of d lattice
points from Q.

Consider the lattice Zk1 × · · · ×Zkn with the standard basis. Let eij be the dual basis. The three
types of facets of Proposition 7.13 correspond to three types of ray generators of the dual fan:

(1) Rj
i = eij ;

(2) Li =
∑j=ki

j=1 −eij ;

(3) S =
∑

i,j e
i
j .

Lemma 7.15. For a fixed i, the intersection of the facet corresponding to Li with all facets corre-

sponding to Rj
i is empty. This implies that for any i the rays Rj

i and Li do not form a cone for any
j. �

Proposition 7.16. The singular locus of the projective variety associated to Q has
(n

2

)
components

indexed by two element subsets of the set [n].

Proof. From Lemma 7.15 it follows that cones that do not contain the ray S are smooth. Consider
the cone that contains S. Choose any two rays Li1 , Li2 . Note that S,Li1 , Li2 form a cone, as the
intersection of the corresponding facets is nonempty. Moreover, each point of the intersection

belongs to any facet corresponding to Rj
i for any i 6= i1, i2. Thus any cone containing S,Li1 , Li2

must also contain all Rj
i for any i 6= i1, i2. As they are linearly dependent, the cone is not simplicial,

hence not smooth. Thus we see that cones containing S and any two Li1 , Li2 are not smooth. As
the intersection of the facets corresponding to S and three different facets corresponding to Li is
empty, all these cones are different.

We will now prove that if a cone containing S does not contain any pair of Li1 , Li2 then it is
smooth. Suppose it does not contain any rays Li. Then the cone could be not smooth only if it

contained all the rays Rj
i . This is of course impossible, as the facets corresponding to all rays Rj

i
have an empty intersection.

Suppose the cone contains exactly one ray Li0 . Then, by Lemma 7.15 it does not contain all rays

Rj
i0

. Thus it would not be smooth only if it contained all the rays Rj
i for i 6= i0. These do not form

a cone, which finishes the proof. �

As each component of the singular locus contains the Segre we obtain the following Corollary.
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Corollary 7.17. The singular locus of the secant of the Segre variety has
(n

2

)
components indexed

by two-element subsets of the set [n]. The component indexed by the set i1, i2 has codimension∑
i 6=i1,i2

ki − 2. The intersection of any two components is the Segre variety.
Specifically, each component of the singular locus of the secant of the Segre variety is isomorphic

to:

Pk1 × · · · × P̂ki1 × · · · × P̂ki2 × · · · × Pkn × Sec(Pki1 × Pki2 ),

where ·̂ denotes omission.

Proof. The statement about the intersection of the components follows from the fact that the
sum of any two cones described in the proof of Proposition 7.16 does not form a cone.

As before we can parameterize each component of the singular locus by restricting the usual
parameterization to aij = bij for i not in the chosen subset. In particular, as in Section 5, we see
that the components of the singular locus are as described in the theorem. �

Theorem 7.18. Consider the secant of the Segre Pk1 × · · · ×Pkn. Assume that k1 ≤ k2 ≤ · · · ≤ kn.
The secant is smooth only in one of the following cases:

(1) n = 3 and k1 = k2 = k3 = 1,
(2) n = 2 and k1 = 1.

If the secant is not smooth it is not Q-factorial. Moreover, if it is not smooth it is Gorenstein only
in the following cases:

(1) n = 5 and k1 = k2 = k3 = k4 = k5 = 1,
(2) n = 3 and (k1, k2, k3) equal to one of (1, 1, 3), (1, 3, 3), or (3, 3, 3).
(3) n = 2 and k1 = k2.

In the above cases the secant has terminal singularities. If the secant is not Gorenstein, then it is
not Q-Gorenstein.

Remark 7.19. Note that the tangent space to the secant Sec(X) at the point belonging to X equals
the whole linear space spanned by X. In particular the secant can be smooth if and only if it fills the
whole ambient space. The results when the secant of the Segre embedding fills the ambient space
are quite standard, thus the interesting classification of the previous theorem concerns Gorenstein
cases.

Proof of Theorem 7.18. It is easy to check that given cases are smooth. Let us prove that all the
other secants are not Q-factorial. Let σ be the cone over the polytope P , corresponding to the toric
variety that is open in the secant. By Proposition 7.13 the cone σ is defined by the inequalities:

(1) qij ≥ 0 for all i = 1, . . . , n and j = 1, . . . , ki;

(2)
∑ki

j=1 q
i
j ≤ q0 for all i = 1, . . . , n;

(3)
∑n

i=1

∑ki
j=1 q

i
j ≥ 2q0.

If n ≥ 4 then all the inequalities are supporting. In particular the dual cone is not simplicial, thus
the variety is not Q-factorial. The same holds if n = 3 and k1 ≥ 2. Assume n = 3, k1 = 1 and
k3 ≥ 2. Among the supporting hyperplanes we have:

(1) 1 hyperplane −2q0 +
∑

i,j q
i
j = 0,

(2) 3 hyperplanes q0 −
∑

j q
i
j = 0,

(3) k3 hyperplanes q3
j = 0.

In particular the dual cone is not simplicial. Let us now assume n = 2. The polytope P is the
product of simplices of dimension k1 − 1 and k2 − 1. In particular it is of dimension k1 + k2 − 2 and,
if k1 > 1 it has k1 +k2 supporting facets. Thus, if k1 > 1 the dual of σ is not simplicial. Notice that
in this case although the polytope P is smooth, that is defines a smooth projective variety - product
of projective spaces under Segre embedding, the affine cone over this variety is not smooth.
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Now we classify secants that are Q-Gorenstein. First let us consider the case when n ≥ 4 and ki
are arbitrary or n = 3 and k1 > 1. In this case all the given inequalities are supporting for σ. Thus
the rays of the dual cone are:

• eij ;

• e0 −
∑

j e
i
j ;

• −2e0 +
∑

i,j e
i
j.

Suppose they belong to the affine subspace given by

λ0e
∗
0 +

∑

i,j

λi
je

i∗
j = a,

for some constant a. We must have λi
j = a, λ0 − kia = a and −2λ0 +

∑
i aki = a. In particular we

must have k1 = · · · = kn and hence (n − 2)k1 = 3. This has solutions only if n = 3 and k1 = 3 or
n = 5 and k1 = 1. In these two cases one can put a := 1, λi

j = 1 and λ0 := k + 1, proving that the
variety is Gorenstein.

We now check the case when not all inequities given above are supporting σ. Suppose now n = 3
and k1 = 1. Assume first k2 ≥ 2. The rays of the dual cone σ∨ are as given above, omitting e1

1.
Assuming, as previously, that they belong to a hyperplane we obtain: λi

j = a and λ0 − aki = a

for for i 6= 1. Moreover λ0 − λ1
1 = a and −2λ0 + λ1

1 + ak2 + ak3 = a. This has a solution only if
k2 = k3 = 3 and then, the solution is integral if we put a = 1. The case k2 = 1, k3 ≥ 2 is analogous.

Suppose n = 2. We may assume k1 > 1. The polytope P is the product of two simplices of
dimensions k1 − 1 and k2 − 1. Thus, in appropriate coordinates the rays of the dual cone σ∗ are:

• k1 − 1 rays ei,
• k2 − 1 rays fj,
• one ray e0 −

∑
ei,

• one ray e0 −
∑

fj.

Suppose they belong to a hyperplane λ0e
∗
0 +

∑
λie

∗
i +

∑
λ′
jfj = a. We obtain λi = λ′

j = a,

λ0 − a(k1 − 1) = a and λ0 − a(k2 − 1) = a. These have a solution if and only if k1 = k2. Moreover
in this case, for a := 1 one finds an integral solution.

It is a direct check that all the Gorenstein cases have terminal singularities, by proving that there
are no integral points in the convex hull of ray generators of σ∨ and 0. �

8. The tangential variety

In this section we show that our techniques can be applied to the study of the tangential variety
of the Segre.

8.1. Local structure of the tangential variety. On the open set U(0,...,0), the tangential va-
riety Tan(P(V1) × · · · × P(Vn)) consists of all points on all lines tangent to the Segre. It can be
parameterized by

(4)
(
[a1

0, . . . , a
1
k1 ], . . . , [an0 , . . . , a

n
kn ]
)
,
(
[b1

0, . . . , b
1
k1 ], . . . , [bn0 , . . . , b

n
kn ]
)
7−→

x(i1,...,in) = 1/n
n∑

k=1


bkik

∏

j∈[n]\{k}

ajij


 ,

for all ij ∈ {0, . . . , kj}, where ajij and bjij are C valued parameters.

We introduce the affine variety W given by

W := Tan(P(V1) × · · · × P(Vn)) ∩ U(0,...,0).

As before we may restrict the parameterization of W by setting ai0 = bi0 = 1.
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Proposition 8.1. The variety W is isomorphic to the trivial affine bundle of rank
∑n

i=1 ki over
the spectrum of the semigroup algebra associated to the monoid generated by Q.

Proof. Given the parameterization of the variety W we proceed along similar lines as in Lemma 3.1
to show that the induced parameterization in (yI) is monomial. More precisely, for |I| ≥ 2 a point
of the tangential parameterized by some akik = bkik for ik ∈ Supp(I) satisfies yI = 0. Thus, for |I| ≥ 2

the parameterization of the tangential is given by yI = γ
∏

ik∈Supp(I)(b
k
ik
−akik) for some constant γ.

In particular, the parameterization is monomial in parameters (bkik − akik). �

Remark 8.2. Sturmfels and Zwiernik proved that the tangential variety has a monomial parameter-
ization in cumulant coordinates, [SZ12][Thm. 4.1]. Here we have shown that this occurs already in
central moment coordinates, which implies their result.

Proposition 8.3. The complement of a hyperplane section of the tangential variety to the Segre
P(V1) × · · · × P(Vn) is isomorphic to the trivial affine bundle over the spectrum of the semigroup
algebra associated to the monoid generated by Q = π(P ) ⊂ Zk1 × · · · × Zkn. �

In other words, we look at the same points that defined the secant, but we forget the first
coordinate. Note that we do not get a homogeneous ideal any more. To describe the tangential
variety locally we need a description of the monoid generated by Q.

Lemma 8.4. The monoid spanned by lattice points in Q is the intersection of the lattice with the
cone defined by the points q = (qiji) ∈ Zk1 × · · · × Zkn, where 1 ≤ i ≤ n, 1 ≤ ji ≤ ki, satisfying the
following inequalities:

qij ≥ 0,

ki∑

j=1

qij ≤
n∑

l 6=i,1≤i≤n

kl∑

s=1

qls.

If n ≥ 4 and each ki ≥ 1 or n = 3 and each ki ≥ 2 then all of the given inequalities are supporting
for the cone.

Proof. It is obvious that all the points of the monoid satisfy these inequalities, as all the points
of Q do. Let us prove the other inclusion, inductively on the sum of coordinates. Consider any

integral point (aji ) that satisfies the inequalities. Without loss of generality suppose

k1∑

j=1

a1
j ≥ · · · ≥

kn∑

j=1

anj .

If the point is nonzero we must have
∑k1

j=1 a
1
j ,
∑k2

j=1 a
2
j ≥ 1. Suppose first that

∑k1
j=1 a

1
j =

∑k2
j=1 a

2
j =∑k3

j=1 a
3
j = 1 and

∑k4
j=1 a

4
j = · · · =

∑kn
j=1 a

n
j = 0. In this case the point lies in Q. Suppose now that

this is not the case. To fix the notation suppose that a1
1, a

2
1 ≥ 1. Consider the point (bij), where

b1
1 = a1

1 − 1, b2
1 = a2

1 − 1 and bij = aij otherwise. We claim that it also satisfies the inequalities.
Indeed the only nontrivial thing we have to check is

k3∑

j=1

a3
j ≤

k1∑

j=1

a1
j +

k2∑

j=1

a2
j +

k4∑

j=1

a4
j + · · · +

kn∑

j=1

anj − 2.

As
∑k3

j=1 a
3
j ≤

∑k2
j=1 a

2
j this could not hold only if

∑k1
j=1 a

1
j = 1,

∑k3
j=1 a

3
j =

∑k2
j=1 a

2
j and

∑k4
j=1 a

4
j =

· · · =
∑kn

j=1 a
n
j = 0. As the point satisfies the inequalities, we would have

∑k1
j=1 a

1
j =

∑k3
j=1 a

3
j =∑k2

j=1 a
2
j = 1 and

∑k4
j=1 a

4
j = · · · =

∑kn
j=1 a

n
j = 0. This case was excluded before. By induction we

finish the proof of the description of the cone.
The last statement is a direct check. �

The following result is a direct consequence of Lemma 8.4.
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Proposition 8.5. The tangential variety of the Segre is a normal variety with rational singularities.
In particular it is Cohen-Macaulay. �

We now provide a detailed description of the singular locus of the tangential variety.

8.2. The singular locus. We can also provide rays of the cone generated by Q, which will provide
a better understanding of the singular locus of the secant.

Proposition 8.6. The ray generators of the cone spanned by Q are precisely those integral points
of Q that have exactly two coordinates equal to 1.

Proof. Let R be the set of the integral points of Q with exactly two nonzero coordinates. It is
an easy observation that all other integral points of Q are in the R+ span of R. Moreover each
of the elements of R is not in the R+ span of the others. As the points from R are primitive the
proposition follows. �

Following the standard toric analysis we now describe the dual cone of the cone generated by Q.
First, recall a few facts. The faces of the dual cone are in bijection with the faces of the cone. In
particular rays of the dual cone correspond to facets of the cone. If we take a face F of the cone,
the corresponding face of the dual cone is spanned by exactly those rays that correspond to facets
containing F .

In the cases n ≥ 4 and each ki ≥ 1 or n = 3 and each ki ≥ 2 there are two types of facets,
described by points q = (qiji) ∈ Zk1 × · · · × Zkn satisfying one of the following:

(1) “forcing zero facets” qij = 0, indexed by i, j;

(2) “forcing one facets”
∑ki

j=1 q
i
j =

∑n
l 6=i,1≤i≤n

∑kl
s=1 q

l
s, indexed by i.

The name of the first facets is self-explanatory. The motivation for the second name is as follows.
If we consider the ray generators that belong to a given “forcing one facet” indexed by i we see that
these are exactly those that have got one of the coordinates qij equal to 1 for some j.

Lemma 8.7. Suppose n ≥ 4 and each ki ≥ 1 or n = 3 and each ki ≥ 2. Let C be the dual cone of
the cone spanned by Q or equivalently by R. If a subcone of C contains two rays that correspond
to “forcing one facets” indexed by i1 and i2, then it also contains all rays corresponding to “forcing
zero facets” indexed by any i 6= i1, i2 and any j. Such subcones are not smooth. All other subcones
are smooth.

Proof. Consider two “forcing one facets” indexed by i1 and i2. The elements from R that belong
to their intersection must have 1 for some coordinates qi1j1 and qi2j2 . As they have exactly two ones

all other qij must be equal to zero. This proves the first part of the lemma.
The sum of facet normals of two chosen “forcing one facets” equals twice the sum of all “forcing

zero facets” for i 6= i1, i2. In particular they are linearly dependent. Hence the cone is not simplicial,
thus not smooth.

We only have to prove that all the other cones are smooth. If a cone contains only rays corre-
sponding to “forcing zero facets” then its rays form a part of the basis, thus it is smooth. Suppose
it contains only one “forcing one facet”. The corresponding ray is of the type (±1). If the cone
contains not all rays corresponding to “forcing zero facets” it is smooth, as they correspond to
standard basis vectors. On the other had a cone, not equal to C, cannot contain all “forcing zero
facets”, as there are no elements of R contained in all “forcing zero facets”. �

The following is a direct consequence of Lemma 8.7.

Corollary 8.8. Consider the tangential variety of the Segre embedding of Pk1 × · · · × Pkn, where
k1 ≤ · · · ≤ kn and n ≥ 3. The singular locus has

(n
2

)
components, corresponding to two element

subsets of {1, . . . , n}. The codimension of the component corresponding to the subset {i, j} equal
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1 +
∑

l 6=i,j kl. Specifically, the component of the singular locus corresponding to the subset {i, j} is
isomprphic to

Tan(Pki × Pkj) × Pk1 × · · · × P̂ki × · · · × P̂kj × · · · × Pkn .

Proof. The only case not covered so far is n = 3. This is analogous to other cases. Let us
consider the parameterization of the tangential variety in (4). Choose two indices i, j. Restrict the
parameterization to alk = blk for l 6= i, j. We can see that the image of the parameterization map is
contained in the singular component corresponding to {i, j}. By the dimension count they must be
equal. The corollary follows. �

For n = 2 it is straightforward to check that the tangential variety equals the secant In this case
we obtain a classification of singularities by Theorem 7.18. In other cases we present the following
theorem.

Theorem 8.9. Assume n ≥ 3. The tangential variety is always singular. There is only one Q-
Gorenstein tangential variety given by n = 3 and k1 = k2 = k3 = 1. In this case the tangential
variety is Q-factorial, Gorenstein and terminal.

Proof. Let σ be the cone spanned by Q. First consider the case n ≥ 4 and ki arbitrary or n = 3
and ki ≥ 2. By Lemma 8.4 the dual cone of σ has got the following ray generators:

(1) eij ;

(2)
∑

i 6=i0

∑
j e

i
j −

∑
j e

i0
j .

This cone is not simplicial, so the variety is not Q-factorial. It is a direct check that the ray
generators do not belong to a hyperplane, so the variety is not Q-Gorenstein.

Assume now n = 3 and k1 = 1. If k2 = k3 = 1 the dual cone of σ has three ray generators:

e1 + e2 − e3, e1 + e3 − e2, e2 + e3 − e1.

Thus the dual cone is simplicial and the ray generators belong to the hyperplane e∗1 + e∗2 + e∗3 = 1.
It is not smooth, as the sum of all ray generators is not a primitive lattice element. However, one
can see that the dual cone is terminal.

Without loss we can assume k3 > 1. We will show that the tangential variety is not Q-Gorenstein.
First consider the case k2 = 1. The ray generators of the dual cone are:

e3
j , e2 +

∑
e3
j − e1, e1 +

∑
e3
j − e2, e1 + e2 −

∑
e3
j .

These do not belong to an affine subspace. The case k2 > 1 is analogous. �
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