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JACOBI STRUCTURES AND SPENCER OPERATORS

MARIUS CRAINIC AND MARÍA AMELIA SALAZAR

Abstract. This paper reveals the fundamental relation between Jacobi struc-
tures and the classical Spencer operator coming from the theory of PDEs
[20, 13]; in particular, we provide a direct and much simpler/geometric ap-
proach to the integrability of Jacobi structures. It uses recent results on the
integrability of Spencer operators and multliplicative forms on Lie groupoids
with non-trivial coefficients [5, 19].

1. Introduction

In this paper we provide a new approach to the integrability of the Jacobi struc-
tures of Lichnerowicz [15] and the local Lie algebras of Kirillov [12]; it is based on
our remark that Jacobi structures are intimately related to the classical Spencer
operator coming from the geometric theory of PDEs [20, 13], combined with our
recent result on the integrability of Spencer operators and multiplicative forms
with coefficients [5, 19]. This approach is not only new, but also much more di-
rect/geometric and remarkably simpler than the known ones (see the long formulas
from [6]). In this introduction we describe the main key-words and literature that
come with Jacobi structures, indicating along the way the content of this paper.

Lichnerowicz’s Jacobi structures: Jacobi structures were discovered by Lich-
nerowicz who, after his work on Poisson and symplectic structures, was looking
for a similar theory in which the symplectic structures were replaced by their odd-
dimensional analogue, i.e. contact structures. He introduced them in [15] and then
studied them intensively [16, 10, 9], etc. In Lichnerowicz’s terminology, a Jacobi
structure is a pair (Λ, E) consisting of a bivector Λ and a vector field R on M ,
satisfying certain first order differential equations:

(1) [Λ, R] = 0, [Λ,Λ] = 2R ∧ Λ

(see also below). Lichnerowicz also studied a locally conformal version of the the-
ory, in which the pairs (Λ, R) are defined only locally and, on the overlaps, they are
related by certain (conformal) transformations [15]; in particular, Lichnerowicz’s
locally conformal Jacobi structures come with an underlying line bundle arising
from the transition functions on the overlaps. This aspect was further clarified by
Marle [18] who uses the term Jacobi bundles for the resulting line bundles.

Kirillov’s local Lie algebras: Interesting enough, and very much relevant to the
present paper, Lichnerowicz’s Jacobi structures turned out to be “essentially the
same” as the local Lie algebras structures (on line bundles) that were considered by
Kirillov already a few years earlier [12]. More precisely, Kirillov studied Lie algebra
structures

{·, ·} : Γ(L)× Γ(L) → Γ(L)

Date: April 29, 2014.
This research was financially supported by the ERC Starting Grant no. 279729.

1

http://arxiv.org/abs/1309.6156v2
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on the space Γ(L) of sections of a line bundle L over a manifold M , which are
local in the sense that, for u, v ∈ Γ(L) supported in some open U ⊂ M , {u, v} is
supported in U as well. Only later Lichnerowicz remarked [16] that

• the previous equations (1) are equivalent to the condition that the bracket
{·, ·} defined on the space C∞(M) of smooth functions on M by:

(2) {f, g} = 〈df ∧ dg,Λ〉+ fLR(g)− gLR(f)

satisfies the Jacobi identity (where 〈·, ·〉 denotes the pairing between forms
and multi-vectors, and LR denotes the Lie derivative along R).

• Kirillov’s work actually shows that any Lie algebra structure on C∞(M)
which is local must be of this type.

In other words, Lichnerowicz’s Jacobi structures (Λ, R) are the same thing as Kir-
illov’s local Lie algebras with trivial underlying line bundle. Moreover, this extends
to the case of arbitrary line bundles, with the conclusion that Lichnerowicz’s lo-
cally conformal Jacobi structures are the same thing as Kirillov’s local Lie algebras.

The line bundle: We will adopt the following terminology: pairs (Λ, R) as above
will be called here Jacobi pairs or a Jacobi structure on the trivial line bundle, while
the term Jacobi structure will be reserved for the resulting locally conformal theory
or, equivalently, for local Lie algebra structures on an arbitrary line bundle. Hence
Jacobi pairs correspond to Jacobi structures with trivial underlying line bundle.
Note that this corresponds to the similar terminology from Contact Geometry,
where one talks about contact forms and contact structures on a manifold M : the
later are encoded in contact hyperplanes H ⊂ TM and come together with the
normal line bundle L = TM/H; contact forms correspond to the case when L is
the trivial line bundle. Of course, this is more than an analogy since, as it is already
clear from the original work of Lichnerowicz, we know that

• contact forms are in 1-1 correspondence with non-degenerte Jacobi pairs
(Λ, R) (where non-degeneracy means TM = Λ♯(T ∗M) ⊕ R · R, Λ♯ is Λ
interpreted as a linear map T ∗M → TM)

• similarly (and more generally), contact structures are in 1-1 correspondence
with non-degenerate Jacobi structures.

Since in the contact case one very often makes the (rather mild) assumption that
the line bundle is trivial, we would like to emphasize here that one of the points of
this paper is that, for general Jacobi structures, it is important to allow and work
with general line bundles. There are at least three reasons:

• the resulting arguments are much more geometric and less computational
(in particular, we invite the reader to compare this paper with [6]).

• the line bundle carries an extra structure (that of a representation) and,
even when the line bundle is trivial as a vector bundle, the extra-structure
is almost never trivial (see the comments of Examples 3.7 and 5.2).

• there are interesting contact structures with non-trivial normal line bundle,
for instance the manifold of contact elements on an affine space (for which
the name contact structure is due) [1].

Poissonization: Similar to the “symplectization of a contact manifold”[3], and
generalizing it, one can talk about the Poissonization of Jacobi pairs [15, 9], ob-
taining a 1-1 correspondence between Jacobi pairs (Λ, E) on M and homogeneous
Poisson structures on M ×R. This gives rise to the so-called “Poissonization trick”
for proving results about Jacobi pairs, by moving to the Poisson world. However,
we would like to point out that this is very unsatisfying. On one hand, the resulting
arguments are mainly algebraic, lacking in geometric insight. On the other hand,
since one works explicitly with Jacobi pairs, the resulting arguments are not only
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algebraic but also very computational (because of the reasons mentioned above).
One of the points we are trying to make in this paper is that, by paying enough
attention to the line bundle and its structure (the relationship with the Spencer
operator), the arguments become much more direct, geometrical, and conceptual
(in particular, free of unnecessary computations).

Integrability: We now return to our historical comments on Jacobi structures.
Following

• Lichnerowicz’s philosophy that the interaction between Jacobi structures
and contact structures is analogous to the one between Poisson and sym-
plectic structures,

• the fact that the global objects underlying (or better: integrating) Poisson
structures are the symplectic groupoids (i.e. Lie groupoids endowed with a
symplectic form “compatible” with the groupoid multiplication)

it was expected that there were a notion of “contact groupoid” that integrates
Jacobi structures. This problem was first solved in the case when the underlying
bundle was trivial [11, 14]. The outcome seemed, at least at first sight, very un-
natural and certainly unaesthetic (see [11]). The reason is the same as above: while
this case is apparently (!!!) simpler, the structure involved is not visible, as the line
bundle, although trivial as a vector bundle, is not trivial as a representation, giving
rise to a certain mysterious cocycle.

The general case was considered by Dazord in [7] and it turned out to be much
more elegant (geometric and less computational). It is interesting to point out that
Dazord’s motivation for looking at the integrability of Jacobi structures was very
much related to Kirillov’s point of view: they provide an intermediate step in the
process of integrating the local Lie algebra to a Lie group; indeed, with the contact
groupoid at hand, there is a natural notion of Legendrian bisections of the groupoid
and they form the desired Lie group.

Jacobi structures and contact groupoids: We now have a closer look at the
process of integrating a Jacobi structure (L, {·, ·}) on a manifold M to a contact
groupoid (Σ,H) (where Σ denotes the Lie groupoid and H the contact hyperplane).
The resulting story is completely similar to that from Poisson Geometry:

• for any contact groupoid (Σ,H) overM there is an induced Jacobi structure
(L, {·, ·}) on M . Moreover, the infinitesimal counterpart of Σ, i.e. its Lie
algebroid, depends only on the Jacobi structure: it is the first jet bundle
J1L of L with the Lie algebroid bracket expressed in terms of the bracket
{·, ·} of L.

• conversely, starting with a Jacobi structure (L, {·, ·}), one can talk about
the associated Lie algebroid J1L [8]. Hence, to build (Σ,H), one first has
to assume that the algebroid J1L is integrable.

• the integrability problem for the given Jacobi structure becomes: if J1L is
integrable by a Lie groupoid Σ, is there a contact structure H on Σ, making
(Σ,H) into a contact groupoid for which the induced Jacobi structure on
the base is the original one?

The proofs of such results are spread over the literature. The most difficult part
(the question above) was treated in [6]. However, most of the arguments (in partic-
ular the entire [6]) are based on the “Poissonization trick”; they are based on long
computations and lack geometric insight. This paper provides the direct approach.

Spencer operators: We now move to the second part of our title. The classical
Spencer operator associated to a vector bundle E over a manifold M [20] is the
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operator

D : Γ(J1E) → Ω1(M,E)

which controls the sections of J1E which are holonomic, i.e. of type j1(s) for some
s ∈ Γ(E): they are those sections that are zeroes of D. The Spencer operator that
is relevant to this paper is simply the one associated to E = L -the line bundle
underlying a Jacobi structure. Of course, it is not just the operator D that is
important, but also the structure that it comes (and interacts) with- structure that
reflects the fact that we deal with a Jacobi structure and not just with a line bundle.

This brings us to the notion of Spencer operators. These make sense as soon as
we fix an algebroid A and a representation E of A; they are operators

D : Γ(A) → Ω1(M,E)

with the same properties as the classical Spencer operator and are compatible with
the Lie brackets involved. If the Lie algebroid A comes from a Lie groupoid Σ, such
Spencer operators are the infinitesimal counterpart of 1-forms on Σ with coefficients
in E, which are compatible with the multiplication (they are multiplicative); one of
the main results of [5, 19] proves an integrability theorem in this context.

In summary, the main steps for the integration of a Jacobi structure (L, {·, ·})
are: consider the Lie algebroid J1L, note that the classical Spencer operator D is
compatible with the brackets, consider the multiplicative one form integrating D
(on the groupoid Σ integrating J1L) and take its kernel.

The content of this paper: In Section 2 we review some of the basic notions on
contact structures, including the (probably not so well-known) associated Jacobi
bracket. Section 3 is devoted to Jacobi structures and the associated Lie algebroids.
Section 4 indicates the relevance of Spencer operators in the theory of Jacobi struc-
tures and discusses its global counterpart (multiplicative forms and distributions).
Section 5 recalls and discusses contact groupoids. Section 6 uses Spencer operators
to show that the base of a contact groupoid carries an induced Jacobi structure
(Theorem 1). Finally, Section 7 takes the reverse problem of integrating a Jacobi
structure to a contact groupoid (Theorem 2).

2. Contact manifolds and their brackets

This section recalls some basic notions on contact manifolds.
A contact structure (or hyperplane) on a manifold M is a hyperplane distri-

bution H ⊂ TM which is maximally non-integrable, i.e. it has the property that
the curvature

(3) cH : H×H → L

is non-degenerate. Here, L is the quotient line bundle

L := TM/H

and cH is given at the level of sections by cH(X,Y ) = [X,Y ] mod H.

Definition 2.1. A Reeb vector field of the contact manifold (M,H) is any vector
field R on M such that

[R,Γ(H)] ⊂ Γ(H).

We denote by XReeb(M,H) the set of Reeb vector fields.

The notion of Reeb vector field also appears in the literature under the name of
contact vector field (e.g. [2]).
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Lemma 2.2. XReeb(M,H) is a Lie subalgebra of the Lie algebra X(M) of all vector
fields on M and

X(M) = XReeb(M,H)⊕ Γ(H).

Proof. The first statement follows from the Jacobi identity for the standard Lie
bracket of vector fields. For the second part, if X(M) = XReeb(M,H) + Γ(H),
then non-degeneracy of cH implies that the sum is direct. Let now X ∈ X(M) be
arbitrary. Consider the map

[X,−] : H → L, W 7→ [X,W ] mod H

(a priori, the above formula is defined only on sections, but it is easily seen to be
C∞(M)-linear). Non-degeneracy of cH implies that there exists V ∈ H such that
this map coincides with cH(V,−). This implies that R := X − V ∈ XReeb(M,H)
hence X ∈ XReeb(M,H) + Γ(H). �

It is also useful to use the dual point of view on contact structures, i.e. to view
H as the kernel of a 1-form with coefficients in L; this can be realized tautologically,
by reinterpreting the canonical projection from TM to L as a 1-form

θ ∈ Ω1(M,L).

Note that the curvature cH can be written as cH(X,Y ) = θ([X,Y ]). We say that
θ is of contact type. The case in which L is the trivial line bundle gives rise to
the standard notion of contact forms [3]. The previous lemma gives immediately:

Corollary 2.3. θ restricts to a vector space isomorphism

(4) θ|XReeb(M,H) : XReeb(M,H)
∼
→ Γ(L).

This allows us to transfer the Lie algebra structure of XReeb(M,H) to a Lie
algebra structure on Γ(L), denoted by {·, ·}.

Definition 2.4. The bracket {·, ·} on Γ(L) is called the Reeb bracket associated
to the contact manifold (M,H).

Next we rewrite Lemma 2.2 in a more convenient form:

Lemma 2.5. The map

X(M) ∼= Γ(L)⊕ Γ(Hom(H, L)), X 7→ (θ(X), θ([·, X ])),

is an isomorphism of vector spaces; the induced C∞(M)-module structure on the
right hand side is given by

f · (u, φ) = (fu, φ+ df ⊗ u).

Proof. Lemma 2.2 combined with the isomorphism (4) and the one between H
and Hom(H, L) induced by cH (V 7→ cH(·, V ) = θ([·, V ])) yields the claimed
isomorphism of vector spaces. As for the induced C∞(M)-module structure, if
(u, φ) = (θ(X), θ([·, X ])), then

(θ(fX), θ([·, fX ])) = (fθ(X), fθ([·, X ])− df(·)θ(X)) = (fu, fφ+ df ⊗ u),

thus completing the proof. �

Remark 2.6. For any vector bundle E over M , the bundle of first jets of sections
of E, denoted by J1E, fits into a short exact sequence of vector bundles over M :

0 → Hom(TM,E)
i
→ J1E

pr
→ E → 0,

where pr is the canonical projection and i is determined by

i(df ⊗ u) = fj1(u)− j1(fu).
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Passing to sections, the resulting sequence has a canonical splitting (u 7→ j1(u));
hence one obtains a decomposition

(5) Γ(J1E) ∼= Γ(Hom(TM,E))⊕ Γ(E),

which is henceforth referred to as the Spencer decomposition. Note that the
induced C∞(M)-module structure on the right hand side is given by precisely the
same formula as in Lemma 2.5. The striking similarity between the two is clarified
in the statement of Theorem 1 of section 6.

The notions introduced thus far allow to construct further important geometric
objects associated to contact structures. Firstly, surjectivity of (4) means that
for any section u ∈ Γ(L), there exists a unique vector field Ru ∈ X(M) with the
property that

θ(Ru) = u and θ([Ru, X ]) = 0 for all X ∈ Γ(H).

For u ∈ Γ(L), Ru is called the Reeb vector field associated to u. The charac-
terizing property for the Reeb bracket {·, ·} is

[Ru, Rv] = R{u,v} for all u, v ∈ Γ(L).

Applying θ, one obtains the explicit formula

{u, v} = θ([Ru, Rv])

relating the Reeb bracket with the 1-form θ and the Reeb vector fields. Lemma 2.5
implies that, for f ∈ C∞(M), u ∈ Γ(L),

Rfu = fRu + b(df ⊗ u),

where b : Hom(H, L) → H is the isomorphism induced by cH (sending cH(V,−) ∈
Hom(H, L) to V ∈ H). Note that the inverse of the isomorphism defined in Lemma
2.5 sends (u, φ) to Ru − b(φ).

Example 2.7. When L is the trivial bundle the Reeb vector field associated to the
constant function 1 is the standard Reeb vector field R associated to the contact
form θ [3]; it is uniquely determined by

θ(R) = 1, iR(dθ) = 0.

The other Reeb vector fields correspond to arbitrary f ∈ C∞(M):

Rf = fR+ b(df).

Note that, in this case, b : H∗ → H is the isomorphism induced by dθ. The Reeb
bracket becomes a bracket on C∞(M). To write down the formula more explicitly,
one uses b to reinterpret dθ|H as an element in Λ2H ⊂ Λ2TM , i.e. as a bivector
Λ ∈ X

2(M). The bracket becomes:

{f, g} = Λ(df, dg) +R(f)g − fR(g).(6)

3. Jacobi structures and the associated Lie algebroids

In this section we recall the notion of Jacobi structure, we discuss the associated
Lie algebroid and then we conclude with the natural representation of the Lie
algebroid on the line bundle (to be exploited in the later sections).

As mentioned in the introduction, there are various ways to look at Jacobi struc-
tures. We follow here Kirillov [12] (who uses the term local Lie algebra) and Marle
[18] (who uses the term Jacobi bundle). For the equivalence with Lichnerowicz’s
locally conformal Jacobi structures [15] we refer to [10, 9].
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Definition 3.1. A Jacobi structure on a manifold M is a pair (L, {·, ·}) consist-
ing of a line bundle L → M and a Lie bracket {·, ·} on the space of sections Γ(L),
with the property that it is local in the sense that

supp({u, v}) ⊂ supp(u) ∩ supp(v) ∀ u, v ∈ Γ(L).

Example 3.2. When L is the trivial bundle Kirillov proved in [12] that the Jacobi
bracket is determined by a pair (Λ, E) consisting of a bivector Λ ∈ X

2(M) and a
vector field R ∈ X(M), satisfying

[Λ,Λ] = 2R ∧ Λ, [Λ, R] = 0.

Any such pair induces the bracket given by (6) on Γ(L) = C∞(M) (and conversely).
Such a pair (Λ, R) will be called a Jacobi pair; they correspond to the Jacobi
structures of Lichnerowicz [15].

Example 3.3. The previous section shows that any contact structure has an
underlying Jacobi structure. Actually, as in the case of symplectic and Poisson
structures, contact structures can be seen as “non-degenerate Jacobi structures”.

Next, we introduce the Lie algebroid associated to a Jacobi structure which was
first defined in [8].

Proposition 3.4. For any Jacobi structure (L, {·, ·}):

(1) There is a unique vector bundle morphism ρ : J1L → TM such that, for
all u, v ∈ Γ(L), f ∈ C∞(M),

{u, fv} = f{u, v}+ Lρ(j1u)(f)v.

(2) There is a unique Lie algebroid structure on J1L with anchor ρ and whose
Lie bracket [·, ·] on Γ(J1L) satisfies

[j1u, j1v] = j1{u, v}, ∀u, v ∈ Γ(L)(7)

Recall that part 2 means that [·, ·] makes Γ(J1L) into a Lie algebra and that it
satisfies the Leibniz identity

[α, fβ] = f [α, β] + Lρ(α)(f)β, α, β ∈ Γ(J1L), f ∈ C∞(M).

Proof. For part 1, the conditions in the statement can be rewritten using the
Spencer decomposition (5) for Γ(J1L). Giving a bundle map ρ : J1L → TM
is equivalent to giving a pair of maps

ρ1 : Γ(L) → X(M), ρ2 : Hom(TM,L) → TM,

where ρ2 is a vector bundle map, ρ1 is linear and they are related by

ρ1(fu) = fρ1(u)− ρ2(df ⊗ u).(8)

Note that ρ1 = ρ ◦ j1; hence the condition in the statement yields the following for
ρ1:

{u, fv} = f{u, v}+ Lρ1(u)(f)v.(9)

Equations (8) and (9) can be used to define uniquely ρ1 and ρ2 (hence also ρ)
as follows. The idea is to use a result of Kirillov [12] which says that {·, ·} must
be a differential operator of order at most one in each argument. Recall that a
differential operator of order at most one P : Γ(E) → Γ(F ), between sections of
vector bundles, has a symbol

σP ∈ Γ(TM ⊗Hom(E,F ))

uniquely determined by the property:

P (fu) = fP (u) + σP (df)(u), ∀u ∈ Γ(E), f ∈ C∞(M).
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When E = F = L is a line bundle, Hom(L,L) is trivial and therefore σP ∈ X(M).
The defining equations (9) and (8) can be interpreted as saying that ρ1(u) is the
symbol of the operator {u, ·} and that ρ2 is minus the symbol of ρ1. Hence their
existence follows from Kirillov’s result; uniqueness is clear.

For part 2, first observe that the condition on [·, ·], the Leibniz identity and the
fact that Γ(J1L) is generated as a C∞(M)-module by elements of type j1(u), imply
the uniqueness of the bracket, and also indicate the actual formula for it. To see that
the resulting bracket is well-defined, one can for instance write [·, ·] explicitly using
the Spencer decomposition (5); alternatively, formula (7) above can be taken as
the definition of the bracket. Either way, [·, ·] clearly satisfies the Leibniz identity.
To prove the Jacobi identity, first note that ρ induces a Lie algebra map at the
level of sections. Indeed, the expression ρ([α, β]) − [ρ(α), ρ(β)] is easily seen to be
C∞(M)-linear on α, β ∈ Γ(J1L); hence it may be assumed that α = j1u, β = j1v
with u, v ∈ Γ(L) case in which the expression becomes

ρ1(u, v)− [ρ1(u), ρ1(v)].

Recall that ρ1(u) was the symbol of Pu := {u, ·}. Also, the Jacobi identity for
{·, ·} means that P{u,v} is the commutator [Pu, Pv]; hence, passing to symbols, the
previous expression vanishes. In conclusion, ρ is a Lie algebra morphism. Using this
and the Leibniz identity, a simple computation shows that the Jacobiator of [·, ·] is
C∞(M)-linear in all arguments. Hence, again, it suffices to check the Jacobi identity
on elements of type j1(u), which follows from the Jacobi identity for {·, ·}. �

Example 3.5. Continuing example 3.2, i.e. when L is the trivial line bundle and
we deal with a Jacobi pair (Λ, R), the Lie algebroid J1L is isomorphic to T ∗M ⊕R;
working out the Lie bracket one finds the long formulas of [11].

Next, we show that L has a natural structure of representation of the Lie
algebroid J1L, i.e. it comes with a bilinear map

∇ : Γ(J1L)× Γ(L) → Γ(L), (α, u) 7→ ∇α(u),

satisfying the usual connection-type identities (see e.g. [4]) + the flatness condition

∇[u,v] = ∇u∇v −∇v∇u.

One thinks of ∇ as “infinitesimal action of J1L on L”.
The next lemma is proven by arguments similar to (but simpler than) those of

proof of Proposition 3.4, part 2.

Lemma 3.6. There is a unique action ∇ of J1L on L satisfying

∇j1(u)(v) = {u, v}, ∀u, v ∈ Γ(L).

Example 3.7. When L is trivial (example 3.5) the action is still non-trivial: it
actually encodes R! Indeed, ∇j1f (1) = −R(f).

4. Jacobi structures and the associated Spencer operator

In this section we recall the definition of Spencer operators and indicate their fun-
damental role in the study of Jacobi structures (Proposition 4.2). Then we move to
their global counterpart: multiplicative forms and distributions on groupoids [5, 19].

The classical Spencer operator associated to a vector bundle L [20],

(10) D : Γ(J1L) → Ω1(M,L), (X,α) 7→ DX(α) = D(α)(X),

is the canonical projection on the first factor of the Spencer decomposition (5).
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Definition 4.1. Let A be a Lie algebroid over M , let E be a representation of A
with associated operator denoted by ∇, and let l : A → E be a surjective vector
bundle map. A Spencer operator (on the Lie algebroid A) relative to l is a
bilinear operator

D : X(M)× Γ(A) → Γ(E), (X,α) 7→ DX(α)

which is C∞(M)-linear in X, satisfies the Leibniz identity relative to l:

DX(fα) = fDX(α) + LX(f)l(α),

and the following two compatibility conditions:

(11) Dρ(α)(α
′) = ∇α′(l(α)) + l([α, α′])

(12) DX [α, α′] = ∇α(DXα′)−D[ρ(α),X]α
′ −∇α′(DXα) +D[ρ(α′),X]α,

for all α, α′ ∈ Γ(A), X ∈ X(M).

It is easy to see that given a Jacobi structure (L, {·, ·}) on M , the classical
Spencer operator (10) becomes a Spencer operator on the Lie algebroid J1L asso-
ciated to (L, {·, ·}). Actually this gives a full characterization of Jacobi structures:

Proposition 4.2. Given a line bundle L over a manifold M , there is a canonical,
bijective correspondence between:

(1) Jacobi structures with underlying line bundle L,
(2) Lie algebroid structures on J1L with the property that the classical Spencer

operator is a Spencer operator on J1L relative to the canonical projection
pr : J1L → L.

Proof. We still have to show how the Lie algebroid structure on J1L induces the
Jacobi bracket {·, ·} on Γ(L). We simply define

{u, v} := pr([j1u, j1v]).

Clearly this is antisymmetric and local in u and v. Since D vanishes precisely on
holonomic sections of J1L (i.e. of type j1u), equation (12) implies that all the
expressions of type [j1u, j1v] must be holonomic, hence

[j1u, j1v] = j1(pr([j1u, j1v])) = j1{u, v}.

The Jacobi identity for {·, ·} follows from that of [·, ·]. Moreover, comparing the
formulas, we see that the two constructions are inverse to each other. �

Next we look at the global counterpart of Spencer operators (to be applied in
Section 7 to obtain the contact groupoids integrating Jacobi structures). We briefly
recall some terminology on Lie groupoids [4, 17]. We fix a Lie groupoid Σ over
M ; recall that Σ denotes the manifold of arrows and M the manifold of objects,
s, t : Σ → M denote the source and the target map, respectively, and m(g, h) = gh
the multiplication. The right translation rg induced by an arrow g : x → y is a
diffeomorphism from s−1(y) to s−1(x); by differentiation, it induces:

(13) rg : T s
aΣ → T s

agΣ,

where T sΣ = Ker(ds) stands for the bundle of vectors tangent to the s-fibers.
Recall that the Lie algebroid A = A(Σ) associated to Σ is, as a vector bundle
over M , the restriction of T sΣ to M , where M sits inside Σ as units. Using right
translations, any α ∈ Γ(A) induces a right invariant vector field (tangent to the
s-fibers), αr ∈ X

inv(Σ):

(14) αr(g) = rg(αt(g))).
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This induces an isomorphism (and then the Lie bracket on Γ(A)):

Γ(A)
∼
→ X

inv(Σ), α 7→ αr.

To discuss multiplicative structures, we use the Lie groupoid TΣ over TM whose
structure maps are just the differentials of the structure maps of Σ.

Definition 4.3. A (constant rank, smooth) distribution H ⊂ TΣ is called multi-
plicative if H is a Lie subgroupoid of TΣ with the same base TM .

For a multiplicative distribution H one defines its s-vertical part:

Hs := H ∩ T sΣ,

Note that, since H is multiplicative, 0g ∈ H and rg(Xa) = (dm)a,g(Xa, 0g) for all
Xa ∈ T s

aΣ, it follows that H
s is invariant under the right translations (13):

(15) rg(H
s
a) = Hs

ag.

Also, since ds : H → TM is surjective, for every X ∈ TΣ one finds V ∈ H such
that ds(X) = ds(V ), therefore H is transversal to the s-fibers:

(16) TΣ = T sΣ+H.

Similar statements arise using left translations acting on the spaces T tΣ and Ht.
One also has a dual point of view on multiplicative distributions, obtained by

using forms, when (as in the case of contact structures) one reinterprets the pro-
jection modulo H as a 1-form. However, in this setting, the quotient line bundle
L̃ := TΣ/H is determined by its restriction to M :

L := L̃|M .(17)

Indeed, (16) shows that L̃ = T sΣ/Hs and then (15) implies that the right trans-

lations induce isomorphisms rg : L̃a → L̃ag whenever ag is defined, in particular,

rg : Lt(g) → L̃g. In fact:

Lemma 4.4. L is a representation of Σ and the right translations induce an iso-
morphism of vector bundles over Σ

r : t∗L
∼
→ L̃, t∗u 7→ ur.

Proof. For any arrow g : x → y, right translations induce a map rg : Ly
∼
→ L̃g;

similarly, one has that left translations induce an isomorphism lg : Lx
∼
→ L̃g.

Combining the two, one obtains that g induces an isomorphism Lx → Ly, v 7→ g ·v,
which satisfy the usual identity for an action and vary smoothly w.r.t g and v. �

Henceforth, the canonical projection modulo H is interpreted as a 1-form

(18) θ ∈ Ω1(Σ, t∗L).

For forms with values in a representation, one can talk about their multiplicativity:

Definition 4.5. Let Σ be a Lie groupoid and E a representation of Σ. An E-valued
multiplicaitve one form is any form η ∈ Ω1(Σ; t∗E) satisfying

(19) (m∗η)(g,h) = pr∗1η + g · (pr∗2η),

for all (g, h) in the domain Σ2 of the multiplication m, where pr1, pr2 : Σ2 → Σ
denote the canonical projections. We say that η is regular if it is surjective.

It is clear that the kernel of any regular multiplicative form is a a multiplicative
distribution. Conversely, a rather straightforward computation shows that the form
(18) associated to a multiplicative distribution is multiplicative.
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Returning to the infitesimal picture, the key remark is that any multiplicative
form on a groupoid induces a Spencer operator (see Definition 4.1) on the Lie
algebroid of the groupoid:

Proposition 4.6. Let Σ be a Lie groupoid over M with Lie algebroid A. Then any
multiplicative distribution H ⊂ TΣ induces:

• the vector bundle L which is the restriction to M of T sΣ/Hs;
• the vector bundle morphism

l : A → L, l(α) = α mod Hs;

• a Spencer operator D on the Lie algebroid A relative to l:

DX(α) = [X̃, αr ]|M mod Hs.(20)

Here, for X ∈ X(M), X̃ ∈ Γ(H) is any extension of X to Σ (where M
u
→֒ Σ

as units) with the property that dgs(X̃g) = Xs(g), and αr is given by (14) .

This follows by a lengthy but straightforward computation [19, 5]. Its converse,
an integrability theorem (for Spencer operators), is less straightforward and is one
of the main results of [19, 5]:

Theorem 4.7. For Σ s-simply connected one has a 1-1 correspondence between

• multiplicative distributions H on Σ;
• Spencer operators on the Lie algebroid A relative to some map l : A ։ E.

The correspondence is given by (20).

The relevant Spencer operator of a Jacobi structure (L, {·, ·}) on M is the classi-
cal Spencer operator associated to the line bundle L. Theorem 2 of section 3 states
that the multiplicative distribution H ⊂ TΣ integrating the classical Spencer oper-
ator makes the pair (Σ,H) into a contact groupoid in the sense of the next section.

5. Contact groupoids

In this section we recall the notion of contact groupoid [7, 8], the dual point
of view (using multiplicative forms) and we discuss the first consequences of the
compatibility of the contact structure with the groupoid structure.

Definition 5.1. A contact groupoid over M is a pair (Σ,H) consisting of a
Lie groupoid Σ over M and contact structure H on Σ, with the property that H is
multiplicative in the sense of definition 4.3.

Using the previous section, since H is multiplicative:

• the line bundle TΣ/H is determined by its restriction L to M . Moreover
L is a representation of Σ;

• contact groupoids can also be described as groupoids Σ endowed with a one
dimensional representation L and a multiplicative one form θ ∈ Ω1(Σ, t∗L)
which is of contact type.

Example 5.2. When L is trivial as a line bundle, the action of Σ on L may still
be non-trivial and it will be encoded in a 1-cocycle r on Σ. Hence, in this case,
the structure of contact groupoid is encoded in a contact form θ and a 1-cocycle r;
working out the multiplicativity conditions, we find the (rather puzzling) equation
that is taken as an axiom in [11].

Recall that the contact orthogonal Fc
x ⊂ Hx of a subspace Fx ⊂ Hx is the

orthogonal w.r.t. the non-degenerate pairing (3) induced by H. A submanifold
N ⊂ M is Legendrian if TN ⊂ H|N and (TxN)c = TxN , for all x ∈ N.

Proposition 5.3. In a contact groupoid (Σ,H) over M :
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(1) The unit map u : M →֒ Σ is a Legendrian embedding.
(2) Hs = (Ht)c.

Denote by X
inv
Reeb(Σ,H) ⊂ X(Σ) the subpace defined by

X
inv
Reeb(Σ,H) := XReeb(Σ,H) ∩ X

inv(Σ).

Multiplicativity of θ, Corollary 2.3 and Lemma 4.4 imply the following result.

Corollary 5.4. The isomorphism θ : XReeb(Σ,H)
∼
→ Γ(t∗L) of Corollary 2.3 is

invariant under right translation (13), i.e. θ(r(v)) = θ(v). In particular, θ restricts
to a vector space isomorphism

θ|Xinv

Reeb
(Σ,H) : X

inv
Reeb(Σ,H)

∼
→ Γ(L),

with inverse u 7→ Rur .

To prove Proposition 5.3, we need the following:

Lemma 5.5. Let θ ∈ Ω1(Σ, t∗E) be a multiplicative form with values in some
representation E of Σ. Then, for any X ∈ Γ(ker θ) and any αr ∈ X

inv(Σ),

θg([α
r, X ]) = θt(g)([α

r , X̃]),(21)

where X̃ ∈ Γ(ker θ) is any other vector field with the property that dt(X̃) = dt(X).

Proof. For any integer k and any section α of the Lie algebroid of Σ, consider

Lα : Ωk(Σ, t∗E) → Σk(G, s∗E),

(Lαθ)g :=
d

dǫ

∣

∣

ǫ=0
(ϕǫ

αr (g))−1 · (ϕǫ
αr )∗θ|ϕǫ

α
r (g)

where ϕǫ
αr : Σ → Σ is the flow of αr . In general (cf. e.g. Lemma 3.8 of [5] or [19]),

[iX , Lα](θ)g = g−1 · θg([X,αr ]).

θg([X,αr]) = g · Lα(θ)g(X).

Hence, to prove (21), it suffices to show that the last expression does not depend
on g and X , but only on t(g) and dt(X). For that, we remark that:

g · Lα(θ)g(X) =
d

dǫ

∣

∣

ǫ=0
(ϕǫ

α(t(g)))
−1 · θ(dϕǫ

α(dt(X))),

where ϕα : M → Σ is the restriction of ϕαr to M . Indeed,

g · (Lαθ)(X) = g ·
d

dǫ

∣

∣

ǫ=0
(ϕǫ

αr (g))−1 · (ϕǫ
αr )∗θ|ϕǫ

α
r (g)(X)

= g ·
d

dǫ

∣

∣

ǫ=0
(ϕǫ

α(t(g)) · g)
−1 · (θ(dm(dϕǫ

α(dt(X)), X))

= g ·
d

dǫ

∣

∣

ǫ=0
g−1 · (ϕǫ

α(t(g)))
−1 · (θ(dm(dϕǫ

α(dt(X)), X))

=
d

dǫ

∣

∣

ǫ=0
(ϕǫ

α(t(g)))
−1 · (θ(dϕǫ

α(dt(X)))− ϕǫ
α(t(g)) · θ(X))

=
d

dǫ

∣

∣

ǫ=0
(ϕǫ

α(t(g)))
−1 · θ(dϕǫ

α(dt(X))),

where it is used that the flow of a right invariant vector field αr is given by ϕǫ
αr (g) =

ϕǫ
α(t(g)) · g and therefore for a fixed ǫ, dϕǫ

αr = dm(dϕǫ
α ◦ dt, id). �

Proof of Proposition 5.3. For item 1, to show that TM ⊂ TM c let X,Y ∈ X(M),

and choose any t-projectable extensions X̃, Ỹ ∈ Γ(H) of X,Y respectively with

the property X̃|M = X, Ỹ |M = Y. This can be done because for multiplicative
distributions H the restriction of dt : TΣ → TM to H is surjective. With this

cH(X,Y )(1x) = [X̃, Ỹ ](1x)modH = [X,Y ](x)modH = 0,
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where the last equality holds since [X,Y ] ∈ TM ⊂ H. For the other inclusion
split Hx, x ∈ M , as the direct sum TxM ⊕ Hs

x and prove that αx ∈ TxM
c only if

αx ∈ TxM . If not, without loss of generality αx ∈ Hs, and Lemma 5.5 shows that

cH(αx, Xx) = cH(αx, dt(X)) = 0, ∀X ∈ H,

which only happens if αx = 0 as cH is non-degenerate. This last equation shows
that TM c = TM . A similar computation shows that Ht ⊂ (Hs)c. For the other
inclusion note that as TM is Legendrian then 2rkTM = rkH on the one hand, and
on the other rkH = rkTM + rkHs = rkTM + rkHt. A simple dimension count
shows that Ht = (Hs)c. �

6. From contact groupoids to Jacobi manifolds

In this section we explain the relevance of Spencer operators to the study of
Jacobi structures (relevance that was already indicated in Proposition 4.2). For
clarity, recall that for a contact groupoid (Σ,H) we have:

• the (normal) line bundle L̃ of the contact structure, L̃ = TΣ/H;

• the restriction L of L̃ to M , which is a representation of Σ;
• the vector bundle isomorphism r : t∗L → L̃, t∗(u) 7→ ur induced by right
translations (13) on Σ (Lemma 4.4);

• the isomorphism θ : Xinv
Reeb(Σ,H) → Γ(L), whose inverse associates to u the

Reeb vector field Rur of the coresponding ur ∈ Γ(L̃) (Corollary 5.4);
• the Lie algebroid A of Σ and the Spencer operator D : Γ(A) → Ω1(M,L)
associated to H (Proposition 4.6).

Theorem 1. Let (Σ,H) be a contact groupoid over M . Then:

1. there exists a unique Jacobi structure (L, {·, ·}) over M with the property
that the target map t : Σ → M is a Jacobi map with bundle component
r : t∗L ≃ L̃,

2. the Lie algebroid A of Σ is isomorphic to the Lie algebroid associated to
(M,L, {·, ·}), via the Lie algebroid isomorphism

Φ : J1L → A, Φ(j1u) = Rur |M ,

3. after the identification of A with J1L, the Spencer operator D associated to
H becomes the classical Spencer operator (10).

In the previous statement, a map φ : (N, L̄) → (M,L) between Jacobi manifolds
is said to be Jacobi with bundle component F : φ∗L → L̄, if F is a vector bundle
isomorphism and φ : Γ(L) → Γ(L̄), u 7→ F ◦ φ∗u is a Lie algebra map.

Point 3 combined with the fact that Jacobi structures are encoded in Lie al-
gebroid structures on J1L for which the classical Spencer operator is a Spencer
operator (Proposition 4.2) reveal the appearance of the Jacobi structure (L, {·, ·}).

Proof. We first show that A is isomorphic to J1L. Recall from Lemma 2.2 that X(Σ)
can be written as the direct sum XReeb(Σ,H)⊕ Γ(H). When restricting this iden-
tification to right invariant vector fields, we obtain that Xinv(Σ) = X

inv
Reeb(Σ,H) ⊕

Γinv(H),Γinv(H) := Γ(H)∩X
inv(Σ). With this, we claim that the right translations

induce an identification

(22) Γ(A) ≃ Γ(L)⊕ Γ(Hs|M ) ≃ Γ(L)⊕ Ω1(M,L).

The first identification uses Corollary 5.4 and the fact that right translation gives
the identification Γinv(H) ≃ Γ(Hs|M ). For the second identification, we use the
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identification dt : (H/Ht)|M ≃ TM (since H is multiplicative hence t-transversal)
and note that the non-degenerate curvature map (3) induces an isomorphism

(23) Hs|M → Hom(TM,L), V 7→ cH(V, ·).

That (23) is an isomorphism is a consequence of (Hs)c = Ht (Proposition 5.3).
The decomposition (22) can be shown to hold directly as follows. That the sum
is direct is clear. Let α ∈ Γ(A) arbitrary, and consider the Spencer operator
D associated to H (as in Proposition 4.6). Non-degeneracy of (23) implies that
there exists V ∈ Γ(Hs|M ) such that the map D(α) : TM → L coincides with
cH(V,−) : TM → L. As a consequence, Rr := αr − V r ∈ X

inv
Reeb(Σ,H): indeed, by

Lemma 5.5, for any X ∈ Γ(H),

θg([R
r, X ]) = θt(g)([R

r, X̃ ]) = cH(V, dt(X))−Ddt(X)(α) = 0

where X̃ ∈ Γ(H) is any s-projectable vector extending u∗(dt(X)). This implies that
αr ∈ X

inv
Reeb(Σ,H) + Γinv(H) hence α ∈ Γ(L) + Γ(Hs|M ). Note that this also shows

that α ∈ Γ(A) belongs to Γ(L) if and only if D(α) = 0. Arguments similar to those
in the proof of Lemma 2.5 show that the C∞(M)-structure of Γ(A) is the one given
by the Spencer decomposition (5) of Γ(J1L), which implies that A is isomorphic to
J1L as vector bundles. Hence, A induces a Lie algebroid structure on J1L.

As for the proof of item 3, note that Hs|M is identified via the map (23) with
the linear subspace T ∗M ⊗ L ⊂ J1L and therefore, the quotient map θ|A : A → L
is identified with the projection map pr : J1L → L. On the other hand, and having
in mind the identification (22), for (u, ω) ∈ Γ(L)⊕Ω1(M,L) ≃ Γ(J1L), and D the
Spencer operator associated to H, one obtains that

DX(u, ω) = θ([X̃, Rur + c−1
H (ω)r]|M )

= θ([X̃, c−1
H (ω)r]|M ) = cH(X, c−1

H (ω)) = ω(X),

where the second equality uses the fact that [XReeb(Σ,H),H] ⊂ H. This shows that
D coincides with the classical Spencer operator (10). With this and Proposition
4.2, we get the desired Jacobi bracket:

{u, v} := pr([j1u, j1v]) = θ([Rur , Rvr ]|M ), u, v ∈ Γ(L)

where, in the second equality, Rur ≡ u ∈ Γ(L) ⊂ Γ(A) corresponds to j1u ∈ Γ(J1L)
in the Spencer decomposition (5). This concludes the proof of item 2.

To conclude the proof of item 1, note that the map Γ(L) → Γ(L̃), r : u 7→ ur is
a Lie algebra map. This is clear as

{ur, vr}Σ = [Rur , Rvr ] modH = {u, v}r.

Uniqueness follows from injectivity of the map r : u 7→ ur, because this implies that
there exists a unique bracket on Γ(L) making r a Lie algebra morphism. �

Remark 6.1. For the Spencer operator D associated to the contact distribution
H, denote by Γ(A,D) ⊂ Γ(A) the space of sections α with the property that
D(α) = 0. The previous proof shows that a section α belongs to Γ(A,D) iff αr

belongs to X
inv
Reeb(Σ,H). Moreover, Γ(A,D) is a Lie subalgebra of Γ(A), the map

θ : Γ(A,D) → Γ(L) from Corollary 5.4 is a Lie algebra isomorphism, and Γ(A) can
be written as the direct sum

Γ(A) ≃ Γ(A,D)⊕ Γ(Hs|M ).
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7. From Jacobi manifolds to contact groupoids

Finally, we discuss the integrability of Jacobi manifolds. Again, the main result
was known in the case of trivial line bundles [6] but, even then, the approach
was very computational and indirect (via Poissonization). We urge the reader to
compare this section with [6]. And here is the main result:

Theorem 2. Let (M,L, {·, ·}) be a Jacobi manifold. If the associated Lie algebroid
J1L is integrable, then the source 1-connected groupoid Σ integrating J1L has a
unique multiplicative distribution H ⊂ TΣ with the properties that

(1) (Σ,H) is a contact groupoid,
(2) the Jacobi structure induced by (Σ,H) on M (cf. Theorem 1) coincides

with the original Jacobi structure.

Combining Theorems 1 and 2, one concludes that Jacobi structures on a manifold
M whose associated Lie algebroid J1L is integrable are in 1-1 correspondence with
contact groupoids with source 1-connected fibers.

Proof of Theorem 2. Let Σ be the s-simply connected Lie groupoid integrating J1L.
Using Theorem 4.7, for proving that the Lie groupoid integrating J1L is contact, it
suffices to show that the multiplicative distribution H ⊂ TΣ, whose corresponding
Spencer operator D is the classical Spencer operator (10), is contact. That H is
of codimension 1 is clear as it is transversal to the s-fibers (equation (16)) and
L = TΣs/Hs|M is one dimensional. To prove that H is maximally non-integrable,
note that as the map l : J1L → L from Proposition 4.6 is the projection map, then

Hs|M = ker(pr : J1L → L) = Hom(TM,L).

With this, if αr ∈ Γinv(H), by Lemma 5.5

[αr, X ]g modH = [αr, X ]t(g) modH = Ddt(X)(α)(t(g)),

for X ∈ Γ(H) any s-projectable vector field extending u∗(dt(X)), and g ∈ Σ. Be-
cause D is just the projection of Γ(J1L) to Ω1(M,L) on the Spencer decomposition
(5), and ds, dt : H → TM are fiber-wise surjective (equation (16)), then for g ∈ Σ
on which αr(g) 6= 0 (hence 0 6= α : Tt(g)M → Lt(g)), one can always find X so that

[αr , X ]g modH = Ddt(X)(α)(t(g)) = α(dt(Xg)) 6= 0.

This proves that (Σ,H) is a contact groupoid.

To show the second part of the theorem, denote by {{·, ·}} the Jacobi bracket
induced by the contact groupoid (Σ,H). By the proof of Theorem 1, one has that

{{u, v}} = pr([j1u, j1v])

for any u, v ∈ Γ(L). On the other hand, formula (11) for the representation ∇ in
terms of the Spencer operator D says that ∇j1u(v) = pr([j1u, j1v]), and Lemma
3.6 writes it as ∇j1u(v) = {u, v}. Therefore {·, ·} = {{·, ·}}.

To conclude the proof of the Theorem, it remains to show the uniqueness of
H. But this is immediate by item 3 1 and Theorem 4.7, as the Spencer operator
associated to such an H must be the classical Spencer operator. �
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