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RECOGNIZING PRODUCTS OF SURFACES AND SIMPLY

CONNECTED 4-MANIFOLDS

IAN HAMBLETON AND MATTHIAS KRECK

Abstract. We give necessary and sufficient conditions for a closed smooth 6-manifold
N to be diffeomorphic to a product of a surface F and a simply connected 4-manifold
M in terms of basic invariants like the fundamental group and cohomological data. Any
isometry of the intersection form of M is realized by a self-diffeomorphism of M × F .

1. Introduction

Simply-connected closed 6-manifolds were classified by Wall [13], Jupp [6], and Žubr
[14]. However, if the fundamental group is non-trivial, such complete information is not
within reach of current techniques except in special cases.

In this paper we consider the following problem: given a closed, oriented 6-manifold N ,
can we identify a closed, oriented surface F and a simply-connected, closed 4-manifold M
such that N is diffeomorphic to M ×F ? Since simply connected 6-manifolds are already
classified, we assume from now on that F 6= S2 has genus ≥ 1, but the results remain
true in the simply connected case. First we discuss some of the necessary conditions.

Condition 1. The fundamental group π1(N) is isomorphic to the fundamental group of

a closed, oriented surface F .

We choose a base-point preserving classifying map u : N → F for the universal covering.
Up to homotopy and choice of base points this is equivalent to choosing an isomorphism
α : π1(N) → π1(F ), where u# = α.

The next condition concerns the second homology group of the universal covering
H2(Ñ), which for the product of F with a simply connected 4-manifold M is a trivial
module over π1(N) and so we require this:

Condition 2. H2(Ñ) is a trivial π1(N)-module.

Under this condition, the Serre spectral sequence for the fibration over F = K(π1(N), 1)

with fibre Ñ , implies that we have an exact sequence

0 → H2(F )
u∗

−→ H2(N)
p∗
−→ H2(Ñ) → 0,

where p is the universal covering projection. It follows that H2(Ñ) is a finitely-generated
free abelian group.
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The key to our recognition result is the observation that the cohomology algebra of N
provides a candidate for the intersection form of a closed, simply-connected topological
4-manifold M . To identify this candidate, suppose that Condition 1 holds. Then the
trilinear cup product form on H2(N) induces a well-defined symmetric bilinear form

I(N) : H2(N)/u∗H2(F )×H2(N)/u∗H2(F ) → Z

by mapping x and y to 〈u∗([F ]) ∪ x ∪ y, [N ]〉, where [F ] ∈ H2(F ) is the cohomology

fundamental class. If Condition 2 holds, then V := H2(N)/u∗H2(F ) ∼= H2(Ñ) is a
finitely-generated free abelian group.

Under the assumption that N ≈ M ×F , this form I(N) is unimodular and the finitely-
generated free abelian group V is isomorphic to H2(M). Moreover, the form I(N) and
the intersection form

sM : H2(M)×H2(M) → Z

are isometric. We recall that vanishing of the Kirby-Siebenmann invariant of M , denoted
KS(M) is a necessary and sufficient condition for M × F to be smoothable (see [7,
Theorem 5.14, p. 318]). If M is a spin manifold, then this condition is assured by requiring
sign(M) ≡ 0 (mod 16). Thus we have:

Condition 3. The symmetric bilinear form I(N) is unimodular, and sign I(N) ≡ 0
(mod 16) if N is a spin manifold.

If I(N) is unimodular there exists a closed, simply-connected topological 4-manifold M
with this intersection form, by the foundational results of Freedman [4, Theorem 1.5]. If
M is non-spin, then Freedman shows that we may assume KS(M) = 0. In either case,
if KS(M) = 0 the manifold M is uniquely determined (up to homeomorphism) by its
intersection form sM . Moreover, the smooth structures on M ×F are determined by lifts
of its stable topological tangent bundle τM×F (see [7, Theorem 10.1, p. 194] for the precise
statement).

Definition 1.1. The standard smooth structure on M × F is the one determined by
product of the unique lift of τM : M → BTOP to BO, together with τF : F → BO. The
lift of τM is unique because TOP/O ≃ TOP/PL = K(Z/2, 3) in this range of dimensions.

We then fix the standard smooth structure on M ×F and take the product orientation
with respect to given orientations on M and F . This is our candidate for recognizing N
as the product M × F .

Finally, we need some more information about the oriented integral cohomology ring
of N and the Pontrjagin class p1(N) ∈ H4(N). Let q1 : M ×F → M and q2 : M ×F → F
denote the first and second factor projection maps. Note that the integral cohomology of
M × F is Z-torsion free, so any map H∗(M × F ) → H∗(N) of integral cohomology rings
reduced mod 2 induces a map on Z/2-cohomology.

Condition 4. Let M be a closed, oriented, simply-connected topological 4-manifold with

sM ∼= I(N) and KS(M) = 0. There exists an isomorphism

φ : H∗(M × F ) → H∗(N)

of oriented integral cohomology rings. We assume that
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(i) φ([M ]× [F ]) = [N ] ∈ H6(N),

(ii) φ ◦ q∗2 = u∗ : H∗(F ) → H∗(N), and

(iii) φ preserves the second Stiefel-Whitney class:

φ(w2(M × F )) = w2(N) ∈ H2(N ;Z/2).

(iv) Moreover, the relation

〈φ(x) ∪ p1(N), [N ]〉 =

{
3 sign(M) if x = q∗2([F ]) ∈ H2(M × F ),

0 if x = q∗1(y)

holds for all y ∈ H2(M).

Example 1.2. UnlessM = S4, the cohomology cohomology ring determines the Steenrod
operations, and so φ preserves the second Stiefel-Whitney class. On the other hand,
consider an oriented 4-sphere bundle N over F with w2(N) 6= 0. Then N has the same
cohomology ring as S4 × F but is not diffeomorphic to the product.

Now we are ready to formulate our main result.

Theorem A. Let N be a closed, oriented smooth 6-manifold, and α : π1(N) ∼= π1(F ) for
some closed, oriented surface F , such that Conditions 1-3 hold. Suppose that

(i) M is the closed, simply-connected topological 4-manifoldM , such that sM ∼= I(N),
with KS(M) = 0, and

(ii) φ : H∗(M × F )
≈
−→ H∗(N) is a ring isomorphism satisfying Condition 4.

Then, there is an orientation and base-point preserving diffeomorphism f : N → M × F
such that f# = α and f ∗ = φ.

We can also ask which automorphisms of the second cohomology of M ×F are induced
by self-diffeomorphisms. In particular, we consider automorphisms of H2(M), and extend
them by the identity on H2(F ) via the identification:

(q∗1 , q
∗

2) : H
2(M)⊕H2(F ) ∼= H2(M × F ).

From the ring structure in cohomology, a necessary condition is that the automorphism
on H2(M) is an isometry of the intersection form.

Corollary B. Let M be a closed topological 4-manifold with KS(M) = 0 and F a closed

oriented surface. Then each isometry of the intersection form of M is induced by a self-

diffeomorphism of M × F .

Proof. There is an automorphism φ of H∗(M × F ), which on H2(M × F ) is the given
isometry on H2(M) extended by the identity on H2(F ). By Theorem A there is a self-
diffeomorphism of M × F inducing φ, and therefore the given isometry on H2(M). �

Remark 1.3. In the case where M is itself smooth, Donaldson theory (see [5, The-
orem 6]) provides examples of isometries of H2(M) which cannot be realized by self-
diffeomorphisms of M . We also remark that an alternate argument can be given for
Corollary B by using further results of Freedman and Kirby-Siebenmann. By [4, p. 371]
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there is a homeomorphism h : M → M realizing the given isometry. Consider the s-
cobordism

W 5 := (M × I) ∪h (M × I)

obtained by gluing two cylinders M×I via h. Since H4(W, ∂W ;Z/2) = H3(M ;Z/2) = 0,
we can pick a lift of τW : W → BO extending the standard lift of τM on both boundary
components. Taking the product of the s-cobordism with F , we obtain an s-cobordism
W × F with the product lift of τW×F over BO. By Kirby-Siebenmann [7, Theorem 10.1,
p. 194] there is a smooth structure on W × F which restricts to the standard smooth
structure on both ends. The s-cobordism theorem then gives a self-diffeomorphism of the
standard smooth structure on M × F , realizing the given isometry.

Finally, we note that the smooth structure on M × F is actually unique up to diffeo-
morphism.

Corollary C. Let M be a closed, simply-connected topological 4-manifold with KS(M) =
0, and let F be a closed oriented surface. Then M × F has a unique smooth structure.

Proof. We can apply Theorem A to the topological manifold M × F equipped with two
different smooth structures. By Novikov [10, Theorem 1], we have Condition 4 with
φ = id. �

Remark 1.4. The results of Kirby and Siebenmann [7, Theorem 5.4, p. 318] show that
the set of distinct smoothings of M × F is in bijection with

[M × F, TOP/O] = [M × F, TOP/PL] = H3(M × F ;Z/2),

since in this dimension every PL manifold admits a unique smooth structure. Theorem
A shows that Homeo(M × F ) acts transitively on the set of smoothings. It would be
interesting to construct a corresponding homeomorphism for each α ∈ H3(M × F ;Z/2).

Here a smoothing is a pair (N, h), where N6 is a smooth 6-manifold and h : N → M×F
is a homeomorphism; two smoothings (N, h) and (N ′, h′) are equivalent if there exists a
diffeomorphism ϕ : N → N ′ such that h and h′ ◦ ϕ are topologically isotopic.

Remark 1.5. The effectiveness of our recognition result in practice will depend on the
difficulty of verifying Conditions 3 and 4, but most of this is linear algebra. After obtaining

Conditions 1 and 2, one might proceed by showing that H∗(Ñ) is isomorphic to a 4-
dimensional algebra Λ∗, with Λ0 = Λ4 = Z, Λ1 = Λ3 = 0, carrying the symmetric
bilinear form I(N) : Λ2 ⊗ Λ2 → Z on a free abelian group Λ2 ∼= Zr. This gives the Euler

characteristic equation χ(N) = χ(F ) · (r + 2), and shows that H3(N) ∼= H1(F )⊗H2(Ñ)
is torsion-free. Now Poincaré duality for H3(N) shows that I(N) is unimodular. After
that, it will be necessary to check that H∗(N) ∼= Λ∗ ⊗ H∗(F ) as graded algebras, and
proceed to construct a cohomology ring isomorphism φ : H∗(M × F ) → H∗(N) with the
required conditions on w2(N) and p1(N).

However complicated the process, at least the conditions depend only on the primary
algebraic topology of N and do not involve determining the full homotopy type of N . For
example, we do not assume anything about π3(N).
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2. The normal 2-type and normal 2-smoothings

For the proof we use the methods from [8] and assume that the reader is familiar with
the basic concepts and theorems although we repeat the relevant definitions briefly.

We abbreviate V := H2(N)/u∗H2(F ) ∼= H2(Ñ), and let H = π2(N) = H2(Ñ). We

have H2(Ñ) ∼= HomZ(H2(Ñ),Z), so that H ∼= HomZ(V,Z) = V ∗. The following remark
is immediate from the definitions.

Lemma 2.1. If N satisfies Condition 4 with respect to M × F , then H2(M) ∼= V .

We start by determining the normal 2-type of N . By definition, this is a fibration B
over BSO where the homotopy groups of the fibre vanish in degree ≥ 3 and such there
is a lift of the normal Gauss map of N over B, which is a 3-equivalence. We have to
distinguish two cases, where the symmetric bilinear form I(N) : V × V → Z is a even or
odd. In the first case, the normal 2-type is

peven : B = K(H, 2)× F × BSpin → BSO,

where the map is the composition of the projection to BSpin and the canonical projection
to BSO. If the form I(N) is odd, one chooses a primitive characteristic element v ∈ V ,
and a complex line bundle Lv over K(H, 2) with first Chern class v. Then the normal
2-type is

podd : B = K(H, 2)× F × BSpin → BSO,

where podd is the map given by the projection to K(H, 2)×BSpin composed by the map
given by the Whitney sum of line bundle Lv and the canonical map to BSO (of course,
we have to replace this map by a fibration).

Lemma 2.2. The normal 2-types of M × F and N are given by (B, peven), if M is spin,

or (B, podd) if M is non-spin.

Proof. We first look at the second stage of the Postnikov tower of N , this is a fibration over
K(π1(N), 1) with fibre K(π2(N), 2), where in our situation π2(N) = H . These fibrations
are classified by the action of π1(N) on π2(N) and the k-invariant k ∈ H3(π1(N); π2(N)).
This group is zero, and so the action of π1(N) on π2(N) determines the Postnikov tower.
If the π1(N)-action is trivial, then we have the trivial fibration. Next, we use our data to
construct a 3-equivalence

cM×F := gM×F × hM×F : M × F → K(H, 2)× F,

and a 3-equivalence
cN := gN × hN : N → K(H, 2)× F,

which is compatible with our data α and φ. For this we consider the map

gM×F : M × F → K(H, 2)

such that (gM×F )
∗ : V → H2(M×F ) = H2(M)⊕H2(F ) = V ⊕H2(F ) is the inclusion onto

the first summand (see Lemma 2.1), and choose a base point preserving map gN : N →
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K(H, 2) such that (gN)
∗ = φ ◦ (gM×F )

∗. Then we consider the projection hM×F =
q2 : M × F → F and hN = u : N → F . From Conditions 1 - 4 it is clear that the maps
cM×F and cN are 3-equivalences, with (cN)

∗ = φ ◦ (cM×F )
∗.

If N is Spin-manifold, then by assumption M × F is a Spin-manifold and we equip
both manifolds with an arbitrary Spin structure ωN and ωM×F . If N and so M × F are
not Spin-manifolds, then we choose a primitive class v ∈ H2(M × F ;Z), such that its
component in H2(F ;Z) is zero, which reduces to w2(M × F ) and a spin structure ωM×F

on ν(M × F ) ⊕ Lv, where Lv is the complex line bundle classified by v. Similarly, we
choose a Spin structure ωN on ν(M) ⊕ Lφ(v). The maps cM×F and cN together with the
(twisted) Spin-structures are normal 2-smoothings in (B, podd/even). �

3. The bordism groups

The next step in the proof of Theorem A is to show that, under the given conditions,
the normal 2-smoothings constructed in Section 2 are bordant in Ω6(B, ξ), where ξ is the
bundle classified by podd or peven depending on the normal 2-type.

The method of proof is based on detecting elements in the bordism group by explicit
invariants. We have H ∼= Z

r so that K := K(H, 2) = (CP∞)r. Let Dp1(N) ∈ H2(N)
denote the Poincaré dual of the first Pontrjagin class.

Proposition 3.1. There is an injection Ω6(B, ξ) → Z⊕H6(K)⊕H4(K)⊕H2(K), given
by sign I(N), and the images of [N ], [N ] ∩ u∗([F ]), Dp1(N) under the reference maps

cN : N → B for the normal 2-types.

To compute the bordism groups we consider the functor associating to a space X the
bordism group of podd/even : X ×K(H, 2)× BSpin → BSO, where the maps are defined
as above in the case X = F . This is a homology theory denoted by hk(X) and so we can
use the Mayer-Vietoris sequence to compute it, by writing a surface of genus g as D2∪Y ,
where Y is a wedge of 2g circles. Then we obtain an exact sequence

h̃7(S
2) → h̃6(Y ) → h̃6(F ) → h̃6(S

2) → h̃5(Y ),

or, if we apply the suspension isomorphism, the exact sequence:

(3.2) h5(pt) →
∑

2g

h5(pt) → h̃6(F ) → h4(pt) → .

The map from h6(F ) to h4(pt) is defined by sending [N, cN ] 7→ [Q, cQ], where cN : N → B
is a lift of the normal Gauss map, and Q ⊂ N is the pre-image of a regular value of the
composition of the map to B with the projection to F . The reference map cQ : Q → B
is given by the restriction of cN to K := K(H, 2), together with the induced bundle and
(twisted) Spin-structure.

To proceed further we need information about hk(pt) = ΩSpin
k ((CP∞)r), for peven, and

hk(pt) = ΩSpin
k ((CP∞)r, L), for podd. We begin with the case r = 1.

Lemma 3.3. Let L denote the Hopf bundle over CP
∞.

(i) The map ΩSpin
4 (CP∞) → Z ⊕ Z given by the signature and the image of the

fundamental class is injective.
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(ii) ΩSpin
6 (CP∞) = Z ⊕ Z, detected by the image of the fundamental class and the

image Dp1(N),

(iii) ΩSpin
4 (CP∞;L) ∼= Z ⊕ Z, detected by the image of the fundamental class and the

image of Dp1(N).

Proof. The E2-term of the Atiyah-Hirzebruch spectral sequence computing ΩSpin
4 (CP∞)

gives Z in position (0, 4) and (4, 0), and Z/2 in position (2, 2). The differential

d : H4(CP
∞;Z) → H2(CP

∞;Z/2)

is the reduction mod 2 composed by the dual of Sq2 [12, Proposition 1, p. 750] and so is
nontrivial. This implies that

ΩSpin
4 (CP∞) → Z⊕ Z

given by the signature and the image of the fundamental class is injective.
Analyzing the Atiyah-Hirzebruch spectral sequence for ΩSpin

6 (CP∞) gives an entry Z at
position (2, 4) and (6, 0) and Z/2 at position (4, 2). This time the differential vanishes
and so the bordism group is either Z⊕Z or Z⊕Z⊕Z/2. It was proven in [9, p. 258] that

ΩSpin
6 (CP∞) = Z⊕ Z,

detected by the image of the fundamental class and the image of Dp1(N).
Now we consider the bordism groups twisted by the line bundle L. We reduce the

4-th bordism group to the untwisted case by using the isomorphism given by taking the
transversal preimage of CPN−1, where we replace CP

∞ by CP
N for a large N :

ΩSpin
6 (CP∞) ∼= ΩSpin

4 (CP∞;L)

(here we use that ΩSpin
6 = ΩSpin

5 = 0) implying that ΩSpin
4 (CP∞;L) ∼= Z⊕Z again detected

by the image of the fundamental class and the signature.
Finally the computation of ΩSpin

4 (CP∞;L) ∼= Z ⊕ Z, again detected by the image of
the fundamental class and the image of Dp1(N), follows from the Atiyah-Hirzebruch
spectral sequence. This time the E∞-term is torsion free in the 6-line, since the differential
d : H6(CP

∞;Z) → H4(CP
∞;Z/2) is the reduction mod 2 composed by the dual of Sq2

plus c1(L) ∪ ...) (see again [12, Proposition 1, p. 750]) and so is trivial. �

Lemma 3.4. h5(pt) is zero. The map h6(pt) → H6(K)⊕H2(K) given by the image of the

fundamental class and the image of Dp1(N) is injective. The map given by the signature

and the image of the fundamental class is an injection h4(pt) → Z⊕H4(K).

Proof. Now we consider the general case. If we show that the bordism groups are again
torsion free, then the statements follow from the Atiyah-Hirzebruch spectral sequence.
We first note that by applying an appropriate isomorphism of H ∼= Zr we can assume in
the twisted case that c1(L) = (0, ..., 0, 1). With this we write (CP∞)r = X × CP

∞ and

compute ΩSpin
k (X ×CP

∞) and ΩSpin
k (X ×CP

∞;L) for k = 4 and 6, where X = (CP∞)r−1

and L is the Hopf bundle over the last factor. We assume inductively that Ωk(X) is
torsion free for k = 4 and k = 6. Using again the transversal preimage of CPN−1, where
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we replace CP
∞ by CP

N for a large N , we have an exact Gysin sequence (see [2, Section
I.6, p. 315], [11]):

ΩSpin
5 (X × CP

∞;L) → ΩSpin
6 (X) → ΩSpin

6 (X × CP
∞) → ΩSpin

4 (X × CP
∞;L).

Since the odd dimensional groups are by the Atiyah-Hirzebruch spectral sequence torsion,
we see that ΩSpin

6 (X ×CP
∞) is torsion free, if ΩSpin

4 (X ×CP
∞;L) is torsion free. For this

we consider the corresponding exact Gysin sequence (again, see [2, Section I.6]):

ΩSpin
3 (X × CP

∞;L⊕ L) → ΩSpin
4 (X) → ΩSpin

4 (X × CP
∞;L) → ΩSpin

2 (X × CP
∞;L⊕ L).

The Atiyah-Hirzebruch spectral sequence implies that

ΩSpin
2 (X × CP

∞;L⊕ L) ∼= H2(X × CP
∞)⊕ Z/2.

Now we compare this exact sequence with that for X a point:

ΩSpin
3 (CP∞;L⊕ L) → ΩSpin

4 → ΩSpin
4 (CP∞;L) → ΩSpin

2 (CP∞;L⊕ L).

We have maps from the first to the second exact sequence given by the projection from
X to a point. Now suppose that ΩSpin

4 (X × CP
∞;L) contains a torsion element. Then,

since by assumption ΩSpin
4 (X) is torsion free, this maps to the non-trivial torsion element

in ΩSpin
2 (X × CP

∞;L ⊕ L). But then the image in ΩSpin
4 (CP∞;L) is again a non-trivial

torsion element, since in ΩSpin
2 (CP∞;L⊕ L) it maps to the non-trivial element. But this

is a contradiction to what we have shown above that ΩSpin
4 (CP∞;L) is torsion free.

Now we have shown half of our statements, namely that ΩSpin
6 (X×CP

∞) is torsion free

as well as ΩSpin
4 (X ×CP

∞;L). We prove the other cases by a similar argument using this
time the exact Gysin sequences:

ΩSpin
5 (X × CP

∞;L⊕2) → ΩSpin
6 (X) → ΩSpin

6 (X × CP
∞;L) → ΩSpin

4 (X × CP
∞;L⊕2)

and

ΩSpin
3 (X × CP

∞;L⊕3) → ΩSpin
4 (X) → ΩSpin

4 (X × CP
∞;L⊕2) → ΩSpin

2 (X × CP
∞;L⊕3).

This case is easier since ΩSpin
2 (X×CP

∞;L⊕3) is torsion free, the torsion in the E2 term
is killed by the d2-differential.

Finally we show that ΩSpin
4 (X × CP

∞) is torsion free using the exact sequence:

ΩSpin
3 (X × CP

∞;L) → ΩSpin
4 (X) → ΩSpin

4 (X × CP
∞) → ΩSpin

2 (X × CP
∞;L).

By the same argument as above the group ΩSpin
2 (X ×CP

∞;L) is torsion free finishing the
argument.

Now we show that h5(pt) = 0. On the line corresponding to h5(pt) the only non-trivial
entry in the E2-term is H4(K;Z/2). If I(N) is even, the differentials are even given by the
dual of Sq2. If I(N) is odd, where we had to use twisted Spin-structures, the differentials
are given by the dual of Sq2 plus x 7→ Sq2x+w2 ∪ x, where w2 is the reduction of c mod
2. It is an easy exercise to show that the E3-term is zero in both cases. �
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With this information we show that the bordism classes of N and M × F , equipped
with the normal 2-smoothings constructed in Section 2, agree when identified via the
maps α and φ. By the exact sequence (3.2) and Lemma 3.4, this amounts to showing
(i) the bordism classes in h6(pt) agree, and (ii) that the classes in h4(pt) agree, which we
obtain as transversal preimages of a regular value of the map to F given by composing
our normal 2-smoothings with the projection to F .

By Lemma 3.4, the first invariant is given by two invariants, the image of the funda-
mental class in H6(K(H, 2)) and the image of Dp1(N) in H2(K(H, 2)). The image of the
fundamental class in H6(K(H, 2)) is (by the cohomological structure of K(H, 2)) equiva-
lent to the triple product g∗(x)∪g∗(y)∪g∗(z) for classes x, y, z in H2(K(H, 2)). But these
products vanish for M ×F with g = gM×F , and for N with g = gN , since φ is an isometry
of the cohomology rings and (gN)

∗ = φ ◦ (gM×F )
∗. The image of Dp1(N) in H2(K(H, 2))

is determined by the products g∗(x)∪ p1 for all x ∈ H2(K(H, 2)) and vanishes for M ×F
and for N by Condition 4.

Thus we are left with the invariant in h4(pt). Let Q ⊂ N be the transversal preimage of
a regular value of the map u : N → F . By Lemma 3.4, bordism classes in h4(pt) are deter-
mined by the signature of the underlying 4-manifold, and the image of the fundamental
class [Q] in H4(K(H, 2). For a class β ∈ H4(N) we have the adjunction formula

〈u∗([F ]) ∪ β, [N ]〉 = 〈i∗(β), [Q]〉,

where i : Q → N is the inclusion. Applying this to β = p1(N) we obtain:

〈p1(N) ∪ u∗([F ]), [N ]〉 = 〈p1(Q), [Q]〉,

since the normal bundle of Q is trivial. The signature theorem for Q and Condition 4 (iv)
imply that

〈p1(N) ∪ u∗([F ]), [N ]〉 = 3 sign(Q) = 3 sign(M),

proving the equality for the first invariant in h4(pt).
For the second invariant we note that the image of the fundamental class of Q in

H4(K(H, 2) is determined by the numbers

〈i∗g∗(x) ∪ i∗g∗(y), [Q]〉.

We apply again the adjunction formula for β = g∗(x) ∪ g∗(y), and get

〈g∗(x) ∪ g∗(y) ∪ u∗([F ]), [N ]〉 = 〈i∗g∗(x) ∪ i∗g∗(y), [Q]〉,

where g = gN . A similar formula holds for M ×F and g = gM×F . The left side agrees for
N and M × F , since φ is an isomorphism of the cohomology ring. Thus also the second
invariant for the element in h4(pt) agrees. Summarizing, we have shown:

Proposition 3.5. If the conditions of Theorem A are fulfilled, then the bordism classes

[N, cN ] = [M × F, cM×F ] ∈ Ω6(B, ξ),

for the normal 2-smoothings on N and M × F constructed in Lemma 2.2.
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4. The proof of Theorem A

We consider N and M × F equipped with normal 2-smoothings compatible with α
and φ. By Proposition 3.5, the corresponding bordism classes are equal. Choose a B-
bordism W between these two normal 2-smoothings. Since the Euler characteristics of N
and M × F agree, there is an obstruction θ(W ) ∈ l7(π1(F )) which is elementary if and
only if W is B-bordant to an s-cobordism. We first note that the Whitehead group for
π1(F ) vanishes by a result of Farrell-Hsiang [3], so that we can ignore decorations in the
l-monoids and L-groups. Next we note that the intersection form on π3(M ×F ) ∼= π3(M)
with values in the group ring vanishes identically (since HomZG(Z,ZG) = 0 for G an
infinite group). By [8, Proposition 8, p. 739], this implies that θ(W ) sits in the ordinary
L-group L7(π1(F )). But by Cappell [1, Theorem 18], there is a closed 7-manifold with B-
structure so that after taking the disjoint union of W with this manifold the obstruction
in L7(π1(F )) vanishes. This completes the proof.
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