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WEAK NORMALITY OF FAMILIES OF MEROMORPHIC
MAPPINGS AND BUBBLING IN HIGHER DIMENSIONS

S. IVASHKOVICH, F. NEJI

Abstract. Our primary goal in this paper is to understand wether the sets of normality
of families of meromorphic mappings between general complex manifolds are pseudocon-
vex or not. It turns out that the answer crucially depends on the type of convergence
one is interested in. We examine three natural types of convergence introduced by one
of us earlier and prove pseudoconvexity of sets of normality for a large class of target
manifolds for the so called weak and gamma convergencies. Furthermore we determine
the structure of the exceptional components of the limit of a weakly/gamma but not
strongly converging sequence, they turn to be rationally connected. This observation
allows to determine effectively when a weakly/gamma converging sequence fails to con-
verge strongly. An application to the Fatou sets of meromorphic self-maps of compact
complex surfaces is given.
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1. Introduction

1.1. Convergence of meromorphic mappings. When one works with sequences of
meromorphic functions and, more generally, mappings one finds himself bounded to con-
sider several notions of their convergence. Some of these notions were introduced in [Fu]
and [Iv2], we shall recall the essentials below. An important question is: what can be
said about the maximal open sets where the given sequence converge? It occurs that
pseudoconvexity or not of domains of convergence/normality in the case of meromorphic
mappings crucially depends on the type of convergence one is looking for.

Now let briefly describe the ways one can define what does it means that a sequence
{fk} of meromorphic mappings between complex manifolds U and X converges. We start
with the most obvious one. A sequence {fk} of meromorphic mappings between complex
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2 Section 1

manifolds U and X is said to converge strongly to a meromorphic map f if the graphs Γfk

converge over compacts in U to the graph Γf in Hausdorff metric. Our first result shows
that Γfk then converge to Γf in a stronger topology of cycles.

Theorem 1. If fk strongly converge to f then for every compact K ⋐ U the volumes
Γfk ∩ (K×X) are uniformly bounded and therefore Γfk converge to Γf in the topology of
cycles.

This type of convergence is natural and has some nice features. For example the strong
limit of a sequence of holomorphic maps is holomorphic and vice versa, if the limit f
is holomorphic then for every compact K ⋐ U all fk for k ≫ 1 are holomorphic in a
neighborhood of K and uniformly converge there to f . This statement was called the
Rouché Principle in [Iv2].

But strong convergence has also some disadvantages. The first, crucial for us is the
fact that the sets of strong convergence, i.e., maximal open subsets of U where a given
sequence converges strongly on compacts, are not pseudoconvex in general. Moreover,
the sets of strong normality (see later on) of families of meromorphic mappings can be
just arbitrary, see Example 2.1. Also if one takes X = PN the ”most immediate” notion
of convergence doesn’t correspond to the strong one.

Therefore in [Iv2] along with the notion of strong convergence we proposed two weaker
ones. We say that fk converge weakly to f if they converge strongly to f on compacts
outside of some analytic set A in U of codimension at least two. It turns out that this A
can be taken to be the set If of points of indeterminacy of the limit map f and then for
every compact K in U \ If all weakly converging to f mappings fk will be holomorphic
on K (for k big enough) and converge to f uniformly on K, see Remark 3.1.

One more notion of convergence from [Iv2], which we need to recall here, is the gamma
convergence (Γ-convergence). We say that fk gamma-converge to f if they strongly con-
verge to f outside of an analytic set (now it can be of codimension one) and for every
divisor H in X and every compact K ⋐ U the intersections f ∗

kH∩K have bounded volume
counted with multiplicities, see more about the last condition in section 3.2.

Remark 1. Strong convergence (or s - convergence) will be denoted by fk → f , the weak

one (or w - convergence) as fk ⇀ f , and Γ - convergence as fk
Γ
−→ f . Note that in the

second and third definitions we suppose that the limit f is defined and meromorphic on
the whole of U if, even, the convergence takes place only on some part of U . In the first
case the limit exists on the whole of U automatically.

For the better understanding of these notions let us give a description of the listed
types of convergence in the case when X is projective, i.e., imbeds into PN for some N .
In that special case the notions of convergence listed above permit an explicit analytic
description as follows. Every meromorphic mapping f with values in PN can be locally
represented by an (N +1)-tuple of holomorphic functions

f(z) = [f 0(z) : ... : fN(z)], (1.1)

where not all of f 0, ...,fN are identically zero, see section 4. More precisely, if f : U → PN

is a meromorphic mapping then for every point x0 ∈ U there exists a neighborhood V ∋ x0
and holomorphic functions f 0, ...,fN in V satisfying (1.1). If the zero sets of f j contain a
common divisor then we can divide all f j by its equation and get a representation such
that GCD(f 1, ...,fN ) = 1 in every Ox, x ∈ V . In that case the indeterminacy set of f is
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If ∩V = {z ∈ V : f 0(z) = ...= fN(z) = 0} (1.2)

and has codimension at least two. Representation (1.1) satisfying (1.2) is called reduced.
We shall prove the following

Theorem 2. Let {fk} be a sequence of meromorphic mappings from a complex manifold
U to PN . Then:

i) fk
Γ
−→ f if and only if for any point x0 ∈ U there exists a neighborhood V ∋ x0, reduced

representations fk = [f 0
k : ... : fN

k ] and not necessarily reduced representation f = [f 0 :

... : fN ] such that for every 06 j 6N the sequence f j
k converges to f j uniformly on V ;

ii) fk ⇀f if and only if fk
Γ
−→ f and the limit representation f = [f 0 : ... : fN ] is reduced;

iii) fk → f if and only if fk ⇀f and corresponding non-pluripolar Monge-Ampère masses
converge, i.e., for every 16 p6 n= dimU one has

(

ddc‖z‖2
)n−p

∧
(

ddc ln‖fk‖
2)p →

(

ddc‖z‖2
)n−p

∧
(

ddc ln‖f‖2
)p

(1.3)

weakly on compacts in U .

Here in (1.3) we suppose that V = ∆n, z1, ..., zn are standard coordinates and ‖f‖2 =
|f 0|2+ ...+ |fN |2, i.e., ddc ln‖f‖2 is the pullback of the Fubini-Study form by f . Non-
pluripolar MA mass of ln‖f‖2 of order p in V here means

∫

V \If

(

ddc‖z‖2
)n−p

∧
(

ddc ln‖f‖2
)p
, (1.4)

where If is given by (1.2), i.e., is the indeterminacy set of f .

Remark 2. a) Reducibility or not of the limit representation f = [f 0 : ... : fN ] in this
theorem doesn’t depend on the choice of converging representations fk = [f 0

k : ... : fN
k ],

provided they are taken to be reduced (the last can be assumed always). Indeed, any other
reduced representation of fk has the form fk = [gkf

0
k : ... : gkf

N
k ], where gk are holomorphic

and nowhere zero. If the newly chosen representations converge to some representation
of f then gk must converge, say to g, and this g is nowhere zero by Rouché’s theorem.
Therefore the obtained representation of the limit is f = [gf 0 : ... : gfN ] and it is reduced
if and only if f = [f 0 : ... : fN ] was reduced.

b) The case when the representation f = [f 0 : ... : fN ] of the limit is not necessarily
reduced was studied for mappings with values in PN by H. Fujimoto in [Fu], who called it
meromorphic, or m-convergence. According to the part (i) of our theorem it turns out that
our Γ-convergence (in the case of X = PN ) is equivalent to m-convergence of Fujimoto.

1.2. Sets of normality and Bloch-Montel type criterion. In this paper we consider
two classes of complex manifolds: projective and Gauduchon, the last is the class of
complex manifolds carrying a ddc-closed metric form - a Gauduchon form. Let F be a
family of meromorphic mappings between complex manifolds U and X . F is said to be
strongly/weakly or gamma normal if from every sequence of elements of F one can extract
a subsequence converging on compacts in U in the corresponding sense. The maximal
open subset NF ⊂ U on which F is normal is called the set of normality. As it was
already told the sets of strong normality could be arbitrary. In subsection 3.1 we prove
the following
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Theorem 3. Let U be a domain in a Stein manifold Û such that Û is an envelope of
holomorphy of U and let fk : Û →X be a weakly converging on U sequence of meromorphic
mappings with values in a disk-convex complex manifold X. Then:

(a) If the weak limit f on fk meromorphically extends from U to Û then fk weakly

converge to f on the whole of Û .

(b) If, in addition, the manifold X carries a pluriclosed metric form then the weak limit

f of fk meromorphically extends to Û and then the part (a) applies.

As a result the sets of weak normality are locally pseudoconvex provided the target is
disk-convex and Gauduchon. Recall that an open subset N of a complex manifold U is
called locally pseudoconvex if for every point p ∈ ∂N there exists a Stein neighborhood
V of p in U such that V ∩N is Stein.

Corollary 1. Let F ⊂ M(U,X) be a family of meromorphic mappings from a complex
manifold U to a disk-convex Gauduchon manifold X. Then the set of weak normality NF

of F is locally pseudoconvex. If F = {fk} is a sequence then the set of its weak convergence
is locally pseudoconvex.

Remark 3. This corollary clearly follows from Theorem 3. Sets of Γ-normality are also
locally pseudoconvex under the same assumptions, see Proposition 3.1 in section 2.

As one more supporting argument in favor of weak convergence we prove in section 5
the following normality criterion.

Theorem 4. Let {Hi}di=0, d > 1, be hypersurfaces in projective manifold X such that

Y := X \
⋃d

i=0Hi is hyperbolically imbedded to X. Let F be a family of meromorphic
mappings from a complex manifold U to X such that:

i) for every i= 0, ...,d and every compact K ⋐ U the volumes f ∗Hi∩K counted with
multiplicities are uniformly bounded for f ∈ F ;

ii) F uniformly separates every pair Hi,Hj, 06 i < j 6 d.

Then the family F is weakly normal on U .

Conditions (i) and (ii) are explained in section 5, they are intuitively clear and more
or less necessary. The classically known case of a system of divisors with hyperbolically
imbedded complement is 2N +1 hypersurfaces in PN in general position - Theorem of
Bloch, see [Gr]. A criterion for m-normality ( i.e., Γ-normality in our sense) was given by
Fujimoto in [Fu].

1.3. Rational connectivity of the exceptional components of the limit. Strong
convergence obviously implies the weak one and the latter implies the gamma-convergence,
see Remark 3.4:

s-convergence =⇒ w-convergence =⇒ Γ- convergence. (1.5)

Our second principal task in this paper is to understand what obstructs a weakly/gamma
converging sequence to converge strongly. The problem is that by Theorem 1 the volumes
of graphs of a strongly converging sequence are uniformly bounded over compacts in the
source. When dimension n of the source U is two and X is Kähler the volumes of the
graphs of a weakly converging sequence are still bounded, see [Iv2]. The same is true if
is X an arbitrary compact complex surface (and again dimU = 2), see [Ne]. We shall say
more about this in section 6. But this turns out not to be the case starting from dimension
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three, i.e., the volumes of graphs of a weakly converging sequence can diverge to infinity
over compacts of U . Via (1.3) this turns out to be a geometric counterpart of a well known
discontinuity of Monge-Ampère masses, see Example 6.1 in section 4. Nevertheless for a
sequence Γfk of Γ-converging meromorphic graphs we can consider the Hausdorff limit Γ̂

(its always exists after taking a subsequence). Set Γ := Γ̂\Γf , where Γf is the graph of
the limit map f , and call Γ a bubble. For a ∈ γ := pr1(Γ) set Γa := pr2(pr

−1
1 (a)∩Γ), here

pr1 and pr2 are natural projections, see section 2. We prove the following statement.

Theorem 5. Let X be a disk-convex Gauduchon manifold and let fk : U →X be a weakly
converging sequence of meromorphic mappings which doesn’t converge strongly. Then for
every point a ∈ γ the fiber Γa is rationally connected. If X is, moreover, projective then
the same is true also for a Γ-converging sequences.

Here by saying that a closed subset Γa of a complex manifold is rationally connected
we mean that every two distinct points p,q ∈ Γa can be connected by a chain of rational
curves which is entirely contained in Γa, see section 7 for more details.

1.4. Fatou sets of meromorphic self-maps. Families of a special interest are the
families of iterates fn := f ◦ ... ◦ f of some fixed meromorphic self-map of a compact
complex manifold X . The maximal open subset X where {fn} is relatively compact
is called the Fatou set of f . Depending on the sense of convergence that one wishes to
consider one gets different Fatou sets: strong, weak or gamma Fatou sets. We denote them
as Φs, Φw and ΦΓ respectively, their dependance on f will be clear from the context.

Corollary 2. Let f be a meromorphic self-map of a compact complex surface. Then the
weak Fatou set Φw of f is locally pseudoconvex. If Φs is different from Φw then:

a) X is bimeromorphic to P2;

b) Φw =X \C, where C is a rational curve in X;

c) the weak limit of any weakly converging subsequence {fnk} of iterates is a degenerate
map of X onto C.

It should be pointed out that our Fatou sets are different from the Fatou sets as they
were considered in [FS]. In [FS] the Fatou set of f is the maximal open subset Φ of X \
⋃∞

n=0 f
−n(If) where the family {fn} is equicontinuous (remark that on X \

⋃∞
n=0 f

−n(If)
all iterates are holomorphic). If, for example, f : P2 → P2 is the Cremona transformation
[z0 : z1 : z2] → [z1z2 : z0z2 : z0z1] then Φs = Φw = ΦΓ = P

2 but Φ = P
2 \ { three lines }.

In subsection 8.2 an example of higher degree and with an interesting dynamics on the
indeterminacy set is given. This is one more instance which shows how crucially can
change a picture when the notion of convergence changes.

Notes. 1. Let us make a final note about the goals of this paper. On our opinion the
most interesting information about a converging sequence of meromorphic mappings is
concentrated near the “limit“ of their indeterminacy sets. We describe the most reasonable
(in our opinion) notions of convergence of meromorphic mappings and conclude that the
weak one is the most appropriate. At the same time we detect that if a weakly/gamma
converging sequence doesn’t converge strongly then this imposes very serious restrictions
on the target manifold (it is forced to contain many rational curves). In some cases (ex.
iterations) this puts strong constraints also on the sequence itself.

2. Domains of convergence of holomorphic functions of several variables were, probably,
for the first time considered by G. Julia in [J]. In [J] and then in [CT] it was proved that
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these domains are (in some sense) pseudoconvex. Domains of convergence of meromorphic
functions of several variables were studied in [Sa] and then in [Ru]. In these early papers
convergence was understood as holomorphic ( i.e., uniform) convergence outside of the
union of indeterminacy sets of meromorphic mappings in question.

Acknowledgement. We are grateful to Alexander Rashkovskii for explaining to us the
Example 6.1 with unbounded Monge-Ampère masses.

2. Topologies on the space of meromorphic mappings

2.1. Complex manifolds and meromorphic mappings. Our manifolds will be Haus-
dorff and countable at infinity if the opposite is not explicitly stated. We shall also
everywhere suppose that they are disk-convex.

Definition 2.1. A complex manifold X is called disk-convex if for every compact K ⋐X
there exists a compact K̂ such that for every h ∈ O(∆,X)∩C(∆̄,X) such that h(∂∆)⊂K

one has h(∆̄)⊂ K̂.

The minimal such K̂ is called the disk envelope of K. Let X be equipped with some
Hermitian metric h. By ωh denote the (1,1)-form canonically associated with h. We say
that the metric h is d-closed or Kähler if dωh = 0. We say that h is pluriclosed or Gauduchon
if ddcωh = 0. In [Ga] it was proved that on a compact complex surface every Hermitian
metric is conformally equivalent to the unique ddc-closed one.

Remark 2.1. We shall need only the existence of such metric forms on compact complex
surfaces and this can be proved by duality: non existence of a positive ddc-closed (1,1)-
form is equivalent to the existence of a non-constant plurisubharmonic function. The
latter on a compact complex manifold is impossible.

We also fix some metric form ω1 on U . In the case of a polydisk U = ∆n we will
work with the standard Euclidean metric e. The associated form will be denoted by
ωe = ddc‖z‖2 = i

2

∑n
j=1dzj ∧ dz̄j . By pr1 : U ×X −→ U and pr2 : U ×X −→ X denote

the projections onto the first and second factors. On the product U ×X we consider the
metric form ω = pr∗1ω1+pr∗2ωh.

A meromorphic mapping f between complex manifolds U and X is defined by an
irreducible analytic subset Γf ⊂ U ×X such that

• the restriction pr1|Γf
: Γf → U of the natural projection to Γf is a proper modifi-

cation, i.e., is proper and generically one to one.

Γf is called the graph of f . Due to the irreducibility of Γf and the Remmert proper
mapping theorem the set of points over which pr1 is not one to one is an analytic subset
of U of codimension at least two. This set is called the set of points of indeterminacy
of f and is usually denoted as If . Therefore an another way to define a meromorphic
mapping f between complex manifolds U and X is by considering a holomorphic map
f : U \A → X , where A is an analytic subset of U of codimension at least two, such
that the closure Γf of its graph is an analytic subset of the product U ×X satisfying the
condition above. Remark that the analyticity of the closure of the holomorphic graph is
not automatic. Think about the natural projection f : C2 \ {0} → C2 \ {0}/z ∼ 2z of
C2 \ {0} onto a Hopf surface. The properness of the restriction of the projection pr1 to
the closure is, unless X is disk convex, not automatic too.

The volume of the graph Γf of a meromorphic mapping f is given by
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n!Vol(Γf) =

∫

Γf

ωn =

∫

Γf

(pr∗1ω1+pr∗2ωh)
n =

∫

U

(

ω1+f
∗ωh

)n
, (2.1)

where n= dimU .

Remark 2.2. Let us make a few remarks concerning the notion of a meromorphic map-
ping.

a) If V is a subvariety of U such that V 6⊂ If then the restriction f |V of f to V is defined
by taking as its graph Γf |V the irreducible component of the intersection Γf ∩ (V ×X)
which projects onto V generically one to one. Therefore Γf |V ⊂ Γf ∩ (V ×X) and the
inclusion here is proper in general. The full image of a set L ⊂ U under f is defined as
f [L] := pr2 (Γf ∩ [L×X ]).

b) It is probably worth to notice that x ∈ If if and only if dimf [x]> 1. This follows from

the obvious observation that If = pr1

(

{(x1,x2) ∈ Γf : dim (x1,x2)pr1|
−1
Γf
(x1)> 1}

)

.

c) If dimV = 1 then the irreducible component of Γf ∩ (V ×X) which projects onto V
is a curve. Since the projection is generically one to one it is on to one everywhere and
therefore the restriction f |V is necessarily holomorphic.

d) Let us give the sense to f ∗ωh in the formula (2.1). The first integral there has perfectly
sense since we are integrating a smooth form over a complex variety. Denote by Iεf the
ε-neighborhood of the indeterminacy set If of f . Then (2.1) shows that the limit

lim
ε→0

∫

U\Īε
f

(

ω1+f
∗ωh

)n
= lim

ε→0

∫

U\Īε
f

n
∑

p=0

Cp
nω

n−p
1 ∧f ∗ωp

h (2.2)

exists. Therefore all f ∗ωp
h are well defined on U as positive currents.

2.2. Analytic cycles and currents. Before turning to the notions of convergence of
meromorphic mappings let us recall the natural topologies on the space of analytic subsets
of a complex manifold.

Recall that an analytic cycle of dimension r in a complex manifold Y is a formal sum
Z =

∑

j njZj , where {Zj} is a locally finite sequence of reduced analytic subsets of pure

dimension r and nj are positive integers called multiplicities of Zj. The set |Z| :=
⋃

jZj is
called the support of Z. In our applications Y will be U ×X and r will be the dimension
n= dimU . By a coordinate chart adapted to Z we shall understand a relatively compact
open set V in Y such that V ∩ |Z| 6= ∅ together with a biholomorphism j of V onto a

neighborhood Ṽ of ∆̄r × ∆̄q in Cr+q, r+ q = dimY , such that j−1(∆̄r × ∂∆q)∩ |Z| = ∅.
We shall denote such chart by (V,j). The image j(Z ∩ V ) of the cycle Z ∩ V under
biholomorphism j is the image of the underlying analytic set together with multiplicities.
Following Barlet and Fujiki, see [Ba] and [Fj], we call the quadruple E = (V,j,∆r,∆q) a
scale adapted to Z.

If pr : Cr×Cq → Cr is the natural projection, then the restriction pr |j(Z∩V ): j(Z∩V )→
∆r is a branched covering of degree say d. This branched covering defines in a natural
way a holomorphic mapping ϕj,Z : ∆r → Symd(∆q) to the d-th symmetric power of ∆q

by setting ϕj,Z(z
′) =

{

(pr |j(Z∩V ))
−1(z′)

}

. The latter denotes the unordered set of all

preimages of z
′

under the projection in question. This construction, due to Barlet, allows
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to represent a cycle Z ⊂ Y by a set of holomorphic maps ϕjα,Z : ∆r → Symd(∆q), where
{(Vα, jα)} is some open covering of |Z| by adapted coordinate charts.

Definition 2.2. One says that Zk converges to Z in the topology of cycles if for every
coordinate chart (V,j) adapted to Z there exists k0 such that ∀k > k0 this chart will be
adapted to Zk and the sequence of corresponding holomorphic mappings ϕj,Zk

converge to
ϕj,Z uniformly on ∆r.

This defines a metrizable topology on the space Cr(Y ) of r-cycles in Y . This topology
is equivalent to the topology of currents: Zk → Z if for any continuous (r,r)-form χ with
compact support one has

∫

Zk

χ→

∫

Z

χ,

see [Fj]. It is also equivalent to the Hausdorff topology under an additional condition of
boundedness of volumes. Recall that the Hausdorff distance between two subsets A and
B of a metric space (Y,ρ) is a number ρ(A,B) = inf{ε : Aε ⊃ B,Bε ⊃ A}. Here by Aε we
denote the ε-neighborhood of the set A, i.e. Aε = {y ∈ Y : ρ(y,A)< ε}.

Now, Zk → Z if and only if for every compact K ⋐ Y there exists CK > 0 such that
Vol2r(Zk ∩K) 6 CK and Zk ∩K → Z ∩K with respect to the Hausdorff distance. This
statement is the content of the Harvey-Shiffman’s generalization of Bishop’s compactness
theorem. For the proof see [HS]. We denote the space of r-cycles on Y endowed with the
topology described as above by C loc

r (Y ).

2.3. Strong convergence of meromorphic mappings. Let {fk} be a sequence of
meromorphic mappings of a complex manifold U to a complex manifold X .

Definition 2.3. We say that fk converge strongly to a meromorphic map f : U → X (s-
converge) if the sequence of graphs Γfk converge over compacts to Γf in Hausdorff metric,

i.e., for every compact K ⋐ U one has Γfk ∩ (K×X)
H
−→ Γf ∩ (K×X).

Now let us prove Theorem 1 from the Introduction, i.e., that Hausdorff convergence in
the case of graphs implies the boundedness of volumes (over compacts) and therefore the
convergence in the topology of cycles. Let us underline at this point that in this theorem
one doesn’t need to suppose anything on the target manifold X .

Proof of Theorem 1. The reason why Hausdorff convergence of graphs implies their stronger
convergence in the topology of cycles is that, being the graphs, the analytic cycles Γfk

converge to Γf with multiplicity one. Now let us give the details. Let a ∈ U \ If be
a regular point of f and set b = f(a). Then we can find neighborhoods D1 ∋ a and
D2 ∋ b biholomorphic to ∆n, n = dimU and ∆p, p = dimX respectively such that Γf ∩
(

D̄1×∂D2

)

=∅. In particular V =D1×D2 is an adapted chart for Γf , let (V,j,∆
n,∆p)

be a corresponding scale. Here j : V →∆n×∆p is some biholomorphism. From Hausdorff
convergence of Γfk to Γf we see that for k ≫ 1 Γfk ∩

(

D̄1×∂D2

)

= ∅. Therefore
Γfk ∩(D1×D2)→D1 is a ramified covering ( i.e., is proper) of some degree dk. But Γfk is
one to one over a generic point of D1. Therefore dk = 1 and Γfk ∩V converge to Γf ∩V as
graphs (in particular as cycles). We proved that fk converge to f on compacts of U \ If
as holomorphic mappings.

Let now a ∈ If and take some b ∈ f [a]. As above take a neighborhood V =D1×D2
∼=

∆n ×∆p of (a,b), where a = 0 and b = 0 in these coordinates. Denote by (w
′

,w
′′

) the
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coordinates in ∆n ×∆p. Perturbing the slope of coordinate w
′′

we can suppose that
({0}×∆p)∩Γf has 0 as its isolated point.

Remark 2.3. After perturbation of the slope of w
′′

the decomposition j(V ) = ∆n×∆p

will not correspond to the decomposition U ×X .

For sufficiently small ε > 0 we take polydisks ∆n
ε and ∆p

ε in (perturbed) coordinates
(actually only w

′′

needs to be perturbed). We get an adapted chart for Γf which possed
the following property:

i) Ṽ := j(V ) writes as Ṽ =∆n×∆p, p= dimX .

ii) Local coordinates (w
′

,w
′′

) of ∆n ×∆p enjoy the property that z
′

:= w
′

∈ ∆n is a
local

coordinate in U (but w
′′

is not a local coordinate on X).

iii) j(Γf ∩V )→∆n is a ramified covering of degree d> 1.

Again from Hausdorff convergence of Γfk to Γf we get that for all k≫ 1 the intersection
j(Γfk ∩V ) is a ramified covering of ∆n of degree dk. Obviously dk > d for k ≫ 1. If for
some subsequence dk > d we shall get a contradiction as follows. In that case some
irreducible component of Γf ∩ V will be approached by Γfk ∩ V at least doubly. Let Γ
stands for this irreducible component. Since dim [Γf ∩ (If ×X)]6 n−1 (by irreducibility
of Γf) we see that Γfk multiply approach every compact of Γ \ (If ×X). Take a point
c ∈ Γ \ (If ×X) having a relatively compact neighborhood W ⊂ Γ \ (If ×X) such that
pr1|W : W → W0 is biholomorphic, i.e., W is the graph of f over W0 ⋐ U \ If . Now it
is clear that Γfk ∩ (W0×X) cannot approach Γf ∩ (W0×X) =W with multiplicity more
than one, because Γfk is a graph of a holomorphic map over W0 for k≫ 1.

We proved that every irreducible branch of Γf ∩V the graphs Γfk approach with mul-
tiplicity one. Therefore j(Γfk ∩V ) → ∆n is a ramified covering of the same degree d as
j(Γf ∩V )→∆n for k≫ 1. This proves at a time that Γfk converge to Γf in the topology
of cycles and that their volumes are uniformly bounded.

�

Strong convergence has some nice features, one was mentioned in the Introduction.
Moreover, as it is explained in [Iv4], strong topology is natural in studying fix points
of meromorphic self-mappings of compact complex manifolds. But domains of strong
convergence and strong normality are quite arbitrary. We shall explain this in more
details. Let F be a family of meromorphic mappings from a complex manifold U to a
disk convex complex manifold X .

Definition 2.4. The set of normality of F is the maximal open subset NF of U such that
F is relatively compact on NF . If F = {fk} is a sequence then the set of convergence of
F is the maximal open subset of U such that fk converge on compacts of this subset.

To be relatively compact in this definition means that from every sequence of elements
of F one can extract a converging on compacts subsequence. The sense of convergence
(strong, weak or other) should be each time specified.

Example 2.1. 1. Let X be a Hopf three-fold X := C3 \ {0}/z ∼ 2z. Denote by
π : C3 \ {0} → X the canonical projection. Let D ⋐ C2 be any bounded domain. Take a
sequence {an} ⊂ D accumulating to every point on ∂D. Let gn : C2 → C3 be defined as
gn(z) = (z−an,1/n). Set fn := π ◦ gn. Then the set of normality of F = {fn} has D as
one of its connected components.
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Remark 2.4. For an analogous example with X projective see Example 4 from [Iv2].

2. The same example is instructive when understanding the notion of weak convergence.
Take a converging to zero sequence an. Then fn from this example will converge on
compacts of C2 \ {0} but the limit will not extend to zero meromorphically. I.e., fn will
not converge weakly in any neighborhood of the origin.

3. Pseudoconvexity of sets of normality

3.1. Weak convergence and proof of Theorem 3. In view of such examples a
weaker notion of convergence for meromorphic mappings was introduced in [Iv2]. Let
f ∈M(U,X) be a meromorphic map from U to X and let {fk} ⊂M(U,X) be a sequence
of meromorphic mappings.

Definition 3.1. We say that fk converge weakly to f (w-converge) if there exists an
analytic subset A in U of codimension at least two such that fk converge strongly to f on
U \A.

Remark 3.1. fk converge weakly to f if and only if for every compact of U \ If all
fk are holomorphic in a neighborhood of this compact for k big enough and uniformly
converge there to f as holomorphic mappings. Indeed, let A be the minimal analytic
set of codimension > 2 such that fk converge strongly to f on U \A. Then A must be
contained in If because if there exists a point a ∈ A \ If then f is holomorphic in some
neighborhood V ∋ a and then, by Rouché Principle of [Iv2] fk for k≫ 1 are holomorphic
on compacts in V \A and converge uniformly (on compacts) to f there. From here and
the fact that codimA > 2 one easily gets that fk are holomorphic on compacts in V and
converge to f .

Now let us turn to the sets of weak convergence/normality. Sets of strong normality
obviously are well defined, i.e., they do exist. The existence of sets of weak normality
was proved in [Iv2], see Corollary 1.2.1a.

Remark 3.2. In the formulation of this Corollary the Author of [Iv2] speaks about “weak
convergence” but the proof is about “weak normality“.

Domains of weak convergence of meromorphic mappings turn to be pseudoconvex for
a large class of target manifolds. This follows from the ”mutual propagation principle”
stated in Theorem 3 in the Introduction. Let us give a proof of it.

Proof of Theorem 3. Let us prove the part (b) first.

Step 1. Extension of the limit. First of all by the main result of [Iv3] every meromorphic

map f : U →X extends to a meromorphic map f : Û \A→X , where A is closed, complete

(n−2)-polar subset of Û of Hausdorff (2n−3)-measure zero. In more details that means
that for every point a ∈ A there exists a coordinate neighborhood V ∼=∆n−2×B2 of a= 0
such that A∩ (∆n−2×∂B2) = ∅ and for every z

′

∈ ∆n−2 the intersection Az
′ := A∩B2

z′

is a zero dimensional complete pluripolar subset of B2
z′
:= {z

′

}×B2. Here B2 stands for

the unit ball in C2. Moreover, if A 6=∅ then f(S3
z′
) is not homologous to zero in X . Here

S3
z′
= ∂Bz′ is the standard three-dimensional sphere in C2.

Let U ′ be the maximal open subset of Û\(If∪A) such that fk converge to f on compacts
on U ′ as holomorphic mappings.
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Step 2. U ′ is locally pseudoconvex in Û \(If∪A). If not then by Docquier-Grauert criterion,
see [DG], there would exist a point b ∈ ∂U ′ \ (If ∪A) and a Hartogs figure h : Hn

ε → U
′

imbedded to U ′ such that the image h(∆n) of the corresponding polydisk contains b. All
this is local and therefore we can assume that h(∆n) is relatively compact in U \(If ∪A).
Pulling back fk and f to ∆n we arrive to contradiction as follows. By the Theorem of
Siu, see [Si2], there exists a Stein neighborhood V of the graph of f ◦h in ∆n×X . Since
for every compact K ⋐Hn

ε we have that the graph of fk|K is contained in V we conclude
the same for every compact of ∆n. Now fk ◦ h converge to f ◦ h on compacts in ∆n as
holomorphic mappings. But that mean that they converge also around the preimage of b.
Contradiction. Since Û was supposed to be the envelope of holomorphy of U we obtain
that U ′ = Û \ (If ∪A).

Step 3. Removing A. Suppose A is non-empty. Take a sphere S3
z′

as described in Step

1 for some point a ∈ A. Using the fact that If is of codimension > 2 we can take S3
z′

not to intersect If as well. I.e., S3
z′ ⊂ U ′. fk(S

3
z′) is homologous to zero in X , because

fk meromorphically extends to the corresponding B2
z′. Moreover fk converge to f in a

neighborhood of S3
z′. This implies that f(S3

z′) is also homologous to zero and therefore A
should be empty. Contradiction. Part (b) is proved.

The proof of (a) is a particular case of the Step 2 of the proof of part (b).

�

Remark 3.3. We gave a proof of Theorem 3 here because the proof of an analogous
statement in [Iv2] uses a stronger extension claim from the subsequent paper [Iv3]. Namely
the Author claimed that A appearing in the Step 1 of the proof is analytic of codimension
two. This was not achieved in [Iv3] (and is not clear for us up to know). Therefore we
find necessary to remark that vanishing of (2n− 3)-dimensional measure of A together
with homological characterization of the obstructions for the meromorphic extension is,
in fact, sufficient for our particular task here.

3.2. Gamma convergence of meromorphic mappings. Let again fk be a sequence
of meromorphic mappings between complex manifolds U and X , the last is supposed to
be disk-convex. Let f ∈M(U,X) be a meromorphic map.

Definition 3.2. We say that fk Γ-converge to f if:

i) there exists an analytic subset A⊂ U such that fk strongly converge to f on U \A;

ii) for every divisor H in X, such that f(U) 6⊂H and every compact K ⋐ U the
volumes of f ∗

kH ∩K counted with multiplicities are uniformly bounded for k≫ 1.

Remark 3.4. This notion is strictly weaker than the weak convergence because A can
have components of codimension one, and remark that the item (ii) is automatically
satisfied by a weakly converging sequence, because divisors f ∗H extend from U \A to
U and if they have bounded volume on compacts of U \A then the same is true on
compacts of U . All this obviously follows from the ingredients involved in the proof of
Bishop’s compactness theorem, see [Bi] or [St]. It might be convenient to add to A the
indeterminacy set of f and then, see Remark 3.1, fk will converge to f uniformly on
compacts of U \A as holomorphic mappings.

Example 3.1. a) Consider the following sequence of holomorphic mappings fk : ∆→ P1:

fk : z→

[

1 : 1+
1

z
+ ...+

1

zkk!

]

=

[

zk : zk + zk−1+ ...+
1

k!

]

. (3.1)
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It is clear that fk converges on compacts of ∆ \ {0} to f(z) = [1 : e
1
z ] but, as it is

clear from the second expression in (3.1) the preimage counting with multiplicities of the
divisor H = {Z0 = 0} is k[0] (here [Z0 : Z1] are homogeneous coordinates in P1), i.e., has
unbounded volume. And indeed, this sequence should not be considered as converging
one, because its limit is not holomorphic on ∆.

b) Set fk(z) = [z : z− 1
k
] : ∆ → P1. This sequence clearly converges to the constant map

f(z) = [z : z] = [1 : 1] on compacts of ∆ \ {0}. Moreover, the preimage of any divisor
H = {P (z0, z1) = 0} under fk is {z ∈∆ : P (z,z− 1

k
) = 0}, i.e., is a set of points, uniformly

bounded in number counting with multiplicities. Therefore this sequence Γ-converge (but
doesn’t converge weakly).

Example 3.2. Consider the following sequence of meromorphic functions on ∆2 ( i.e.,
meromorphic mappings to P

1):

fk(z1, z2) = [z1 : 2
−kzk2 ].

The limit map is constant f(z) = [1 : 0]. fk converge to f strongly (uniformly in fact)
on compacts of ∆2 \ {z1 = 0}. If [Z0 : Z1] are homogeneous coordinates in P1 then the
preimage of the divisor [Z1 = 0] is k[z2 = 0], i.e., this sequence doesn’t converge even in
Γ-sense on ∆2.

Remark 3.5. Examples 3.1 (a) and 3.2 are examples of converging outside of an analytic
set of codimension one sequences which are not Γ-converging. In the first case the limit
doesn’t extend to the whole source, in the second it does. Convergence of meromorphic
mappings of this type was introduced and studied by Rutishauser in [Ru].

If in Definition 2.4 the underlying convergence is Γ-convergence we get the correspond-
ing notions of a convergence/normality set. Let us conclude this general discussion with
the following

Proposition 3.1. Let X be a disk-convex Gauduchon manifold. Then the sets of Γ-
convergence/normality of meromorphic mappings with values in X are locally pseudocon-
vex.

Proof. We shall prove the statement for the sets of Γ-normality, the case of sets of
convergence obviously follows. Let D be the maximal open subset of U where the family
F is Γ-normal. Suppose thatD is not pseudoconvex. Then by Docquier-Grauert criterion,
see [DG], there exists an imbedding h : Hn

ε → D of a Hartogs figure into D such that h
extends to an immersion of the polydisk to U with h(∆n)∩∂D 6=∅. Recall that Hartogs
figure is the following domain

Hn
ε :=

(

∆n−1
ε ×∆

)

∪
(

∆n−1×A1−ε,1

)

, (3.2)

where A1−ε,1 := ∆\∆̄1−ε is an annulus. Let us pull-back our family to ∆n by h and there-
fore without loss of generality we can suppose that U =∆n, F is a family of meromorphic
mappings from ∆n to X , Hn

ε ⊂D ⊂∆n is the set of Γ-normality of F such that D 6=∆n.

That means that there exists a sequence {fk} ⊂ F , which converges on D but doesn’t
not Γ-converge on compacts in ∆n. Let us see that this is impossible. Let f : D → X
be the Γ-limit of fk. Denote by A the analytic set in D such that fk converge to f on
compacts of D \A. By [Iv3] f extends to ∆n \ S, where S is closed (n− 2)-complete
polar subset of ∆n. Let A′ be the pure (n−1)-dimensional part of A. By the theorem of
Grauert we have two cases.
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Case 1. The envelope of holomorphy ofD\A′ is∆n. In that case the Theorem 3 is applicable

with U = D \A′ and Û = ∆n and gives us the weak (and therefore Γ) convergence of fk
on ∆n.

Case 2. A′ extends to a hypersurface Ã in ∆n and ∆n \ Ã is the envelope of holomorphy of
D \A′. In that case again by Theorem 3 fk weakly converge to f on ∆n \ Ã. S \ Ã is
removable for f , see the Step 3 in the proof of Theorem 3. Therefore fk strongly converge
to f outside of a proper analytic set A∪ If . We need now to prove that f is extendable
to ∆n, i.e., that S is empty. By Lemma 7.2 below the areas of disks fk(∆z′ ) are bounded
uniformly on k and on z

′

∈∆n−1(1−ε) for any fixed ε > 0, here ∆z
′ := {z

′

}×∆. Therefore
the areas of f(∆z′ ) are bounded to. Theorem 1.5 together with Proposition 1.9 from [Iv3]
imply now that f meromorphically extends onto ∆n−1(1−ε)×∆. Therefore it extends to
∆n. The condition (i) of Definition 3.2 is fulfilled.

Let H be a divisor in X . Then for every compact K ⋐ Hn
ε the volumes of f ∗

kH ∩K
counted with multiplicities are bounded. By Oka-Riemenschneider theorem, see [Rm],
the volumes of the extensions of these divisors are bounded on compacts of ∆n to. This
verifies the condition (ii) of Definition 3.2. Proposition is proved.

�

4. Convergence of mappings with values in projective space

Now let us examine our notions of convergence on the example when the target manifold
is a complex projective space.

4.1. Meromorphic mappings to complex projective space. Let a meromorphic
mapping f : U → PN be given. Without loss of generality we suppose that the image of f
is not contained in a hyperplane. Then the (complete) inverse image f−1(H) under f of a
hyperplane H is a divisor in U . By f−1(Pn \H) we shall understand U \f−1(H). Denote
by [w0 : w1 : ... : wN ] the homogeneous coordinates of PN . Let Uj = {w ∈ PN : wj 6= 0}
and let w0

wj
, ..., wN

wj
be affine coordinates in Uj . Set Dj := f−1(Uj), i.e., Dj = U \ f−1(Hj),

where Hj := {wj = 0}. Since U0 is isomorphic to C
N the restriction f |D0

: D0 −→ U0

is given by holomorphic functions w1

w0
= f1(z), ...,

wN

w0
= fN(z). The coordinate change

in PN shows that f |D0∩Dj
: D0 ∩Dj −→ PN is given by functions w1

w0
= 1

fj(z)
, ..., wN

w0
=

fN (z)
fj(z)

which are holomorphic in Dj . Therefore functions f1, ...,fN are meromorphic on

D0 ∪Dj. This proves that f1, ...,fN are meromorphic on
⋃N

j=0Dj ⊂ U . We have that

U \
⋃N

j=0Dj =
⋂N

j=0 f
−1(Hj), i.e., for every point from this set the image of every its

neighborhood intersects every Hj. Such point can be only an indeterminacy point of f .

I.e., U \
⋃N

j=0Dj ⊂ If . If is analytic of codimension > 2 and therefore by the theorem of

Levi, see [Lv] or [Ha], every fj meromorphically extends to U .

If f1 ≡ ... ≡ fn ≡ 0 then f(U) ≡ 0 ∈ U0. If not, let f1 6≡ 0. One finds holomorphic
functions hj et gj 0≤ j ≤N in a polydisk neighborhood V of a given point x ∈ U , gj 6= 0
such that

f1 =
h1
g1
, ...,fN =

hN
gN
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and therefore gets

f :=

[

1 :
h1
g1

: ... :
hN
gN

]

=

[

N
∏

j=1

gj : h1

N
∏

j=2

gj : ... : hN

N−1
∏

j=1

gj

]

.

This proves that f can be locally written in the form

f(z) := [f0(z) : f1(z) : ... : fN(z)] (4.1)

as claimed.

4.2. Weak convergence of mappings with values in projective space. Let us
prove now the part (ii) of Theorem 2 from the Introduction. I.e.,

Proposition 4.1. A sequence of meromorphic mappings fk from a complex manifold U
to P

N converges weakly on compacts of U if an only if for every point z0 ∈ U there exists
a neighborhood V ∋ z0 and reduced representations fk = [f 0

k : ... : fN
k ], f = [f 0 : ... : fN ] in

V such that for every 06 j 6N f j
k converge to f j uniformly on V .

⇒ Let fk ⇀ f , i.e., fk converge to f weakly. Shrinking U we suppose that all fk and f
admit reduced representations

fk = [f 0
k : ... : fN

k ] (4.2)

and

f = [f 0 : ... : fN ] (4.3)

correspondingly. Up to making a linear coordinate change in PN we can suppose that
f [U ] is not contained in any of coordinate hyperplanes, i.e., that f j 6≡ 0 for all 06 j 6N .
Set

Zj = {z ∈ U : f j(z) = 0},

and note that
⋂N

j=1Z
j = If . Since fk converge on compacts in Uj := U \Zj to f , see

Remark 3.1, we see, taking j = 0, that

f j
k

f 0
k

⇒
f j

f 0
(4.4)

for all j on compacts in U0. Denote by Z0
k the zero divisors of f 0

k and note that they leave
every compact of U0 as n→∞.

Lemma 4.1. Divisors Z0
k converge to Z0 in cycle space topology.

Let us prove this Lemma first. Fix a point a ∈ Z0 \Zj (if Z0 \Zj is not empty) and
take a relatively compact neighborhood V ∋ a such that V̄ ∩Zj = ∅. We have that
f 0
k/f

j
k ⇒ f 0/f j on V̄ . The Rouché’s theorem easily implies now that Z0

k ∩V converge to
Z0∩V as currents.

Remark 4.1. In fact the cycle space topology on the space of divisors coincides with the
topology of uniform convergence of defining them holomorphic functions, see [Stl]. And
this immediately gives the previous assertion.
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We conclude from here that Z0
k converge to Z0 as cycles on compacts in U \ If . But

then by [Ni], Theorem II, we obtain that they converge on the whole of U . Lemma 4.1 is
proved.

We continue the proof of the Theorem. Shrinking U if necessary we can suppose that
U is biholomorphic to ∆n = ∆n−1×∆ and Z0

k ∩U regularly covers ∆n−1 for k≫ 1. Now
each Z0

k can be written as the zero set of a uniquely defined unitary polynomial Pk from
O∆n−1 [zn] and these Pk uniformly converge to P - the defining polynomial for Z0. After
multiplying each [f 0

k : ... : fN
k ] by the unit Pk/f

0
k we get the reduced representations

fk = [Pk : g
1
k... : g

N
k ].

The same with
f = [P : g1... : gN ].

But now Pk ⇒ P and therefore from (4.4), which reads now as

gjk
Pk

⇒
gj

P
(4.5)

on compacts in U0, we get that for every 16 j 6N gjk ⇒ gj on compacts in U0 = U \Z0.

But from the maximum principle it follows that gjk ⇒ gj on compacts in U .

⇐ For proving the inverse statement we start with converging reduced representations
(4.2) to (4.3), i.e., f j

k ⇒ f j on U . Then for every 06 j 6N on every Uj = U \Zj we get
a convergence on compacts

(

f 0
k

f j
k

, ...,
fN
k

f j
k

)

⇒

(

f 0

f j
, ...,

fN

f j

)

.

And since the codimension of If =
⋂

Zj is at least two we deduce the weak convergence
of fk to f .

�

4.3. Strong convergence and convergence of meromorphic functions. Strong
convergence of meromorphic maps into P

N can be described in the following way. First,
if fk → f then fk ⇀ f . Therefore [f 0

k : ... : fN
k ]⇒ [f 0 : ... : fN ] for an appropriate reduced

representations. According to (2.2) the volume of the graph of fk is
∫

U\Ifk

(

ω1+f
∗
kωFS

)n
=

∫

U\If

n
∑

j=0

Cj
nω

j
1∧f

∗
kω

n−j
FS . (4.6)

Since f ∗
kωFS = ddc ln‖fk‖

2 this is nothing but the non-pluripolar Monge-Ampère mass of

ln‖fk‖
2 as appeared in (1.3). By Proposition 1 volumes of Γfk converge to the volume of

Γf , i.e.,

∫

U\Ifk

ωj
1∧
(

ddc ln‖fk‖
2)n−j

→

∫

U\If

ωj
1∧
(

ddc ln‖f‖2
)n−j

(4.7)

for 0 6 j < n. In the case U = ∆n this gives (1.3). Vice versa, if one has convergence of
volumes the appearance of an exceptional component is impossible and we conclude the
part (iii) of Theorem 2:
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Proposition 4.2. fk converge to f strongly if and only if

i) the appropriate reduced representations converge uniformly;

ii) for every 06 j 6 n−1 one has (4.7).

Now let us descend to the convergence of meromorphic functions. Meromorphic func-
tions on a complex manifold U are exactly the meromorphic mappings from U to P

1. I.e.,
all our previous results and notions are applicable to this case.

Proposition 4.3. If a sequence {fk} of meromorphic functions converge weakly then it
converge strongly.

Proof. Let f be the weak limit of fk. We shall see in a moment, see Corollary 5.2 that
volumes of graphs in this case are uniformly bounded over compacts in U . Therefore
after going to a subsequence we get that the Hausdorff limit Γ̂ := limΓfk is a purely
n-dimensional analytic subset of U ×P1. We claim that limΓfk = Γf in fact, i.e., that
there are no exceptional components. If not take any irreducible component Γ of this
limit different from Γf . Denote by γ its projection to U . γ is a proper analytic set of
codimension at least two U . But then Γ should be contained in γ×P1 and the last analytic
set is of dimension dimU −1. This is impossible, because all components of limΓfk are of
pure dimension dimU . Therefore γ =∅ and limΓfk = Γf .

�

4.4. Gamma convergence in projective case. In [Fu] and subsequent papers of Fu-
jimoto the following type of convergence of meromorphic mappings with values in PN

was considered, it was called the m-convergence (or meromorphic convergence): fk m-
converge to f if there exist reduced (admissible in the terminology of [Fu]) representations
fk = [f 0

k : ... : fN
k ] which converge uniformly on compacts to f = [f 0 : ... : fN ], but the last

is not supposed to be reduced ( i.e., admissible), only not all f j are identically zero. Let
us prove the item (i) of Theorem 2.

Proposition 4.4. When the target manifold X is the complex projective space P
N the

Γ-convergence of meromorphic mappings is equivalent to m-convergence in the sense of
Fujimoto.

Proof. ⇒ Suppose that fk
Γ
−→ f . Let γ be the an analytic subset of U such that our

sequence converge strongly on compacts of U \ γ. We add to γ also the indeterminacies
of the limit f and therefore fk will converge to f on U \ γ in compact open topology.
Let f = [f 0 : ... : fN ] be some reduced representation of the limit map. Making linear
change of coordinates we can suppose, without loss of generality that f 0 6≡ 0, i.e., that
f(U) 6⊂ H0, where H0 = {Z0 = 0} in homogeneous coordinates [Z0 : ... : ZN ] of P

N . We
have that f ∗

kH0 converge on compacts in U in the cycle space topology (after taking a
subsequence).

Take some a ∈ γ and choose a chart (V,j) adapted both to γ and f ∗H0 with coordinates
z1, ..., zn around a in such a way that a = 0 and (γ∪f ∗H0)∩ (∆n−1×∆) projects to ∆n−1

properly. Then f ∗
kH0 ∩ V also projects to ∆n−1 properly for k ≫ 1. After going to a

subsequence once more we can fix the degree d of ramified coverings f ∗
kH0 ∩V → ∆n−1

and write the corresponding polynomials Pk ∈ O∆n−1 [zn] defining f
∗
kH0∩V . Pk converge

to some P on (compacts of) ∆n−1. Let fk = [f 0
k : ... : fN

k ] be some reduced representations
of fk on V . Notice that f ∗

kH0 ∩V = {f 0
k = 0}. Divide each such representation by the
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unit f 0
k/Pk and get representations fk = [Pk : g

1
k : ... : g

N
k ] with converging first terms Pk.

At the same time (g1k/Pk, ...,g
N
k /Pk) represents fk in nonhomogeneous coordinates of the

chart Z0 6= 0 on PN . Therefore gjk/Pk converge to some f j on compacts of V \ (γ∪f ∗H0).

Therefore gjk converge to gj := f jP on compacts of V \ (γ ∪ f ∗H0) to. By maximum
principle they converge everywhere on V to the extension of gj. We get that reduced
representations fk = [Pk : g

1
k : ... : g

N
k ] converge term by term to a (may be non reduced)

representation [P : g1 : ... : gN ] and this can be only a representation of f .

⇐ Suppose now that fk m-converge to f . Again change coordinates in P
N , if necessary,

in such a way that f(U) 6⊂ H0. Let V be a neighborhood of some point a ∈ U . If
a ∈ f ∗H0 then take (V,j) to be an adapted chart to this divisor. In any case take V to be
biholomorphic to ∆n−1×∆. Let Fk = (f 0

k , ...,f
N
k ) be the lifts of fk to CN+1 in V such that

Fk converge to the lift F = (f 0, ...,fN ) of f . From here one gets immediately that f j
k/f

0
k

converge to f j/f 0 uniformly on compacts of V \ {f 0 = 0}, i.e., that our maps converge
strongly outside of a divisor.

Now let H = {P (Z0, ...,ZN ) = 0} be a divisor such that f(U) 6⊂ H . Using convergence
of lifts Fk = (f 0

k , ...,f
N
k ) to F = (f 0, ...,fN ) one gets that fk(U) 6⊂ H for k ≫ 1. One has

also that P (f 0
k , ...,f

N
k ) uniformly converge to P (f 0, ...,fN ) and this is equivalent to the

convergence of divisors.

�

Remark 4.2. The relation between weak/gamma convergence and m-convergence for the
case of X = PN was indicated without proof in [Iv2].

5. Bloch-Montel type normality criterion

The aim of this section is to test the notion of weak convergence on the Bloch-Montel
type normality statement, i.e., we are going to prove here the Theorem 4 from the
Introduction.

5.1. Preliminaries. Before proceeding with the proof let us recall few basic facts. We
start with an extended version of Zalcman’s lemma, see [Me]:

Lemma 5.1. A family F of holomorphic mappings from ∆n to a compact Hermitian
manifold (X,h) is not normal at z0 ∈ ∆n if and only if there exist sequences zk → z0,
rk ց 0, fk ∈ F such that fk(zk + rkw) converge uniformly on compacts in Cn to a non-
constant entire mapping f : Cn →X such that ‖df(w)‖h 6 2 for all w ∈ Cn.

This f may well have rank one. We shall also need the following result from [IS1], which
is a precise version of Gromov compactness theorem (we shall need it in the integrable
case only):

Proposition 5.1. Let uk : ∆→X be a sequence of holomorphic maps into a disk-convex
Hermitian manifold (X,h) with uniformly bounded areas, which uniformly converges on
some annulus A1−ε,1 adjacent to the boundary ∂∆. Then uk converge to stable complex
curve over X after a reparametrization. Moreover, the compact components of the limit
are rational curves.

For the notions of stable curve over X , convergence after a reparametrization, as well
as for the proof we refer to [IS1]. The obvious conclusion from this type of convergence
is the following:
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Corollary 5.1. If uk converge in stable sense to u and u(∆) intersects a divisor H in X,
but us not contained in H, then all uk(∆) intersect H for k≫ 1.

Proof. It was proved in [IS2] (more details are given in [IS1]) that for any k≫ 1 one can
join uk with u by a holomorphic one parameter family of stable maps, see Proposition
2.1.3 in [IS2] for the exact statement. For us it is sufficient to understand that there exists

a normal complex surface Y
π
−→∆ foliated over the disk ∆ such that all fibers Ys := π−1(s)

are disks and a holomorphic mapping U : Y → X such that U|Y0
= u and U|Ys0

= uk for
some s0 ∈∆ and some k.

Remark 5.1. The fact that this family can be contracted to a surface with normal points
is proved in Lemma 2.2.6 in [IS2].

Let h be a defining holomorphic function of the divisor H near the point of intersection
u(∆)∩H . Then h◦U is holomorphic on Y (for this one might need to take disks of smaller
radii) and is equal to zero at 0 ∈ Y0 ⊂ Y . At the same time it cannot vanish on

⋃

s∈∆∂Ys
because U|Ys

(∂Ys) is close to u(∂∆) for all s ∈ ∆. Therefore the zero set of h ◦U must
intersect every Ys. And that means that uk(∆) intersects H .

�

Let us make one more remark. Let ωFS be the Fubini-Study form on PN . For a
holomorphic map f : ∆̄ → CN (we always suppose f to be defined in a neighborhood of
the closure ∆̄), the area of f(∆) with respect to the Fubini-Study form is

areaFSf(∆) =

∫

∆

f ∗ωFS. (5.1)

Denote by Z = (Z0, ...,ZN) coordinates in CN+1 and let π : CN+1 \ {0} → PN be the
standard projection. Consider the following singular (1,1)-form on CN+1

ω0 = ddc ln‖Z‖2 . (5.2)

The following statement is a simple case of King’s residue formula, but we shall give a
simple proof for the sake of completeness.

Lemma 5.2. For a holomorphic lift F = (f 0, ...,fN ) : ∆̄ → CN+1 of f : ∆̄ → PN ( i.e.,
f = π ◦F ) such that F |∂∆ doesn’t vanishes one has

areaFSf(∆) =

∫

∂∆

dc ln‖F‖2−NF . (5.3)

Here NF is the number of zeroes of F counted with multiplicities.

Proof. By the very definition of the Fubini-Study form one has π∗ωFS = ω0. And
therefore it is immediate to check that in a neighborhood of a point a ∈ ∆ such that
F (a) 6= 0 one has that f ∗ωFS = F ∗ω0. As the result

areaFSf(∆) =

∫

∆

f ∗ωFS =

∫

∆\ZF

F ∗ω0, (5.4)
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where ZF := {z1, ..., zk} is the set of zeroes of F , i.e., such zl that f
j(zl) = 0 for all

j = 0, ...,N . Let nl be the multiplicity of zero zl. Then F (z) = (z− zi)nl(g0(z), ...,gN(z)),
where at least one of gj-s is not zero at zl. We have that

ddc ln‖F‖2 = nlδzl +dd
c ln‖G‖2 ,

where G(z) = (g0(z), ...,gN (z)). Therefore ddc ln‖G‖2 is an extension of F ∗ω0 to zl. The
rest obviously follows from the Stokes formula.

�

Let us observe the following immediate corollary from this lemma.

Corollary 5.2. Let fk : U → PN be a Γ-converging sequence of meromorphic mappings
and let L be a divisor in U such that fk converge uniformly on compacts of U \L. Let
V ∼= ∆n−1×∆ be a scale adapted to L and to the limit M of f ∗

kH0, where H0 = [Z0 = 0].
Then the areas of the analytic disks fk(∆z′ ) are uniformly bounded in z

′

∈ ∆n−1 and
k ∈ N.

Proof. Let (z
′

, zn) be coordinates in ∆n−1 ×∆. Denote by Fk = (f 0
k , ...,f

N
k ) lifts of

fk to CN+1. Consider restrictions fk|∆
z
′
. Due to the fact that our chart is adapted to

M = limf ∗
kH0 we have that f 0

k doesn’t vanishes on ∂∆z′ for k ≫ 1 and, since it is also
adapted to L the lifts Fk = (f 0

k , ...,f
N
k ) converge in a neighborhood of ∂∆z′ . By (5.3) we

have

areaFSfk(∆z′ )6

∫

∂∆
z
′

dc ln‖Fk‖
2
6 c, (5.5)

i.e., the areas are uniformly bounded for z
′

∈∆n−1 and all k.

�

Remark 5.2. For a family F of meromorphic mappings from a manifold U to a projective
manifold X to be normal an obvious necessary condition is that for any fixed hypersurface
H ⊂ X and any fixed compact K ⋐ U the volumes counting with multiplicities of
intersections f ∗H∩K should be uniformly bounded for f ∈ F . It was proved by Fujimoto
in [Fu] that this condition (in the case X = PN and Hi are hyperplanes) turns out to
be also sufficient, but only for the meromorphic ( i.e., Γ) normality. We in this paper are
interested in the normality in the weak convergence sense (which is, that’s to say, stronger
than meromorphic one). In that case there is one more necessary condition. Take two
hypersurfaces H0 and H1 in X . Let {f ∗H0 : f ∈ F} and {f ∗H1 : f ∈ F} be the families of
their preimages by elements of our family f ∈ F . By boundedness of volumes condition
for every sequence f ∗

kHi, i = 0,1, some subsequences f ∗
kj
Hi converge to divisors L0 and

L1. If there exist coinciding (without taking to account the multiplicities) components L
′

0

and L
′

1 of L0 and L1 respectively, then fkj cannot weakly converge in a neighborhood of

L
′

0 = L
′

1. Indeed, since the limit f is a holomorphic map outside of If , the preimages
f ∗H0 and f ∗H1 cannot have common components. But L

′

0 and L
′

1 are such components.
Contradiction. This will be formalized in the following definition.

Let F be a Γ-normal family in M(U,X). Fix a divisor H in X . Remark that for every
relatively compact D ⋐ U the intersections f ∗H ∩ D̄ from a pre-compact family of sets
when f is running over F . Therefore one can find a finite collection of scales {Eα} such
that every f ∗H ∩ D̄ can be covered by some of corresponding Vα and the members of
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this covering are adapted to f ∗H . This collection {Eα} of scales depends on D ⋐ U , but
doesn’t depend on f ∈ F and, moreover, doesn’t depend on H taken in some compact
family of divisors, in our case this family is {H0, ...,Hd}, i.e., is finite.

Definition 5.1. We say that a family F of meromorphic mappings from a complex man-
ifold U to a complex manifold X uniformly separates hypersurfaces H0 and H1 from X
if for any f ∈ F and any adapted for both f ∗H0 and f ∗H1 scale Eα = (Vα, jα,∆

n−1,∆)
as above, the Hausdorff distance between f ∗H0∩Vα and f ∗H1∩Vα for f ∈ F is bounded
from below by a strictly positive constant.

Hausdorff distance is taken here in the Euclidean metric of Cn. A constant in question
may well depend on divisors H0, H1 and adapted chart Vα, but it is supposed not to
depend on f ∈ F .

5.2. Proof of the normality criterion of Theorem 4. We are going to prove now
Theorem 4 from the Introduction. Recall that a relatively compact open subset Y of a
complex manifold X is said to be hyperbolically imbedded to X if for any two sequences
{xn} and {yn} in Y converging to distinct points x ∈ Ȳ and y ∈ Ȳ one has

limsupn→∞kY (xn,yn)> 0,

where kY is the Kobayashi pseudodistance of Y . Y ⋐X is said to be locally hyperbolically
complete (l.h.c) if for every y ∈ Ȳ there exists a neighborhood Vy ∋ y such that Vy ∩Y is
hyperbolically complete. For example every Y ⋐X of the form X\{ divisor } is obviously
l.c.h. It was proved in [Ki] that if Y is hyperbolically imbedded into X and is l.h.c. then
Y is complete hyperbolic.

These notions are connected to complex lines in Ȳ by Theorem of Zaidenberg, see [Za].
By a complex line in Y (or in X) one understands an image of a non-constant holomorphic
map u : C → Y (or X). Sometimes one requires that

∥

∥dzu(
∂
x
)
∥

∥

h
6 1 for all z ∈ C, where

h is some Hermitian metric on X . Complex line u : C→ Ȳ ⋐X is called limiting for Y if
there exists a sequence of holomorphic mappings un : ∆(R)→ Y converging on compacts
in C to u : C → Ȳ . Theorem of Zaidenberg says now that: for a relatively compact
l.c.h. domain Y in a complex manifold X to be complete hyperbolic and hyperbolically
imbedded in X it is necessary and sufficient that Y doesn’t contain complex lines and
doesn’t admits limiting complex lines.

Now we turn to the proof. Let {fk} be a sequence from F , where F satisfies the
assumptions of Theorem 4 from the Introduction. {Hi}di=0 our set of divisors.

Step 1. Convergence outside of a divisor. By Bishop’s compactness theorem for every i
some subsequence from f ∗

kHi converges to a (may empty) hypersurface in U . Denote this
limit hypersurface as Li. Set

L :=

d
⋃

i=0

Li.

In order not to complicate notations we will not introduce subindexes when extracting
subsequences.

If L is empty then for every compact K ⋐ U all fk with k big enough send K to
X \

⋃d
i=0Hi, the last is Stein. In particular they are holomorphic in a neighborhood of
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K and we can use Zalcman’s Lemma 5.1 together with Zaidenberg’s characterization to
extract a converging subsequence.

Therefore from now on we suppose L is nonempty. Take a point z0 ∈ U \L and take
a relatively compact neighborhood V ∋ z0 biholomorphic to a ball such that V̄ ∩L = ∅.
Then for k big enough fk(V̄ ) ⊂ X \

⋃d
i=0Hi. This implies that they all are holomorphic

on V and we again can find a converging subsequence on V as before. Therefore some
subsequence of {fk} (still denoted as {fk}) converge on compacts of U \L in the usual
sense of holomorphic mappings. Denote by f its limit. f is a holomorphic map from U \L
to X .

Step 2. Convergence across the divisor. Take a point z0 ∈ L0, if L0 is empty we can re-
numerate Li-s. fix an imbedding i : X → PN and let H be the intersection of X ( i.e., of
i(X)) with hyperplane {Z0 = 0} in the standard homogeneous coordinates [Z0 : ... : ZN ]
of PN . After going to a subsequence we have that f ∗

kH converge, denote by M the
limit. Let (V,j) be an adapted chart for L∪M (and therefore also for L0) at z0 with the
scale E = (V,j,∆n−1,∆). Let Pk[zn] ∈ O∆n−1 [zn] be the defining unitary polynomial for
f ∗
kH ∩V . Pk converges to the defining polynomial P of M ∩V .

Let fk = [f 0
k : ... : fN

k ] be reduced representations of fk on V (we write fk for i ◦ fk).
Then multiplying this representation by the unit Pk/f

0
k we obtain a reduced representation

fk = [Pk : g
1
k : ... : g

N
k ]. We have that gjk/Pk converge on compacts of V \(L∪M). Therefore

gjk converge there to, denote by gj its limit. We see that lifts Fk = (Pk,g
1
k, ...,g

N
k ) converge

to F := (P,g1, ...,gN) on compacts of V \ (L∪M). By maximum principle they converge
on V .

In particular f extends to a meromorphic mapping from U to X .

Remark 5.3. It is worth of noticing that at this stage we proved the Γ-normality of our
family. For the case X = PN with Hi hyperplanes this was proved in [Fu]. One more point
worth of noticing is that the extendibility of f also follows from usual complex hyperbolic
geometry, see [Ko].

Step 3. Convergence outside of codimension two. Changing indices of Hi, if necessary, we
can suppose that our family uniformly separates H0 and H1. Take a point z0 ∈ L0\

⋃

i 6=0Li

such that L0 in addition is smooth at z0. Take an adapted scale E = (V,j,∆n−1,∆) for
L0 near z0 which intersects L only by the smooth part of L0 and, moreover, such that
j(L0 ∩ V ) = d · [∆n−1 × {0}] for some multiplicity d > 1. Fix coordinates (z

′

, zn) on
∆n−1×∆. By Corollary 5.2 the areas of analytic disks fk|∆

z
′
are uniformly bounded. Fix

some z
′

∈∆n−1 and take a subsequence fk such that fk|∆
z
′
converge in stable topology to

f |∆
z
′
plus a chain Cz′ of rational curves. By Corollary 5.1 if Cz′ intersects some H1 with

i 6= 0 then fk|∆
z
′
(∆z′ ) intersects H1 to. But then f ∗

kH1∩V is nonempty and converge to

L1 ∩V . This can be only L0 ∩V with some multiplicity, because V was chosen in such
a way that L∩V = L0 ∩ V . The last violates the assumed uniform separability of the
pair H0,H1 by F . Therefore Cz′ is empty. That means that (some subsequence of) fk|∆

z
′

uniformly on ∆z′ converge to f |∆z
′
. This implies that the whole sequence fk restricted to

∆z′ converge to f . Therefore fk converge to f on U \SingL in compact open topology as
holomorphic mappings. This proves the Theorem.

�
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Remark 5.4. Theorem of Bloch, see also [Gr], states that Y = PN \
⋃2N

j=0Hi is hy-

perbolically imbedded to PN , where Hi are hyperplanes in general position. Therefore
Y = PN \

⋃2N
i=0Hi is an example for our Theorem 4.

6. Behavior of volumes of graphs under weak and gamma convergence

In this section we are concerned with the following question: let meromorphic mappings
fk : U → X converge in some sense to a meromorphic map f , what can be said about
the behavior of volumes of graphs of fk over compacts in U? If fk converge to f strongly
then, as it was proved in Theorem 1, for every relative compact V ⋐ U we have that

Vol(Γfk|V )→ Vol(Γf |V ). (6.1)

When fk converges only weakly one cannot, of course expect anything like (6.1). At most
what one can expect is that volumes of Γfk stay bounded over compacts in U and converge
to the volume of Γf plus volumes of exceptional components. I.e., the question is if for a
weakly converging sequence {fk} one has that for every relatively compact open V ⋐ U
there exists a constant CV such that

Vol(Γfk|V )6 CV for all k. (6.2)

This turns to be wrong in general, the following example was communicated to us by
A. Rashkovskii.

6.1. Example of Rashkovskii.

Example 6.1. There exists a sequence εk ց 0 such that holomorphic mappings fk : B
3 →

P3 defined as
fk : (z1, z2, z3)→ [z1 : z1−εk : z2 : z

k
3 ] (6.3)

converge weakly to f(z) = [z1 : z1 : z2 : 0] on compacts of the unit ball B3 ⊂ C3, but the
volumes of graphs of fk over the ball B3(1/2) of radius 1/2 diverge. In fact

Vol(Γfk)∩ (B3(1/2)×P
3)> k. (6.4)

Consider the following family of plurisubharmonic functions on the unit ball B3 in C3:

uε,k(z) = ln(|z1|
2+ |z1−ε|

2+ |z2|
2+ |z3|

k), ε ∈ (0,1/4). (6.5)

Note that every uε,k is bounded in B3 and its total MA mass in B3(1/2) coincides with
those of the function

ũε,k :=max{uε,k, sk} where sk =min{ln(|z1|
2+ |z2|

2+ |z3|
k) : z ∈ S

5(1/2)}.

Here S5(1/2) = ∂B3(1/2) is the sphere of radius 1/2. This fact follows from the Bedford-
Taylor definition of the MA mass of a product of bounded psh functions, see [BT]: ddcu1∧
ddcu2 := ddc(u1dd

cu2) and so on by induction. Here the point is, of course, to prove that
ddc(u1dd

cu2) is again a closed positive current. Now one writes

MAB3(1/2)(uε,k) =

∫

B3(1/2)

(ddcuε,k)
3 =

∫

B3(1/2)

ddcuε,k∧ (ddcuε,k)
2 =

∫

∂B3(1/2)

dcuε,k∧ (ddcuε,k)
2 =

=

∫

∂B3(1/2)

dcũε,k∧ (ddcũε,k)
2 =

∫

B3(1/2)

(ddcũε,k)
3 =MAB3(1/2)(ũε,k)

because uε,k = ũε,k on the sphere S5(1/2). Since ũε,k converge uniformly to ũk =
max{ln(2|z1|

2+ |z2|
2+ |z3|

k), sk} as εց 0 and MAB3(1/2)(ũk) = MAB3(1/2)(uk) = 4k, where
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uk = ln(2|z1|2+ |z2|2+ |z3|k), we shall have that for εk small enough MAB3(1/2)(uεk,k) > k.
This finishes the proof.

Remark 6.1. Examples of psh functions with polar singularities and unbounded non-
polar MA mass where constructed first by Shiffman and Taylor, see [Si1], and espe-

cially simple one by Kiselman, see [Ks]: u(z1, ..., zn) = (1− |zn|
2)(− ln

∥

∥z
′
∥

∥

2
)1/2 for z

′

=
(z1, ..., zn−1). Taking any of these examples and smoothing it by convolutions one gets a
decreasing sequences of psh functions converging outside of an analytic set (on any codi-
mension) to a psh function, smooth outside of this set with unbounded non-polar MA
mass. The remarkable feature of the example of Rashkovskii, just described, is that func-
tions in this example have a geometric meaning, their ddc-s are pullbacks of Fubini-Study
form by a meromorphic mappings to the complex projective space, i.e., the sum of their
non-polar MA masses are the volumes of the corresponding graphs.

6.2. Case of dimensions one and two. If {fk} is a Γ-converging sequence of meromor-
phic mappings with values in one dimensional complex manifold then it is easy to see that
the volumes of graphs of fk-s are locally bounded over compacts in the source. Indeed, a
one dimensional manifold X either properly imbeds to Cn (when X is noncompact) or is
projective and therefore imbeds to Pn. In both cases by Theorem 2 we have convergence
of reduced representations to a, may be nonreduced representation of the limit. Inequality
(5.5) implies that in an appropriately chosen local coordinates (z

′

, zn) one has

Vol(Γfk|∆n ) =

∫

∆n

(ddc||z||2)n+

∫

∆n

(ddc||z||2)n−1∧f ∗
kωFS 6

∫

∆n

(ddc||z||2)n+

+

∫

∆n−1

(ddc||z||2)n−1

∫

∂∆
z
′

dc ln‖Fk‖
2
6 const.

Next, if the dimension n of the source U is 2 the boundedness of volumes of graphs of
a weakly converging sequence is automatic. This can be seen at least in two ways. First,
in projective case this readily follows from the following formula of King, see [Kg]:

d
[

dc ln(‖f‖2)∧ddc ln(‖f‖2)
]

= χU\If

[

(

ddc ln(‖f‖2)
)2
]

−
∑

j

nj [Zj] , (6.6)

provided If has pure codimension two. Zj are irreducible components (branches) of the
indeterminacy set If of f . If it has branches of higher codimension then around these
branches a higher order non-pluripolar masses can be expressed in a similar way. Now if fk
weakly converge to f formula (6.6) immediately gives a uniform bound of corresponding
MA masses (even together with that concentrated on pluripolar sets Ifk). If n = 2 then
that’s all we need.

Second, using Skoda potentials, or Green functions, as it was done in [Iv2] Theorem
2, one can bound non-pluripolar Monge-Ampère masses of order two also in the case
of weakly converging sequence with values in disk-convex Kähler X . This observation
implies that if X is disk-convex Kähler and dimU = 2 then the volumes of graphs of
weakly converging sequences of meromorphic mappings U → X are uniformly bounded
over compacts in U .

Moreover, it was proved in [Ne] that volumes of weakly converging sequence are bounded
also in the case when X is any compact complex surface. The proof uses Kaähler case
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separately and then the fact that a non-Kähler surface has only finitely many rational
curves.

Remark 6.2. Let us remark that there is one more important case when the volumes of
graphs of weakly (even Γ) converging sequence necessarily stay bounded: namely when
{fk} is a Γ-converging sequence of meromorphic mappings between projective manifolds
X and Y . Indeed the volumes of graphs Γfk are uniformly bounded as it is straightforward
from Besout theorem.

7. Rational connectivity of the exceptional components of the limit

7.1. Chains of rational curves. Recall that a rational curve C in a complex manifold
X is an image of P1 in X under a non-constant holomorphic map h : P1 →X . A chain of
rational curves is a connected union C =

⋃

jCj of finitely many rational curves.

Definition 7.1. A closed subset Γ⊂X we call rationally connected if for very two points
p 6= q in Γ there exists a chain of rational curves C ⊂ Γ such that p,q ∈ C.

One says also that C connects p with q. If Γ is a complex manifold then this property
is equivalent to the either of the following two ones:

• Every two points in X can be connected by a single rational curve.

• For any finite set of points F ⊂X there exists a rational curve C ⊃ F .

We refer to [Ar] for these facts. Now let us turn to the proof of Theorem 5 from the
Introduction. It consists from the two following lemmas. Let fk be a weakly or, gamma-
converging sequence of meromorphic mappings and f denotes their limit. Let Γ̂ be the

Hausdorff limit of the graphs, Γ = Γ̂\Γf the corresponding bubble. Set γ := pr1(Γ). It is
at most a divisor in Γ-case and has codimension > 2 in the weak case. Let V ∼=∆n−1×∆
be a scale adapted to γ in the sense that (∆̄n−1×∆)∩γ =∅.

Lemma 7.1. Suppose that there exists a dense subset S ⊂ ∆n−1 such that the areas of
the analytic disks Γfk|∆

z
′

are uniformly bounded in z
′

∈ S and k ∈ N then for every point

a ∈ γ the fiber Γa := pr2(pr
−1
1 (a)) is rationally connected.

Proof. Here writing fk|∆
z
′
we mean the restriction of fk to the disk ∆z′ := {z′}×∆.

Fix a point a ∈ γ and some a1,a2 ∈ Γa. Suppose a1 6= a2, otherwise there is nothing
to prove. We need to prove that there exists a chain of rational curves in Γa connecting
a1 with a2. Since Γfk converge to Γ̂ ⊃ Γa there exist a1k → a and a2k → a such that
fk(a

1
k) → a1 and fk(a

2
k) → a2. Perturbing slightly we can take such aik to be regular (

i.e., not indeterminacy) points of fk for i = 1,2. Take a scale adapted to γ near a in the
sense that γ ∩ (∆n−1× ∂∆) = ∅. Denote by (z′, zn) = (z1, ..., zn−1, zn) the corresponding
coordinates and assume without loss of generality that a= 0.

Let b1k → 0
′

and b2k → 0
′

in ∆n−1 be such that a1k ∈ ∆b1
k
and a2k ∈ ∆b2

k
. Taking again

aik sufficiently general we can arrange that bik ∈ S and disks ∆b1
k
and ∆b2

k
converge to

the disk ∆0′ . After taking a subsequence we get that graphs in question converge to the
graph Γf |∆

0
′

∪C i, where C i ⊂ {a}×X are chains of rational curves. Both these chains

contain the point f |∆
0
′
(a). Therefore C := C1∪C2 is connected. At the same time by

construction C i ∋ ai. Lemma is proved.

�
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7.2. Proof of Theorem 5. Let us first consider the case of Γ-converging sequence of
meromorphic mappings with values in projective X . Corollary 5.2 gives us the required
boundedness of ares of analytic disks which makes possible to apply Lemma 7.1 just
proved. This gives us the statement of Theorem 5 for Γ-converging sequences of mero-
morphic mappings with values in projective manifolds.

To treat the case of Gauduchon target manifolds we shall need one more lemma.

Lemma 7.2. Let F be a family of meromorphic mappings from ∆n to a disk-convex
manifold X, which admits a pluriclosed metric form. Suppose that for some 0< ǫ < 1, the
family F is holomorphic and equicontinuous on the Hartogs figure Hn

ε . Then for every
0 < r < 1 the areas of graphs Γfz′

of restrictions fz′ := f |∆z′(r)
of f ∈ F to the disks

∆z′(r) := {z′}×∆r are uniformly bounded in z′ ∈∆n−1
r and f ∈ F .

Proof. For f : ∆n −→X a meromorphic map, we denote by If ⊂∆n the set of points of
indeterminacy of f . Since we suppose that all f ∈ F are holomorphic on Hn

ε the sets If do
not intersect ∆n−1×A1−ε,1. Consider currents Tf = f ∗ω on ∆n, where ω is a pluriclosed
metric form on X . Write

Tf =
i

2
tαβ̄f dzα∧dz̄β,

where tαβ̄f are distributions on ∆n (in fact measures), smooth on ∆n \ If ⊃ Hn
ε . Fix

1− ε < r < r1 < 1 and consider on ∆n−1 \π(If) (where π : ∆n → ∆n−1 is the canonical
projection onto the first factor) the area functions af given by

af (z
′) = areafz′(∆r1) =

∫

∆z′(r1)

Tf =
i

2

∫

∆z′(r1)

tnn̄f dzn∧dz̄n. (7.1)

Functions af are well-defined and smooth on ∆n−1 \π(If).
The proof of Proposition will be done in two steps.

Step 1. Distributions tnn̄f are locally integrable in ∆n. Note that forms Tf are smooth on
Hn

ε and the family {Tf : f ∈ F} is equicontinuous there. The condition that ddcTf = 0
implies, in particular, that for all 16 k, l 6 n−1 one has

∂2tnn̄f
∂zk∂z̄l

+
∂2tkl̄f
∂zn∂z̄n

−
∂2tkn̄f
∂zn∂z̄l

−
∂2tnl̄f
∂zk∂z̄n

= 0. (7.2)

From (7.2) we get that on ∆n−1 \π(If):

ddcaf =

(

i

2

)2 n−1
∑

k,l=1







∫

∆z′(r1)

∂2tnn̄f
∂zk∂z̄l

dzn∧dz̄n






dzk∧dz̄l = (7.3)

=

(

i

2

)2 n−1
∑

k,l=1

∫

∆z′(r1)

(

∂2tkn̄f
∂zn∂z̄l

+
∂2tnl̄f
∂zk∂z̄n

−
∂2tkl̄f
∂zn∂z̄n

)

dzn∧dz̄n ·dzk∧dz̄l =

=

(

i

2

)2 n−1
∑

k,l=1







∫

∂∆z′(r1)

∂tkn̄f
∂z̄k

dz̄n+

∫

∂∆z′(r1)

∂tnl̄f
∂zk

dzn−

∫

∂∆z′(r1)

∂tkl̄f
∂z̄n

dz̄n






dzk ∧dz̄l =: φf .
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Forms φf are smooth in the whole unit polydisk ∆n−1 and equicontinuous there because
forms Tf are smooth in ∆n−1×A1−ε,1 ⊂Hn

ε and equicontinuous there. Let us find a smooth
and equicontinuous family on ∆n

r of solutions ψf of

ddcψf = φf . (7.4)

Set

hf := af −ψf . (7.5)

Since af is positive on ∆n−1 \π(If) and ψf is smooth on ∆n−1 we see that hf is bounded
on ∆n−1 from below. Also ddchf = 0 on ∆n−1 \ π(If ) and therefore hf extends to a
plurisuperharmonic function on ∆n−1. This implies that hf ∈ L1

loc(∆
n−1) see [Ho]. It

follows that af and tnn̄f are locally integrable. Step 1 is proved.

Step 2.Under the hypotheses of Lemma 7.2 functions af defined by (7.1) are smooth on
∆n−1 and for every fixed r < 1 the family {af}f∈F is equicontinuous on ∆̄n−1

r . Function hf
given by (7.5) is plurisuperharmonic in ∆n−1 and pluriharmonic on ∆n−1\π(If). Therefore
by Siu’s lower semicontinuity of the level sets of Lelong numbers we have

ddchf =−
∑

A irr.comp. of π(If )

cA(f)[A], (7.6)

where cA(f)> 0 and [A] denotes the current of integration over the irreducible component
A of π(If) of codimension one.

Remark 7.1. Note that through components of higher codimension a pluriharmonic
function hf extends (as a pluriharmonic function). Therefore in (7.6) the sum is taken
over the components of codimension one only.

We need to prove that cA(f) = 0. From (7.5) we get

ddcaf = ddcψf −
∑

A irr.comp. of π(If )

cA(f)[A], (7.7)

where ddc from af is taken in the sense of distributions (as from L1
loc-function). Let {hA}

be equations of A. By Poincaré formula, see [GK], [A] = ddc ln |hA|2 and therefore (7.7)
writes as

ddcaf = ddcψf −
∑

A irr.comp. of π(If )

cA(f)dd
c ln |hA|

2 (7.8)

Take an one dimensional disk ∆ in ∆n−1 which intersects π(If) transversely at points
{zj}. Then (7.7) gives for restrictions of af and ϕf to ∆ (and we shall denote them by
the same letters) the following

∆af =∆ψf −
∑

zj∈π(Af )

cj(f)δzj(f). (7.9)

Fix δ > 0 such that ∆(δ,zj) are pairwise disjoint. Let ϕ be a test function on ∆ with
support in ∆(δ,zj) for some fixed j. The coordinate on ∆ denote as z1.

Set

aǫf(z1) =
i

2

∫

∆z1
(r1)

tnn̄f,ǫdzn∧dz̄n,
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where tnn̄f,ǫ is the smoothing of tnn̄f by convolution. Since tnn̄f,ǫ → tnn̄f in L1
loc we get by Fubini

Theorem that aǫf → af in L1
loc. Therefore using (7.3) for dimension two we obtain

<∆aǫf ,ϕ >=
i

2

∫

∆(δ,zj)

ϕ(z1)







∫

∆z1
(r1)

∂2tnn̄f,ǫ
∂z1∂z̄1

dzn∧dz̄n






dz1∧dz̄1 =

=
i

2

∫

∆(δ,zj)

ϕ(z1)







i

2

∫

∂∆z1
(r1)

∂t12̄f,ǫ
∂z̄1

dz̄2+
i

2

∫

∂∆z1
(r1)

∂t21̄f,ǫ
∂z1

dz2






dz1∧dz̄1−

−
i

2

∫

∆(δ,zj)

ϕ(z1)







∫

∂∆z1
(r1)

∂t11̄f,ǫ
∂z̄2

dz̄2






dz1∧dz̄1 −→< φf ,ϕ >

as ǫ −→ 0. Therefore, ∆af = φf in ∆ in the sense of distributions. By regularity of the
Laplacian af ∈ C∞ on ∆ and therefore cA(f) = 0 for all A and all f . Therefore af are
smooth on ∆n−1 and af = ψf+hf there. ψf -s are equicontinuous and hf are pluriharmonic
everywhere and uniformly bounded from below. Moreover af are equicontinuous on ∆n−1

ε

by assumption. Therefore hf are equicontinuous on ∆n−1
ε . This implies equicontinuity of

hf on compacts of ∆n−1, and therefore the equicontinuity of af . Step 2 and therefore our
Lemma are proved.

�

Lemmas 7.1 and 7.2 obviously imply the Theorem 5 from the Introduction for the
case of weakly converging sequences of meromorphic mappings with values in disk-convex
Gauduchon manifolds.

8. Fatou components

8.1. Case of dimension two and Fatou sets. First let us prove two lemmas.

Lemma 8.1. Suppose that a weakly converging sequence {fk} of meromorphic mappings
from a two-dimensional domain U to a compact complex surface X doesn’t converge
strongly. Then X is bimeromorphic to P2.

Proof. Indeed, in that case there exists a point a ∈ U and a neighborhood V ∋ a such
that fk converge uniformly on compacts of V \{a} but Γfk do not converge to Γf , where
f : U →X is the limit map. Vol(Γfk) are uniformly bounded. Indeed, for Kähler X it was
proved in [Iv2] using Skoda’s potentials. In [Ne] its was proved for non-Kähler X using
that fact that such X can contain only finitely many rational curves as well as existence
of certain ddc-exact (2,2)-forms.

Therefore we see that the limit Γ̂ = limΓfk contains Γf plus {a}×X (with some multi-
plicity). But this is a bubble and therefore X is rationally connected by Theorem 5. From
the classification of surfaces, see [BPV], we know that such X must be bimeromorphic to
P2.

�

For a meromorphic map f : U →X denote by

Df := pr1
(

{(z,x) ∈ U ×X : dim (z,x)pr
−1
2 (x)> 1}

)

the set of degeneration of f . f : U →X is degenerate if Df = U .
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Lemma 8.2. Let f : X → X be a non-degenerate meromorphic self-map of a compact
complex surface X and let z ∈ Φs (resp. Φw). Then for every l > 1 one has

f l[z]\f l|D
fl
(Df l)⊂ Φs (resp. Φw). (8.1)

Proof. Take some a ∈ f l[z]\f l|D
fl
(Df l). Since f l doesn’t contract any curve to a there

exist neighborhoods V ∋ z and U ∋ a such that pr2 : (V ×U) ∩ Γf l → U is proper.
That means that (f l)−1 : U → V is well defined as a multivalued holomorphic map.
Now let {fnk} ⊂ {fn} be a subsequence. By assumption from the sequence {fnk+l} we

can subtract a strongly/weakly converging on V subsequence {fnkj
+l}. That means that

{fnkj = fnkj
+l ◦f−l} will converge in an appropriate sense on U .

�

Let us turn to the proof of Corollary 2 from the Introduction. Since every compact
complex surface admits a ddc-closed metric form Theorem 3 applies in our case and gives
local pseudoconvexity of the weak Fatou set Φw. Suppose now that Φs 6= Φw.

a) By Lemma 8.1 X ⋍ P2.

b) There exists a point p ∈ X , a ball B centered at p, a subsequence of iterates {fnk},
which uniformly converges on compacts of B̄ \ {p} to a meromorphic map f∞ : B̄ → X ,
holomorphic onB\{p}, but not converges strongly on any neighborhood of p. In particular
this means that p ∈ I(f∞) by Rouché Principle of [Iv2] and, moreover, C = f∞[p] is a chain

of rational curves
⋃N

i=1Ci. As it was said Vol(Γfnk ) are uniformly bounded on B̄. So Γfnk

converge (after going to a subsequence) in cycle topology to Γf∞ ∪ d({p}×X) for some
integer d> 1. In particular f cannot be degenerated in this case. Take a point q ∈X \C.
Then for k≫ 1 we have that q ∈ fnk(B \{p}). If moreover q 6∈ fnk(D(fnk)) then q ∈ Φw.
But

⋃

k f
nk(D(fnk)) is at most countable set of points and Φw is Levi-pseudoconvex. So

Φw ⊃ X \C. Again from pseudoconvexity of Φw it follows that if Φw intersects some
irreducible component of C then it contains this component minus the rest of C. I.e.,
Φw = P2 \{ some components of C}.

c) Take a point (p,x) ∈ {p}×X such that x ∈ C. Suppose that Γf∞ ∩ (X ×{x}) has
(p,x) as isolated point. Then we can find neighborhoods W ∋ p and V ∋ x such that
(∂W × V̄ )∩ Γf∞ = ∅. Therefore (∂W × V̄ )∩Γfnk = ∅ for k big enough. This means
that Φw ⊃ V as before and, moreover, Φw contains the component of C passing through
x minus the rest of C.

To finish the proof let us distinguish two cases.

Case 1. Every component of C contains such a point. In this case our sequence {fnk}
strongly converges on X \ { finite set }. Furthermore, Vol(Γfnk ) are uniformly bounded.
Since they can’t be less than (degf)nk ·Vol(X), we see that f has degree one, and f∞ is
a degenerate map to C because Γf∞ has zero volume in this case. Moreover f∞ cannot
be holomorphic near p, otherwise fnk would converge strongly in a neighborhood of p.
C in this case should consist only from one component as a meromorphic image of an
irreducible variety.

Case 2. There exists a component C1 of C such that for all points x ∈ C1 \ ∪i 6=1Ci

dim (p,x)Γf∞ ∩ (X ×{x}) > 0. Then f∞ is a degenerate mapping of X onto this C1 and
therefore again C1 is a single component of C. Indeed, any other component C2 of C
should contain a point x as above, because the image of f∞ should be irreducible. I.e., in
both cases C consists from one rational curve only.
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�

The following simple example shows that the situation described in part (b) of this
Corollary can really happen. Let X = P2 and f : [z0 : z1 : z2] → [z0 : 2z1 : 2z2]. Then for
this f we have the phenomena described above with p= [1 : 0 : 0] and C = {z0 = 0}.

8.2. Example. Let us give one more example relevant to the Fatou sets.

Example 8.1. Consider the following rational self-map of P2:

f : [z0 : z1 : z2]→ [z20z1 : z
3
1 : z

2
0z2]. (8.2)

By induction one easily checks that

fk : [z0 : z1 : z2]→ [z2
k

0 z
2k−1
1 : z2

k+1−1
1 : z2

k+1−2
0 z2]. (8.3)

p

q

r
*

*

l
l

l

1

2

0

Ω
Φ 1

∆
*

Figure 1. Mapping f contracts the line l1 := {z1 = 0} to the first of its
points of indeterminacy q = [0 : 0 : 1], line at infinity l0 := {z0 = 0} to the
regular point r = [0 : 1 : 0] and do not contracts anything to its second point
of indeterminacy p = [1 : 0 : 0]. Levi flat cone = Julia set for f is marked
by two punctured lines.

Cover P2 by three standard affine charts Ui = {zi 6= 0} with coordinates u1 =
z1
z0
,u2 =

z2
z0
,

v1 = z0/z1,v2 = z2/z1 and w1 = z0/z2,w2 = z1/z2 respectively. Mapping f : U0 → U0

writes as

f : (u1,u2)→ (u21,u2/u1). (8.4)

We see from here that f has degree 2. Furthermore fk writes as

fk : (u1,u2)→ (u2
k

1 ,u2/u
2k−1
1 ). (8.5)

In the charts f : U1 → U1 our iterate writes as

fk : (v1,v2)→ (v2
k

1 ,v
2k+1−2
1 v2)→ (0,0) = r on {|v1|< 1}. (8.6)

I.e., we see that Φ1 = {|v1| < 1} = {|u1| > 1} is a component of the Fatou set of f , in
all senses, because all fk are holomorphic there and converge uniformly on compacts to a
constant map to r = [0 : 1 : 0].

Levi flat cone L := {|z0|= |z1|} is a Julia set of f . It contains one of two indeterminacy
points of f , namely q = [0 : 0 : 1]. A connected component Ω of P2 \L different from Φ
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carries a more interesting information about fk. First of all remark that as a mapping
from U2 to U2 our iterate writes as

fk : (w1,w2)→

(

w2k−1
2

w2k−2
1

,
w2k+1−1

2

w2k+1−2
1

)

→ (0,0) = q on {|w2|< |w1|}= {|u1|< 1,u2 6= 0}.

(8.7)
Therefore the second component Φ2

s of the strong Fatou set contains the domain Ω\{u2 =
0}. Since it is easy from (8.5) to see that fk on compacts in Ω \ {u2 = 0} converge
to q, and on the puncture disk ∆∗ := {u2 = 0,0 < |u1| < 1} to p, we conclude that
Φ2

s = Φ2
w = Ω \ {u2 = 0}. Remark that the second component Φ2 of f in the sense of

[FS] is smaller, namely it is equal to Ω\({u2 = 0}∪{u1 = 0}), because the projective line
l1 := {z1 = 0} is the preimage of If (and of all Ifk) under f . Now let us turn to the second
component Φ2

Γ of the Γ-Fatou set of f .

Lemma 8.3. For a fixed 0 < ε < 1 the volumes of graphs of fk over the bidisk ∆2
ε ⊂ U0

centered at p are uniformly bounded. In particular Φ2
Γ = Ω.

Proof. To estimate the volume of Γfk over a neighborhood of p we use coordinates
u1,u2 and representation (8.5). In these coordinates ∆2

ε = {u : ‖u‖ < ε}. Since fk

preserves the vertical lines {u1 = const} we can simplify our computations assuming
that f takes values in ∆×P1, the last being equipped with the Hermitian metric form
ω = ω1+ω2 =

i
2
dz1∧dz̄1+

i
2

dz2∧dz̄2
(1+|z2|2)2

. Now we get

(fk)∗ω =
i

2

[

22k|u1|
2k+1−2+

(1−2k)2|u1|2
k+1−4

(|u1|2
k+1−2+ |u2|2)2

]

du1∧dū1+
i

2
|u1|

2k+1−2 du2∧dū2
(|u1|2

k+1−2+ |u2|2)2

+
i

2
(1−2k)ū−2k

1 |u1|
2k+2−4 du2∧dū1

(|u1|2
k+1−2+ |u2|2)2

+
i

2
(1−2k)u−2k

1 |u1|
2k+2−4 du1∧dū2

(|u1|2
k+1−2+ |u2|2)2

.

Therefore
∫

∆2
ε

(fk)∗ω∧ddc ‖u‖2 =

= 4π2

ε
∫

0

ε
∫

0

[

22kr2
k+1−1

1 +(1−2k)2
r2

k+1−3
1

(r2
k+1−2

1 + r22)
2
+

r2
k+1−1

1

(r2
k+1−2

1 + r22)
2

]

dr1r2dr2 6

6
4π2ε2

k+1

22k+1−2k
+2π222k

ε
∫

0

ε2
∫

0

r2
k+1−3

1 t

(r2
k+1−2

1 + t)2
dtdr1+2π222k

ε
∫

0

ε2
∫

0

r2
k+1−1

1

(r2
k+1−2

1 + t)2
dtdr1 6

6 2π222k
ε
∫

0

ε2
∫

0

r2
k+1−3

1

r2
k+1−2

1 + t
dtdr1+2π2

ε
∫

0

(

−1

r2
k+1−2

1 + t

∣

∣

∣

ε2

0
r2

k+1−1
1

)

dr1 6

6 π223k+1

ε
∫

0

r2
k+1−3

1 ln
1

r1
dr1+2π2

ε
∫

0

r1dr1.
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The second term is bounded and doesn’t tend to zero as k→+∞. The first for 0< ε < 1
can be obviously bounded by

π223k+1

ε
∫

0

r2
k+1−4dr =

π223k+1

2k+1−3
ε2

k+1−3 → 0

as k→+∞. And finally
∫

∆2
ε

(fk)∗ω =

∫

∆2
ε

22k|u1|2
k+2−4

(|u1|2
k+1−2+ |u2|2)2

+
(2k−1)2|u1|2

k+2−6|u2|2

(|u1|2
k+1−2+ |u2|2)4

+

+
2(2k−1)2|u1|2

k+3−8|u2|2

|u1|2
k+1(|u1|2

k+1−2+ |u2|2)4
d4m(u)6

∫

∆2
ε

22k+2|u1|2
k+2−6

(|u1|2
k+1−2+ |u2|2)2

d4m(u)≈

≈ 22k+2

ε
∫

0

ε2
∫

0

r2
k+2−5

1

(r2
k+1−2

1 + t)2
dtdr1 6 22k+2

ε
∫

0

r2
k+1−3dr =

22k+2

2k+1−2
ε2

k+1−2 → 0

as k→+∞. Therefore the lemma is proved.

�

Remark that the integral of (fk)∗ω2 degenerates, as it should be, because fk Γ-converge
on Ω to a constant map. And to the contrary the integral of (fk)∗ω doesn’t degenerate,
moreover has order ε2. That means that bubbling takes place over all points of the disk
∆∗ = {u2 = 0,0< |u1|< 1}. We see that for our map one has

Φ⊂ Φw = Φs ⊂ ΦΓ,

and inclusions are strict.

Finally let us see what is going on over the indeterminacy point p= (0,0) in coordinates
(u1,u2). Blowing up 2k−1 times at zero we see that fk stays degenerate on all exceptional
curves except the last one, which it send onto l1 = {u1 = 0}. In appropriate coordinates
v1,v2 on the last blow up fk writes as

{

u1 = v2
k

1

u2 = v2.

Therefore the dynamical picture over p can be described as follows. Let Ω̂ be an infinite
blow up of Ω over p and let C =

⋃∞
i=1Ci be the Nori string of rational curves on Ω̂ over p.

Then every fk lifts to a holomorphic map f̂k : Ω̂ → P2 which is constantly equal to q on
every Ci except C2k−1. The last curve it sends bijectively onto the line l1. At the same
time in the sense of divisors (currents) fk(C2k−1) = 2kl1.

Remark 8.1. a) One can in the same way produce mappings of any given degree with
the same properties as in Example 8.1. It is sufficient to take

f : [z0 : z1 : z2]→ [zd0z1 : z
d+1
1 : zd0z2]. (8.8)

b) Let us quote the result of Maegava, see [M], which shows that under an additional
assumption of ”algebraic stability” of the dominant rational self-map f the Fatou set of
[FS] coincides with Φs and Φw.



32 Section 8

References

[Ar] Araujo C.: Rationally connected varieties. Contemp. Math. 388, 1-16 (2006).

[Ba] Barlet D.: Espace analytique reduit des cycles analytiques complexes compacts d’un espace
analytique complexe de dimension finie . Seminar Norguet IX, Lect. Notes Math., 482, 1-157,
(1975).

[BPV] Barth W., Peters, C., Van de Ven, A.: Compact complex surfaces. Springer Verlag,
(1984).

[BT] Bedford E., Taylor B.A.: A new capacity for plurisubharmonic functions. Acta Math.
149, no. 1-2, 1-40 (1982).

[Bi] Bishop E.: Conditions for the analyticity of certain sets. Michigan Math. J. 11, 289-304
(1964).

[CT] Cartan B., Thullen P.: Zur Theorie der Singularitäten der Funktionen mehrerer Veran-
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