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Abstract

In this paper we show that, in the holomorphic automorphic case, the Borcherds lifts
on the orthogonal group O(2, n + 2) are characterized by certain symmetries and describe
the inverse of the Borcherds lifting in terms of Fourier-Jacobi expansion. We also give a
characterization of the modular polynomials by certain symmetries.
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1 Introduction

1.1 The aim of the paper

Let L be an even lattice of signature (2, n+ 2) and V := L⊗Z R. Let Γ denote the discriminant
kernel subgroup of the orthogonal group O(V ) of V (for the definition see (5.3)). Borcherds lifts
[Bo2, Bo4] are automorphic forms on Γ that have infinite product expansions, and whose zeros
and poles are supported on linear combinations of Heegner divisors (special divisors or rational
quadratic divisors). They have found various applications in arithmetic, geometry and the
theory of Lie algebras. For example they appear as denominator functions of certain generalized
Kac-Moody algebras [Bo1, GN1, GN2, Sc1, Sc2], as new infinite product representations of
well-known classical functions [Bo1, Bo2, GN1, GN2, Konts], or as the partition function of
quarter-BPS dyons [DVV, CD, DMZ]. The lift is also used to construct automorphic forms on
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Γ with known vanishing properties to obtain geometric results [Bo3, Bo5, Br1, FS]. We also
refer to applications in algebraic and arithmetic geometry [AF, BBK, Kond]. In the study of the
graded ring of modular forms, it is also an interesting question to identify Borcherds and Saito-
Kurokawa-Oda-Rallis-Schiffmann lifts among the generators (see for example [AI, DK, FS]).

It is a natural and important problem to characterize Borcherds lifts. The first result in this
direction was obtained by Bruinier. In [Br1] he characterizes Borcherds lifts as meromorphic
automorphic forms whose divisors are linear combinations of Heegner divisors with integral
coefficients under the assumption that L splits two hyperbolic planes over Z (for a precise
definition of Heegner divisors, see Section 5.2). A generalization of [Br1] is given in [Br2]. For
other proofs of Bruinier’s characterization in a special case that L is unimodular, we refer to
[BrFr] and [BrFu].

The main aim of the present paper is to give another characterization of Borcherds lifts by
certain symmetries and to describe the inverse of the Borcherds lifting in terms of Fourier-Jacobi
expansions in the holomorphic automorphic case (we also assume that L splits two hyperbolic
planes over Z).

We explain our results more precisely in the O(2, 3)-case (namely the genus two Siegel mod-
ular case). Borcherds lifts are meromorphic continuations of infinite products constructed from
weakly holomorphic Jacobi forms ([Bo2, GN1, GN2]) or weakly holomorphic vector valued mod-
ular forms ([Bo4, Br1] for example). In this paper we take the former approach using Jacobi
forms as input data, since it is more convenient to describe the inverse of the Borcherds lifting.

Let H := {τ ∈ C | Im(τ) > 0} denote the upper half plane, H2 := {Z ∈ M2(C) | tZ =
Z, Im(Z) > 0} the Siegel upper half space of genus two and Γ := Sp2(Z) the Siegel modular

group of genus two acting on H2 in a usual way. We write (τ, z, τ ′) for

(
τ z

z τ ′

)
∈ H2. We put

M(Γ) :=
∪

k,χ Mk(Γ, χ) (respectively A(Γ) :=
∪

k,χ Ak(Γ, χ)), k running over the nonnegative
integers and χ over the characters of Γ of finite order. Here Mk(Γ, χ) (respectively Ak(Γ, χ)) is
the space of holomorphic (respectively meromorphic) automorphic forms on Γ of weight k and
character χ.

Let φ(τ, z) =
∑

l,r∈Z c(l, r)e(lτ + rz) (τ ∈ H, z ∈ C) be a weakly holomorphic Jacobi form
of weight 0 and index 1 (for a precise definition of Jacobi forms see Section 3.2). Here e(x) :=
exp(2πix) for x ∈ C. The Fourier coefficient c(l, r) depends only on 4l − r2, for which we write
c(4l − r2). Suppose that

c(−m) ∈ Z for m ∈ Z>0 with m ≡ 0 or 1 (mod 4). (1.1)

We also suppose that
c(0) ∈ 2Z (1.2)

for simplicity. Then an infinite product

Ψφ(τ, z, τ ′) := e(λτ − ρz + µτ ′)
∏

(l,r,m)>0

(
1 − e(lτ + rz +mτ ′)

)c(4lm−r2)
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is continued to a meromorphic function on H2 and defines an element of Ac(0)/2(Γ, χ) with a
character χ of Γ of finite order. Here (λ, ρ, µ) ∈ Q3 is the Weyl vector determined by φ and
(l, r,m) > 0 means that either “m > 0” or “m = 0, l > 0” or “m = l = 0, r > 0” holds (see
Section 5.2). We call Ψφ the Borcherds lift of φ. It is known that the divisor of Ψφ is a linear
combination of Heegner divisors with integral coefficients (see Section 5.2; see also Section 2 of
[HM1] in O(2, 3)-case). If furthermore the condition

∞∑
j=1

c(−j2m) ≥ 0 for any m ∈ Z>0 with m ≡ 0 or 1 (mod 4) (1.3)

is satisfied, then Ψφ is holomorphic on H2 and hence belongs to M(Γ).
In our previous paper [HM2] we showed that F = Ψφ satisfies the following multiplicative

symmetries; for any N ≥ 2, we have

∏
ad=N

d−1∏
b=0

F

(
aτ + b

d
,

√
N

d
z, τ ′

)
= εN

∏
ad=N

d−1∏
b=0

F

(
τ,

√
N

d
z,
aτ ′ + b

d

)
(1.4)

with εN ∈ C×. Here (a, d) runs over the pairs of positive integers with ad = N . It is a natural
question to ask whether Borcherds lifts are characterized by multiplicative symmetries. In this
paper we give an affirmative answer to this question in the holomorphic automorphic case.

Let F ∈ M(Γ). Then F admits the Fourier-Jacobi expansion

F (τ, z, τ ′) = e(µτ ′)
∞∑

m=0

Fm(τ, z)e(mτ ′), (1.5)

where µ ∈ Q and F0 6= 0. We put fm(τ, z) = Fm(τ, z)/F0(τ, z) for m ≥ 0. In general fm may
have poles on H×C if m ≥ 1. Nevertherless we can prove the following (for details in the general
case see Section 6):

Theorem 1.1. Suppose that F ∈ M(Γ) satisfies multiplicative symmetries. Then fm is
holomorphic on H × C for any m ≥ 1. Furthermore φF := −f1 is a weakly holomorphic Jacobi
form of weight 0 and index 1 satisfying (1.1), (1.2) and (1.3), and F is a constant multiple of
the Borcherds lift ΨφF

.

One of the keys of the proof of Theorem 1.1 is the following recurrence relations: If F satisfies
multiplicative symmetries, the equality

GN (f1(τ, z), . . . , fN (τ, z)) = N−1
∑

ad=N

d−1∑
b=0

f1

(
aτ + b

d
, az

)
(1.6)

holds for any integer N ≥ 2. Here GN (X1, . . . , XN ) (N ≥ 1) are polynomials defined by

1 +X1t+X2t
2 + · · · = exp

( ∞∑
N=1

GN (X1, . . . , XN ) tN
)

(1.7)

(see Section 2).
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Remark 1.2. We need to assume the holomorphy of F in order to show that φF is holomor-
phic on the whole H × C.

Let J̃ be the set of weakly holomorphic Jacobi forms φ of weight 0 and index 1 satisfying
(1.1) and (1.2), and J the set of φ ∈ J̃ satisfying (1.3). Recall that Ψφ ∈ A(Γ) for φ ∈ J̃ and
that Ψφ ∈ M(Γ) if and only if φ ∈ J . Let

M(Γ)BL :=
{
cΨφ | c ∈ C×, φ ∈ J

}
,

M(Γ)HD := {F ∈ M(Γ) \ {0} | the divisor of F is a linear combination of Heegner divisors

with integral coefficients} ,

M(Γ)MS := {F ∈ M(Γ) \ {0} | F satisfies multiplicative symmetries} .

Our main results are summarized as follows:

Theorem 1.3. We have
M(Γ)BL = M(Γ)MS. (1.8)

The Borcherds lifting φ 7→ (Ψφ mod C×) gives rise to a bijection

J → M(Γ)MS/C×

and its inverse is given by F 7→ φF .

Remark 1.4. Let

A(Γ)BL :=
{
cΨφ | c ∈ C×, φ ∈ J̃

}
,

A(Γ)HD := {F ∈ A(Γ) \ {0} | the divisor of F is a linear combination of Heegner divisors

with integral coefficients} ,

A(Γ)MS := {F ∈ A(Γ) \ {0} | F satisfies multiplicative symmetries} .

In [Br1] and [Br2] Bruinier showed that

A(Γ)BL = A(Γ)HD. (1.9)

This immediately implies
M(Γ)BL = M(Γ)HD. (1.10)

In Section 7 we give a simple proof of (1.10) based on our characterization of Borcherds lifts by
symmetries. One of the referees suggested that we can deduce (1.9) from (1.10) in the Sp2(Z)-
case (for details, see Remark 7.2). It is an interesting open question whether the equality
A(Γ)BL = A(Γ)MS holds. Note that the inclusion A(Γ)BL ⊂ A(Γ)MS holds ([HM2]).
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1.2 Organization of the paper

The paper is organized as follows.
Section 2 is of preliminary nature. We recall several properties of polynomials GN (X1, . . . , XN )

defined by (1.7). Note that such polynomials appear in other areas of mathematics (for example
see [KT]).

To prove our main results on a characterization of Borcherds lifts by symmetries, we need to
show similar results for weakly holomorphic Jacobi forms, which are of independent interest. In
Section 3, after recalling the definition of weakly holomorphic Jacobi forms, we define a Jacobi
form φυ attached to an integral vector system υ as an infinite product after [Bo2] and [Bo4].
In Section 4 we state and prove the main results for Jacobi forms; a characterization of weakly
holomorphic Jacobi forms attached to integral vector systems by certain symmetries. To be
more precise, let ϕ be a weakly holomorphic Jacobi form and let

ϕ(τ, z) = e(λτ)
∞∑

N=0

AN (z)e(Nτ) (τ ∈ H, z ∈ Cn)

be its Fourier expansion in τ with λ ∈ Q and A0(z) 6= 0. Put BN (z) := AN (z)/A0(z) for N ≥ 0.
In general BN (z) may have poles on Cn for N ≥ 1. We say that a function φ on H×Cn satisfies
multiplicative symmetries of Jacobi type if, for any integer N ≥ 2, we have

∏
ad=N

d−1∏
b=0

φ

(
aτ + b

d
, az

)
= εN

∏
ad=N

φ(τ, az)d

with a nonzero constant εN . Note that, for any integral vector system υ, φυ satisfies multi-
plicative symmetries of Jacobi type. Suppose that a weakly holomorphic Jacobi form ϕ satisfies
multiplicative symmetries of Jacobi type. Then we show the following results (Theorem 4.2):

(a) For any N ≥ 1, BN (z) is holomorphic.

(b) The Fourier coefficients of −B1(z) define an integral vector system υ.

(c) ϕ is a constant multiple of φυ.

The key of the proofs is the recurrence relations satisfied by BN (z) similar to (1.6):

GN (B1(z), . . . , BN (z)) =
∑
d|N

d−1B1(dz) (N ≥ 1) (1.11)

(Proposition 4.4). We use this recurrence relations twice; in the proofs of (a) and (c). The plan
of the proofs is explained at the end of Section 4.2.

In Sections 5 and 6 we study Borcherds lifts on Γ ⊂ O(2, n + 2) and their characterization
by symmetries, assuming that n > 0 and that L splits two hyperbolic planes over Z. The
case n = 0 is treated separately in Section 8. We need to assume that L splits two hyperbolic
planes over Z, since we do not have suitable symmetries otherwise. Note that, in the Hilbert
modular case, Borcherds lifts satisfy certain multiplicative symmetries ([HM3]). In Section 5
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we recall the definitions of holomorphic automorphic forms on Γ and Borcherds lifts of weakly
holomorphic Jacobi forms of weight 0. In Section 6 we state and prove the main results of the
present paper (Theorem 6.3 and Corollary 6.4); a characterization of holomorphic Borcherds
lifts by multiplicative symmetries and an explicit form of the inverse map of Borcherds lifting
in the holomorphic automorphic case. The proofs are similar to those of the main results for
Jacobi forms and we explain the plan of the proofs at the end of Section 6.2.

Sections 7 and 8 are independent of the previous sections. In Section 7 we show additive
symmetries for Heegner divisors (Proposition 7.1), which might be known to experts. As an
application of this fact and Corollary 6.4, we give a simple proof of the equality M(Γ)BL =
M(Γ)HD. As explained before, this equality also follows from much more general results due to
Bruinier ([Br1]; see also [Br2]), though the proof of [Br1] is different from ours.

In Section 8 we show that the modular polynomials are characterized by certain symmetries
as an application of characterization results in the case of automorphic forms on SL2(Z)×SL2(Z)
(the O(2, 2)-case), in which case we need a separate treatment since the Koecher principle does
not hold.

1.3 Notation

For x ∈ C, we put e(x) := exp(2πix). For a symmetric matrix T of degree m and x, y ∈ Cm, we
put T [x] := txTx and T (x, y) := txTy. We denote the set of nonnegative (respectively positive)
integers by Z≥0 (respectively by Z>0). Until the end of Section 6 we fix a positive definite even
integral symmetric matrix S of size n ≥ 1. Let L0 := Zn, L∗

0 := S−1L0 and identify V0 := L0⊗ZR
with Rn. We put S′ := 2−1S.

2 The polynomials Gm

In this section we recall the definition and properties of certain polynomials used later.
Let X1, X2, . . . be indeterminates. We define polynomials Gm(X1, . . . , Xm) (m ≥ 1) by

1 +
∞∑
l=1

Xlt
l = exp

( ∞∑
m=1

Gm(X1, . . . , Xm)tm
)
. (2.1)

For example we have G1(X1) = X1, G2(X1, X2) = X2 − 2−1X2
1 and G3(X1, X2, X3) = X3 −

X1X2 + 3−1X3
1 . It is easily seen that

Gm(X1, . . . , Xm) = Xm + (a polynomial in X1, . . . , Xm−1) . (2.2)

The following elementary facts will be used later.

Lemma 2.1. (1) We have

Gm

(
1
1!
,

1
2!
, . . . ,

1
m!

)
=

1 if m = 1,

0 if m ≥ 2.
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(2) For m ≥ 1 put

Rm(t;X1, X2, . . .) :=
m−1∏
j=0

(
1 +

∞∑
l=1

Xle(jl/m)tl
)
. (2.3)

We then have

Rm(t;X1, X2, . . .) = 1 +mGm(X1, . . . , Xm)tm +O(t2m).

(3) Let ρ be a positive real number. Assume that a sequence {am}m≥1 of complex numbers
satisfies the following two conditions:

(i) The power series f(z) :=
∑∞

m=1 amz
m is absolutely and uniformly convergent in

Dρ := {z ∈ C | |z| ≤ ρ}.

(ii) We have
∑∞

m=1 |amz
m| < 1 for z ∈ Dρ.

Then the series
∞∑

m=1

Gm(a1, . . . , am)zm (2.4)

is absolutely and uniformly convergent in Dρ, and the equality

1 + f(z) = exp

( ∞∑
m=1

Gm(a1, . . . , am)zm

)
(2.5)

holds for z ∈ Dρ.

Proof. The first and second assertions are easily verified. We give a proof of the third for
completeness. First observe that

Gm(X1, . . . , Xm) = −
m∑

k=1

(−1)k

k
Gm,k(X1, . . . , Xm),

where
Gm,k(X1, . . . , Xm) :=

∑
j1,..., jk≥1, j1+···+jk=m

Xj1 · · ·Xjk
.

Fix z ∈ Dρ and put r := |z|. By condition (ii), we have |f(z)| < 1 and

log(1 + f(z)) = −
∞∑

k=1

(−1)k

k
f(z)k = −

∞∑
k=1

(−1)k

k

∞∑
m=1

Gm,k(a1, . . . , am)zm. (2.6)

We now show that the double series
∞∑

k, m=1

∣∣∣∣(−1)k

k
Gm,k(a1, . . . , am)zm

∣∣∣∣ (2.7)

is convergent. Since Gm,k(X1, . . . , Xm) is a polynomial in X1, . . . , Xm with nonnegative coeffi-
cients, we have |Gm,k(a1, . . . , am)| ≤ Gm,k(α1, . . . , αm) with αi := |ai|. We also note that the
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series A :=
∑∞

m=1 αmr
m is convergent and 0 ≤ A < 1 by conditions (i) and (ii). For any positive

integers K and M , we have

K∑
k=1

M∑
m=1

∣∣∣∣(−1)k

k
Gm,k(a1, . . . , am)zm

∣∣∣∣
≤

K∑
k=1

1
k

∞∑
m=1

Gm,k(α1, . . . , αm)rm =
K∑

k=1

1
k

( ∞∑
m=1

αmr
m

)k

≤
∞∑

k=1

1
k
Ak = − log(1 −A),

which proves the convergence of the series (2.7). Thus we can change the order of summation
in the right-hand side of (2.6) and get

log(1 + f(z)) = −
∞∑

m=1

( ∞∑
k=1

(−1)k

k
Gm,k(a1, . . . , am)

)
zm =

∞∑
m=1

Gm(a1, . . . , am)zm.

We here note that Gm,k = 0 if k > m. Exponentiating the above equality, we obtain (2.5). It is
easily seen that the series (2.4) is absolutely and uniformly convergent in Dρ.

3 Jacobi forms attached to vector systems

In this section we recall the definition of Jacobi forms attached to vector systems introduced by
Borcherds [Bo2], [Bo4].

3.1 Jacobi groups

Let H be an algebraic group defined over Q with H(Q) = Qn × Qn × Q and multiplication law

(u, v, t)(u′, v′, t′) = (u+ u′, v + v′, t+ t′ + S(u, v′)).

The group SL2 acts on the Heisenberg group H on the right via

(u, v, t) ·

(
a b

c d

)
:= (u1, v1, t+ S′(u1, v1) − S′(u, v)) (u1 = au+ cv, v1 = bu+ dv) .

We call the semidirect product GJ := SL2 n H the Jacobi group and ΓJ := GJ(Z) the Jacobi
modular group.

3.2 Weakly holomorphic Jacobi forms

Let k,m ∈ Z. For a function ϕ on H × Cn and g = (u, v, t)

(
a b

c d

)
∈ GJ(R), we set

(
ϕ|k,mS′g

)
(τ, z) = (cτ + d)−kem

(
− c

cτ + d
S′[z] +

aτ + b

cτ + d
S′[u] +

2
cτ + d

S′(u, z) + t

)
× ϕ

(
aτ + b

cτ + d
,

z

cτ + d
+
aτ + b

cτ + d
u+ v

)
,
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where em(x) := exp(2πimx) for x ∈ C. Let χ be a character of ΓJ of finite order. Let ϕ be a
holomorphic function on H × Cn satisfying

ϕ|k,mS′γ = χ(γ)ϕ (γ ∈ ΓJ). (3.1)

Then ϕ admits the Fourier expansion

ϕ(τ, z) =
∑

l∈l0+Z, α∈α0+L∗
0

aϕ(l, α)e(lτ + S(α, z)) (3.2)

with some l0 ∈ Q and α0 ∈ Qn. Here we recall L∗
0 = S−1Zn. Let J !

k,mS′,χ be the space of
holomorphic functions ϕ on H × Cn satisfying (3.1) and

aϕ(l, α) = 0 if l −mS′[α] is sufficiently small. (3.3)

We call J !
k,mS′,χ the space of weakly holomorphic Jacobi forms of weight k, index mS′ and

character χ.

3.3 Vector systems

A C-valued function υ on L∗
0 is called a vector system on L∗

0 if the following three conditions are
satisfied (see [Bo2] and [Bo4]):

(V1) R := {α ∈ L∗
0 | υ(α) 6= 0} is a finite set.

(V2) We have υ(−α) = υ(α) for α ∈ L∗
0.

(V3) There exists a constant µυ such that∑
α∈R

υ(α)S(α, u)α = 2µυu

holds for any u ∈ V0 = Rn.

We call µυ the index of υ. It is known that

µυ =
1
2n

∑
α∈R

υ(α)S[α].

A vector system υ is said to be integral if υ(α) ∈ Z for any α ∈ R.
A connected component of V0 \

(∪
α∈R\{0}{u ∈ V0 | S(α, u) = 0}

)
is called a Weyl chamber

with respect to υ. We fix a Weyl chamber W and put R+ := {α ∈ R | α > 0}, where α > 0
means S(α, u0) > 0 for some u0 ∈ W . Define the Weyl vector Λυ := (λυ, ρυ, µυ) ∈ C × Cn × C
with respect to (υ,W ) by

λυ :=
1
24

∑
α∈R

υ(α), ρυ :=
1
2

∑
α∈R+

υ(α)α. (3.4)

We also put

kυ :=
1
2
υ(0). (3.5)
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3.4 Jacobi forms attached to vector systems

Let υ be an integral vector system on L∗
0. We define a function φυ on H × Cn by

φυ(τ, z) := e(λυτ − S(ρυ, z))

×
∞∏
l=1

∏
α∈R

(1 − e(lτ + S(α, z)))υ(α)
∏

α∈R+

(1 − e(S(α, z)))υ(α) (τ ∈ H, z ∈ Cn).

Suppose that
υ(0) ∈ 2Z and µυ ∈ Z. (3.6)

Then φυ defines a meromorphic function on H × Cn satsifying (3.1) with k = kυ,m = µυ and
some character χ = χυ of ΓJ of finite order. We call φυ the Jacobi form attached to υ. It is easy
to see that φυ is holomorphic on H × Cn if and only if υ satisfies

∞∑
j=1

υ(jα) ≥ 0 for any α ∈ R \ {0}. (3.7)

Thus φυ belongs to J !
kυ , µυS′, χυ

for an integral vector system υ satisfying (3.6) and (3.7).

4 Multiplicative symmetries for Jacobi forms

In this section we give a characterization of Jacobi forms attached to vector systems by certain
symmetries in the weakly holomorphic case (Theorem 4.2 and Corollary 4.3).

4.1 Multiplicative symmetries of Jacobi type

A function ϕ on H × Cn is said to satisfy multiplicative symmetries of Jacobi type if

∏
ad=N

d−1∏
b=0

ϕ

(
aτ + b

d
, az

)
= εN

∏
ad=N

ϕ (τ, az)d (4.1)

holds for any integer N ≥ 2 with a nonzero constant εN depending only on ϕ and N . It is
straightforward to see the following:

Proposition 4.1. For any integral vector system υ, φυ satisfies multiplicative symmetries
of Jacobi type.

4.2 The main results for Jacobi forms: A characterization of the weakly

holomorphic Jacobi forms attached to vector systems by symmetries

The object of this section is to show the inverse of Proposition 4.1 in the weakly holomorphic case.
Namely we prove that, if a nonzero weakly holomorphic Jacobi form ϕ satisfies multiplicative
symmetries of Jacobi type, then there exists an integral vector system υ satisfying (3.6) and
(3.7) such that ϕ is a constant multiple of φυ. We also show that υ is explicitly expressed in
terms of the Fourier expansion of ϕ.
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To be more precise, let J ! =
∪

k,m,χ J
!
k,mS′,χ, where k and m run over Z and χ over the

characters of ΓJ of finite order. A nonzero element ϕ of J ! admits the Fourier expansion in τ :

ϕ(τ, z) = qλ
∞∑

N=0

AN (z)qN , (4.2)

where λ is a rational number, q := e(τ), AN (z) is a holomorphic function on Cn for N ≥ 0 and
A0(z) 6= 0. We set

BN (z) :=
AN (z)
A0(z)

(N ∈ Z≥0). (4.3)

Note that B0(z) = 1 and that BN (z) is invariant under translation by elements of L0. In general
BN (z) may have poles on Cn if N ≥ 1.

Let J !
MS be the set of nonzero elements of J ! satisfying multiplicative symmetries of Jacobi

type and V the set of integral vector systems υ on L∗
0 satisfying (3.6) and (3.7). Recall that φυ

is in J !
MS if υ ∈ V. The main results of this section are now stated as follows:

Theorem 4.2. Let ϕ ∈ J !
MS.

(1) For any N ≥ 1, BN (z) is holomorphic on Cn.

(2) Let
−B1(z) =

∑
α∈L∗

0

υϕ(α)e(S(α, z)) (4.4)

be the Fourier expansion of −B1(z). Then υϕ ∈ V and ϕ is a constant multiple of φυϕ.

Corollary 4.3. (1) We have J !
MS = {cφυ | c ∈ C×, υ ∈ V}.

(2) The mapping υ 7→ (φυ mod C×) defines a bijection from V to J !
MS/C×. Its inverse is given

by ϕ 7→ υϕ.

We explain the plan of the proof of Theorem 4.2. In Section 4.3, we derive the recurrence
relations (4.5) satisfied by BN (z) from multiplicative symmetries of Jacobi type for ϕ. In Section
4.4 we show the holomorphy of BN (z) by using (4.5) and Lemma 2.1 (1). In Section 4.5, again
using (4.5) together with Lemma 2.1 (3), we show that ϕ is a constant multiple of an infinite
product attached to υϕ. In Section 4.5 we show that υ is a vector system by using automorphy
of ϕ. The integrality of υ follows from the facts that ϕ is single-valued on H × Cn and that the
weight of ϕ is an integer.

4.3 The recurrence relations satisfied by quotients of Fourier coefficients

From now on until the end of this section we let ϕ be a nonzero element of J !
k,mS′,χ with k,m ∈ Z

and a character χ of ΓJ of finite order, and suppose that ϕ satisfies multiplicative symmetries of
Jacobi type. Let AN (z) and BN (z) be as in the previous subsection. The following recurrence
relations satisfied by BN (z) (N ≥ 1) play a crucial role in the proof of Theorem 4.2.
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Proposition 4.4. We have

GN (B1(z), . . . , BN (z)) =
∑
d|N

d−1B1(dz) (N ≥ 1). (4.5)

Proof. The equality (4.5) is trivial forN = 1. LetN ≥ 2. Observe that (τ, z) 7→ q−λA0(z)−1ϕ(τ, z) =
1 +

∑∞
l=1Bl(z)ql satisfies multiplicative symmetries of Jacobi type and hence that

∏
ad=N

∏
0≤j≤d−1

{
1 +

∞∑
l=1

Bl(az)e
(
d−1jl

)
qal/d

}
= ε′N

∏
ad=N

{
1 +

∞∑
l=1

Bl(az)ql

}d

(4.6)

holds with ε′N ∈ C×. We consider the Fourier expansions of both sides of (4.6) in τ . Comparing
the constant terms, we get ε′N = 1. The left-hand side of (4.6) is equal to∏

ad=N

Rd(qa/d;B1(az), B2(az), . . .) =
∏

ad=N

(
1 + dGd(B1(az), . . . , Bd(az))qa +O(q2a)

)
= 1 +NGN (B1(z), . . . , BN (z))q +O(q2)

in view of Lemma 2.1 (2) (for the definition of Rd see (2.3)). On the other hand the right-hand
side of (4.6) is equal to

1 +

(∑
ad=N

dB1(az)

)
q +O(q2).

Comparing the coefficients of q of both sides of (4.6), we obtain

GN (B1(z), . . . , BN (z)) =
∑

ad=N

a−1B1(az),

which proves the proposition.

4.4 The holomorphy of quotients of Fourier coefficients

In this subsection we prove the first assertion of Theorem 4.2 that BN (z) is holomorphic on Cn for
any N ≥ 1. Let t1, . . . , tn be indeterminates. The polynomial ring R := C[t1, t−1

1 , . . . , tn, t
−1
n ] of

t1, t
−1
1 , . . . , tn, t

−1
n over C is a unique factorization domain. For P ∈ R, let fP be the holomorphic

function on Cn defined by fP (z) := P (e(z1), e(−z1), . . . , e(zn), e(−zn)) for z = (z1, . . . , zn) ∈ Cn.
Let L be the integral domain consisting of fP (P ∈ R) and K the quotient field of L. Note
that an element f ∈ K is in L if and only if f is holomorphic on Cn. Denote by P the set of
irreducible elements in R. For P ∈ P, define a divisor on Cn by DP := {z ∈ Cn | fP (z) = 0}.
The divisor of f ∈ K is of the form

div(f) =
∑
P∈P

νP (f)DP ,

where νP (f) ∈ Z and νP (f) = 0 except for a finite number of P . For f ∈ K, we put M(f) :=
max{−νP (f) | P ∈ P}. Note that f is in L if and only if M(f) ≤ 0.
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Proposition 4.5. For any N ≥ 1, BN (z) belongs to L and hence is holomorphic on Cn.

Proof. Put A′
N (z) := e(−S(α0, z))AN (z) =

∑
α∈L∗

0
aϕ(λ+N,α0+α)e(S(α, z)) (see (3.2)). Then

we have A′
N ∈ L, BN = A′

N/A
′
0 ∈ K and

sup
N≥0

{M(BN )} <∞. (4.7)

To prove the proposition it suffices to show that B1 ∈ L in view of (2.2) and the recurrence
relation (4.5). Suppose the contrary. Then r := M(B1) > 0. Take an element P of P with
νP (B1) = −r. For N ≥ 1, we put B∗

N (z) = fP (z)rNBN (z). Then νP (B∗
1) = 0. We now show

that

B∗
N =

(B∗
1)N

N !
on DP (4.8)

by induction on N . The assertion for N = 1 is trivial. Let N ≥ 2 and put G′
N (X1, . . . , XN−1) :=

−GN (X1, . . . , XN ) +XN (see (2.2)). Then

G′
N (X1, . . . , XN−1) =

∑
i1,..., iN−1≥0, i1+2i2+···+(N−1)iN−1=N

c(i1, . . . , iN−1)Xi1
1 · · ·XiN−1

N−1 (4.9)

with c(i1, . . . , iN−1) ∈ Q and

G′
N

(
1
1!
, . . . ,

1
(N − 1)!

)
=

1
N !

by Lemma 2.1 (1). In view of the recurrence relations (4.5) and (4.9), we have

B∗
N (z) =

∑
d|N

d−1fP (z)rNB1(dz) + G′
N (B∗

1(z), . . . , B∗
N−1(z)).

Observe that fP (z)rNB1(dz) vanishes on DP for d ≥ 1. By induction, for z ∈ DP , we have

B∗
N (z) = G′

N

(
B∗

1(z)
1!

, . . . ,
B∗

1(z)N−1

(N − 1)!

)
= G′

N

(
1
1!
, . . . ,

1
(N − 1)!

)
B∗

1(z)N

=
B∗

1(z)N

N !

and hence (4.8) has been proved. The equality (4.8) implies that νP (BN ) = −rN (N ≥ 1),
which contradicts (4.7). We have completed the proof of the proposition.

4.5 Proof of the main results for Jacobi forms

In this subsection we prove the remaining parts of Theorem 4.2.
To simplify the notation we write υ for υϕ. Since B1 ∈ L and B1(−z) = B1(z), we see that

R := {α ∈ L∗
0 | υ(α) 6= 0} is a finite set and that υ(−α) = υ(α) for α ∈ R.
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We next show that A0(z)−1ϕ(τ, z) has an infinite product expansion. Recall that

e(−λτ)A0(z)−1ϕ(τ, z) = 1 +
∞∑

N=1

BN (z)qN . (4.10)

Since the series of the right-hand side of (4.10) is absolutely and locally uniformly convergent
on H × Cn, there exist a positive real number T and an open neighborhood U of (0, . . . , 0) in
Cn such that

∞∑
N=1

∣∣BN (z)qN
∣∣ < 1 for (τ, z) ∈ U(T,U),

where U(T,U) := {(τ, z) ∈ H × Cn | Im(τ) > T, z ∈ U}. For (τ, z) ∈ U(T,U), we set

Φ(τ, z) :=
∞∑

N=1

GN (B1(z), . . . , BN (z))qN . (4.11)

It follows from Lemma 2.1 (3) that the series (4.11) is absolutely convergent and

1 +
∞∑

N=1

BN (z)qN = exp (Φ(τ, z)) (4.12)

for (τ, z) ∈ U(T,U). By the recurrence relations (4.5), we obtain

Φ(τ, z) =
∞∑

N=1

∑
d|N

d−1B1(dz) qN =
∞∑

d=1

∞∑
l=1

d−1B1(dz)qdl

= −
∑
α∈R

υ(α)
∞∑
l=1

∞∑
d=1

d−1e(lτ + S(α, z))d =
∑
α∈R

υ(α) log

( ∞∏
l=1

(1 − e(lτ + S(α, z)))

)

and hence the equality

ϕ(τ, z) = e(λτ)A0(z)
∞∏
l=1

∏
α∈R

(1 − e(lτ + S(α, z)))υ(α) (4.13)

holds for (τ, z) ∈ U(T,U). Since the infinite product of the right-hand side of (4.13) is continued
to a meromorphic function on H × Cn, the equality (4.13) holds for (τ, z) ∈ H × Cn by analytic
continuation.

Observe that ϕ(τ, z) is a single valued function on H × Cn and that 1 − e(lτ + S(α, z))
has zeros on H × Cn if l ≥ 1 and α 6= 0. In view of (4.13), we have

∑∞
j=1 υ(jα) ∈ Z for any

α ∈ L∗
0 \ {0}. This implies that υ(α) ∈ Z for any α ∈ L∗

0 \ {0}.
We next show that υ is a vector system on L∗

0. The idea of the proof is based on the proof
of Theorem 6.5 in [Bo2]. Observe that

ϕ(τ, z) = e(λτ)A0(z)
∞∏
l=1

(
1 − ql

)υ(0)
∞∏
l=1

∏
α∈R+

((
1 − qlζα

)(
1 − qlζ−α

))υ(α)

(4.14)
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for τ ∈ H, z ∈ Cn. Here we write ζα for e(S(α, z)). Let u ∈ L0 ∩W . Since ϕ(τ, z − uτ) =
χ((u, 0, 0))−1q−mS′[u]ζmuϕ(τ, z), we have

A0(z − uτ)
A0(z)

= χ((u, 0, 0))−1q−mS′[u]ζmu ×
∏

α∈R+

( ∞∏
l=1

(
1 − qlζα

) (
1 − qlζ−α

)
(1 − ql−σαζα) (1 − ql+σαζ−α)

)υ(α)

,

where we put σα := S(α, u). Since σα ∈ Z>0 for α ∈ R+, we have
∞∏
l=1

(
1 − qlζα

) (
1 − qlζ−α

)
(1 − ql−σαζα) (1 − ql+σαζ−α)

=
σα∏
l=1

1 − qlζ−α

1 − ql−σαζα

= (−1)σαq2
−1σα(σα+1)ζ−σαα 1 − q−σαζα

1 − ζα
.

It follows that

A0(z − uτ)
A0(z)

= χ((u, 0, 0))−1(−1)2S(ρυ ,u)qB(u)ζC(u)
∏

α∈R+

(
1 − q−S(α,u)ζα

1 − ζα

)υ(α)

, (4.15)

where

B(u) = −mS′[u] +
1
2

∑
α∈R+

υ(α)S(α, u)2 + S(ρυ, u),

C(u) = mu−
∑

α∈R+

υ(α)S(α, u)α

(for the definition of ρυ, see (3.4)). Taking the limit τ → 0 (and hence q → 1) in (4.15), we
obtain 1 = χ((u, 0, 0))−1(−1)2S(ρυ ,u)ζC(u) and hence

χ((u, 0, 0)) = (−1)2S(ρυ ,u), C(u) = 0 (4.16)

for any u ∈ L0 ∩W . Since L0 ∩W generates L0, (4.16) holds for any u ∈ L0. We thus have∑
α∈R υ(α)S(α, u)α = 2mu (u ∈ V0), which implies that υ is a vector system on L∗

0 of index m.
Since 2−1

∑
α∈R+ υ(α)S(α, u)2 = mS′[u] (u ∈ V0), we have B(u) = S(ρυ, u) for any u ∈ L0. It

follows that

A0(z − uτ)
A0(z)

= qS(ρυ ,u)

(
1 − q−S(α,u)ζα

1 − ζα

)υ(α)

(u ∈ L0, τ ∈ H).

Put
Ã0(z) :=

A0(z)

ζ−ρυ
∏

α∈R+ (1 − ζα)υ(α)
.

Then Ã0(z−uτ) = Ã0(z) holds for any u ∈ L0 and τ ∈ H. This implies that Ã0(z) is a constant
function on Cn and hence that A0(z) is a constant multiple of

e(−S(ρυ, z))
∏

α∈R+

(1 − e(S(α, z)))υ(α).

Combining this with (4.13) we see that ϕ is a constant multiple of φυ.
It remains to show that υ ∈ V. Comparing the weights of ϕ and φυ, we have υ(0) = 2k ∈ 2Z

and hence υ is an integral vector system satisfying (3.6). The condition (3.7) is also satisfied for
υ since φυ is holomorphic on H×Cn. We thus have proved υ ∈ V and the proof of Theorem 4.2
has been completed.
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5 Borcherds lifts

In this section we recall the definitions of automorphic forms and Borcherds lifts on O(2, n+ 2)
introduced and studied in [Bo2] and [Bo4] (see also [GN1], [GN2] and [Br1]).

5.1 Automorphic forms on O(2, n + 2)

We set

Q0 := −S, Q1 :=

 1
−S

1

 , Q :=

 1
Q1

1

 =


1

1
−S

1
1

 ,

L0 := Zn, L1 := Zn+2, L := Zn+4,

L∗
0 := Q−1

0 L0, L
∗
1 := Q−1

1 L1, L
∗ := Q−1L,

and
q0(x) := 2−1Q0[x] = −S′[x], q1(y) := 2−1Q1[y], q(z) := 2−1Q[z]

for x ∈ Cn, y ∈ Cn+2, z ∈ Cn+4. Let G be the orthogonal group of Q viewed as an algebraic group
over Q. Then G(R), the group of real points of G, acts on D′ := {Z ∈ Cn+2 | q1(Im(Z)) > 0} in
the following way: For g ∈ G(R) and Z ∈ D′, there exist g〈Z〉 ∈ D′ and J(g, Z) ∈ C× such that
J(g, Z)i(g〈Z〉) = g i(Z), where

i(Z) :=

 −q1(Z)
Z

1

 ∈ Cn+4.

Let D± be the connected component of D′ containing ±(i, 0, i). Then D′ = D+ ∪ D− and
D± = {Z = (τ, z, τ ′) ∈ D′ | ±τ,±τ ′ ∈ H}. We write D for D+ and denote by G(R)+ the
subgroup of elements in G(R) preserving D. Let

γ0 :=


1

0 1
1n

1 0
1

 . (5.1)

Then γ0 ∈ G(R)+ and γ0〈(τ, z, τ ′)〉 = (τ ′, z, τ). For a function F on D, k ∈ Z and g ∈ G(R)+,
we put (F |kg)(Z) := J(g, Z)−kF (g〈Z〉) (Z ∈ D). We regard GJ(R) as a subgroup of G(R)+ via
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an embedding

(u, v, t)

(
a b

c d

)
7→



1 S(u, v) − t tvS 0
1
2
S[v]

0 1 0 0 0
0 u 1n 0 v

0
1
2
S[u] tuS 1 t

0 0 0 0 1


×


a −b

a b

1n

−c d

c d

 . (5.2)

Let
Γ := {γ ∈ G(R)+ | γL = L, γx ≡ x (mod L) for any x ∈ L∗} (5.3)

be the discriminant kernel subgroup of G(R)+. We have ΓJ ⊂ Γ. For an integer k and a character
χ of Γ, we denote by Ak(Γ, χ) (respectively Mk(Γ, χ)) the space of meromorphic (respectively
holomorphic) functions F on D satisfying F |kγ = χ(γ)F for γ ∈ Γ. Let

A(Γ) :=
∪
k, χ

Ak(Γ, χ),

M(Γ) :=
∪
k, χ

Mk(Γ, χ),

where k runs over the nonnegative integers and χ over the characters of Γ of finite order. Since
γ0 ∈ Γ, we have

F (τ ′, z, τ) = ±F (τ, z, τ ′) (5.4)

for F ∈ A(Γ).

5.2 Borcherds lifts

To simplify the notation we write J !
0,S′ for J !

0,S′,1, where 1 denotes the trivial character of Γ.
Let φ ∈ J !

0,S′ and ∑
l∈Z, α∈L∗

0

cφ(l, α)e(lτ + S(α, z))

be its Fourier expansion. We say that φ has integral principal part if cφ(l, α) is an integer for
any (l, α) ∈ Z × L∗

0 with l − S′[α] < 0.
Let φ be an element of J !

0,S′ with integral principal part. Define a function υ on L∗
0 by

υ(α) := cφ(0, α) (α ∈ L∗
0). Then υ is a vector system with υ(α) ∈ Z for α 6= 0 (see Theorem

10.5 in [Bo4]). Choose and fix a Weyl chamber W ⊂ V0 = Rn with respect to υ and let (λ, ρ, µ)
be the Weyl vector with respect to (υ,W ) (see Section 3.3). Define the Borcherds lift of φ by

Ψφ(τ, z, τ ′) := e(λτ − S(ρ, z) + µτ ′)
∏

l,m∈Z, α∈L∗
0

(l,α,m)>0

(
1 − e(lτ + S(α, z) +mτ ′)

)cφ(lm,α) (5.5)

for (τ, z, τ ′) ∈ D. Here (l, α,m) > 0 means that either “m > 0” or “m = 0, l > 0” or “m = l =
0, α > 0” holds. The fundamental properties of Ψφ are stated as follows (see [Bo2], [Bo4]):
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(1) The infinite product (5.5) is absolutely convergent if q1(Im(Z)) = Im(τ)Im(τ ′)−S′[Im(z)]
is sufficiently large.

(2) The function Ψφ is continued to a meromorphic function on D satisfying

Ψφ|kφ
γ = χ(γ)Ψφ(Z) (γ ∈ Γ)

with kφ := 2−1cφ(0, 0) and a multiplier χ of Γ of finite order.

(3) The divisor of Ψφ is given by

1
2

∑
α∈L∗/L

∑
m∈q(α)+Z, m<0

cφ(m− q(α), α)H(α,m). (5.6)

Here
H(α,m) :=

∑
ξ∈α+L, q(ξ)=m

{Z ∈ D | Q(ξ, i(Z)) = 0} (5.7)

is the Heegner divisor of discriminant (α,m) ∈ (L∗/L) × Q with m − q(α) ∈ Z and
m < 0. We identify L∗/L with L∗

0/L0 in a natural manner and make a convention that
the multiplicities of H(α,m) are 2 if 2α = 0 in L∗/L and 1 if 2α 6= 0 in L∗/L.

If cφ(0, 0) is an even integer, then χ is a character of Γ.
Let

J̃ := {φ ∈ J !
0,S′ | φ satisfies (J1)},

J := {φ ∈ J !
0,S′ | φ satisfies (J1) and (J2)}.

Here

(J1) φ has integral principal part and cφ(0, 0) is an even integer.

(J2) For any (l, α) ∈ Z × L∗
0 with l − S′[α] < 0, we have

∞∑
j=1

cφ(j2l, jα) ≥ 0.

Note that Ψφ ∈ M(Γ) for φ ∈ J . We set

A(Γ)BL :=
{
cΨφ | c ∈ C×, φ ∈ J̃

}
⊂ A(Γ), (5.8)

M(Γ)BL :=
{
cΨφ | c ∈ C×, φ ∈ J

}
⊂ M(Γ). (5.9)

6 Main results

In this section we state and prove the main results of the paper on a characterization of holo-
morphic Borcherds lifts by multiplicative symmetries. We keep the notation of the previous
section.
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6.1 Multiplicative symmetries

We define two commuting embeddings ι↑ and ι↓ of SL2 into G by

ι↑(h) :=


a −b

a b

1n

−c d

c d

 , ι↓(h) :=


a −b
−c d

1n

a b

c d

 (6.1)

for h =

(
a b

c d

)
∈ SL2. For a function F on D and an integer N ≥ 2, we define

F |T ↑
Π(N)(Z) :=

∏
ad=N, 0≤b<d

F

(
ι↑

(
1√
N

(
a b

0 d

))
〈Z〉

)

=
∏

ad=N, 0≤b<d

F

(
aτ + b

d
,

√
N

d
z, τ ′

)
,

F |T ↓
Π(N)(Z) :=

∏
ad=N, 0≤b<d

F

(
ι↓

(
1√
N

(
a b

0 d

))
〈Z〉

)

=
∏

ad=N, 0≤b<d

F

(
τ,

√
N

d
z,
aτ ′ + b

d

)

for Z = (τ, z, τ ′) ∈ D.

Remark 6.1. These operators are induced from the classical Hecke operators via the em-
beddings ι±.

Remark 6.2. The operators T ↑
Π(N) for prime numbers N in the special case O(2, 3) are

similar to the operators defined in [GN2] (Definition 3.1). Gritsenko and Nikulin proved some
interesting functorial properties (see Theorem 3.3 [GN2]), which are not used in the present
paper. Similar results had been obtained by Guerzhoy [G] in the O(2, 1)-case.

We say that F satisfies multiplicative symmetries if

F |T ↑
Π(N)(Z) = εN F |T ↓

Π(N)(Z) (6.2)

holds for any N ≥ 2 with a nonzero constant εN depending only on F and N . Denote by
A(Γ)MS (respectively M(Γ)MS) the set of nonzero elements of A(Γ) (respectively M(Γ)) sat-
isfying multiplicative symmetries. In our previous paper [HM2] we have proved the inclusion
A(Γ)BL ⊂ A(Γ)MS holds. This immediately implies M(Γ)BL ⊂ M(Γ)MS. One of the main aim
of the present paper is to show the equality M(Γ)BL = M(Γ)MS.
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6.2 The main results: A characterization of holomorphic Borcherds lifts by

symmetries and the inverse of the Borcherds lifting

To state our main results more explicitly, we first observe that a nonzero element F of M(Γ)
admits the Fourier-Jacobi expansion

F (τ, z, τ ′) = e(µτ ′)
∞∑

m=0

Fm(τ, z)e(mτ ′),

where µ ∈ Q, Fm is holomorphic on H × Cn for m ≥ 0 and F0 6= 0. Set

fm(τ, z) :=
Fm(τ, z)
F0(τ, z)

(m ∈ Z≥0, (τ, z) ∈ H × Cn). (6.3)

We see that fm|0,mS′γ = fm for any γ ∈ ΓJ . In general fm may have poles on H× Cn if m ≥ 1.
We now state the main results of the paper:

Theorem 6.3. Let F be an element of M(Γ)MS. Then we have the following:

(1) For m ≥ 1, fm is holomorphic on H × Cn and belongs to J !
0,mS′.

(2) Put φF := −f1. Then φF belongs to J and F is a constant multiple of the Borcherds lift
ΨφF

of φF .

Corollary 6.4. (1) We have M(Γ)BL = M(Γ)MS.

(2) The Borcherds lifting defined by φ 7→ (Ψφ mod C×) is a bijection from J to M(Γ)MS/C×

and its inverse is given by F 7→ φF .

Remark 6.5. It is an open question whether the equality A(Γ)BL = A(Γ)MS holds.

We now explain the plan of the proof of Theorem 6.3, which is quite similar to that of
Theorem 4.2. In Section 6.3, we deduce the following two results from multiplicative symmetries
for F and Theorem 4.2:

(a) F0 is a constant multiple of φυ (for the definition see Section 3.4) with an integral vector
system υ ∈ J .

(b) fm satisfies recurrence relations (6.5).

The first result (a) implies that the orders of poles of fm (m ≥ 1) are bounded from above.
Using this and (b), we show the holomorphy of fm in Section 6.3. In particular φF belongs to
J !

0,S′ . In Section 6.4, using again (b) and Lemma 2.1 (3), we show that F has an infinite product
expansion attached to φF . We show that φF has integral principal part by using the fact that
F is single-valued on D. We then deduce that φF is in J and that F is a constant multiple of
the Borcherds lift ΨφF

.
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6.3 The holomorphy of quotients of Fourier-Jacobi coefficients

In this subsection we let F ∈ M(Γ)MS and let Fm and fm be as in the previous subsection. To
prove holomorphy of fm, we first show certain recurrence relations satisfied by fm (m ≥ 1). We
recall the definition of Hecke-like operators VN introduced in [EZ]; for a function φ on H × Cn

and an integer N ≥ 1 we put

(φ|VN ) (τ, z) = N−1
∑

ad=N

d−1∑
b=0

φ

(
aτ + b

d
, az

)
. (6.4)

Note that φ|VN ∈ J !
0,NS′ if φ ∈ J !

0,S′ .

Proposition 6.6. (1) The first nonvanishing Fourier-Jacobi coefficient F0 is a constant
multiple of φυ with an integral vector system υ ∈ J .

(2) For any integer N ≥ 2, we have

GN (f1(τ, z), . . . , fN (τ, z)) = (f1|VN ) (τ, z). (6.5)

Proof. Since

(τ, z, τ ′) 7→ e(−µτ ′)F (τ, z, τ ′) =
∞∑

m=0

Fm(τ, z)e(mτ ′)

satisfies multiplicative symmetries, the equality

∏
ad=N

d−1∏
b=0

{ ∞∑
m=0

Fm

(
aτ + b

d
, d−1

√
Nz

)
e(mτ ′)

}

= εN
∏

ad=N

d−1∏
b=0

{ ∞∑
m=0

Fm

(
τ, d−1

√
Nz
)
e
(
m
aτ ′ + b

d

)} (6.6)

holds for N ≥ 2 with εN ∈ C×. We now compare the coefficients of the Fourier expansions in τ ′

of both sides of (6.6). Comparing the constant terms, we obtain

∏
ad=N

d−1∏
b=0

F0

(
aτ + b

d
, d−1

√
Nz

)
= εN

∏
ad=N

F0

(
τ, d−1

√
Nz
)d

(6.7)

and hence F0 satisfies multiplicative symmetries of Jacobi type. The first assertion of the
proposition now follows from Theorem 4.2.

Dividing (6.6) by (6.7) and letting z 7→
√
Nz, we obtain

∏
ad=N

d−1∏
b=0

{
1 +

∞∑
m=1

fm

(
aτ + b

d
, az

)
e(mτ ′)

}

=
∏

ad=N

d−1∏
b=0

{
1 +

∞∑
m=1

fm (τ, az) e
(
m
aτ ′ + b

d

)} (6.8)
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The coefficient of q1 := e(τ ′) of the left-hand side of (6.8) is equal to

∑
ad=N

d−1∑
b=0

f1

(
aτ + b

d
, az

)
.

On the other hand the right-hand side of (6.8) is equal to∏
ad=N

Rd

(
q
a/d
1 ; f1(τ, az), f2(τ, az), . . .

)
=
∏

ad=N

(
1 + dGd(f1(τ, az), . . . , fd(τ, az))qa

1 +O(q2a
1 )
)

= 1 +NGN (f1(τ, z), . . . , fN (τ, z))q1 +O(q21)

by Proposition 2.1. It follows that

GN (f1(τ, z), . . . , fN (τ, z)) =
1
N

∑
ad=N

d−1∑
b=0

f1

(
aτ + b

d
, az

)
= (f1|VN ) (τ, z).

Proposition 6.7. For any integer m ≥ 1, fm is holomorphic on H × Cn.

Proof. The proof of the proposition is similar to that of Proposition 4.5. For a meromorphic
function f on H × Cn, let div(f) =

∑
D cD(f)D be the divisor of f , where D runs over the

irreducible divisors on H × Cn and cD(f) ∈ Z. Set N (f) := supD {−cD(f)}. In view of
Proposition 6.6 (1), we have supD {cD(F0)} < ∞. Since F0(τ, z)fm(τ, z) is holomorphic on
H × Cn, we have

sup
m≥0

{N (fm)} <∞. (6.9)

In view of (2.2) and (6.5) it suffices to show that f1 is holomorphic on H × Cn. Suppose the
contrary. Then r := N (f1) is a positive integer. Take an irreducible divisor D0 such that
cD0(f1) = −r and let ϕ0 be the defining equation of D0. An argument similar to the proof of
Proposition 4.5 shows the equality

ϕrm
0 fm =

(ϕr
0f1)

m

m!
on D0,

which implies that N (fm) ≥ rm for m ≥ 1. This contradicts (6.9) and we are done.

6.4 Proof of the main results

In this subsection we complete the proof of Theorem 6.3. As stated before, the idea of the proof
is similar to that of the proof of Theorem 4.2. Let F, Fm, fm be as in Theorem 6.3. In view of
Proposition 6.7, fm belongs to J !

0,mS′ for any m ≥ 1.
We first show that F (τ, z, τ ′)/F0(τ, z) has an infinite product expansion. Observe that the

series

1 +
∞∑

m=1

fm(τ, z)e(mτ ′) = e(−µτ ′)F0(τ, z)−1 F (τ, z, τ ′).
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is absolutely and locally uniformly convergent on D. It follows that there exist a positive real
number T and an open neighbourhood U of (0, . . . , 0) in Cn such that

∞∑
m=1

∣∣fm(τ, z)e(mτ ′)
∣∣ < 1 for (τ, z, τ ′) ∈ D(T,U),

where D(T,U) := {(τ, z, τ ′) ∈ D | Im(τ), Im(τ ′) > T, z ∈ U}. For (τ, z, τ ′) ∈ D(T,U), we set

Φ(τ, z, τ ′) =
∞∑

m=1

Gm(f1(τ, z) . . . , fm(τ, z))e(mτ ′). (6.10)

In view of Lemma 2.1 (3), the series (6.10) is absolutely convergent on D(T,U) and

e(−µτ ′)F0(τ, z)−1 F (τ, z, τ ′) = exp
(
Φ(τ, z, τ ′)

)
((τ, z, τ ′) ∈ D(T,U)). (6.11)

To simplify the notation we write φ and c(l, α) for φF = −f1 and cφF
(l, α) respectively. In view

of Proposition 6.6 (2), we obtain

Φ(τ, z, τ ′)

=
∞∑

m=1

(
f1|0,S′Vm

)
(τ, z)e(mτ ′)

= −
∞∑

m=1

m−1
∑
d|m

d−1∑
b=0

φ

(
d−1mτ + b

d
, d−1mz

)
e(mτ ′)

= −
∞∑

m=1

m−1
∑
d|m

d−1∑
b=0

∑
l∈Z, α∈L∗

0

c(l, α)e
(
l
d−1mτ + b

d
+ S(α, d−1mz) +mτ ′

)

= −
∞∑

m=1

∑
d|m

∑
l∈Z, α∈L∗

0

dm−1c(dl, α)e
(
d−1m(lτ + S(α, z) + dτ ′)

)
=

∑
d≥1, l∈Z, α∈L∗

0

c(dl, α) log
(
1 − e(lτ + S(α, z) + dτ ′)

)
.

We thus have

F (τ, z, τ ′) = e(µτ ′)F0(τ, z)
∏

m≥1, l∈Z, α∈L∗
0

(
1 − e(lτ + S(α, z) +mτ ′)

)c(lm,α) (6.12)

for (τ, z, τ ′) ∈ D(T,U).
If l − S′[α] < 0, the divisor {(τ, z, τ ′) ∈ D | lτ + S(α, z) + τ ′ = 0} intersects {Z ∈ D |

q1(Im(Z)) > N} for N � 0. Since F is single-valued on D, we have
∑∞

j=1 c(j
2l, jα) ∈ Z for any

(l, α) with l − S′[α] < 0. This implies that c(l, α) ∈ Z for any (l, α) with l − S′[α] < 0, proving
that φ has integral principal part.

We next show that F is a constant multiple of the Borcherds lift Ψφ. By (6.12) and analytic
continuation, we have

F (τ, z, τ ′) = e(Aτ ′)ψ(τ, z)Ψφ(τ, z, τ ′) (6.13)
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with A ∈ Q and a meromorphic function ψ on H × Cn. By (5.4), we have

e(−Aτ)ψ(τ, z) = ± e(−Aτ ′)ψ(τ ′, z) (τ, τ ′ ∈ H, z ∈ Cn),

which implies that there exists a meromorphic function ϕ(z) on Cn such that ψ(τ, z) = e(Aτ)ϕ(z).
On the other hand, by (6.13) and automorphy of F and Ψφ with respect to ΓJ ⊂ Γ (see (5.2)),
we have ψ|k−kφ,AS′γ = χ′(γ)ψ for any γ ∈ ΓJ , where χ′ is a multiplier of ΓJ of finite order. It
follows that, for any u ∈ Zn, τ ∈ H, z ∈ Cn, we have

ψ(τ, z + uτ) = κ(u)e(−A(S′[u]τ + S(u, z)))ψ(τ, z)

and hence
ϕ(z + uτ) = κ(u)e(−A(S′[u]τ + S(u, z)))ϕ(z),

where κ is a character of Zn of finite order. Letting τ → 0, we get ϕ(z) = κ(u)e(−AS(u, z))ϕ(z)
and hence A = 0 and κ(u) = 1 for any u ∈ Zn. We thus have ϕ(z + uτ) = ϕ(z) for any
u ∈ Zn, τ ∈ H and hence ϕ is a constant function on Cn. This concludes that ψ is a constant
function on H × Cn and hence that F is a constant multiple of Ψφ.

Since Ψφ is holomorphic on D and c(0, 0) = 2k ∈ 2Z, we see that φ ∈ J , which completes
the proof of Theorem 6.3.

7 Symmetries for Heegner divisors

Recall that the Heegner divisor H(α,m) of discriminant (α,m) is defined by (5.7). We denote
by A(Γ)HD the set of nonzero elements of A(Γ) whose divisors are of the form

1
2

∑
α∈L∗/L, m∈q(α)+Z, m<0

c(α,m)H(α,m) (a finite sum)

with c(α,m) ∈ Z for any (α,m) (see Section 5.2). We set M(Γ)HD = A(Γ)HD ∩M(Γ). In view
of [Bo2] and [Bo4], we have A(Γ)BL ⊂ A(Γ)HD. Bruinier ([Br1], [Br2]) showed the equality

A(Γ)BL = A(Γ)HD. (7.1)

This immediately implies
M(Γ)BL = M(Γ)HD. (7.2)

In this section we give a simple proof of (7.2) by showing additive symmetries for H(α,m)
(Proposition 7.1) and using Corollary 6.4.

7.1 Additive symmetries for Heegner divisors

For a divisor X of D and an integer N ≥ 2, we put

X|T ↑
Σ(N) =

∑
ad=N, 0≤b<d

X ∗ ι↑
(

1√
N

(
a b

0 d

))
,

X|T ↓
Σ(N) =

∑
ad=N, 0≤b<d

X ∗ ι↓
(

1√
N

(
a b

0 d

))
,

25



where we put X ∗ g := {g−1〈Z〉 | Z ∈ X} for g ∈ G(R)+ and ι↑ and ι↓ are defined by (6.1). The
following fact might be known to experts, though we give a proof for completeness.

Proposition 7.1. Let α ∈ L∗/L and m ∈ q(α) + Z, m < 0. Then

H(α,m)|T ↑
Σ(N) = H(α,m)|T ↓

Σ(N) (7.3)

holds for any integer N ≥ 2.

Proof. To prove the proposition we may and do assume that α = (0, 0, α0, 0, 0) with α0 ∈ L∗
0/L0.

For x = (x1, x2, x3, x4) ∈ Z4 and λ0 ∈ L∗
0, let

X(x, λ0) :=


Z ∈ D | Q




x1

x2

λ0

x3

x4

 , i(Z)

 = 0


be a divisor of D. We then have

H(α,m) =
∑

λ0∈α0+L0

∑
x∈Z4

`(x)=m−q0(λ0)

X(x, λ0),

where `(x) := x1x4 + x2x3.
For a, b, d ∈ Z≥0 with ad = N we define maps f↑a,b,d and f↓a,b,d from Z4 to itself by

f↑a,b,d(x) := (dx1 − bx3, dx2 + bx4, ax3, ax4),

f↓a,b,d(x) := (dx1 − bx2, ax2, dx3 + bx4, ax4)

for x = (x1, x2, x3, x4) ∈ Z4. It is easily verified that

f↓a,b,d ◦ i = i ◦ f↑a,b,d , (7.4)

where i(x1, x2, x3, x4) := (x1, x3, x2, x4). A straightforward calculation shows the equalities

H(α,m)|T ↑
Σ(N) =

∑
λ0∈α0+L0

∑
x∈Z4

`(x)=m−q0(λ0)

∑
ad=N, 0≤b<d

X(f↑a,b,d(x),
√
Nλ0)

=
∑

λ0∈α0+L0

∑
x∈Z4

`(x)=N(m−q0(λ0))

ν↑N (x)X(x,
√
Nλ0)

and

H(α,m)|T ↓
Σ(N) =

∑
λ0∈α0+L0

∑
x∈Z4

`(x)=m−q0(λ0)

∑
ad=N, 0≤b<d

X(f↓a,b,d(x),
√
Nλ0)

=
∑

λ0∈α0+L0

∑
x∈Z4

`(x)=N(m−q0(λ0))

ν↓N (x)X(x,
√
Nλ0).
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Here

ν↑N (x) := #
{

(a, b, d) ∈ Z3 | ad = N, a, d > 0, 0 ≤ b < d, x ∈ f↑a,b,d(Z
4)
}
,

ν↓N (x) := #
{

(a, b, d) ∈ Z3 | ad = N, a, d > 0, 0 ≤ b < d, x ∈ f↓a,b,d(Z
4)
}

for x ∈ Z4. By (7.4) we have ν↑N (x) = ν↓N (x) for any x ∈ Z4, which implies (7.3).

7.2 Proof of (7.2)

It is sufficient to show that M(Γ)HD ⊂ M(Γ)BL. Let F ∈ M(Γ)HD and N ≥ 2 be an integer.
Let

Q(N) :=


1

1
−NS

1
1


and let D(N) be the symmetric domain corresponding to Q(N). Observe that both F ↑(τ, z, τ ′) :=
F |T ↑

Π(N)(τ,
√
Nz, τ ′) and F ↓(τ, z, τ ′) := F |T ↓

Π(N)(τ,
√
Nz, τ ′) are holomorphic automorphic

forms on an arithmetic subgroup Γ′ of O(Q(N)) of the same weight and the same divisor by
Proposition 7.1. Then the quotient F ↑(Z)/F ↓(Z) is a holomorphic function on D(N) invariant
under Γ′ and hence a constant function on D(N) by the Koecher principle (see [BB]). This
implies that F ∈ M(Γ)MS. We now conclude that F ∈ M(Γ)BL in view of Corollary 6.4.

Remark 7.2. One of the referees suggested the following argument.
Assume that, for any (α,m) ∈ L∗ × Q with m ∈ q(α) + Z and m < 0, there exists a

holomorphic Borcherds lift vanishing on H(m,α). Then we can deduce (7.1) from (7.2) in the
following way: Let F ∈ A(Γ)HD. The assumption implies that there exists F1 ∈ M(Γ)BL such
that F2 := FF1 ∈ M(Γ). Since both F1 and F2 belong to M(Γ)HD, we have F1, F2 ∈ M(Γ)BL

by (7.2) and hence F = F2/F1 ∈ A(Γ)BL.
Note that the above assumption holds in the case of Sp2(Z) (for example see [HM1], Theorem

4.1).

8 Modular polynomials and symmetries

In this section we characterize the modular polynomials by certain symmetries. In this section
we put Γ1 := SL2(Z) and Γ := SL2(Z) × SL2(Z).

8.1 Weakly holomorphic modular forms on SL2(Z)

Let M!
k(Γ1) be the space of weakly holomorphic modular forms on Γ1 of weight k. By definition

M!
k(Γ1) is the space of holomorphic functions φ on H satisfying the following two conditions:
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(i) For γ =

(
a b

c d

)
∈ Γ1, we have φ

(
aτ + b

cτ + d

)
= (cτ + d)kφ(τ).

(ii) Let φ(τ) =
∑

l∈Z cφ(l)ql be the Fourier expansion of φ (q := e(τ)). We have cφ(l) = 0 if l
is sufficiently small.

Let j(τ) be the modular invariant (the unique element of M!
0(Γ1) with j(τ) = q−1 +744+O(q)).

Then M!
0(Γ1) = C[j].

8.2 A characterization of modular polynomials by symmetries

For any positive integer m, there uniquely exists a polynomial Φm(X,Y ) ∈ Z[X,Y ] satisfying

Φm(X, j(τ)) =
∏

ad=m, 0≤b<d
gcd(a, b, d)=1

(
X − j

(
aτ + b

d

))
,

where gcd(a, b, d) stands for the greatest common divisor of a, b, d (for example see [Co], page
230). It is known that Φm(X,Y ) is irreducible in C[X,Y ] and that

Φm(Y,X) = ±Φm(X,Y ). (8.1)

The polynomial Φm(X,Y ) is called the primitive modular polynomial of order m. The main
object of this section is to show the following result:

Theorem 8.1. Let P (X,Y ) be an irreducible polynomial in C[X,Y ] with P (Y,X) = ±P (X,Y ).
Then the following two conditions are equivalent:

(1) For any integer N ≥ 2, the equality

∏
ad=N

d−1∏
b=0

P

(
j

(
aτ + b

d

)
, j(τ ′)

)
= εN

∏
ad=N

d−1∏
b=0

P

(
j(τ), j

(
aτ ′ + b

d

))
(τ, τ ′ ∈ H)

holds with a constant εN ∈ C×.

(2) The polynomial P is a constant multiple of Φm with some positive integer m.

To prove the theorem we need a characterization of holomorphic Borcherds lifts on Γ =
Γ1 × Γ1 by multiplicative symmetries. We need a separate treatment in this case since the
Koecher principle does not holds for Γ.

8.3 Automorphic forms and Borcherds lifts on SL2(Z) × SL2(Z)

For k ∈ Z, let M!
k(Γ) be the space of holomorphic functions F on H×H satisfying the following

three conditions:
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(i) We have

F

(
a1τ1 + b1
c1τ1 + d1

,
a2τ2 + b2
c2τ2 + d2

)
= (c1τ1+d1)k(c2τ2+d2)kF (τ1, τ2)

((
ai bi

ci di

)
∈ Γ1, i = 1, 2

)
.

(ii) We have F (τ2, τ1) = ±F (τ1, τ2).

(iii) Let F (τ1, τ2) =
∑

m1, m2∈Z cF (m1,m2)e(m1τ1+m2τ2) be the Fourier expansion of F . Then
there exists a positive integer n0 such that cF (m1,m2) = 0 if m1 < −n0 or m2 < −n0.

For P (X,Y ) ∈ C[X,Y ], set

FP (τ1, τ2) := P (j(τ1), j(τ2)) (τ1, τ2 ∈ H). (8.2)

Then M!
0(Γ) = {FP | P ∈ C[X,Y ], P (Y,X) = ±P (X,Y )}.

Let φ ∈ M!
0(Γ1) and suppose that

cφ(l) ∈ Z if l < 0. (8.3)

For simplicity we further assume that

cφ(0) is an integer divisible by 24. (8.4)

We put

µφ :=
1
24
cφ(0) −

∞∑
m=1

∑
d|m

d

 cφ(−m),

kφ :=
cφ(0)

2
.

Define

Ψφ(τ1, τ2) := q
µφ

1 q
cφ(0)/24
2

∏
m1,m2

(1 − qm1
1 qm2

2 )cφ(m1m2) (τi ∈ H, qi := e(τi), i = 1, 2), (8.5)

where (m1,m2) runs over the pairs of integers such that “m1 > 0” or “m1 = 0 and m2 > 0”. The
infinite product (8.5) is absolutely convergent if Im(τ1)Im(τ2) is sufficiently large, and continued
to a meromorphic function on H×H satisfying conditions (i)–(ii) of Section 8.3 with k = kφ. We
call Ψφ the Borcherds lift of φ. Note that the Borcherds lift of j(τ)− 744 = q−1 +196884q+ · · ·
is j(τ1) − j(τ2). The following is easily verified.

Proposition 8.2. Let φ be an element of M!
0(Γ1) satisfying (8.3) and (8.4). Then

Ψφ(τ1, τ2) = (∆(τ1)∆(τ2))
cφ(0)/24

∏
m≥1

Φm (j(τ1), j(τ2))
P∞

f=1 cφ(−f2m) .

Here ∆(τ) := q
∏∞

l=1(1 − ql)24 is the modular discriminant.

29



8.4 A characterizations of holomorphic Borcherds lifts on SL2(Z) × SL2(Z)

A nonzero element F of M!
k(Γ) admits the Fourier expansion in τ2:

F (τ1, τ2) = e(µτ2)
∞∑

m=0

Fm(τ1)e(mτ2),

where µ ∈ Z, Fm is holomorphic on H and F0 6= 0. Then Fm ∈ M!
k(Γ1) for any m ∈ Z≥0. Put

φF (τ) := −F1(τ)
F0(τ)

.

Note that φF may have poles on H in general.
We say that a function F on H × H satisfies multiplicative symmetries if the equality

∏
ad=N

d−1∏
b=0

F

(
aτ + b

d
, τ ′
)

= εN
∏

ad=N

d−1∏
b=0

F

(
τ,
aτ ′ + b

d

)
(τ, τ ′ ∈ H)

holds for any integer N ≥ 2 with a constant εN ∈ C×. Theorem 8.1 is a direct consequence of
Proposition 8.2 and the following result, whose proof is similar to that of Theorem 6.3 and we
omit.

Theorem 8.3. Suppose that F ∈ M!
k(Γ) satisfies multiplicative symmetries.

(1) The function φF is an element of M!
0(Γ1) satisfying (8.3) and (8.4).

(2) F is a constant multiple of the Borcherds lift of φF .
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