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ON THE K-THEORY OF SUBGROUPS OF VIRTUALLY

CONNECTED LIE GROUPS

DANIEL KASPROWSKI

Abstract. We prove that for every finitely generated subgroup G of a virtu-
ally connected Lie group which admits a finite-dimensional model for EG the
assembly map in algebraic K-theory is split injective. We also prove a similar
statement for algebraic L-theory, which in particular implies the generalized
integral Novikov conjecture for such groups.

1. Introduction

For every group G and every ring R there is a functor KR : OrG → Spectra from
the orbit category of G to the category of spectra sending G/H to (a spectrum
weakly equivalent to) the K-theory spectrum K(R[H ]) for every subgroup H ≤
G. By K-theory we will always mean non-connective K-theory as constructed
by Pedersen and Weibel [PW85]. For any such functor F : OrG → Spectra a
G-homology theory F can be constructed via

F(X) := MapG( , X+) ∧OrG F,

see Davis and Lück [DL98]. We will denote its homotopy groups by HG
n ( , F ) :=

πnF(X). Let F be a family of subgroups of G. The K-theoretic assembly map for
F is the map

αF : HG
n (EFG;KR) → HG

n (pt;KR) ∼= Kn(R[G])

induced by the map EFG → pt. Here EFG denote the classifying space for the
family F , see Lück [Lüc00]. The assembly map is a helpful tool to related the
K-theory of the group ring R[G] to the K-theory of the group rings over H ∈ F .
The assembly map can more generally be defined for any small additive G-category
instead of R, see Bartels and Reich [BR07]. In this article all additive categories
will be small.
Analogously, for every additive G-category A with involution and every family of
subgroups F we can define the L-theoretic assembly map

αF : HG
n (EFG;L

〈−∞〉
A ) → HG

n (pt;L
〈−∞〉
A ).

The Farrell–Jones conjecture states that the assembly maps αVcyc for the family
of virtually cyclic subgroups in K- and L-theory are isomorphisms for all additive
G-categories A (with involution) and all n ∈ Z. It was first formulated in [FJ93].
The Farrell–Jones conjecture has been proved for a large class of groups, for exam-
ple hyperbolic and CAT(0)-groups, see Bartels and Lück [BL12a, BL12b], Bartels,
Lück and Reich [BLR08a, BLR08b] and Wegner [Weg12], virtually solvable groups,
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see Wegner [Weg15], and lattices in virtually connected Lie groups, see Bartels, Far-
rell and Lück [BFL14] and Kammeyer, Lück and Rüping [KLR]. The Farrell–Jones
conjecture implies that the assembly maps αFin for the family of finite subgroups
are split injective, see Bartels [Bar03, Theorem 1.3]. The rational split injectivity
of the map αFin in L-theory implies the Novikov conjecture. The integral split
injectivity of αFin is called the generalized integral Novikov conjecture, for more
details see Section 6. Kasparov proved the Novikov conjecture for all discrete sub-
groups of virtually connected Lie groups in [Kas88, Theorem 6.9]. More generally,
the Novikov conjecture is true for groups which uniformly embed into a Hilbert
space, see Skandalis, Tu and Yu [STY02]. This includes all amenable groups and
all groups with finite asymptotic dimension. By Carlsson and Goldfarb [CG04,
Section 3] and Ji [Ji04, Corollary 3.4] discrete subgroups of virtually connected Lie
groups have finite asymptotic dimension giving a second prove that the Novikov
conjecture holds for these groups. Here we will in particular show that discrete
subgroups of virtually connected Lie groups also satisfy the generalized integral
Novikov conjecture.

In [Kas15] the author proved the split injectivity of the assembly map for finitely
generated subgroups G of GLn(C) which have an upper bound on the Hirsch length
of the unipotent subgroups. For a definition of the Hirsch length see Section 3. The
bound on the Hirsch length exists if and only if G has finite virtual cohomological
dimension by Alperin and Shalen [AS81]. Since G is virtually torsion-free, this is
the case if and only if there is a finite-dimensional model for EG where we consider
G with the discrete topology, see Lück [Lüc00, Theorem 3.1]. In this article we
want to extend this theorem to subgroups of all virtually connected Lie groups.
Note that in the theorem we again consider G with the discrete topology.

Theorem 1.1. Let G be a finitely generated subgroup of a virtually connected Lie
group and assume there exists a finite-dimensional model for EG. Then the K-
theoretic assembly map

HG
n (EG;KA) → Kn(A[G])

is split injective for every additive G-category A.

A similar version holds for L-theory as well, which in particular implies the
generalized integral Novikov conjecture for these groups, see Section 6.

If G is a discrete subgroup of a virtually connected Lie group H and K the
maximal compact subgroup of H , then H/K is a finite-dimensional model for EG,
see Lück [Lüc05, Theorem 4.4]. In particular, we get the following corollary.

Corollary 1.2. Let G be a finitely generated discrete subgroup of a virtually con-
nected Lie group. Then the K-theoretic assembly map

HG
n (EG;KA) → Kn(A[G])

is split injective for every additive G-category A.

The condition on the existence of a finite-dimensional model for EG can be
reformulated in the following way.

Proposition 1.3. A finitely generated subgroup G of a virtually connected Lie
group admits a finite-dimensional model for EG if and only if there exists N ∈ N
such that every finitely generated abelian subgroup of G has rank at most N .
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The rank of an abelian group A is defined as rk(A) := dim
Q

(A⊗
Z

Q) or equiv-
alently as the cardinality of maximal linearly independent subset of A. The state-
ment that every finitely generated abelian subgroup of G has rank at most N is
equivalent to the statement that every abelian subgroup of G has rank at most N .
For a proof of the proposition see Section 3.

In Section 7 we prove that Theorem 1.1 and its L-theoretic analog also hold
without the assumption that G is finitely generated.

Acknowledgments: I would like to thank Johannes Ebert for helpful discus-
sions, and Henrik Rüping and the referee for useful comments and suggestions. This
work was partially supported by the SFB 878 “Groups, Geometry and Actions” and
the Max Planck Society.

2. Lie groups

A Lie group is virtually connected if it has only finitely many connected com-
ponents. For the rest of this section let H be a virtually connected Lie group with
Lie algebra h (which we identify with TeH). The Lie group H acts on itself by
conjugation

c : H → Aut(H), g 7→ (h 7→ ghg−1).

Taking the derivative yields a map

Ad : H → Aut(h), g 7→ De(c(g)).

Since Aut(h) is a Lie subgroup of GL(h), Ad gives a representation of H . The
kernel of the representation Ad is the centralizer CH(H0) of the unit component
H0 of H .

By definition of the centralizer the group CH(H0)∩H0 is abelian and since H is
virtually connected the centralizer CH(H0) is therefore virtually abelian. For every
subgroup G of H we obtain a short exact sequence

1 → CH(H0) ∩G→ G→ Ad(G) → 1.

with virtually abelian kernel and linear quotient. We will use this sequence to
extend the results of [Kas15] to general virtually connected Lie groups. Before we
can do so, we first need to prove Proposition 1.3 which will be done in the next
chapter.

3. A bound on the rank of abelian subgroups

In the proof of Proposition 1.3 a bound on the Hirsch-length of the finitely
generated nilpotent subgroups is needed. First we review some facts about nilpotent
groups to see that this is the same as a bound on the rank of the finitely generated
abelian subgroups.

Let G be a group. Define G1 := G and recursively Gn+1 := [Gn, G]. The series
G = G1 ≥ G2 ≥ ... is called the lower central series of G. A group G is nilpotent if
there exists c ∈ N with Gc+1 = 1. The smallest such c is called the nilpotency class
of G, we denote it by c(G). The upper central series 1 = Z0(G) ≤ Z1(G) ≤ . . . of
G is recursively defined by

Zi+1(G) := {g ∈ G | ∀h ∈ G : [g, h] ∈ Zi(G)}.
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If G is nilpotent then Zc(G)(G) = G and the length of the upper and lower central
series agree. For any normal subgroup H ≤ G the quotient G/H is again nilpotent.

The Hirsch-length h(G) of G is

h(G) := rk(G1/G2) + ...+ rk(Gc−1/Gc) + rk(Gc),

where rk(H) denotes the rank of an abelian groupH , i.e. rk(H) := dim
Q

(H⊗
Z

Q).
Let n(G) denote

max{rk(A) | AEG an abelian normal subgroup}.

Let H be a group and G be a group acting on H . G acts nilpotently if there is
a series

1 = H0 ≤ H1 ≤ .. ≤ Hn = H

of G-invariant normal subgroups of H such that the induced action on Hi/Hi−1 is
trivial. In the special case where H = G and the action is by conjugation G acts
nilpotently on itself if and only if G is nilpotent.

Proposition 3.1. Let G be finitely generated nilpotent. Then h(G) ≤ n(G)(n(G)+1)
2 .

The proposition is proved in Möhres [Möh87, Theorem 2] for torsion-free nilpo-
tent groups instead of finitely generated nilpotent groups. For convenience of the
reader we give a proof. For this we need the following well-known statements about
nilpotent groups.

Lemma 3.2. A subgroup of a finitely generated nilpotent group is finitely generated.

Proof. The statement follows by induction on the nilpotency class. �

Lemma 3.3 ([War76, Theorem 1.3]). Let G be nilpotent and N EG a non-trivial
normal subgroup. Then N ∩Z(G) is non-trivial, where Z(G) denotes the center of
G.

Lemma 3.4. Let G be nilpotent and A a maximal abelian normal subgroup. Then
CG(A) = A, where CG(A) is the centralizer of A in G.

Proof. Since AEG is normal, so is CG(A). Suppose A 6= CG(A). Then CG(A)/A
is a non-trivial normal subgroup of G/A and H := CG(A)/A ∩ Z(G/A) is non-
trivial by the previous lemma. Let C = 〈c〉 be a cyclic subgroup of H . Then
C E Z(G/A)EG/A and since C lies in the center it is a normal subgroup of G/A.
Let c′ ∈ CG(A) be a pre-image of c, then the pre-image of C is 〈A, c′〉. This is
abelian and normal in G, hence A was not maximal with this property. �

Lemma 3.5. Let Tr(n,Z) ≤ GLn(Z) denote the subgroup of unitriangular ma-
trices, i.e. every element of Tr(n,Z) has 1’s on the diagonal and 0’s below the
diagonal. If G ≤ GLn(Z) acts nilpotently on Zn, then it is unipotent and conjugate
to a subgroup of Tr(n,Z).

Proof. Since Tr(n,Z) is unipotent, it suffices to prove that G is conjugate to a
subgroup of it. Let

0 = H0 EH1 EH2 E . . .EHk = Zn

be a sequence of G-invariant subspaces and let G act trivially on Hi/Hi−1 for all
i = 1, . . . , k. The lemma is obvious for k = 1 and we will prove it by induction
on k. Let H ′ := {z ∈ Zn | ∃l ∈ Z : lz ∈ H1}. Let z ∈ H ′, l ∈ Z with lz ∈ H1.
For every g ∈ G we have lg(z) = g(lz) = lz and thus also g(z) = z, i.e. G acts
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trivially on H ′. By construction Zn/H ′ is torsion-free and we obtain a splitting
Z

n ∼= H ′ ⊕ Zn/H ′. The sequence

0 = H ′/H ′ EH2 +H ′/H ′ E . . .EHk +H ′/H ′ = Zn/H ′

consists ofG-invariant subspaces andG acts trivially on the quotients. By induction
there is a basis of Zn/H such that G ≤ GL(Zn/H) is unitriangular. Using this basis
together with a basis of H ′ yields a basis of Zn for which G lies in Tr(n,Z). �

Proof of Proposition 3.1. Let n := n(G) and A be a maximal abelian normal sub-
group. Then A again is finitely generated by Lemma 3.2 and A ∼= Zn ⊕ F with F
a finite group. G acts by conjugation on A and since CG(A) = A, the induced map
G/A → aut(A) is injective. Since F is finite the projection to aut(Zn) = GLn(Z)
has finite kernel. The group G is nilpotent and thus it acts nilpotently on Zn

(by conjugation). This implies that the image G/A in GLn(Z) is conjugate to a

subgroup of the unitriangular matrices Tr(n,Z). Since h(Tr(n,Z)) = n(n−1)
2 we

have

h(G) ≤ h(A) + h(ker(aut(A) → GLn(Z))) + h(Tr(n,Z))

= n+ 0 +
n(n− 1)

2
=
n(n+ 1)

2
.

�

A direct corollary of Proposition 3.1 is the following.

Corollary 3.6. Let G be a group. Then G has a bound on the Hirsch-length of its
finitely generated nilpotent subgroups if and only if it has a bound on the rank of its
finitely generated abelian subgroups.

Before we can prove Proposition 1.3 we need the following lemma.

Lemma 3.7. Let A be a (countable) abelian group with finite rank, then there is a
finite-dimensional model for EA.

Proof. Let rkA = n. Then there exists a subgroup B ≤ A isomorphic to Zn. The
quotient Q := A/B has rank 0 and thus is a torsion group. For n ∈ N let Fn ≤ Q
be finite subgroups with Fn ≤ Fn+1 and Q =

⋃
n∈N Fn. Define a Q-CW complex X

by taking
∐

n∈NQ/Fn as the zero skeleton and for every n ∈ N adding a 1-cell with
stabilizer Fn between the 0-cells Q/Fn and Q/Fn+1. This defines a 1-dimensional
model X for EQ. Let p : A → Q be the quotient map. For every finite subgroup
F ≤ Q the preimage p−1(F ) is finitely generated abelian of rank n and thus has
R

n as an n-dimensional model for Ep−1(Q). Therefore, the proof of Lück [Lüc00,
Theorem 3.1] shows that A has a model for EA of dimension n+ 1. �

Let G be a subgroup of GLn(C) and assume there exists N ∈ N such that the
rank of every finitely generated unipotent subgroup of G is at most N . Then by
Alperin and Shalen [AS81] the virtual cohomological dimension of G is bounded
and therefore admits a finite-dimensional model for EG by [Lüc00, Theorem 6.4].
Using this we now can prove Proposition 1.3.

Proof of Proposition 1.3. Let G be a subgroup of a virtually connected Lie group
H such that there exists a finite dimensional model X for EG. Then in particular
X is a model for EA for every abelian subgroup A ≤ G and rkA ≤ dimX .
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For the other direction let G be a finitely generated subgroup of a virtually
connected Lie group H such that there exists a bound on the rank of the finitely
generated abelian subgroups of G. Then by Corollary 3.6 G has also a bound on
the Hirsch-length of its finitely generated nilpotent subgroups. Let G0 := G ∩H0

and consider the extension

1 → CH(H0) ∩G0 → G0 → Ad(G0) → 1

from Section 2. Since CH(H0) ∩ G0 is contained in the center of G0 also Ad(G0)
has a bound on the the Hirsch-length of its finitely generated nilpotent subgroups
and thus on the finitely generated unipotent subgroups. By the above it admits
a finite dimensional model for EAd(G0). And since also K := CH(H0) ∩ G0 has
finite rank, there is a finite dimensional model for EK by Lemma 3.7. Consider the
extensions

1 → K → G0 → Ad(G0) → 1

and

1 → G0 → G→ F → 1

with F finite. The group G0 is finitely generated since finite index subgroups of
finitely generated groups are again finitely generated. Thus Ad(G0) is virtually
torsion-free by Selberg’s Lemma and we can use [Lüc00, Theorem 3.1] to obtain a
finite dimensional model for EG from these sequences. �

Remark 3.8. Using the results of the author from [Kas15] the short exact sequence

1 → CH(H0) ∩G→ G→ Ad(G) → 1

implies that G has fqFDC, which also is defined in [Kas15]. In particular, if G has a
bound on the order of the finite subgroups, then the main result of [Kas15] directly
implies the split injectivity of the K-theoretic assembly map and a similar result in
L-theory. Since we do not know if this always holds, we use a different approach
using inheritance properties, see Sections 4 and 5.

4. Inheritance properties

To use the short exact sequence from Section 2 we want to show the following
inheritance property.

Proposition 4.1. Assume there is a short exact sequence of groups

1 → J → G
φ
−→ Q→ 1

such that for every virtually cyclic subgroup V ≤ Q the pre-image φ−1(V ) satisfies
the Farrell–Jones conjecture. Furthermore, assume that the assembly map

HG
n (EQ;KB) → Kn(B[Q])

is split injective for every n ∈ Z and every additive Q-category B. Then the K-
theoretic assembly map

HG
n (EG;KA) → Kn(A[G])

is split injective for every n ∈ Z and every additive G-category A.
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Proof. Let A be an additive G-category. That φ−1(V ) satisfies the Farrell–Jones
conjecture for every virtually cyclic subgroup V ≤ Q implies that the natural
map HG

n (EVcycG;KA) → HG
n (Eφ∗VcycG;KA) is an isomorphism by Bartels and

Lück [BL06, Lemma 2.2], where φ∗Vcyc := {K ≤ G | φ(K) ∈ Vcyc}. Here we
used that the projection EVcycG × Eφ∗VcycG → Eφ∗VcycG is a model for the nat-
ural map EVcycG → Eφ∗VcycG. Furthermore, the natural map HG

n (EG;KA) →
HG

n (EVcycG;KA) is split injective by Bartels [Bar03]. Now the commutative dia-
gram

HG
n (EG;KA) //

� _

��

HG
n (Eφ∗FinG;KA)

��

HG
n (EVcycG;KA)

∼=
// HG

n (Eφ∗VcycG;KA)

implies that the map HG
n (EG;KA) → HG

n (Eφ∗FinG;KA) is split injective, where
φ∗Fin := {K ≤ G | φ(K) ∈ Fin}. By Bartels and Reich [BR07, Corollary 4.3]
the split injectivity for Q implies that the assembly map HG

n (Eφ∗FinG;KA) →
Kn(A[G]) is split injective. Combining these results yields the proposition. �

To apply the above proposition for the short exact sequence from the previous
section we need the following.

Lemma 4.2. The class of virtually solvable groups is closed under group extensions.

The idea of the proof is taken from math.stackexchange.com, see [dC].

Proof. Let

1 → N → G
p
−→ Q→ 1

be a short exact sequence and let N,Q be virtually solvable. Let Q′ ≤ Q be a
solvable subgroup with [Q : Q′] < ∞, then [G : p−1(Q′)] < ∞. Thus we can
assume that Q is solvable. We will first consider the case that N is finite. Since N
is normal in G, G acts on N by conjugation, which induces a map c : G→ Aut(N).
The centralizer CG(N) of N in the G is the kernel of c. Since the class of solvable
groups is closed under extension and CG(N) ∩N is abelian the exact sequence

1 → CG(N) ∩N → CG(N) → p(CG(N)) → 1

shows that CG(N) is solvable. The group N is finite, thus CG(N) has finite index
in G.

Now let N be any virtually solvable group. And let S be the set of all normal,
solvable, finite-index subgroups of N ordered by inclusion. This is not empty and
we can choose K to be a maximal element of S. For every g ∈ G also gKg−1K is
a solvable, normal, finite-index subgroup of N . Since K was maximal it therefore
has to be normal in G. From the short exact sequence

1 → N/K → G/K → Q→ 1

it follows from the first case that G/K is virtually solvable. Since K is solvable the
sequence

1 → K → G→ G/K → 1

implies that G is virtually solvable. �
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5. Proof of Theorem 1.1

For this section let H be a virtually connected Lie group and G ≤ H a finitely
generated subgroup such that there exists a finite dimensional model for EG. The
proof of Theorem 1.1 follows easily from the statements of the previous section.

Proof of Theorem 1.1. Let Γ := Ad(G) be the image of G under Ad : H → GL(h).
Since CH(H0)∩G∩H0 is contained in the center ofG, the pre-image of any unipotent
subgroup U of Ad(G∩H0) is a nilpotent subgroup of G∩H0. By Corollary 3.6 and
Proposition 1.3 there is a bound on the Hirsch-length of the nilpotent subgroups of
G∩H0 and in particular there is a bound on the Hirsch-length of U . Since G∩H0

has finite index in G this implies that there also is a bound on the Hirsch-length of
the unipotent subgroups of Γ. Now we can apply

[Kas15, Corollary 3]. Let F be a field of characteristic zero, Γ a finitely generated
subgroup of GLn(F ) with a global upper bound on the Hirsch rank of its unipotent
subgroups. Then the K-theoretic assembly map

HΓ
∗ (EG;KA) → HΓ

∗ (pt;KA) ∼= K∗(A[Γ])

is split injective for every additive Γ-category A.

Note that [Kas15, Corollary 3] if stated only for rings instead of additive Γ-
categories, but by [Kas15, Theorem 8.1] it is true for any additive Γ-category.

Furthermore, by Wegner [Weg15] every virtually solvable group satisfies the
Farrell–Jones conjecture. Using this and Lemma 4.2 we see that the sequence

1 → CH(H0) ∩G→ G→ Ad(G) → 1

satisfies the conditions of Proposition 4.1. Therefore, the assembly map

HG
∗ (EG;KA) → K∗(A[G])

is split injective for every additive G-category A. �

6. L-theory

Most of the statements from the previous sections also hold for L-theory. For the
rest of the section let G be a finitely generated subgroup of a virtually-connected
Lie group H with a finite dimensional model for EG and let Q be the image of G
under Ad : H → GL(h). Furthermore, let φ denote Ad|G and let A be an additive
G-category with involution. As above we obtain the commutative diagram

HG
n (EG;L

〈−∞〉
A ) //

��

HG
n (Eφ∗FinG;L

〈−∞〉
A )

��

HG
n (EVcycG;L

〈−∞〉
A )

∼=
// HG

n (Eφ∗VcycG;L
〈−∞〉
A )

and the lower horizontal map is still an isomorphism by Bartels and Lück [BL06,
Lemma 2.2] and Wegner [Weg15]. But for the vertical map on the left to be injective
we need that for every virtually cyclic subgroup V ⊆ G there is an i0 ∈ N such
that for every i ≥ i0 we have K−i(A[V ]) = 0, see Bartels [Bar03]. Then it remains
to show that

HG
n (Eφ∗FinG;L

〈−∞〉
A ) → L〈−∞〉

n (A[G])
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is split injective. By Bartels and Reich [BR07, Proposition 4.2 and Corollary 4.3]
this follows if

HQ
n (EG;L

〈−∞〉
indφ A) → L〈−∞〉

n ((indφ A)[Q])

is split injective. See [BR07] for the definition of indφ A. To apply [Kas15, Theorem
9.1] as above, we need the further assumption that for every finite subgroup H ≤ Q
there is an i0 ∈ N such that for every i ≥ i0 we have

0 = K−i((indφ A)[H ]) ∼= K−i(A[φ−1(H)]).

Since φ−1(H) is virtually abelian we obtain the following version of the main the-
orem for L-theory.

Theorem 6.1. Let G be a finitely generated subgroup of a virtually connected Lie
group and assume there exists an N ∈ N such that every finitely generated abelian
subgroup of G has at most rank N . Let A be an additive G-category with involution.
Assume further that for every virtually abelian subgroup H of G there is an i0 ∈ N
such that for every i ≥ i0 we have K−i(A[H ]) = 0, then the L-theoretic assembly
map

HG
n (EG;L

〈−∞〉
A ) → L〈−∞〉

n (A([G])

is split injective.

For torsion-free groupsG the integral Novikov conjecture states that the assembly
map

HG
n (EG;L

〈−∞〉
Z

) → L〈−∞〉
n (Z[G])

is injective. It is known that the integral Novikov conjecture is false for groups
containing torsion. Following Ji [Ji07] we say that G satisfies the generalized integral
Novikov conjecture if the assembly maps

HG
n (EG;L

〈−∞〉
Z

) → L〈−∞〉
n (Z[G]), HG

n (EG;K
Z

) → Kn(Z[G])

are injective. By Lück and Reich [LR05, Propostion 2.20] the relative rational
assembly map

HG
n (EG;L

〈−∞〉
Z

)⊗
Z

Q→ HG
n (EG;L

〈−∞〉
Z

)⊗
Z

Q

is injective. Observe that, since the Z/2-Tate cohomology groups vanish rationally,
there is no difference between the various decorations in L-theory because of the
Rothenberg sequence. Therefore, by [LR05, Proposition 1.53] the injectivity of the
rational assembly map

HG
n (EG;L

〈−∞〉
Z

)⊗
Z

Q→ L〈−∞〉
n (Z[G]) ⊗

Z

Q

implies the Novikov conjecture about the homotopy invariance of higher signatures.
In particular, the generalized integral Novikov conjecture implies the (classical)
Novikov conjecture.

We will show that K−n(Z[G]) = 0 for n > 1 and any virtually abelian group A.
Therefore, Theorem 6.1 implies the generalized integral Novikov conjecture for the
groups G appearing in the theorem, i.e. we get the following corollary.

Corollary 6.2. Let G be a finitely generated subgroup of a virtually connected Lie
group and assume there exists an N ∈ N such that every finitely generated abelian
subgroup of G has at most rank N . Then G satisfies the generalized integral Novikov
conjecture.
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By Farrell and Jones [FJ95, Theorem 2.1] for every virtually cyclic group V and
n > 1

K−n(Z[V ]) = 0.

Let G be a group and let X be a finite G-CW-complex with virtually cyclic stabi-
lizers. By induction on the dimension of X we prove that

HG
−n(X ;K

Z

) = 0

for every n > 1. For dimX = 0 we have

HG
−n(X ;K

Z

) ∼=
⊕

x∈X

K−n(Z[Gx]) = 0,

where the stabilizers Gx are virtually cyclic by assumption. Assume the above
holds for m and let dimX = m+ 1. Then we have the long exact sequence

0 = HG
−n(X

(m);K
Z

) → HG
−n(X ;K

Z

) → HG
−n(X,X

(m);K
Z

)

and
HG

−n(X,X
(m);K

Z

) ∼=
⊕

c∈Cm

K−n−m−1(Z[Gc]) = 0,

where Cm denotes the set of m-cells of X and Gc the (virtually-cyclic) stabilizer
of the cell c. Since every virtually abelian group A satisfies the Farrell–Jones
conjecture we have

K−n(Z[A]) ∼= HA
−n(X ;K

Z

) ∼= colim
K

HA
−n(AK;K

Z

) = 0,

where X is a A-CW-complex model for EVcycA and the colimit is taken over all
finite subcomplexes K ⊆ X .

7. Inheritance under colimits

In this section we want to show that Theorem 1.1 and Theorem 6.1 hold without
the assumption that G is finitely generated.

By Bartels, Echterhoff and Lück [BEL08, Lemma 2.4, Lemma 6.2] for every
system Gα of finitely generated subgroups of G such that colimαGα

∼= G the
assembly map

HG
n (EG;KA) → Kn(A[G])

is the colimit of the assembly maps

HGα
n (EGα;KA) → Kn(A[Gα]),

for any additive G-category A. The same statement holds in L-theory for any addi-
tive G-category with involution. Note that the statement in [BEL08] is formulated
for rings with G-action instead of additive G-categories, but the statement for G-
categories holds in the same way. Furthermore, a finite-dimensional model for EG
gives a finite-dimensional model for EGα by restricting the action to Gα. So taking
the colimit over all finitely generated subgroups proves that injectivity holds with-
out the assumption that G is finitely generated. For the construction of a splitting
we need to see that the splittings for the finitely generated subgroups are natural
with respect to the structure maps of the colimit. In the proof of Theorem 1.1 and
Theorem 6.1 the assumption that G is finitely generated is only needed to apply
[Kas15, Corollary 3] respectively its L-theoretic analog. So it suffices to see that
the splittings constructed in [Kas15] are natural with respect to the structure maps
of the colimit.
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We will use the definitions of controlled categories and bounded mapping spaces
from [Kas15, Section 5 and 7]. In the following let X denote a finite dimensional
simplicial model for EG. By Bartels, Farrell, Jones and Reich [BFJR04, Section 6]
the assembly map

HG
n (EG;KA) → Kn(A[G])

can be identified with the map

colim
K⊆X fin.

πn+1(KAG(GK)∞)G → colim
K⊆X fin.

πn(KAG(GK)0)
G.

Now consider the diagram

colim
K⊆X fin.

πn+1(KAG(GK)∞)G

f

��

// colim
K⊆X fin.

πn(KAG(GK)0)
G

j

��

colim
K⊆X fin.

πn+1 MapbdG (X,KAG(GK)∞)
h

// colim
K⊆X fin.

πn MapbdG (X,KAG(GK)0).

By [Kas15, Remark 7.7] the map f is an isomorphism and the map h is an isomor-
phism in the situation of [Kas15, Corollary 3].

Let Γ → Λ be an injective group homomorphism. For every Λ-set J and every
subcomplex K ⊆ X we can define a map

(

bd∏

J

AΓ(ΓK)∞)Γ → (

bd∏

J

AΛ(ΛK)∞)Λ

as follows. A controlled modul (Mj) ∈ (
∏bd

J AΓ(ΓK))Γ is send to (M ′
j)j with

(M ′
j)h′,x,t :=

⊕
[h]∈Λ/Γ(Mh−1j)h−1h′,h−1x,t and analogously on morphisms. This

map is well defined since (Mj) is Γ-invariant. The above maps induce a map

MapbdΓ (X,KAΓ(ΓK)) → MapbdΛ (X,KAΛ(ΛK))

for every finite subcomplex K ⊆ X and in the special case where J = {pt} we
obtain a map

(KAΓ(ΓK)∞)Γ → (KAΛ(ΛK)∞)Λ.

The same maps can be constructed with AΓ(ΓK)∞ and AΛ(ΛK)∞ replaced by
AΓ(ΓK)0 and AΛ(ΛK)0 respectively. So they induce maps from the above diagram
for Γ to the same diagram for Λ. We will omit the technical proofs that the maps of
the diagram are natural with respect to these maps and that under the identification
with the assembly map they correspond to the structure maps of the colimit from
[BFJR04]. This shows that the splitting f−1 ◦h−1 ◦ j is natural with respect to the
structure maps of the colimit.

Now let us consider the L-theoretic version. For [Kas15, Remark 7.7] it was

used that the category (
∏

j∈J KAG(GK)∞)G ≃
∏

[j]∈G\J KA
Gj

G (GK)∞ is weakly

equivalent to (K
∏

j∈J AG(GK)∞)G ≃ K
∏

[j]∈G\J A
Gj

G (GK)∞ for every G-set J

with finite stabilizers and every finite subcomplexK ⊆ X , where Gj is the stabilizer
of j ∈ J . Let H ≤ G be finite, then

Kn(A
Gj

G (G/H)∞) ∼=
∏

Gj\G/H

Kn(A
Gj

G (Gj/(Gj∩H))∞) ∼=
∏

Gj\G/H

Kn−1(A[Gj∩H ]).

If for each finite subgroup H ≤ G there exists N ∈ N such that for each n ≥ N
the groups K−nA[H ] vanish, then by induction on the cells this implies that for
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every finite subcomplex K ⊆ X there exists N ∈ N such that for n ≥ N the groups

K−n(A
Gj

G (GK)∞) vanish. Therefore, under this assumption L-theory commutes
with the above product and we get that the map

φ : MapbdG (X,LAG(GK)∞) → MapG(X,LAG(GK)∞)

is an isomorphism and under the above assumption also

ψ : (LAG(GK)∞)G → MapG(X,LAG(GK)∞)

is an isomorphism, see [Kas15, Section 9]. Since ψ factors over φ the map

(LAG(GK)∞)G → MapbdG (X,LAG(GK)∞)

is an isomorphism as well. Therefore, we obtain the naturality of the splitting as
in the case for K-theory.
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